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Additive manufacturing (AM) is a process of creating objects from 3D model data by adding

layers of material. AM technologies present several advantages compared to traditional manufac-

turing technologies, such as producing less material waste and being capable of producing parts

with greater geometric complexity. However, deficiencies in the printing process due to high

process uncertainty can affect the microstructural properties of a fabricated part leading to defects.

In metal AM, previous studies have linked defects in parts with melt pool temperature fluctuations,

with the size of the melt pool and the scan pattern being key factors associated with part defects.

Thus being able to adjust certain process parameters during a part’s fabrication, and knowing when

to adjust these parameters, is critical to producing reliable parts. To know when to effectively adjust

these parameters it is necessary to have models that can both identify when a defect has occurred

and forecast the behavior of the process to identify if a defect will occur. This study focuses on the

development of accurate forecasting models of the melt pool temperature distribution. Researchers



at Mississippi State University have collected in-situ pyrometer data of a direct laser deposition

process which captures the temperature distribution of the melt pool. The high-dimensionality and

noise of the data pose unique challenges in developing accurate forecasting models. To overcome

these challenges, a tensor decomposition modeling framework is developed that can actively learn

and adapt to new data. The framework is evaluated on two datasets which demonstrates its ability

to generate accurate forecasts and adjust to new data.

Key words: additive manufacturing, thermal history forecasting, tensor decomposition, ensemble
learning
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CHAPTER I

INTRODUCTION

Additive manufacturing (AM) is a process of creating objects from 3D model data by adding

layers of material. This is in contrast to traditional manufacturing methods, such as formative

manufacturing and subtractive manufacturing, which use dies or molds to inject a liquid material

then allowing it to solidify, or removing material from a block to produce the desired geometry

[5]. Popularly called 3D printing, and what used to be designated as rapid prototyping, AM is

often discussed as a disruptive technology, changing the way products are designed and businesses

developed [28].

AM technologies present several advantages compared to traditional manufacturing technolo-

gies. AM is a more efficient and less labor-intensive process than traditional manufacturing, as it

does not require the same level of manual labor or complex supply chain management [9]. AM

processes can reduce raw material waste by nearly 40% compared to traditional manufacturing

with the potential to recycle up to 98% of the waste material [66]. Furthermore, AM can create

objects with complex geometries that would be difficult or impossible to create using traditional

methods, can reduce lead times by producing parts directly from 3D models without the need for

tooling or machining, and can reduce costs by eliminating the need for tooling and by reducing

material waste [86].
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This has led AM to become increasingly popular over the past few decades being used in a wide

array of industries. In the construction industry, cementitious material extrusion has been used

to construct buildings, for instance a 2, 600 ft2 single-story office building, that reduced labor by

as much as 80% and construction waste by as much as 60% compared to traditional construction

methods [12]. In the biomedical industry, a variety of AM technologies have been used to produce

implants, including artificial valves, stents, crowns, and spinal implants [78]. In the aerospace

industry, Boeing has installed thousands of AM parts on their military and commercial aircraft,

while GE has integrated AM parts into critical systems like the CFM LEAP turbofan engine [29].

The use of AM technologies in the aerospace industry is expected to create $58 billion to $116

billion in economic value by 2025 [3]. While AM technologies have already had a significant

impact, and are only expected to have greater impact, several barriers exist that prevent wider

adoption of these technologies.

1.1 Problem Statement

More widespread adoption of AM technologies, particularly of metal-based AM, is hindered

by challenges such as process uncertainty. This can be caused by a number of factors, including

the properties of the material being used, the geometry of the part, and the parameters of the AM

machine. This variability can lead to microstructural defects in the manufactured part, namely

porosity and lack of fusion. Such defects lead to decreased reliability of the fabricated part

[86, 75]. Studies have shown that the thermal history during an AM process is a strong predictor

of the microstructural properties of the part, with the thermal history being affected by both the

thermal history of the previous layers as well as process parameters of the AM machine [88, 64].
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The mechanical properties of layers within an AM part are also correlated with the thermal history

of previous layers [27]. Therefore, accurate models of the thermal behavior in an AM process are

essential for understanding the mechanical properties of the fabricated parts and enabling closed

loop control within an AM process.

Research into thermal models of AM processes can be broadly classified into two types:

simulation-based [68, 62, 50, 25, 92, 21, 16, 26] and data-driven [67, 2, 60, 63, 35, 93, 48].

Simulation-based models can offer accurate estimates of the thermal behavior over the entire

AM process, enabling identification of root causes of microstructural variations, but at significant

computational cost with simulations requiring days to weeks to run [43, 54]. Given the current

constraints, in some instances it may be faster to additively manufacture and experimentally test the

part characteristics rather than produce simulations, making them infeasible for in-situ monitoring

[73].

Data-driven models, while generally offering less accurate and more temporally limited esti-

mates than simulation-based models, are a computationally cheaper approach that enables them

to be used for in-situ monitoring. Recent studies employing data-driven approaches have used

anomaly detection processes and thermal history forecasting [37, 20, 6, 45, 34, 15, 59]. Research

using anomaly detection methods has focused on extracting features from thermal data streams to

train supervised classification models with training labels obtained from post-process X-ray CT

scanning. While these approaches have been successful, they have not demonstrated extensibility

of the supervised models. Moreover, the researchers did not show that the anomaly predictors

were consistent throughout the printing process. As AM processes are dynamic, and the thermal
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behavior of the process can change over time, it is essential to account for potential temporal effects

in the testing procedures.

In thermal history forecasting, researchers have focused on extracting spatiotemporal patterns

from thermal data streams of previous layers to predict the thermal behavior of future layers. In

contrast to anomaly detection, which only uses features of thermal data streams to identify defects,

thermal history forecasting can be used to predict microstructure and mechanical properties of

future layers, as well as to identify anomalies using control chart systems. Recent studies have

demonstrated models that can forecast the process with high accuracy. However, the range of

these forecasts is limited to one layer or less. Additionally, the granularity of the data is reduced in

preprocessing via summaries of the Heat-Affected Zones (HAZs) or significantly smaller subsets of

the HAZs. Even with the reduction in the amount of data, the models were still too computationally

expensive to be used practically in an online manner.

1.2 Research Objectives, Assumptions, and Limitations

In this research, a data-driven approach to forecasting thermal behavior is introduced that uses

tensor rank decomposition and ensemble learning. As shown in Khanzadeh et al. [45], a tensor

formulation of the thermal history is effective in exploiting multiway dependence of layers as

well as reducing dimensionality of the data. In particular, Canonical Polyadic Decomposition

(CPD) is used as the formulation yields itself to capturing spatiotemporal correlations using a

separable, multiplicative framework which offers a computationally efficient and highly scalable

process. Methodology is developed that enables the model to be effectively online, and to transfer

4



a learned decomposition to data from a new process. The technical contributions of this study are

summarized as follows:

• This research proposes a novel, data-driven approach to forecast melt pool temperature
distribution. A 4D and 3D tensor representation of the thermal history is used to represent
spatial behavior, single layer behavior, and multilayer behavior. A rank decomposition is
applied to the tensor, reducing dimensionality of the data and noise within the data, enabling
the construction of low-cost, low-dimensional models. The ensemble of these models enables
accurate, multilayer forecasts.

• An update procedure for the 3D tensor representation is developed that enables fast adjustment
to learned decomposition parameters as new data becomes available. This is accomplished
in two steps: an intra-layer update which fixes the spatial characteristics and solely adjusts
the temporal modes to fit incoming data, and an inter-layer update that employees alternating
least squares with initialization of parameters set to previously learned modes.

• Building on the update procedure is a transfer learning procedure that enables a learned
decomposition to be adjusted to data from a new process. A decomposition learned from a
previous process is iteratively replaced by incoming data where the adjustments to new data
propagate through the learned decomposition.

• The proposed methodologies are validated using two experimental datasets of thin wall
builds from a DLD process. The experiments conducted to evaluate the methodologies
indicate both high accuracy and low computational cost, making this process feasible for
in-situ monitoring.

There are several limitations to this research. The methodologies proposed are experimentally

validated on data collected from an individual machine (OPTOMEC LENSTM 750), using a

particular powder (Ti-6Al-4V powder), with fabricated parts having the same, simplistic geometry

(thin wall). Certain aspects of the research, such as selection of optimal rank and memory

of the tensor model, may vary if the melt pool possesses more forms, that is, there is more

geometric variation in the melt pool. Additionally, a part with greater geometric complexity would

require preprocessing of the thermal images, specifically, rotating images to align the traversal

direction. However, the introduced methodology is quite robust providing much flexibility in

5



model selection for the ensemble process, and provided the data itself is low-rank, capable of

accurately approximating the data.

1.3 Dissertation Outline

The rest of this paper is organized as follows. Chapter II provides an overview of AM

technologies, distinctive properties of direct laser deposition (DLD), and survey of the literature on

data-driven models of DLD processes using thermal data. Chapter III describes the methodology

used and developed in this research. Chapter IV reports the results of the experiments conducted to

evaluate the methodology. Lastly, Chapter V summarizes the findings in this research and outlines

opportunities for future work.
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CHAPTER II

LITERATURE REVIEW

2.1 An Overview of AM Technologies

The ASTM has identified seven categories of AM technologies: binder jetting, directed energy

deposition (DED), material extrusion, material jetting, powder bed fusion, sheet lamination, and

vat photopolymerization [5]. Figure 2.1 provides a hierarchy of the categories of AM technologies

with particular instances of the listed categories.

