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Intersection Navigation plays a significant role in autonomous vehicle operation. This paper fo-

cuses on enhancing autonomous vehicle intersection navigation through advanced computer vision

and Vehicle-to-Infrastructure (V2I) communication systems. The research unfolds in two phases.

In the first phase, an approach utilizing YOLOv8s is proposed for precise traffic light detection

and recognition, trained on the Small-Scale Traffic Light Dataset (S2TLD). The second phase

establishes seamless connectivity between autonomous vehicles and traffic lights in a simulated

Mississippi State University Autonomous Vehicle Simulation (MAVS) environment resembling a

small city with multiple intersections. This V2I system enables the transmission of Signal Phase

and Timing (SPaT) messages to vehicles, providing information on current traffic light phases and

time until the next phase change which enables the vehicles to adjust their speed and behavior

in real-time. The simulation demonstrates accurate traffic light detection, with vehicles receiving

SPaT messages, showcasing the system’s effectiveness in a multi-intersection scenario.
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CHAPTER I

INTRODUCTION

In recent years, rapid advancements in autonomous vehicle technologies have transformed the

way we envision transportation. Autonomous cars, with their potential to enhance road safety,

optimize traffic flow, and reduce emissions, hold the promise of transforming our urban mobility

landscape. A crucial aspect of enabling seamless autonomous navigation is the effective recognition

and understanding of traffic signals, particularly traffic lights at intersections.

The proper recognition and interpretation of traffic lights are paramount for autonomous vehicles

to make informed decisions and interact safely with other road users. To achieve this, cutting-

edge technologies such as computer vision, machine learning, and vehicle-to-infrastructure (V2I)

communication are harnessed to create sophisticated systems capable of identifying traffic lights

and establishing real-time communication between vehicles and traffic light infrastructure.

This thesis delves into the intricate realm of traffic light recognition and V2I communication

for autonomous cars at intersections navigation. It aims to explore the challenges associated

with the integration of autonomous vehicles into our existing road infrastructure, focusing on the

critical aspects of traffic light recognition and seamless V2I communication at an intersection.

Throughout this study, a small-town scenario with multiple intersections has been developed using

the Mississippi State University Autonomous Vehicle Simulator (MAVS). A simulation of the
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movement of autonomous vehicles in multiple intersections has been rendered where the speed

and movement of the vehicles are controlled. Implementation of advanced machine learning

algorithms, and deep neural networks YOLOv8 have been explored to improve the accuracy and

reliability of traffic light recognition systems. A custom dataset, namely, Small Scale Traffic Light

Detection (S2TLD) [53] has been used to recognize the phases of the traffic lights. This dataset has

been pre-processed and annotated into YOLOv8 compatible format. Then this YOLOv8 network

has been trained with the coco128 dataset to verify its smooth running. Then the pre-processed

custom dataset has been applied to the network, the YOLOv8 model has been trained, and lastly

the network has been run on the test images. For traffic light recognition, the YOLOv8s model[22]

has been used for faster runtime and better performance.

Furthermore, this thesis will delve into the importance of V2I communication, where au-

tonomous cars can establish direct connections with traffic light infrastructure to obtain real-time

traffic signal information. The V2I communications have been simulated by sending simple mes-

sages from the traffic light infrastructure to the vehicles. The message includes information on the

current phase and time for the traffic lights’ phase change using MAVS. The potential benefits of this

communication approach are manifold, ranging from improved traffic efficiency, fuel consumption

efficiency, and reduced congestion to increased pedestrian and cyclist safety.

Various empirical research works have been conducted on traffic lights, road signs, and pedes-

trian detection using active learning [20], deep neural networks like improved YOLOv4 [44] and

faster region-based convolutional network (R-CNN) [28], histogram of oriented gradients (HOG)

features and support vector machine (SVM) [37]. This paper has proposed the utilization of the

state-of-the-art, YOLOv8 network model that shows a promising output by achieving better accu-

2



racy and robustness in traffic light recognition with a custom dataset. At the same time, a simulation

has been designed to establish V2I communications between the vehicle and traffic light infras-

tructure. Very few works have been conducted on V2I communication of autonomous vehicles like

[45] and [13], but in these works, the transmission of any information or any message between the

vehicle and traffic light infrastructure has not been discussed. In this study, the transmission of a

message from the traffic light to the vehicle has been simulated which affects the decision-making

of the autonomous vehicle in intersections. In this thesis, firstly, related works have been discussed

in the background, then in the methodology, the dataset preparation, training YOLOv8 model, and

designing simulation for V2I Communication have been discussed, then the outputs have been

analyzed in the result and analysis chapter, and lastly this thesis has been concluded by discussing

future work.
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CHAPTER II

BACKGROUND

Autonomous vehicles are an emerging technology in our road infrastructure, which presents a

significant challenge, especially at intersections where interaction with traffic signals is required to

maintain efficient and safe traffic flow. Autonomous vehicles rely on reliable and accurate traffic

light detection and interpretation systems to make informed decisions at intersections. Traditional

methods such as computer vision techniques and deep learning algorithms have been explored to

fulfill the task of detecting traffic lights in the advanced driver assistance systems (ADAS) in today’s

autonomous cars. These approaches use image processing and machine learning to determine the

color, shape, and position of traffic lights within the scene [35]. Self-driving vehicles can safely

and efficiently cross intersections by accurately recognizing the status of traffic lights.

2.1 Intersection Navigation

One of the most challenging tasks for an autonomous car is intersection navigation. Researchers

developed many methods using various techniques for safe and effective intersection navigation.

Identifying the intersection using 3D LiDAR for path planning and decision-making is one of

the common approaches [55]. Usually, for intersections with traffic lights and traffic signs, the

operation of autonomous vehicles can be approached by rule-based methods where the decisions

are based on traffic lights or traffic sign recognition. In the case of intersection navigation without
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traffic signs or traffic lights, the time-to-collision (TTC) algorithm is usually followed [49]. There

are also many research works present where researchers work on intersection navigation in an urban

area. Intersection navigation in an urban area with no traffic signs is very difficult and researchers

applied a partially observable Markov decision process (POMDP) to solve the issue of navigating

in an unsignalized intersection [4]. POMDP is an online decision-making algorithm that helps the

autonomous system adapt to the behavior of other vehicles [3]. Using Multi-agent Deep Reinforced

Learning, researchers also developed a model for intersection navigation by an autonomous vehicle

[6]. In reference [6], the authors proposed a multi-agent system using a continuous, model-free

Deep Reinforcement Learning algorithm and trained a neural network to predict the acceleration

and the steering angle at each time step. Their proposed method is applicable for only intersection

navigation with traffic signs. Another approach Deep Q-Network (DQNs) [34] is also followed to

handle the intersection navigation [19] where researchers consider the intersection navigation as a

reinforced learning problem and use DQN to find the state action value Q-factor.

If a real-time scenario is considered where a vehicle is operated by a human driver, then for

effective intersection navigation, the driver needs to identify the intersection first, then recognize

the state of the traffic lights, and road signs, observe the surrounding environments, and then make

a decision to operate the vehicle through the planned path. The driver needs to recognize the color

of the traffic lights whether the light is red, yellow, or green, and make the decision accordingly to

slow down, stop, or go through the intersection. For an autonomous vehicle operation, this task is

performed by the object detection mechanism. For object detection like traffic lights, road signs,

and pedestrian detection, various methods like active learning [20], deep neural networks like

improved YOLOv4 [44] and faster region-based convolutional network (R-CNN) [28], histogram
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of oriented gradients (HOG) features and support vector machine (SVM) [37] have been proposed.

Researchers are working on improving this object detection for autonomous vehicles as it is the most

significant task of autonomous technology to detect the required objects accurately and effectively

for safe navigation. But it’s still a long way to recognize the road signs, and traffic lights by an

autonomous vehicle accurately with the limitations of understanding multiple traffic lights, and

road signs at a time, and avoiding unexpected situations from pedestrians, cyclists, or other vehicles.

Usually, there is no communication between the driver and the traffic lights where the driver can

know the time of the traffic lights change. Suppose a V2I communication can be established

between the driver and the traffic light infrastructure which lets the driver know the time to change

to the next color. In that case, it will be easier for the driver to make a decision more accurately.

The same V2I communication will increase the efficiency of the autonomous vehicle to make

effective decisions in intersection navigation. As a result, the autonomous vehicle control system

can calculate the distance and time according to the timing information received from the traffic

lights and control the speed leading to slow down, stop, or speed up to go through the intersection.

The early notification also helps the autonomous vehicle to increase fuel efficiency. However, the

V2I communication is only applicable for an intersection with traffic light infrastructure. Situations

involving non-signalized intersection creates a drawback for the autonomous vehicle which can be

overcome by establishing vehicle-to-vehicle (V2V) communication [12].

2.1.1 Traffic Light Navigation

An intersection consists of multiple road signs and traffic lights to guide the vehicles for safe

movement. An autonomous vehicle needs to understand the instructions provided by those road
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signs and traffic lights. Most of the urban areas have intersections with traffic lights. Major

cities have huge traffic loads at intersections and it is always a critical decision-making trait for an

autonomous vehicle to safely navigate through the intersections with traffic lights. For effective

navigation through intersections with traffic lights, autonomous vehicles need to detect the traffic

lights, identify the color of the lights, and make decisions according to the color or phase of traffic

lights. For traffic light navigation, autonomous technology mostly depends on the vision-based

recognition system and mapping the traffic light location [30]. A purely vision-based recognition

system has some limitations for effective intersection navigation with traffic lights. To overcome the

limitations, in reference [41], the authors have proposed the integration of deep learning method-

based traffic light detection with prior mapping of the intersections in a predefined route. To identify

all the intersections in the predefined routes, they have used the Intelligent Autonomous Robotic