Figure 2.1

A hierarchy of AM technologies given in Yusuf et al. [57].
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The different technologies vary in the types of materials they utilize and the particular benefits

they provide. Binder jetting uses a liquid bonding agent to join powder particles such as from

ceramics, metals, or composites. Binder jetting can be faster and more cost effective than many other

AM technologies with a large amount of flexibility on the materials it can use, however, it suffers

from poor mechanical properties caused by significant porosity [95]. Directed energy deposition

(DED) fuses metals, either powder or wire, by melting via a heat source such as a laser or electron

beam as the material is deposited. DED has many advantages including producing arbitrary shapes

on even and uneven substrates, fabrication of heterogeneous materials via selectively supplying

different powder or wires, and using hybrid configurations of DED with different manufacturing

processes. Nevertheless, part reliability due to process uncertainty remains a significant challenge

[1]. Material extrusion deposits a heated filament of a composite or thermoplastic through a

nozzle, or a material that uses a chemical agent to cause solidification. Material extrusion is one of

the most popular AM technologies with Fused Deposition Modeling (FDM), an extrusion-based

technology, in particular being ubiquitous. FDM offers low costs, but can suffer from slower build

speeds, accuracy, and material density [30]. Material jetting, much like a traditional ink printer,

deposits droplets of the build material, such as a photopolymer or wax, onto the build surface

which are then either hardened with UV light or cured. Advantages of material jetting include

high dimensional accuracy and low surface roughness compared to other polymeric material AM

technologies, while disadvantages include high sensitivity to various parameters, such as tray

location and layer thickness, on mechanical properties and dimensional accuracy [33].

Powder bed fusion (PBF), similar to DED, uses a heat source such as a laser or electron beam

to melt a metal or polymer powder. Different from DED though, a powder bed is spread evenly
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Figure 2.2

Examples of the seven categories of AM technologies [22, 84, 4, 79, 42, 83, 71].

across a build platform where the heat source selectively melts regions of the powder bed. This

powder bed allows for constructing polymer parts without support structures, though supports are

necessary for most metal PBF processes [31]. Compared to DED, PBF is better at building smaller,

more complex parts which have a better surface finish. However, PBF is a slower process, and

DED generally produces parts with better mechanical properties [85]. Like DED, PBF also suffers

from reliability concerns due to process uncertainty [18]. Sheet lamination uses sheets of precisely

cut material such as ceramics, metals, or paper, bonding the sheets via an adhesive or ultrasonic

welding. Sheet lamination can fabricate larger parts with faster production rates than most other

AM techniques, but the geometric dimensions of fabricated parts for metals can be hard to control

as layers accumulate since layer thickness adjusts during consolidation under pressure [94]. Vat

photopolymerization uses an electron beam or UV light to selectively cure a liquid photopolymer.

Two key benefits of vat photopolymerization are the high accuracy and finish of the fabricated parts.

But the photopolymers have poor impact strength and durability, and the mechanical properties

degrade with age [32].
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Figure 2.2 provides depictions of the seven categories of AM technologies: (a) binder jetting,

(b) DED, (c) material extrusion, (d) material jetting, (e) PBF, (f) sheet lamination, and (g) vat

photopolymerization. The reader can refer to Wong and Hernandez [89], Yusuf et al. [57], Ngo

et al. [61], and Zhang et al. [94] for overviews about the particular technologies. Additionally,

the reader can refer to Gibson et al. [30] for an exhaustive overview. Many recent studies have

focused on process control methods, particularly in metal-based AM [17, 11, 38, 49, 14, 56, 8].

The next sections provide an overview of research specific to the particular AM technology used

in this study.

2.1.1 Direct Laser Deposition

Of particular concern in this study is Direct Laser Deposition (DLD) as the experimental data

used to test the proposed methodology comes from a DLD process. DLD is a subclass of laser-

based additive manufacturing (LBAM) technologies and of DED processes. While there are both

blown-powder and wire feedstock DLD processes, blown powder is a more common technology.

Laser Engineered Net Shaping (LENS) is a proprietary DLD blown-powder technology that utilizes

in-situ laser melting to fuse a powder material by blowing it into the beam via a nozzle(s). Due to

its commercial success, LENS is the most common blown-powder DLD process within research

and industry [81]. Figure 2.3 provides an illustration of the DLD process with thermal monitoring.

There are many advantages to using DLD such as high deposition rates and the ability to

fabricate larger items compared to other metal-based AM methods. Additionally, DLD is a

suitable technology for repairing valuable components because it creates a relatively small Heat

Affected Zone (HAZ), has minimal effect on the component such as distortion and micro-cracking,
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Figure 2.3

Blown powder DLD with thermal monitoring [81].

has excellent density and metallurgical bonding, and allows for precise deposition. However, as

noted earlier with DED technologies in general, process uncertainty remains an issue. Pursuit of

closed-loop control in DLD is of great importance as it can help reduce process uncertainty and

lead to greater reliability with fabricated parts. The melt pool morphology is an aspect of a DLD

process that has ramifications on the material properties of a fabricated part. As noted in Shamsaei

et al. [75],

The melt pool morphology, while in its liquid phase, is paramount to the integrity and
shape of each solidified track/layer... Due to bulk heating effects and other variables,
the melt pool can elongate, shrink, splash and/or become excessively superheated
and unstable. To ensure consistent melt pool morphology during DLD and for each
deposition layer, process parameters should be varied appropriately. The challenge is
detecting variation in melt pool size/temperature and ensuring that the DLD machine
automatically and effectively responds to such changes.
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Shamsaei et al. describe the relationships among process parameters, thermal history, mi-

crostructure, and fatigue behavior during the DLD process as given in Figure 2.4.

Figure 2.4

Relationships among process parameters, thermal history, microstructure, and fatigue behavior
during the DLD process [75].

In their conclusion, Shamsaei et al. observe,

...process parameters affect the cooling rate, thermal gradients, and generally, the
thermal history of DLD parts. The complex thermal history of the deposited part
governs solidification, and consequently, the resultant microstructure, porosity, and
residual stress formation. Mechanical properties, especially fatigue resistance, are
extremely sensitive to microstructure, porosity, and residual stress within DLD com-
ponents.Therefore, microstructure sensitive fatigue models, relating the microstruc-
tural features to fatigue resistance of material, can be readily employed to predict the
fatigue life of DLD parts. Such analytical models can be complemented by using
finite element analysis (FEA), in which critical elements with higher stresses/strain
and possibility of fatigue failure can be determined.
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The thermal history of a fabricated part, and in particular the thermal history of the melt pool,

is of critical importance in understanding the quality of the part. Thus, fast and accurate models

of the thermal history are necessary in achieving successful closed-loop systems which will lead

to greater reliability in DLD processes. Yavari et al. [72] effectively captured this significance in

their illustration given in Figure 2.5.

Figure 2.5

Significance of fast and accurate thermal history models for quality assurance [72].

2.2 Data-Driven Models of DLD Processes Using Thermal Data

Much research has been focused on extracting features from the melt pool thermal data to

train supervised classification models to identify layer or image specific anomalies where labeling

information is obtained using post-process techniques, namely X-ray computed tomography [44,
13



74, 37, 20, 6]. While many of the developed models can accurately identify defects, a challenge

remains as to whether the models can be extended to different parts with varied geometries and

materials. Additionally, research has been done that predicts mechanical properties of the part as a

function of the thermal history of the part [90, 23]. Lastly, some research has sought to model the

melt pool thermal history directly by capturing spatiotemporal correlations that are used to forecast

the thermal history in the AM process [34, 45]. These models have been limited in the range of

forecast, a single time step or one layer, and have significantly reduced the granularity of the data

before modeling to ease computational burden.

2.2.1 Anomaly Detection Models using Melt Pool Thermal Images

Khanzadeh et al. [44] developed a real-time porosity prediction method based on the morpho-

logical characteristics of the melt pool boundary during a DLD process. The researchers extracted

the boundary of each melt pool then employed functional principal component analysis (FPCA)

for feature extraction. The extracted features were then used to train four different classification

models: K-Nearest Neighbors (KNN), Support Vector Machines (SVM), Decision Trees (DT).

and Linear Discriminant Analysis (LDA). The researchers found that KNNs produced the highest

recall rate1 at 98.44% while DT gave the lowest false positive rate2 of 0.033%. A limitation of

this approach, however, was that the FPCA algorithm required access to all images in the dataset

to find optimal principal components for the classification methods.

Using the same data as Khanzadeh, Seifi et al. [74] developed a layer-wise process signature

model to identify defect distribution per layer. The researchers cropped each 752 × 480 image

1
TP

FN + TP where TP is true positive and FN is false negative.
2

FP
TN + FP where FP is false positive and TN is true negative.
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to 130 × 130 to capture the melt pool and HAZs. Each cropped image was then converted from

Cartesian coordinates to spherical coordinates and biharmonic interpolation was used, reducing

the final data size to 27 × 32. After this data transformation, Multilinear Principal Components

Analysis (MPCA) was used to extract features per layer. The convex hull of these features were

calculated for each layer, and the volume of the convex hulls and the maximum norm of the residuals

per image for each layer from the principal component reconstruction were used as predictors of

layer defects, where a layer a was identified as defected if it contained at least one pore. An SVM

model was trained and tested, producing a 92% (24
26 ) recall rate and false positive rate of 3% ( 1

34 ).

Ho et al. [37] used Deep Learning based porosity prediction for Additive Manufacturing

(DLAM) methods for real-time porosity prediction using the same data as Khanzadeh and Seifi.

The researchers used 200 × 200 cropped images containing the melt pool and HAZs and trained

several DLAMs to identify porosity per image. Several models were trained from scratch using

convolutional neural networks (CNN), recurrent CNNs (RCNN), and residual RCNNs (Res-RCNN)

while some pretrained models were adjusted to the new data using transfer learning. The researchers

found that the Res-RCNN had the best performance in nearly all metrics with a recall of 100% (18
18 )

and a false positive rate of 0.5% ( 2
372 ).

Esfahani et al. [20] developed a layer-wise anomaly detection method using in-situ thermal

data of a DLD process. The researchers combined an image registration method to characterize

layer-wise dynamics and a Gaussian Process (GP) model to characterize variation left unexplained

by the image registration operation. Features extracted from the image registration procedure and

the GP model were used to train a support vector machine (SVM) classifier. The researchers

tested the methodology on a single-track thin wall construction and cylinder construction using
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Ti-6AL-4V powder. Layer-wise computation of the features and classification were both fast and

accurate, requiring less time than that needed to build a layer and achieving an accuracy of 93.92%

for the thin wall and 84.29% for the cylinder.

Bappy et al. [6] also developed methodology for layer-wise anomaly detection in which they

compared results to Esfahani [20]. The researchers applied a segmentation procedure to thermal

images, extracting the melt pool and the HAZs, to analyze layer-by-layer morphological dynamics.

Two developed metrics, a global transition metric and a morphological transition metric, were

used to characterize a layer process. Values from these metrics were used as features to train an

SVM classifier. As in Esfahani [20], a single-track thin wall construction and cylinder construction

were used to evaluate the methodology. Layer-wise computation of the features and classification

were both fast and accurate, requiring less time than that needed to build a layer and achieving an

accuracy of 96.38% for the thin wall and 85.07% for the cylinder.

2.2.2 Mechanical Property Models Using Thermal History

Researchers have demonstrated the feasibility of using the thermal history of the AM process

as a means of predicting the mechanical properties of the manufactured part. Xie et al. [90]

developed a mechanical properties model based on wavelet transforms of in-situ IR data using a

convolutional neural network (CNN) to predict location-dependent mechanical properties. Using

data from twelve additively manufactured thin walls from a DLD process where an IR camera

monitored the entire build, the researchers demonstrated that the developed CNN could produce

predictions with less than 5% variations on the measured ultimate tensile strength (UTS3) values

despite challenges from the uncertainty present in the experimental data.

3The UTS is the maximum stress that a material can withstand while being stretched or pulled before breaking.
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In Fang et al. [23] researchers similarly developed a 1D CNN based on thermal histories to

predict location-dependent mechanical properties but used experimentally validated, finite element

simulations of a DLD process to produce the thermal histories. The researchers noted that an

advantage to using finite element models to generate the thermal history enabled the CNN to be

trained on error free data and enabled the data-driven CNN to predict and monitor mechanical

properties for AM builds with more complex geometries. However, it was noted that for com-

putational efficiency the finite element model neglected some powder-scale details. The model’s

prediction had an 𝑅2 = 0.67 for UTS on the test set.

2.2.3 Thermal History Models using Melt Pool Thermal Images

In Guo et al. [34] researchers adopted a Spatial-Temporal Conditional AutoRegressive (STCAR)

model with an AR(1,1) variant to characterize and forecast thermal history. The developed model

offered a one time step ahead forecast of the melt pool. In addition to this, a hierarchical two-level

control chart system was implemented to identify anomalous behavior. The researchers validated

their methodology using simulation data as well as a case study using single-track thin wall con-

struction using Ti-6AL-4V powder. The researchers summarized the HAZs by partitioning the

data into equally sized data trunks (intervals) then producing trunk-wise sample means so as to

reduce the dimensionality of the data. In the numerical study, sample data was generated for 10×10

images. The models produced in the numerical study were effective in identifying anomalies with a

lower false positive level compared to related works. In the case study, the reduced dimensionality

of the data was not reported. The researchers reported two goodness-of-fit statistics, the Deviance

Information Criterion (DIC) and the Log pseudo marginal likelihood (LPML), indicating the ther-
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mal forecasting performance of their model was better than another STCAR alternative, but no

error metrics related to the temperature prediction were provided.

Khanzadeh et al. [45] took a different approach by developing a model to forecast thermal

image streams in a layer-wise manner. Researchers developed a tensor network-based regression

model to forecast one-layer ahead behavior. Autoregressive-1 (AR(1)) tensor-on-tensor regression

was used where only the preceding layer was used to forecast the consequent layer to avoid high

computational costs. Additionally, images were constrained to areas of interest (AOIs), 30×30 crops

of the original 752× 480 images. Higher order partial least squares (HOPLS) was used to estimate

the parameters of the model. The researchers tested the methodology on a 75 layer, double-track

thin wall construction using Ti-6AL-4V powder in a DLD process as well as simulation results.

On the experimental data, researchers achieved an average root mean square error of prediction

(RMSEP) of 30.250◦C per image with a minimum training time of 766.85 seconds and a minimum

testing time of 343.58 seconds.

18



CHAPTER III

METHODOLOGY

Various techniques were used to construct a forecasting model of the pyrometer sensor data,

and to adapt the model to new data. The final model is an ensemble of models constructed using

decomposed components of a tensor representation of the data. The focus of this chapter is on

the methodology used to perform the decomposition, the final ensemble structure, the techniques

used to model the decomposed components, and the algorithms used to update the decomposition

structure to new data.

Here bold, lower case notation is adopted to indicate vectors. Bold, upper case notation

indicates matrices. Unless otherwise noted, italics for upper case and lowercase indicates a scalar.

All analysis and modeling was done using the R programming language [69].

3.1 Tensor Rank Decomposition

The sensor data under consideration is a collection of images captured at uniform time intervals

during the printing process. This data collection process naturally lends itself in viewing the dataset

as a tensor since images have consistent dimensions and images are collected at each layer. A tensor

is a multidimensional array and provides a generalization of scalars, vectors, and matrices. That is,

a scalar is a zeroth-order tensor, a vector is a first-order, matrix a second-order, etc. Utilizing tensor

rank decomposition methodology, namely canonical polyadic decomposition (CPD), allows us to
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reduce noise [82, 47, 36, 87] in the dataset and to exploit the data structure to capture spatiotemporal

correlations [76, 53, 77, 52]. CPD factorizes a tensor into a finite sum of component rank-one

tensors. Here a brief description of CPD is provided. For a more complete treatment see Kolda

and Bader [46]. For example, let X be a third-order tensor given as X ∈ R𝐼×𝐽×𝐾 . Then a rank 𝑅

decomposition of X could be given as,

X ≈ [[𝝀; A,B,C]] ≡
𝑅∑︁
𝑟=1

_𝑟a𝑟 ◦ b𝑟 ◦ c𝑟 (3.1)

where a𝑟 ∈ R𝐼 , b𝑟 ∈ R𝐽 , c𝑟 ∈ R𝐾 , and x ◦ y is the outer product of vectors x and y. a𝑟 , b𝑟 , c𝑟 , are

referred to as the mode vectors. The outer product of each set of mode vectors forms a rank-one

component. The factor matrices A, B, and C are the collection of vectors from each component.

The columns of the factor matrices are normalized to length with the weights absorbed into the

vector 𝝀 ∈ R𝑅; this is done to simplify the computation. A single element 𝑥 ∈ X can be given as,

𝑥𝑖 𝑗 𝑘 ≈
𝑅∑︁
𝑟=1

_𝑟𝑎𝑟𝑖𝑏𝑟 𝑗 𝑐𝑟𝑘 (3.2)

for 𝑖 = 1, ..., 𝐼, 𝑗 = 1, ..., 𝐽, and 𝑘 = 1, ..., 𝐾 . Figure 3.1 provides an illustration of CPD on a

third-order tensor.

Using CPD, a tensor can be approximated to an arbitrary amount of error as the rank increases

where the error is quantified using the Frobenius norm. For a third-order tensor, the Frobenius

norm can be given as,

| |X − X̂| |𝐹 ≡

√√√ 𝐼∑︁
𝑖=1

𝐽∑︁
𝑗=1

𝐾∑︁
𝑘=1

(𝑥𝑖 𝑗 𝑘 − 𝑥𝑖 𝑗 𝑘 )2 (3.3)

The variance explained by the decomposition is a relative measure that can be calculated as,(
1 − ||X − X̂||𝐹

| |X||𝐹

)
× 100% (3.4)
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𝓧 ≈

a1

b1

c1

+ ・・・    +

aR

bR

cR

Figure 3.1

An illustration of CPD on a third-order tensor using a rank 𝑅 approximation.

The rTensor [51] package is used to calculate the CPD, Frobenius norm, and variance explained.

The rTensor package uses the alternating least squares (ALS) algorithm to calculate the rank

decomposition.