Automobile (IARA) platform [2]. According to their proposed method, they have constructed a

map with all the intersections of a predefined path using LiDAR data for both online and offline

phases. Then they used YOLOv3 to detect the traffic lights present in that route. Researchers

also utilized multiple sensors (GPS, IMU, LiDAR, and Camera) instead of one or two sensors for

mapping the intersections using the joint calibration method [30]. They determine the optimal

size of the region of interest (ROI) using multi-sensor data fusion positioning and the adaptively

dynamic adjustment (ADA) model. Finally, they used YOLOv4 to recognize the traffic lights. In

most cases, for effective traffic light intersection navigation, researchers preferred prior mapping

all the intersections and used deep learning methods to recognize the state of the traffic lights. In

some works like references [16], [27], and [39], the authors proposed a different approach where

they didn’t use conventional traffic light state recognition. In reference [16], the authors have
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proposed to control the intersection using an Autonomous Intersection Management (AIM) system

which controls the intersection and vehicles by establishing continuous communication with the

approaching vehicles. In reference [27], the authors also focused on the traffic control management

system rather than detecting the traffic lights. They proposed a deep reinforcement learning method

to create a simulation of real-time routing and navigation of the vehicles which doesn’t need any

labeling or guidance. In reference [39], the authors have proposed an autonomous navigation

system to operate the vehicle on the basis of a small topometric map, OpenStreetMap (OSM), and

they call it MapLite. According to their method they also localize the intersections by mapping in

OSM.

2.2 YOLOv8

YOLO was introduced by Joseph Redmon and Santosh Divvala in 2016 [42]. It revolutionized

object detection by offering real-time performance. It can process images and identify objects in

a single pass through a neural network, which makes it incredibly fast compared to other object

detection methods. YOLO can detect multiple objects in a single image, including their class

labels and bounding box coordinates with a good balance between speed and accuracy [31]. Later,

many variants of YOLO were introduced and these versions are described as YOLOv2, YOLOv3,

YOLOv4, YOLOv5, YOLOv6, YOLOv7, and YOLOv8 [43]. In this research, the YOLOv8

network has been used which is lightweight, flexible, and has a better performance compared to

older versions. YOLOv8 uses The PyTorch framework which is user-friendly and easy to train

the dataset. In YOLOv8, it is easier to configure the environment, and faster to train a model

[43]. There are also multiple models of YOLOv8 namely YOLOv8n, YOLOv8s, YOLOv8m,
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YOLOv8l, and YOLOv8x [22]. YOLO-v8 is the latest model added to the YOLO family of

object detectors, released by Ultralytics. It has demonstrated superiority over its predecessors,

including YOLOv5 and YOLOv6, in terms of throughput with similar computational parameters.

YOLOv6 was developed focusing on internal architectural reforms, including redesigned backbone

and neck modules for hardware efficiency, anchor-free detection, and the concept of a decoupled

head. On the other hand, YOLO-v7 introduced architectural reforms such as the integration of

the extended efficient layer aggregation network (E-ELAN) in the backbone and compound model

scaling [18]. These reforms aimed to improve accuracy while maintaining high detection speeds.

however, compared to other YOLO versions, YOLOv5 shows similar performance and metrics to

the YOLOv8, yet the performance of YOLOv8 surpasses accuracy, and speed including mAP [43].

Again, YOLOv8 has been trained on a larger and more diversified dataset compared to YOLOv5.

Besides, the YOLOv8 model has the capabilities of new tasks like segmentation, pose estimation,

and tracking including basic features like detection and classification [22]. YOLOv8 uses Soft-

Non-Maximum Suppression (NMS) as a post-processing technique whereas YOLOv5 uses the

NMS technique. NMS removes the overlapping bounding boxes and soft-NMS applies a threshold

on the overlapping bounding boxes resulting in better performance [43].
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Figure 2.1: Timeline of different YOLO Models

Figure 2.1 [48] shows the timeline of different YOLO models when all the models have been

introduced.

Overall, the YOLO family has evolved rapidly, with each variant introducing architectural

advancements and improvements in speed and accuracy.YOLOv8, being the latest release, shows

promising performance in terms of throughput and compatibility with industrial requirements

2.3 Object Detection

Object detection is a computer vision task that relates to identifying and localizing objects of

interest within an image or a video frame [40]. The goal is to not only determine the presence

of objects but also accurately locate them. Today’s machines can see the objects, but they cannot

understand it. To perform this object detection accurately, and to understand the object, the model

is trained under certain conditions with different training datasets.
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Object detection can be categorized into two main approaches: two-stage methods and one-

stage methods. Two-stage methods, such as R-CNN variants like Fast R-CNN and Faster R-CNN,

involve a two-step process [18] [40]. In the first stage, numerous region proposals are constructed,

and in the second stage, these proposals are classified and developed to obtain the final object

detections. These methods tend to achieve high accuracy but are computationally demanding. On

the other hand, one-stage methods, like the YOLO family of architectures, perform object detection

in a single pass. They directly predict bounding box coordinates and class probabilities without the

need for explicit region proposal generation [18]. This makes them computationally efficient and

suitable for real-time applications. The YOLO variants, including YOLO-v1 to YOLO-v8, have

shown significant advancements in terms of accuracy and speed over the years. Object detection

algorithms typically utilize deep learning techniques, particularly convolutional neural networks

(CNNs), to extract meaningful features from the input images. These features are then used to

make predictions about the presence, location, and class of objects within the image.

Object detection has numerous applications, including autonomous driving, surveillance,

robotics, and industrial quality control. It plays a crucial role in enabling machines to under-

stand and interact with the visual world.

Object detection is a basic requirement in an autonomous car for its effective movement on the

road. Various sensors like cameras, radars, and lidars are commonly used for object detection in

an autonomous vehicle [54]. However, traffic light detection and recognition play a vital role in

intersection navigation. Traditional approaches like color-based image processing methods [38]

where traffic light detection involves using color thresholds to identify and locate traffic lights in

images or video streams and template-matching techniques [11] that involve comparing predefined
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templates of traffic lights with the captured image content to identify and recognize traffic lights

have been used for traffic lights recognition [10]. Later Convolutional Neural Network (CNN)

has revolutionized traffic light recognition which can detect and classify traffic lights by learning

complex patterns and features [24]. This approach has shown impressive performance in terms

of accuracy and robustness. Region-based CNNs and object detection frameworks, such as Faster

R-CNN [29] and YOLO [42], have further improved traffic light detection by providing precise

bounding box information.

2.4 V2X Communication

In addition to traffic light recognition, integrating V2I communication gives more accuracy and

efficiency in intersection navigation. V2I communication architecture refers to the framework that

enables the communication between autonomous vehicles and the infrastructure, specifically traffic

lights. It involves the exchange of information and data between vehicles and the infrastructure to

facilitate efficient and coordinated vehicle movement. The architecture generally consists of com-

munication protocols, communication channels, and message formats for traffic light information

exchange. The most popular protocol for vehicle-to-vehicle (V2V) and vehicle-to-infrastructure

(V2I) communication is Dedicated Short-Range Communication (DSRC), a wireless communi-

cation technology, which is designed especially for V2X Communications. [1] [52]. Another

common V2I communication system is Cellular Vehicle-to-Everything (C-V2X), where vehicles

transmit their messages using cellular infrastructure or direct mode, based on various factors like

bias factors, vehicle distances, and propagation environments [46]. There also other V2I com-

munication systems have been proposed, such as connections based on infrastructures with WiFi
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or WiFiMax [8], and vehicles using a combination of V2V and V2I [33]. In reference [12], the

authors evaluated the heterogeneous wireless network consisting of DSRC, LTE, and Wi-Fi for

V2X communication. The use of DSRC to establish V2X communication has its own limitations

due to its limited coverage (approximately 300m). On the other hand, LTE, WiMax, and WiFi do

not always support low latency, high reliability, and high accuracy of data transmission between

moving vehicles and infrastructure. For this reason, a combination of DSRC and LTE, WiFi net-

works can be a feasible option for a robust V2X communication [12]. In the V2X Communication

system, messages are sent from one infrastructure or vehicle to other vehicles and vice-versa.

Recent studies establish V2X communication by transmitting SPaT or MAP messages [50]. SPaT

message contains the phase and timing information and the MAP message contains the map data

[7]. SPat message provides the information that helps to prevent any red light violation and sug-

gests travel speed allowing smooth vehicle movement. MAP message provides static roadway

geometric data like lane location, crosswalk location, intersection location, etc. Besides SPaT and

MAP messages, there are also Basic Safety Messages (BSM) and Traveller Information Messages

(TIM). BSM contains vehicle information, speed data, brake system status, etc. and TIM contains

different traffic conditions like road construction, traffic accidents, etc. The SPaT, MAP, and TIM

messages are generally transmitted at approximately 1 Hz, and BSM is transmitted at 10 Hz [23].

2.5 Mississippi State University Autonomous Vehicle Simulator(MAVS)

The MAVS [17] was designed as an off-road simulator. MAVS was initially created to make

it possible to simulate high-fidelity sensors in a range of unstructured situations. With the aid of

MAVS, off-road vehicle testing scenarios and synthetic data sets can be created in a precise physics-
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based environment. Utilizing high-fidelity sensor data, MAVS can be used to train intelligent and

autonomous systems. It uses ray tracing to precisely model sensors and the way that light travels

through the environment [15] [14]. In order to provide real-time, high-performance, ray-traced

simulation capabilities for off-road autonomous vehicles, MAVS was developed as an ensemble of

simulation tools.