There are a few unusual matrix operations that are pertinent to a discussion of the 𝐶𝑃𝐷-𝐴𝐿𝑆

algorithm: the Kronecker product, the Khatri-Rao product, the Hadamard product, and matrix

unfolding. These operations are defined below as presented in Kolda and Bader.

Given A ∈ R𝐼×𝐽 and B ∈ R𝐾×𝐿 , the Kronecker product of A and B is given as A ⊗ B. The

resulting matrix is of size 𝐼𝐾 × 𝐽𝐿 and is defined as,

A ⊗ B =



𝑎1,1B 𝑎1,2B · · · 𝑎1,𝐽B

𝑎2,1B 𝑎2,2B · · · 𝑎2,𝐽B

...
...

. . .
...

𝑎𝐼,1B 𝑎𝐼,2B · · · 𝑎𝐼,𝐽B


(3.5)
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Given A ∈ R𝐼×𝐾 and B ∈ R𝐽×𝐾 , the Khatri-Rao product, known as the matching columnwise

Kronecker product, is given as A ⊙ B, and produces a matrix of size 𝐼𝐽 × 𝐾 . The operation is

defined as,

A ⊙ B = [a1 ⊗ b1 a2 ⊗ b2 · · · a𝐾 ⊗ b𝐾] (3.6)

where a𝑖 and b𝑖 are the 𝑖𝑡ℎ column vectors of A and B respectively. Given A ∈ R𝐼×𝐽 and B ∈ R𝐼×𝐽 ,

the Hadamard product is the elementwise matrix product and is given as A∗B, resulting in a matrix

of size 𝐼 × 𝐽. The operation is defined as,

A ∗ B =



𝑎1,1𝑏1,1 𝑎1,2𝑏1,2 · · · 𝑎1,𝐽𝑏1,𝐽

𝑎2,1𝑏2,1 𝑎2,2𝑏2,2 · · · 𝑎2,𝐽𝑏2,𝐽

...
...

. . .
...

𝑎𝐼,1𝑏𝐼,1 𝑎𝐼,2𝑏𝐼,2 · · · 𝑎𝐼,𝐽𝑏𝐼,𝐽


(3.7)

Lastly, matrix unfolding, also called matricization, is the process of mapping a third-order or

higher tensor to a matrix. A mode-𝑛 unfolding of Y ∈ R𝐼1×𝐼2×···×𝐼𝑁 is denoted as Y(𝑛) . A formal

definition is given in Kolda and Bader, but a simple example which they present will provide a

greater understanding. Let the Y ∈ R3×4×2 with the frontal slices given as,

Y1 =



1 4 7 10

2 5 8 11

3 6 9 12


, Y2 =



13 16 19 22

14 17 20 23

15 18 21 24
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Then the mode-𝑛 unfoldings are,

Y(1) =



1 4 7 10 13 16 19 22

2 5 8 11 14 17 20 23

3 6 9 12 15 18 21 24


, Y(2) =



1 2 3 13 14 15

4 5 6 16 17 18

7 8 9 19 20 21

10 11 12 22 23 24


,

Y(3) =


1 2 3 · · · 10 11 12

13 14 15 · · · 22 23 24


With those definitions supplied, the ALS algorithm for a third-order tensor is presented below

as adapted from Kolda and Bader where A† denoted the Moore-Penrose pseudoinverse of A. In its

default version, 𝐷 ∼ N(0, 1). As will be outlined in chapter 3.3.2, previously learned modes can

be used for initialization.

Algorithm 1: 𝐶𝑃𝐷-𝐴𝐿𝑆(X, 𝑅, 𝐷)
Result: [[𝝀; A,B,C]]

initialize A ∈ R𝐼×𝑅,B ∈ R𝐽×𝑅,C ∈ R𝐾×𝑅 with samples drawn from 𝐷

repeat
A := X(1) (B ⊙ C) (B⊤B ∗ C⊤C)†; normalize columns of A and store norms in 𝝀

B := X(2) (A ⊙ C) (A⊤A ∗ C⊤C)†; normalize columns of B and store norms in 𝝀

C := X(3) (A ⊙ B) (A⊤A ∗ B⊤B)†; normalize columns of C and store norms in 𝝀

until convergence or maximum iterations reached;

For some processes, a significant amount of the variation within the data can be accounted

for using a low-rank approximation. This feature of CPD is what leads to noise reduction in the
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data; signals can be preserved in low-rank approximations as they account for the explainable

variation while noise is removed as it accounts for unexplainable variation. Figure 3.2 provides

an illustration using the single-track, thin wall dataset A. The left plot illustrates the accuracy

of a low-rank approximation, with a rank 1 approximation accounting for more than 95% of the

Frobenius norm. The right plot illustrates the residual distribution for 𝑅 = 1 and 𝑅 = 7. With both

plots it is observed that accuracy increases with rank. However, gains in accuracy become more

modest as the rank increases. Thus the choice of rank becomes a model selection problem.

Figure 3.2

Relationship between rank and accuracy of a decomposition using the single-track, thin wall
dataset A. CPD applied to a 4th order tensor T ∈ R155×155×24×20.
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3.2 Ensemble Model Framework

In addition to reducing noise, the decomposition lends itself to creating simplistic, low-

dimensional models that can capture spatiotemporal correlations using a separable, multiplicative

framework. Individually, the mode vectors can be modeled as a function of their corresponding in-

dex. The individually constructed models are fused using the tensor rank decomposition structure.

That is, an estimate 𝑧 for a particular location and time could concisely be given as,

𝑧 =

𝑅∑︁
𝑟=1

_𝑟

Ω∏
𝜔=1

ℎ𝑟𝜔 (x𝜔) (3.8)

where Ω is the order of the tensor and ℎ𝑟𝜔 is the model for mode 𝜔 constructed as a function

of the index variables of mode 𝜔 for component 𝑟, and x𝜔 are the index variables of mode 𝜔

corresponding to a particular location and time. Figure 3.3 provides an illustration of this process.

In the illustration, an 𝑅 = 4, Ω = 3 formulation is used. X represents the original data while X̂

is the 𝑅 = 4 decomposition. L is the set of models constructed from the individual modes of each

component. The form depicted is used in chapter IV for the 3D tensor representation.

In the case studies using the single-track, thin wall dataset A, images are taken at 24 unique

track coordinates for each layer. For each image, x and y coordinates reference pixel locations in

the image. Applying CPD with a rank 𝑅 decomposition will produce 𝑅 components with each

component having mode vectors associated with the x pixel coordinates, y pixel coordinates, track

position, and layer in the printing process. Different modeling methods were employed in the 4D

tensor formulation compared to the 3D tensor formulation. In the 4D formulation, natural cubic

splines are used to interpolate pixel coordinates and track position, while autoregressive integrated

moving average (ARIMA) models are used to forecast layer effect. The 3D formulation again
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Figure 3.3

An illustration of the ensemble modeling framework.

utilized natural cubic splines to interpolate pixel coordinates. Feed-forward neural networks, with

a single hidden layer, are used within an autoregressive framework to capture track-position, layer,

and temporal effects. An explanation for the different models used will be given in chapter IV.

3.2.1 Natural Cubic Splines

Natural cubic splines are constructed of piecewise third-order polynomials which pass through

𝑚 knots; they are both effective in modeling arbitrary functions as well as being computationally

inexpensive. Consider the one-dimensional case for a set of 𝑚 +1 points (𝑦0, 𝑦1, . . . , 𝑦𝑚), which is
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sufficient since the tensor rank decomposition reduces to one-dimensional problems. What follows

is the form given in Bartels et al. [7]. Let the 𝑖𝑡ℎ section of the spline be given as,

𝑌𝑖 (𝑢) = 𝑎𝑖 + 𝑏𝑖𝑢 + 𝑐𝑖𝑢2 + 𝑑𝑖𝑢3 (3.9)

where 𝑢 ∈ [0, 1] and 𝑖 = 0, 1, ..., 𝑚 − 1. There are two boundary conditions, namely that,

𝑌𝑖 (0) = 𝑦𝑖 = 𝑎𝑖

𝑌𝑖 (1) = 𝑦𝑖+1 = 𝑎𝑖 + 𝑏𝑖 + 𝑐𝑖 + 𝑑𝑖
(3.10)

As there are four coefficients at least four equations are required to solve for a particular𝑌𝑖 (𝑢). Two

more equations can be obtained by adding constraints on the first derivative 𝐷𝑖,

𝑌
(1)
𝑖

(0) = 𝐷𝑖 = 𝑏𝑖

𝑌
(1)
𝑖

(1) = 𝐷𝑖+1 = 𝑏𝑖 + 2𝑐𝑖 + 3𝑑𝑖

(3.11)

Thus, all four coefficients can be symbolically solved yielding,

𝑎𝑖 = 𝑦𝑖

𝑏𝑖 = 𝐷𝑖

𝑐𝑖 = 3(𝑦𝑖+1 − 𝑦 + 𝑖) − 2𝐷𝑖 − 𝐷𝑖+1

𝑑𝑖 = 2(𝑦𝑖 − 𝑦𝑖+1) + 𝐷𝑖 + 𝐷𝑖+1

(3.12)
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with the 𝐷𝑖’s being specified such that the second derivatives match at the endpoints along with a

few additional conditions. This yields a symmetric, tridiagonal system of 𝑚 + 1 equations given

as, 

2 1

1 4 1

1 4 1

. . . .