Pixel-accurate segmented images can be generated based on user-defined classes and object

tags using MAVS cameras. The ray tracer in MAVS creates a segmentation map by checking the

object tags where each pixel’s ray collides. This segmented data can be used for machine learning

to classify what sensors detect. MAVS provides both labeled and unlabeled images, enabling the

development of machine learning algorithms with ground truth training and test data. This feature

allows MAVS for automated data labeling of images [17]. MAVS also has the automated off-road

terrain generation feature that enables the creation of procedurally generated scenes with varying

terrain roughness, environmental settings (e.g., forest, desert, meadow), environmental conditions

(e.g., sunny, night, haze, snow, fog, dust, rain), and lighting conditions (e.g., time of day). This

capability facilitates the generation of numerous distinct simulated environments, making it suitable

for repetitive testing and synthetic data generation.

MAVS consists of four key components: the environment, vehicle, sensors, and driver [17].

The environment is defined as the scenarios in which the vehicle and sensors operate like trees,

clutter, and buildings. The vehicle represents the vehicle’s dynamics and can utilize MAVS vehicle

dynamics, Chrono, or ANVEL. Each vehicle can have multiple sensors, such as cameras, Global

Positioning System (GPS), Inertial Measurement Unit (IMU), lidar, and radar. The driver is the

control method by which users can control the vehicle, including options like keyboard control or
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autonomy algorithms via the ROS interface. MAVS can function independently or work in tandem

with other simulators as a ”driver” component. MAVS is also compatible with the Python interface

[17].
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CHAPTER III

METHODOLOGY

3.1 Dataset

There are various datasets that consider traffic lights, pedestrians, or road signs for object

detection in on-road scenarios. There is, to the best of the author’s knowledge, no comprehensive

dataset of the traffic lights for intersection navigation. Few datasets are found like LISA [21],

CARLA [25], and S2TLD [53] which contain traffic light images in on-road scenarios to be used

for traffic light color recognition. Accurate traffic light color recognition must be considered in

autonomous driving and driver assistance for effective intersection navigation. Again, all the

datasets are not feasible to train in a deep neural network like YOLOv8. As YOLO uses VOC

and COCO datasets, A part of the S2TLD dataset has been pre-processed according to the COCO

dataset hierarchy for running into the YOLOv8 network and used to train the model. It contains

5,786 images of approximately 1,080 * 1,920 pixels and 720 * 1,280 pixels. For this study, a 720 *

1280 pixel image dataset has been processed which contains 4564 images. 779 images have been

processed into 640 * 640 and used as the dataset. RoboFlow software has been used to annotate or

label data. Bounding boxes have been drawn for each color of the traffic lights like green, yellow,

and red, and labeled according to their class.
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3.2 Sensors for Simulation

Various automotive sensors are used for object detection by the autonomous vehicle. Lidar,

radar, GPS, IMU, and cameras are commonly used in autonomous vehicles for effective object

detection and navigation. LiDAR is very effective in detecting and finding the precise location of

any object. It has a 360-degree view and can measure velocity directly [26][5]. Radar can also

detect any object and measure the velocity as well as distance. Radar uses the Doppler effect to

measure the velocity and can be used for adaptive cruise control, blind spot warning, collision

warning, and collision avoidance [26][47]. Both lidar and radar can be used for long-range object

detection [5]. A camera is a very common sensor widely used in autonomous vehicles. For visual

perception of autonomous vehicles, a camera sensor is used to detect and recognize the objects.

The main advantage of a camera sensor is that it can recognize color whereas other sensors like

lidar, and radar can not recognize color [5]. Understanding the color is the main factor that a sensor

needs in autonomous vehicles for traffic light recognition. For this reason, a camera sensor has

been used in the MAVS simulation for traffic light detection.

Table 3.1 on the following page shows the comparison of the Camera with LiDAR and Radar

where it is visible that only the camera sensor has the color recognition aspect which is the most

essential and significant feature for traffic light recognition.

3.3 Traffic Light Recognition using YOLOv8

Traffic light detection and recognizing the color are key factors for an autonomous vehicle

in intersection navigation. Many methods like Faster R-CNN, YOLO, and SSD are available for

object detection. In comparison to Faster R-CNN, YOLO is not that accurate, but YOLO is faster

17



Table 3.1: Comparison of Camera, LiDAR, and Radar

Performance Aspect Camera LiDAR Radar
Object Detection Good Good Good

Object Classification Good Fair Poor
Color Recognition Good No No

Distance Estimation Fair Good Good
Velocity Measurement No Good Good

Poor Weather Performance Poor Fair Good
Dark or Low Light Performance Poor Good Good

than Faster R-CNN which makes YOLO suitable for real-time object detection. On the other hand,

YOLO is more accurate than the SSD [36]. As a result, YOLO provides a balanced object detection

performance in both accuracy and operational time. In this work, the YOLOv8 network has been

used to recognize the traffic light color. YOLOv8 is a single-stage object detection model with five

variants: YOLOv8n, YOLOv8s, YOLOv8m, YOLOv8l, and YOLOv8x [22]. Here, the variants

YOLOv8n refers to nano, YOLOv8s refers to small, YOLOv8m refers to medium, YOLOv8l refers

to large, and YOLOv8x refers to extra large. The YOLOv8n is the smallest and fastest model,

on the other hand, the YOLOv8x is the slowest yet most accurate model. The YOLOv8 model

structure is divided into three parts. They are the Backbone network, the Head, and the neck [51].
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Figure 3.1: YOLOv8 Architecture

Figure 3.1 [43] shows the architecture of the YOLOv8 network model. In this figure, the basic

components namely the backbone, the head, and the output of the YOLOv8 model have been

shown.