1 4 1

1 4 1

1 2





𝐷0

𝐷1

𝐷2

...

𝐷𝑚−2

𝐷𝑚−1

𝐷𝑚



=



3(𝑦1 − 𝑦0)

3(𝑦2 − 𝑦0)

3(𝑦3 − 𝑦1)
...

3(𝑦𝑚−1 − 𝑦𝑚−3)

3(𝑦𝑚 − 𝑦𝑚−2)

3(𝑦𝑚 − 𝑦𝑚−1)



(3.13)

The stats [70] package is used to compute the natural splines in this study.

3.2.2 ARIMA Models

AutoRegressive Integrated Moving Average (ARIMA) models are a popular approach in time

series forecasting, being effective in capturing autocorrelations in time series data by incorporating

past observations (autoregression) and past forecast errors (moving average) into forecasts. What

follows is the form given by Hyndman and Athanasopoulos [40]. A non-seasonal ARIMA model

can be given as,

𝑦′𝑡 = 𝑐 + 𝜙1𝑦
′
𝑡−1 + · · · + 𝜙𝑝𝑦′𝑡−𝑝 + \1𝜖𝑡−1 (3.14)
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where 𝑦′𝑡 is the differenced time series, 𝑐 is some constant, 𝜙𝑖 is the coefficient for the 𝑡 − 𝑖 lagged

value of 𝑦′𝑡 , and \𝑖 is the coefficient for the 𝑡 − 𝑖 lagged error of 𝑦′𝑡 . The equation can be rewritten

using backshift notation1 as,

(1 − 𝜙1𝐵 − · · · − 𝜙𝑝𝐵𝑝) (1 − 𝐵)𝑑𝑦𝑡 = 𝑐 + (1 + \1𝐵 + · · · + \𝑞𝐵𝑞)𝜖𝑡 (3.15)

This model is labeled as an ARIMA(𝑝, 𝑑, 𝑞) model where 𝑝 is the order of the autoregressive

component, 𝑑 is the degree of differencing, and 𝑞 is the order of the moving average component.

The forecast [41] package is used to construct ARIMA models in this study.

3.2.3 Neural Network Autoregression

Neural Network AutoRegression (NNAR) models allow complex, nonlinear relationships be-

tween the response of interest and its predictors, being able to incorporate both lagged response

values and concurrent predictors [40]. An illustration of a NNAR model used in this study is given

in Figure 3.4.

To forecast a response at 𝑦(𝑡), the current layer in the printing process, the track position, and

the previous 𝑝 response values are used. The NNAR in this study uses a multilayer feed-forward

architecture with a single hidden layer. The forecast [41] package is used to construct NNAR

models in this study. The value 𝑝 is determined automatically according the Akaike information

criterion (AIC) of a linear autoregressive model, while the size of the hidden layer was set to half

the size of the input layer plus one. A decay parameter equal to ten was used which provides a

conservative model. An ensemble of 30 NNAR models were used per mode vector with forecasts

1The backshift operator, 𝐵, is defined as 𝐵𝑦𝑡 = 𝑦𝑡−1. The exponent of 𝐵 determines the number of differences, i.e.,
𝐵𝑑𝑦𝑡 = 𝑦𝑡−𝑑 .
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Figure 3.4

An illustration of the NNAR model used in this study.

averaged. The reader can refer to Bishop [10] for a detailed treatment on multilayer feed-forward

networks.

3.3 Tensor Update Procedure

The developed tensor update procedure is composed of two systems: an intra-layer update and

an inter-layer update. The intra-layer update is made as new data becomes available while the inter-

layer update is made at the completion of each layer. These systems were developed to augment

a tensor decomposition using a 3D framework, though they could be adjusted to account for a 4D

framework as well. The following sections describe these processes in detail. Chapter IV presents
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the experimental results related to this approach. As a convenience, the notation A[𝑖1:𝑖2, 𝑗1: 𝑗2] is

used to indicate tensor slices. That is, given a second-order tensor A ∈ R10×10 where,

A =



𝑎1,1 𝑎1,2 · · · 𝑎1,10

𝑎2,1 𝑎2,2 · · · 𝑎2,10

...
...

. . .
...

𝑎10,1 𝑎10,2 · · · 𝑎10,10


, then A[3:5, 7:9] =



𝑎3,7 𝑎3,8 𝑎3,9

𝑎4,7 𝑎4,8 𝑎4,9

𝑎5,7 𝑎5,8 𝑎5,9


For brevity, an empty “:” is defined to indicate the entire index. That is, A = A[:, :].

3.3.1 Intra-layer Update

In this procedure, the objective is to update the temporal mode of a decomposition while the

spatial modes remain fixed. Let T0 ∈ R𝐼×𝐽×𝐾 be a tensor of melt pool thermal images where 𝐼

and 𝐽 give the spatial domain and 𝐾 gives the temporal domain. Let T̂0 =
∑𝑅
𝑟=1 _𝑟a𝑟 ◦ b𝑟 ◦ c0

𝑟

be a rank 𝑅 decomposition of T0, where a𝑟 = {𝑎𝑟1 , 𝑎𝑟2 , . . . , 𝑎𝑟𝐼 }, b𝑟 = {𝑏𝑟1 , 𝑏𝑟2 , . . . , 𝑏𝑟𝐽 }, and

c0
𝑟 = {𝑐𝑟1 , 𝑐𝑟2 , . . . , 𝑐𝑟𝐾 }. Let X1 ∈ R𝐼×𝐽 be an image observed at temporal index𝐾+1. Then, letT1 ∈

R𝐼×𝐽×𝐾 where T1 [:, :, 1:(𝐾-1)] = T0 [:, :, 2:𝐾] and T1 [:, :, 𝐾] = X1. Define T̂1 =
∑𝑅
𝑟=1 _𝑟a𝑟 ◦ b𝑟 ◦ c1

𝑟

where c1
𝑟 = {𝑐𝑟2 , 𝑐𝑟3 , . . . , 𝑐𝑟𝐾+1}. 𝑐𝑟𝐾+1 is solved for by minimizing the Euclidean norm between

X1 and the reconstruction where 𝑐𝑟𝐾+1 is initialized at 𝑐𝑟𝐾 . This becomes an 𝑅-dimensional

optimization problem. In practice, a sample of X1 is compared to a sample of the reconstruction

to reduce computation time. Trivially, T𝑛, T̂𝑛, and c𝑛𝑟 can be recursively defined for an arbitrary 𝑛.

This produces the following equation,

min
𝑐𝑟𝐾+𝑛∈R

��������X𝑛 −
𝑅∑︁
𝑟=1

𝑐𝑟𝐾+𝑛_𝑟a𝑟 ◦ b𝑟
�������� (3.16)
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Figure 3.5 provides an illustration of the intra-layer update. The Nelder-Mead method from the

stats [70] library is used to numerically solve equation 3.16.

. . 
. . 

.  

k = 1

k = 2

k = K k = K+1

Drop 
first 

image

Spatial modes fixed

Update initialized at last observation

Construct k = K + 1  from modes 
and sample from same locations 

Sample X at k = K + 1 

Minimize L2 norm between sampled points 

Figure 3.5

An illustration of the intra-layer update procedure.
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3.3.2 Inter-layer Update

In this procedure, a combined update of the spatial and temporal modes is performed at the

completion of each layer. The key to this approach is using the CPD-ALS algorithm, with the

modes being initialized with the previously solved spatial modes and the adjusted temporal modes.

k = 2

Minimizes frobenius norm between 
reconstruction and sensor data

k = 2m+1

k = 2m

. . 
. . 

.  

k = m

k = m+1

k = 2m-1

Drop 
images
[1, m)

. . 
. . 

.  k = 3m-1

Update all modes with CPD-ALS, initialized with 
learned modes

. . 
. . 

.  

. . 
. . 

.  

. . 
. . 

.  

Reconstruction from learned modes Sensor data

k = 1

k = K

k = 2

k = 1

k = K

Figure 3.6

An illustration of the inter-layer update procedure.
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Building off the example given in the previous section, let 𝑚 be the number of images in a

particular layer, where c𝑚𝑟 = {𝑐𝑟1+𝑚 , 𝑐𝑟2+𝑚 , . . . , 𝑐𝑟𝐾+𝑚}. After solving for 𝑐𝑟𝐾+𝑚 , if the relative change

between | |T𝑚 − T̂𝑚 | |𝐹 and | |T0 − T̂0 | |𝐹 is greater than a given tolerance then the CPD-ALS algorithm

is applied where the modes are initialized with there solved values with the solution being stored

in T̂𝑚. Otherwise, T̂𝑚 is left unchanged and the procedure continues. That is, let

𝑒𝑚 =
| |T𝑚 − T̂𝑚 | |𝐹 − ||T0 − T̂0 | |𝐹

| |T𝑚 | |𝐹
(3.17)

If 𝑒𝑚 > 𝛿 then T̂ ∗
𝑚 = 𝐶𝑃𝐷-𝐴𝐿𝑆(T𝑚, 𝑅, [[𝝀; A,B,C𝑚]]). Otherwise, T̂ ∗

𝑚 = T̂𝑚. In this study,

𝛿 = 10−5. Figure 3.6 gives an illustration of this procedure.

3.4 Transfer Learning Framework

The transfer learning framework uses the update procedure so that a learned decomposition can

be quickly adjusted to data from a new process. Transfer learning has lately received much attention

in AM modeling research as it enables quickly learning new processes where limited data may be

available [19, 39, 65, 24, 80]. Following the notation given in section 3.3, let T0 ∈ R𝐼×𝐽×𝐾 be a

tensor of melt pool thermal images from a dataset labeled A and T̂0 =
∑𝑅
𝑟=1 _𝑟a𝑟 ◦b𝑟 ◦c0

𝑟 be a rank 𝑅

decomposition of T0. Let Y𝑘 ∈ R𝐼×𝐽 be an image observed at temporal index 𝑘 = 0, 1, 2, ..., 𝐾 for a

new dataset labeled B. Let B̂𝑘 ∈ R𝐼×𝐽×𝐾 be an approximation of dataset B where B̂0 = T̂0. For each

𝑘 within a particular layer, the intra-layer update is applied. Different from the intra-layer update,

however, the temporal mode c1
𝑟 = {𝑐𝑟∗1 , 𝑐𝑟2 , . . . , 𝑐𝑟𝐾 } where 𝑐𝑟∗1 is initialized at 𝑐𝑟1 and solved via

equation 3.18,

min
𝑐𝑟∗
𝑘
∈R

��������Y𝑘 −
𝑅∑︁
𝑟=1

𝑐𝑟∗
𝑘
_𝑟a𝑟 ◦ b𝑟

�������� (3.18)
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As each image, Y𝑘 , is observed, images are stored in a new tensorB𝑘 ∈ R𝐼×𝐽×𝐾 whereB𝑘 [; , ; , 1:𝑘] =

Y1,2,...,𝑘 and B𝑘 [; , ; , 𝑘+1:𝐾] = B̂𝑘 [, , 𝑘+1:𝐾]. In practice, the values of c𝑘𝑟 indexed greater than

𝑘 are mean centered by the mean of values less than or equal to 𝑘 to provide continuity in the

reconstruction. That is,

c𝑘𝑟 [𝑘+1:𝐾] := c𝑘𝑟 [𝑘+1:𝐾] − c𝑘𝑟 [𝑘+1:𝐾] + c𝑘𝑟 [1:𝑘]

where the wide bar indicates the mean.

At the end of any particular layer, the inter-layer update is applied. Using similar notation

as given in section 3.3.2, let 𝑚 be the number of images in a particular layer, where here c𝑚𝑟 =

{𝑐𝑟1 , 𝑐𝑟2 , . . . , 𝑐𝑟𝑚 , . . . , 𝑐𝑟𝐾 }. After solving for 𝑐𝑟𝑚 , if the relative change between | |B𝑚 − B̂𝑚 | |𝐹 and

| |B0 − B̂0 | |𝐹 is greater than a given tolerance then the CPD-ALS algorithm is applied where the

modes are initialized with there solved values with the solution being stored in B̂𝑚. Otherwise, B̂𝑚

is left unchanged and the procedure continues. That is, let

𝑒𝑚 =

���� | |B𝑚 − B̂𝑚 | |𝐹 − ||B0 − B̂0 | |𝐹
| |B𝑚 | |𝐹

���� (3.19)

If 𝑒𝑚 > 𝛿 then B̂∗
𝑚 = 𝐶𝑃𝐷-𝐴𝐿𝑆(B𝑚, 𝑅, [[𝝀; A,B,C𝑚]]). Otherwise, B̂∗

𝑚 = B̂𝑚. Figure 3.7 gives

an illustration of this procedure.

3.5 Error Metrics

Three metrics are used to assess the accuracy of the prediction models: the Root Mean

Squared Error (RMSE), the Normalized RMSE (NRMSE), and the Mean Absolute Percentage

Error (MAPE). The RMSE is given as,

RMSE =

√︄∑𝑁
𝑖=1(𝑦𝑖 − �̂�𝑖)2

𝑁
(3.20)
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An illustration of the transfer learning framework.

where 𝑦𝑖 is the observed value, �̂�𝑖 is the predicted value, and 𝑁 is the number of (observed,

predicted) pairs. The NRMSE is given as,

NRMSE =
1

𝑦𝑚𝑎𝑥 − 𝑦𝑚𝑖𝑛

√︄∑𝑁
𝑖=1(𝑦𝑖 − �̂�𝑖)2

𝑁
× 100% (3.21)
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where 𝑦𝑚𝑎𝑥 and 𝑦𝑚𝑖𝑛 give the maximum and minimum of the observed values, respectively. Lastly,

the MAPE is given as,

MAPE =
1
𝑁

𝑁∑︁
𝑖=1

���� 𝑦𝑖 − �̂�𝑖𝑦𝑖

���� × 100% (3.22)

The RMSE indicates the deviation of predicted values from the observed value. The NRMSE

provides a scaled version of the RMSE, giving a relative measurement of error which allows a

comparison between models of different datasets. MAPE also provides a relative measurement of

error, and a simpler interpretation than RMSE and NRMSE, as it is the scaled first moment of the

absolute value of the residuals whereas RMSE and NRMSE provide the square root of the second

moment.
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CHAPTER IV

RESULTS

4.1 Data Description and Preprocessing

An OPTOMEC LENSTM 750 equipped with a 1 kW Nd:YAG laser (IPG) was used to addi-

tively manufacture a thin wall structures from Ti-6Al-4V powder. A dual-wavelength pyrometer

(Stratonics, Inc) was affixed above the OPTOMEC LENSTM 750 machine to capture melt pools

while an IR camera (Sierra-Olympic Technologies, Inc. Viento320) was used to capture global

heat behavior. Each image captured by the pyrometer produced files containing a 480 x 752 matrix

where the value of each element corresponds to a pixel of the pyrometer camera. Units of the

values are in degrees Celsius, but the specific measurements were not corrected for the emissiv-

ity of the Ti-6Al-4V during its manufacture. The pyrometer sensor had a temperature range of

1, 000 − 2, 500◦C. A naming convention of the files was used that provided important information

regarding the AM process. This naming convention indicated the relative time (seconds) the image

was captured, the relative x, y, and z coordinates (millimeters), and the layer in the AM process.

Specific details about the experimental setup can be found in Marshall et al. [55]. In this study,

only the data produced by the pyrometer was used.

Datasets from two thin wall builds are used in this study. These datasets are referred to

hereafter as 𝑡𝑤𝐴 and 𝑡𝑤𝐵. Table 4.1 provides metadata related to the builds found within the

datasets. N𝑖, N𝑙 , and N𝑦 give the number of CSV files, layers printed, and unique y coordinates,
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Table 4.1

Metadata for the thin wall pyrometer datasets.

N𝑖 N𝑙 N𝑦 Part Dimensions (L × W × H) Time𝑡𝑜𝑡𝑎𝑙 (s) Time𝑙𝑎𝑦𝑒𝑟 (s)
𝑡𝑤𝐴 2,007 79 27 52.62 mm × 1.78 mm × 39.78 mm 443.954 5.620
𝑡𝑤𝐵 1,564 60 34 63.89 mm × 1.78 mm × 30.09 mm 457 7.617

respectively. Time𝑡𝑜𝑡𝑎𝑙 and Time𝑙𝑎𝑦𝑒𝑟 provide the total time of the build and the average time per

layer, respectively. 𝑡𝑤𝐵 is directly referenced in Marshall [55].

Figure 4.1

Locations of captured images for 𝑡𝑤𝐴 and 𝑡𝑤𝐵.

While 𝑡𝑤𝐴 contained 79 layers with 27 unique y-coordinate locations, approximately 6% of

the images were missing, that is, samples at particular y-coordinates were not present for all layers.

All of the missing images occurred at the first layer and at the last three y-coordinates. To simplify

the evaluation of the methodology in the initial experiments, the first layer and the last three y-

39



coordinates were dropped. 𝑡𝑤𝐵 had significantly more missing images, with approximately 23%

of the images missing. No limitations were imposed on 𝑡𝑤𝐵, as the impetus for a more robust

model formulation was partly due to handling missing data. Figure 4.1 illustrates the locations of

the captured thermal images for 𝑡𝑤𝐴 and 𝑡𝑤𝐵. Each point represents a captured image where the

x-axis gives the y-coordinate location and the y-axis gives the layer. Additionally, in both 𝑡𝑤𝐴 and

𝑡𝑤𝐵 each image contained some missing data denoted as zeros in the CSV files. This missing data

constituted a minor portion of each image, though 𝑡𝑤𝐵 had roughly an order of magnitude more

of missing data. Table 4.2 provides a description of the proportion of missing data per image for

both 𝑡𝑤𝐴 and 𝑡𝑤𝐵.

Table 4.2

Proportion of missing data per image.

Minimum 1𝑠𝑡 Quartile Median Mean 3𝑟𝑑 Quartile Maximum
𝑡𝑤𝐴 0.012% 0.039% 0.042% 0.042% 0.045% 0.070%
𝑡𝑤𝐵 0.103% 0.385% 0.406% 0.372% 0.423% 0.526%

For model training purposes, missing data was replaced by calculating the mean value of the

adjacent, non-zero pixels. In evaluating the performance of the model, the raw data was used,

excluding pixels with zero values.