Figure 3.2: YOLOv8 Network Structure
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Figure 3.2 [51] shows the detailed network structure of the YOLOv8 model with all three basic

components namely the backbone, the neck, and the head. The backbone network is the same as

the YOLOv5 structure, but in this YOLOv8, the Cross Stage Partial (CSP) module, C3 has been

replaced by the C2f module which increases the information flow of the feature extraction network

without increasing the weight. Finally, the spatial pyramid pooling fast (SPPF) module is used

to pool the input feature maps to obtain an adaptive size output [51]. The neck is comprised of

a Feature Pyramid Network (FPN) and a Path Aggregation Network (PAN). In the conventional

FPN approach, some localization data are lost as it uses a top-down approach for enhancing

deep semantic information of the feature. To overcome this problem, in YOLOv8, the fusion of

the PAN structure and FPN structure has been utilized which has both top-down and bottom-up

structures providing a feature diversity [51]. YOLOv8 has a decoupled head structure that contains

the detection part. In the head, object classification and predicted bounding box regression are

performed using different loss functions. This detection structure improves the accuracy and

robustness of the model [51][32].

The Backbone network extracts the feature map of the detected images, and the Neck comprising

the FPN and the PAN helps to improve object detection in the images [43]. In YOLOv8 architecture,

both FPN and PAN modules are combined together. The FPN generates feature maps at multiple

scales and resolutions, while the PAN aggregates features from different levels of the network to

improve accuracy [43].
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3.4 V2I Communication using MAVS

In this work, a simulation of V2I communication of an autonomous car with traffic lights

has been developed and the scenario has been developed in the MAVS platform. For effective

intersection navigation, it is necessary to recognize the state of traffic light colors, and V2I

communication between the car and traffic light increases the accuracy and safety of the intersection

navigation.

In this work, the MAVS simulator and Python API have been used to run the vehicle in a

simulated environment and verify the V2I communication establishment. First, a small city layout

with roads and multiple intersections has been designed in the MAVS simulator.
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Figure 3.3: Top view of the Intersections Layout

Figure 3.3 shows the layout of the roads and intersections in the simulation. In this layout, there

are 5 intersections which are named as North, South, East, West, and Center.
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The directories have been changed appropriately within the codes. The vehicle was driven

around in the MAVS simulation, using the keys: “w”, “a”, “s”, and “d” (for direction and accel-

eration). When the vehicle reaches close to any intersection, it receives a SPaT message from the

traffic light infrastructure. This short message contains the information of the current phase of the

color and the time left for the light to be changed into the next phase. The V2I communication has

been designed in such a way that when the vehicle moves toward an intersection, it will receive the

message from that intersection only within a specific range. All other intersections are continuously

sending the SPaT messages, but those messages will be filtered out and the vehicle will consider

only one intersection along the direction of the vehicle. While designing the intersection layout

in the MAVS simulation, all the road components, traffic lights, and intersection locations are

defined with coordinates. When the vehicle moves, it continuously measures the distance of the

traffic light intersections using the coordinates of its own location and traffic light location. When

the vehicle moves towards an intersection, then the distance decreases. If it increases or gives a

negative value then the intersection is considered as a passed intersection, and the vehicle filter out

all the messages from these passed intersection.

Table 3.2 on the next page shows different scenarios of all the routes along which the vehicle

has followed different intersections and successfully received the SPaT messages from the desired

traffic lights within the mentioned ranges.
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Table 3.2: Simulated routes of different intersections for SPaT Message transmission

Routes Intersections Message Transmission Range SPaT Message
Route 1 North-Center-East-North 20m Yes
Route 2 North-Center-West-North 20m Yes
Route 3 North-Center-South-East-North 10m Yes
Route 4 West-Center-South-West 10m Yes
Route 5 Center-East-South-Center 10m Yes
Route 6 North-West-South-Center-North 10m Yes
Route 7 South-Center-East-North 20m Yes
Route 8 North-East-South-West 20m Yes
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CHAPTER IV

RESULTS AND ANALYSIS

4.1 Traffic Light Detection

The YOLOv8 model is designed by Ultralytics. The YOLOv8 has been installed by using the

pip command in the Python interface. After fulfilling all the requirements, the network has been

trained with the coco128 dataset to confirm that the network is working.

The evaluation metrics used in this paper to evaluate the performance are the F1 score, precision-

recall curve, and the mean average precision (mAP). Precision is the ratio of the true positive and

total number of positive instances labeled by the model and it can be determined by the equation

4.1 [9].