Although the resolution of each image was 752 × 480, it was determined that the relevant

information captured by the pyrometer sensor, i.e. the melt pool and HAZs, were contained within

a small subset of the image. Thus, each image was cropped from 752 × 480 to 155 × 155 where

40



Figure 4.2

Illustration of the cropped portion of the raw pyrometer sensor image. The provided image
depicts the first observation of the second layer. Color is log10 scaled to highlight differences.

the crop was centered by identifying the pixel with the highest temperature for each image. Figure

4.2 provides an illustration of the cropped image.

4.2 4D Tensor Framework Experiment

In this experiment, a 4D tensor representation of 𝑡𝑤𝐴 is used to represent spatial behavior, single

layer behavior, and multilayer behavior. A rank decomposition is applied to the tensor, reducing

dimensionality of the data and noise within the data, enabling the construction of low-cost, one-

dimensional models. The ensemble of these models enables accurate, multilayer forecasts. Figure

4.3 gives an example of the 4D tensor structure used in this experiment. As discussed in Chapter

III, cubic splines were used to model the x and y coordinates and the track position, while an

ARIMA model was used to model layer effect.
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An illustration of the 4D tensor structure and decomposition.

The proposed methodology is compared to a seasonal naı̈ve model, demonstrating that mean-

ingful trends are identified using the proposed method. However, the 4D representation requires a

rigid data structure which imposes several limitations. The advantages and disadvantages of this

methodology will be discussed at the conclusion of this section.

4.2.1 Evaluation Procedure

To determine the viability of the proposed method, the tensor model was compared with a

seasonal naı̈ve model. The seasonal naı̈ve model uses the value that corresponds to the last

observed value from the same season to make forecasts, that is, it uses the values observed at the

previous layer at the same location as its forecast. Seasonal naı̈ve models are effective when the

data contains seasonal behavior (similar patterns per layer) and future movements are unpredictable

[40]. This model is established as a baseline to challenge whether layer-wise trends are identifiable

within the data. The thesis is that if the tensor model can produce more accurate forecasts than the
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seasonal naı̈ve model, then this provides evidence that the method successfully identifies trends in

the printing process. This will serve as a proof of concept of the methodology.

Additionally, of concern in this evaluation was the optimal rank and memory, i.e. the number of

layers used in the tensor formulation, of the tensor model. Initial exploration of number of layers,

𝑁 , and rank, 𝑅, demonstrated decreasing forecast accuracy with 𝑁 > 40 and 𝑅 > 10, thus the

scope of the tests were limited to 𝑁 ≤ 40 and 𝑅 ≤ 10. To determine these parameters, time series

cross-validation (TSCV) was applied. A tensor would be formulated as T ∈ R155×155×24×𝑁 where

𝑁 ∈ {2, 3, . . . , 40} and would be decomposed using 𝑅 = 1, 2, . . . , 10. The resulting tensor could

be labeled as the training tensor. For each combination of 𝑁 and 𝑅, a model would be trained then

tested on the subsequent five layers. After each test, training layers would shift by one layer as

would testing layers. This process would continue 30 times resulting in distributions of residuals

obtained for each testing set.

Layers were selected so that models were evaluated on the same testing sets. That is, when

𝑁 = 40, the first training tensor would consist of layers 2 through 41, with the testing layers being

42 through 46. For 𝑁 = 39, the first training tensor would consist of layers 3 through 41, with the

testing layers again being 42 through 46. Lastly, with 𝑁 = 2, the first training tensor would consist

of layers 40 and 41, with the testing layers the same as before. Figure 4.4 provides illustrations of

the TSCV tests.

The initial TSCV test is used to select the optimal rank and memory of the tensor model using

residuals on a per layer basis. The second TSCV test compares the selected tensor model to the

seasonal naı̈ve model using residuals on a per image basis, providing a more granular assessment.
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Figure 4.4

The left figure illustrates TSCV with fixed N for the first five train/test sets, where the y-axis
identifies the train/test set. The right figure illustrates TSCV with varying 𝑁 for the first train/test
set, where the y-axis identifies the value of N. The blue, dashed box indicates the train set while

the red, solid box indicates the test set. Each point represents a layer. Gray points represent
unused layers.

4.2.2 TSCV Results and Comparison to Seasonal Naı̈ve Model

Using the residuals collected during TSCV, the RMSE was calculated for each testing set,

for each unique 𝑅, 𝑁 , and number of layers forecasted ahead. With 30 testing sets per (𝑅, 𝑁)

combination, and 5 layers forecasted ahead, this produced a distribution of 150 RMSE values per

(𝑅, 𝑁) combination. Figure 4.5 illustrates the mean and standard deviation of the RMSE values

given (𝑅, 𝑁) combinations.

The mean and standard deviation of the RMSE are both valuable metrics. A low mean RMSE

indicates that the model on the average had little deviation from the actual data it was tested on.
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Figure 4.5

Mean and standard deviation of RMSE per (𝑅, 𝑁) combination. Color is log10 scaled to highlight
differences.

A low standard deviation of the RMSE indicates that the model predicted consistently regardless

of where it was trained in the manufacturing cycle. Thus, both metrics were considered in model

selection. The first step was to determine the selection of rank as it was responsible for explaining

the majority of the variance between models.

Examination of the mean and standard deviation of the RMSE per rank was limited to 𝑁 > 5 as

a spike in error occurred with 𝑁 ≤ 5 for 𝑅 ≥ 5. Examining the Pareto frontier, ranks 1,3,4,5, and 6

all appeared on the frontier. Models constructed from ranks 3 through 6 had similar performance,

being low in both metrics. Rank one models were the lowest in standard deviation, but had

significantly higher error. Table 4.3 provides the mean and standard deviation for the Pareto

efficient ranks. Thus consideration was limited to ranks 3 through 6.
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Table 4.3

Mean and standard deviation of Pareto efficient ranks.

R 𝝁RMSE(◦C) 𝝈RMSE(◦C)
1 63.987 2.006
3 32.793 3.006
4 30.906 3.266
5 29.916 3.431
6 29.600 4.389

For the selected ranks, the Pareto set was examined for the tradeoff between mean and standard

deviation of the RMSE for each predicted layer ahead. For example, for 1 layer ahead there would

be 30 observations per (𝑅, 𝑁) combination. The mean RMSE and standard deviation of the RMSE

would be calculated. Then, the parameter combinations that were Pareto efficient with respect

to minimizing mean RMSE and minimizing standard deviation of the RMSE would be collected.

This process would be repeated for 2, 3, 4, and 5 layers ahead. In total, 21 unique combinations

were Pareto efficient. It was determined to select a (𝑅 = 5, 𝑁 = 25) formulation as it possessed

a good balance between low average error and low standard deviation of error. For brevity, the

selected model is referred to as T45,25.

The T45,25 model and the seasonal naı̈ve model were then compared using 5-layer ahead

forecasts, similar to the previous test, with tests beginning at layer 27. The following plots provide

a comparison between the distributions of the RMSE per image for both T45,25 and the naı̈ve model.

For all five forecasted layers, T45,25 had an average RMSE per image of 29.701 ◦C with a 95%

CI [29.450, 29.952], an average NRMSE per image of 3.554% with a 95% CI [3.526, 3.583], and
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Figure 4.6

Distribution of the RMSE per image for T45,25 and a seasonal naı̈ve model.

an average MAPE per image of 1.995% with a 95% CI [1.978, 2.012]. Table 4.4 provides the

accuracy per image for 1-5 layers forecasted.

Table 4.4

Accuracy metrics of model T45,25.

Layers Ahead: 1 2 3 4 5
𝝁RMSE(◦C) 29.416 29.553 29.801 29.748 29.986
𝝁NRMSE(%) 3.522 3.540 3.566 3.559 3.586
𝝁MAPE(%) 1.971 1.984 2.005 1.999 2.017

The seasonal naı̈ve model had an average RMSE per image of 38.454 ◦C with a 95% CI [38.137,

38.770], an average NRMSE per image of 4.601% with a 95% CI [4.566, 4.635], and an average
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MAPE per image of 2.559% with a 95% CI [2.538, 2.581]. Table 4.5 provides the accuracy per

image for 1-5 layers forecasted.

Table 4.5

Accuracy metrics of the seasonal naı̈ve model.

Layers Ahead: 1 2 3 4 5
𝝁RMSE(◦C) 38.360 38.474 38.512 38.437 38.486
𝝁NRMSE(%) 4.595 4.608 4.607 4.593 4.601
𝝁MAPE(%) 2.553 2.561 2.566 2.556 2.561

The results provide strong evidence that T45,25 is more accurate than the seasonal naı̈ve model.

To further solidify these results, the two RMSE per image distributions for all five layers forecasted

were compared using the Kolmogorov-Smirnov two sample test (KS test). This test compares the

empirical distribution functions to check whether they are from the same distribution. Unsurpris-

ingly, the KS test strongly indicated that cumulative distribution function (CDF) of the RMSE for

T45,25 was greater than the CDF of the RMSE for the naı̈ve model with a p-value < 2.2 × 10−16,

indicating lower overall error. Thus, there can be much confidence that the model T45,25 provides

meaningful information regarding trends within the printing process.