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
(4.1)

In equation 4.1, TP means True Positive, and FP means False Positive. True Positive indicates

the instances that the model correctly identifies as the actual class. False Positive is defined as the

result that the model identifies wrong instances as the actual class [9].

Recall is the ratio between actual or true positive and total number of actual positive instances

and it is determined by the equation 4.2 [9].

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(4.2)
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In equation 4.2, FN means False Negative and it is defined as the result that a model fails to

identify as an actual class [9]. Precision and recall are considered together in harmony to evaluate

the performance of a model using a precision-recall curve and the F-score is calculated from the

harmonic mean of precision and recall using equation 4.3 and 4.4 [9].

𝐹𝑆𝑐𝑜𝑟𝑒 =
(1 + 𝛽2)𝑃 × 𝑅

(𝛽2𝑃) + 𝑅
(4.3)

𝐹1 =
2𝑃𝑅
𝑃 + 𝑅

(4.4)

The mAP is the mean of average precision which is basically the area under the precision-recall

curve and is determined by the following equation 4.5 [9]

𝑚𝐴𝑃 =

∫ 1

0
𝑃(𝑅) 𝑑𝑅 (4.5)

Initially, the YOLOv8s network model has been trained with epochs 20 and gradually the

number of epochs has been increased up to 100. With the increase in epoch and the number of

training, the model’s performance also increased.

(a) F1-Confidence Curve with 90

epochs of training

(b) F1-Confidence Curve with 100

epochs of training

Figure 4.1: F1-Confidence Curve

26



Figure 4.1a shows the F1-Confidence curve obtained with 90 epochs. Here the confidence value

is 0.267 where both precision and recall have been optimized with an F1 score of 93%. Figure

4.1b shows the F1-Confidence curve obtained with 100 epochs. Here the F1 score is 95% with the

confidence value at 0.353. Comparing these two figures, it is observed that the F1 score has been

increased with the confidence value which indicates that the more the model has been trained, the

more it improves.

(a) Precision-Confidence Curve with

90 epochs of training

(b) Precision-Confidence Curve with

100 epochs of training

Figure 4.2: Precision vs. Confidence Curve

Figure 4.2a shows that the precision reaches 1.00 at a confidence value of 0.851, whereas, in

figure 4.2b, the precision reaches 1.00 at a confidence value of 0.837.

27



(a) Precision vs. Recall Curve with 90

epochs of training

(b) Precision vs. Recall Curve with

100 epochs of training

Figure 4.3: Precision vs. Recall Curve

Figure 4.3a and figure 4.3b show the mAP of 0.968 and 0.975 respectively. Comparing these

two figures, it is observed that with the training epochs, the mAP for all red, yellow, and green

classes has improved to 0.981, 0.986, and 0.957 respectively.

(a) Recall-Confidence Curve with 90

epochs of training

(b) Recall-Confidence Curve with 100

epochs of training

Figure 4.4: Recall vs. Confidence Curve
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From figure 4.4a and figure 4.4b, it is observed that the recall value for both 90 epochs and 100

epochs is 99%, indicating the high performance of the model.

Figure 4.5: Loss and mAP Curve for both training and validation with 100 epochs of training

Figure 4.5 shows the comparative loss functions and mAP for all three classes with respect to

base values. In this figure 4.5, object detection loss for both training and validation is compared

with the base value and it is observed that the loss function curves are very close to the actual one.

This result indicates that this model has better performance in recognizing traffic lights.
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(a) Confusion matrix with 100 epochs

of training

(b) Normalized Confusion matrix

with 100 epochs of training

Figure 4.6: Confusion matrix

Figure 4.6 shows both the confusion matrix and normalized confusion matrix. In figure 4.6a,

it is observed that the model has less number of green class detections. When the dataset was

pre-processed for training using Roboflow and divided into separate ratios for training, validation,

and testing, then the number of green light images became less. As a result, green light prediction

in the confusion matrix is smaller. In figure 4.6b, it can be observed that the prediction accuracy

is very high for all the classes.
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Figure 4.7: Traffic lights detection according to their class

Figure 4.7 shows the detection of traffic lights according to the labels. The classes are labeled

as below: 0: red 1: yellow 2: green From the figure, it is observed that in some cases, the model

failed to predict the true class of the traffic lights. The model predicted the green light as red.
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Figure 4.8: Traffic Lights Prediction by YOLOv8s model

Figure 4.8 shows the prediction of the traffic lights by the YOLOv8s model and from this

figure, it is also observed that, in some images, the model could not detect the actual green light

and predicted it as red. From the YOLOv8s model output, it is observed that the model has faced
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difficulties detecting green lights which is due to the low contrast of the images and in some cases

due to green background where it has considered the green as background.

4.2 V2I Communications Simulation

There are 5 intersections in this small city layout and they are designated as Center, North,

South, East, and West Intersection. The car has been run through all the intersections to simulate

the V2I communications. While moving towards any intersection, the distance of the intersection

from the position of the car has been set, so that the car can identify the location of the traffic light

infrastructure. When the car identifies the position of the traffic light towards the direction of the

car moving, it only receives the short message from that traffic light and filters out other messages.

In the simulation, the distance between the car and the traffic light has been designated so that

when the car reaches that range, it receives the message establishing the V2I communication.

(a) SPaT Message for Green Light at

the Center Intersection

(b) Green Light at the Center Intersec-

tion

Figure 4.9: SPaT Message transmission at the Center Intersection with green light
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Figure 4.9 shows the SPaT messages received by the car from the Center Intersection when

moving towards the Intersection. From this figure, it is observed that the message contains the

current phase of the traffic light and the time required to change to the next phase. The message is

continuously updating with time.

(a) SPaT Message for Yellow Light at

the East Intersection

(b) Yellow Light at the East Intersec-

tion

Figure 4.10: SPaT Message transmission at the East Intersection

Figure 4.10 shows the SPaT message received by the car from the East Intersection. It also

shows the current phase color and time of change for the traffic light.
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(a) SPaT Message for Red Light at the

North Intersection (b) Red Light at the North Intersection

Figure 4.11: SPaT Message transmission at the North Intersection

Figure 4.11 shows the SPaT messages containing the time and phase information received by

the car while moving toward the North Intersection. When the car receives the message, it filters

out the messages of other Intersections within its range.
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CHAPTER V

CONCLUSION

The research outlined in this paper addresses a critical aspect of autonomous vehicle operation,

namely, effective and accurate intersection navigation. It highlights the importance of precise

traffic light recognition and the synchronization of autonomous vehicles with traffic infrastructure

for enhanced safety and efficiency. By combining advanced computer vision techniques, such

as YOLOv8, with Vehicle-to-Infrastructure (V2I) communication systems, the study has made

significant progress in advancing the capabilities of autonomous vehicles.

5.1 Contributions

The two-phase approach, which involves the development of a robust YOLO-based model for

traffic light recognition and the establishment of V2I communication for real-time interaction with

traffic lights, is a commendable step forward. The utilization of the S2TLD dataset for model

training and the SPaT messages with traffic light time and phase information to vehicles showcase

a comprehensive and integrated solution.

The results obtained within the MAVS environment offer promising insights. The autonomous

vehicle’s ability to accurately detect traffic lights and receive timely information about their phase

changes represents a significant milestone in intersection navigation. The successful demonstration
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of this approach in a small city with multiple intersections further underlines its potential real-world

applicability.

5.2 Future Work

Traffic light detection using YOLOv8 has small difficulties detecting green color. In future

work, YOLO can be used to detect the traffic light itself only regardless of phases and then a

secondary classifier can be used to identify the red, yellow, and green phases. It is also noted that

lights that are off, blinking red, blinking yellow, and turn arrows would also be required for a real

vehicle to operate safely. Blinking arrows requires looking at a light for many frames, and will not

work in a one-frame only classifier system. In this study, only the camera data has been considered,

whereas, sensor fusion like Lidar, radar, and camera will increase the efficiency. Future works can

be done with lidar data which will give the precise location of all the traffic lights within its range.

For the V2I communications from the traffic light to the vehicle, the single intersection has

been considered which is the closest ahead, and SPaT messages have been filtered out from other

intersections. Multiple intersections can also be considered at a time along the projected destination

path of the vehicle. When the vehicle measures the distance to identify the front intersection using

coordinates, the function can be considered as similar to the GPS function. The simulation will not

give the precise location of the vehicle to some extent as pin-point location like GPS which can be

considered as an error in receiving timely messages and future work can be done on this feature.

System-level analysis can also be performed, such as estimating the required probability of

misclassifying a traffic light color (a missed red or green can lead to a serious accident) or what
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percentage of SPaT messages can be dropped (not received by the vehicle). These estimates are

critical to a real-life system.

Finally, an autonomous vehicle automatically traversing an intersection requires careful sensor

processing in order to avoid collisions from vehicles in or near the intersection and not to hit

any pedestrians. It would also require precise localization and understanding exactly the lane

boundaries, which is complicated since most intersections do not contain the normal boundary

paint. Furthermore, many intersections have multiple lights, and some have no left turn or no right

turn rules. Even more complicated, some intersections restrict turns during certain times of the

day (e.g., an intersection near a school which might restrict turns in the early morning and when

school is out in the afternoon.) All of these traffic rules must be understood and followed. In all

cases, if the autonomous system decides that it can’t safely traverse the intersection without driver

assistance, it may need to hand over control to the driver.

In summary, this research initiative underscores the importance of cutting-edge technologies,

deep learning models, and V2I communication systems in enhancing the safety and efficiency of

autonomous vehicles at intersections. It paves the way for future developments in autonomous

vehicle navigation and serves as a crucial step toward the realization of fully autonomous and

interconnected transportation systems.
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