While the overall accuracy of model T45,25 is captured in the RMSE distribution plots in Figure

4.6, Figure 4.7 provides a more granular look at model performance, illustrating the model’s

behavior at particular observations within different layers. The average RMSE per image for a

one layer forecast was 29.416 ◦C. The first row of Figure 4.7 provides an example of the typical

performance of the model where RMSE = 26.795 ◦C. The second and third row of Figure 4.7
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provide examples of atypical performance of the model where RMSE = 159.300 ◦C and RMSE

= 72.906 ◦C, respectively. In total, 13 observations (1.105% of testing data) were more than

3 standard deviations from the mean. While anomaly detection is outside of the scope of this

study, these results indicate the potential of using model forecasts or comparisons to the learned

decomposition as a means of detecting anomalies. A brief treatment of the viability of detecting

anomalies using the learned decomposition is given in Appendix A.

Figure 4.7

An illustration of the observed pyrometer data and a one layer ahead forecast at three different
locations for T45,25.
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Using the tensor decomposition methodology resulted in a 99.99% reduction in data size1

while explaining 97.54% (95% CI [97.508, 97.562]) of the variance. The decomposition had a

average per image accuracy2 of 28.520 (95% CI [27.961, 29.080]). Relative to the decomposition

per image RMSE, a 1 layer forecast had an average loss in accuracy of 5.123% (95% CI [4.025,

6.221]) indicating that forecasts effectively captured the information in the decomposition.

Table 4.6 provides details on the average computation time for the decomposition (𝝁𝑑), the

modeling (𝝁𝑚), and the per image forecast (𝝁 𝑓 ) along with 95% confidence intervals. Note that

(𝝁 𝑓 ) is reported in milliseconds while (𝝁𝑑) and (𝝁𝑚) are reported in seconds. All computations

were done using a Dell Latitude 9420 equipped with a 3 GHz 11th Gen Intel Core i7 processor.

Table 4.6

Computation time for T45,25.

𝝁𝑑 (s) 𝝁𝑚 (s) 𝝁 𝑓 (ms)
24.651, [20.744, 28.557] 0.214, [0.197, 0.231] 0.629, [0.592, 0.666]

4.2.3 Discussion

This experiment introduced a novel approach to forecasting the thermal history. The constructed

model enabled multilayer forecasts, providing granular information of the melt pool temperature

distribution. Using the tensor decomposition methodology resulted in a 99.99% reduction in data

size while explaining 97.54% of the variance. The model was validated using experimental data

which demonstrated high accuracy with an average NRMSE per image of 3.554%, relatively fast

1Training data 155 × 155 × 24 × 25 reduced to 5 × (155 + 155 + 24 + 25).
2Per image accuracy captured using decomposition on layer 27-51.
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data approximation (24.651 seconds), fast model training (0.214 seconds), and fast model forecasts

(0.629 milliseconds per image).

While the 4D model succeeded in many respects, a major shortcoming was identified. The

4D representation required consistent spatial samples across time. This requirement is what led

to a limitation in the data used in the experiment. A more complex geometry for a build would

not have such a structure. This challenge could be addressed in a couple of ways: either applying

a decomposition algorithm that can account for missing observations as seen in Acar et al. [58]

or more recently in Yamaguchi and Hayahsi [91], or by restructuring the data into a 3D tensor,

condensing track position and layer into a single dimension. The difficulty with the first would be

the possibility of a significant number of missing observations; it could be possible that each spatial

observation would be unique. A challenge with the second would be the need for a more complex

model to account for the interaction of more variables. After consideration, it was determined to

explore a 3D formulation of the data and compare to the 4D results.

4.3 3D Tensor Framework Experiment

In this experiment, a 3D tensor representation of 𝑡𝑤𝐴 is used to represent spatial behavior,

single layer behavior, and multilayer behavior. Again, a rank decomposition is applied to the

tensor, reducing dimensionality of the data and noise within the data, enabling the construction

of low-cost, low-dimensional models. The ensemble of these models enables accurate, multilayer

forecasts. Figure 4.8 gives an example of the 3D tensor structure used in this experiment. As

discussed in Chapter III, cubic splines were used to model the x and y coordinate, while a NNAR
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model was used to model the temporal effect. The more complex NNAR was selected over the

ARIMA to account for the interaction between lagged values, layer, and track position.
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Figure 4.8

An illustration of the 3D tensor structure and decomposition.

The proposed methodology is compared to T45,25. The advantages and disadvantages of this

methodology will be discussed at the conclusion of this section.

4.3.1 Evaluation Procedure

Similar to Section 4.2.1, TSCV was used initially to identify hyperparamters for the decomposi-

tion, then a more complete evaluation using TSCV was used to quantify the model accuracy. In this

experiment, the rank of the decomposition was fixed to four as an exploration of the parameter indi-

cated that a rank four approximation of the 3D representation provided a similar accuracy as a rank

five decomposition of the 4D representation given in Section 4.2. Thus the only hyperparameter

of concern in the initial evaluation using TSCV was the optimal memory of the model.
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The initial TSCV procedure was performed as follows. A tensor would be formulated as

T ∈ R155×155×24𝑁 where 𝑁 ∈ {10, 11, . . . , 30}. The resulting tensor could be labeled as the

training tensor. For each 𝑁 , a model would be trained then tested on the subsequent five layers.

After each test, training layers would shift by one layer as would testing layers. This process would

continue 30 times resulting in distributions of residuals obtained for each testing set. As in Section

4.2.1, layers were selected so that models were evaluated on the same testing sets. Again, the mean

and standard deviation of the RMSE were used for model selection.

4.3.2 TSCV Results and Comparison to T45,25

Figure 4.9 provides the distribution of RMSE per layer given 𝑁 resulting from the experiment.

Figure 4.9

Distribution of RMSE per layer given 𝑁 . Arranged by mean RMSE.
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𝑁 = 16 produced the most accurate model with an average RMSE of 30.548 ◦C and a standard

deviation of the RMSE of 4.096 ◦C. 𝑁 = 15 was nearly as accurate and slightly more consistent

with an average RMSE of 30.570 ◦C and a standard deviation of the RMSE of 4.041 ◦C. However,

all 𝑁 provided similar results except 𝑁 = 26 which had a few significant outliers. 𝑁 = 26 was

excluded from the Figure 4.9 to assist in readability.

𝑁 = 15 was selected as fewer layers is desirable, reducing the size of the training tensor. For

brevity, this model will be labeled as T34,15. The T34,15 model and the T45,25 model were then

compared using 5-layer ahead forecasts, with comparisons beginning at layer 27 extending through

74 so that results are aligned. The following plots provide a comparison between the distributions

of the RMSE per image for both T34,15 and T45,25.

Figure 4.10

Distribution of the RMSE per image for T34,15 and T45,25.

54



For all five forecasted layers, T34,15 had an average RMSE per image of 29.323 ◦C with a 95%

CI [29.052, 29.593], an average NRMSE per image of 3.481% with a 95% CI [3.451, 3.511], and

an average MAPE per image of 1.959% with a 95% CI [1.942, 1.976]. This makes T34,15 slightly

more accurate overall than T45,25 though there is overlap in the confidence intervals. Table 4.7

provides the accuracy per image for 1-5 layers forecasted.

Table 4.7

Accuracy metrics of model T34,15.

Layers Ahead: 1 2 3 4 5
𝝁RMSE(◦C) 29.473 29.432 29.276 29.273 29.158
𝝁NRMSE(%) 3.500 3.496 3.474 3.474 3.461
𝝁MAPE(%) 1.969 1.966 1.956 1.956 1.947

By comparing Table 4.7 to Table 4.4 it can be seen that T45,25 is more accurate in the first

forecast layer while T34,15 is more accurate in forecasting layers 2-5, though all values are close.

Examining Figure 4.10 closely reveals that outliers for T34,15 are generally closer to the median for

each layer forecasted, however, T34,15 also has the largest outliers per layer forecasted. Applying

the KS test for the total RMSE distributions of T34,15 and T45,25 is inconclusive, indicating that

T34,15 and T45,25 may have the same CDF.

Some unusual behavior that is exhibited in Table 4.7 is an increase in accuracy as the layers

forecasted ahead increases. This is likely due to differences in some of the layers forecasted. That

is, layer 1 forecasts are not made on identical temporal indices as layer 5 forecasts. Indeed, if layer

1 forecasts are aligned with layer 5 forecasts and the relative difference between the forecasts is
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calculated, which is given as RMSE1−RMSE5
RMSE1

×100% then accuracy declines by an average of 0.585%

from layer 1 to layer 5. Figure 4.11 provides an illustration of this over the entire testing period

where the red dashed line indicates the mean.

Figure 4.11

Relative difference in RMSE for a layer 1 forecast vs a layer 5 forecast for T34,15.

Figure 4.12 provides a granular look at model performance while giving a direct comparison to

the results presented in Figure 4.7. The first row of Figure 4.12 has an RMSE = 25.473 ◦C (typical

performance) while the second and third row of Figure 4.12 have an RMSE = 166.480 ◦C and

RMSE = 75.719 ◦C, respectively (atypical performance). In comparison to the results in Figure

4.7, T34,15 has lower error for the instance of typical performance while T45,25 has lower error for

atypical performance.
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Figure 4.12

An illustration of the observed pyrometer data and a one layer ahead forecast at three different
locations for T34,15.

Using the 3D tensor decomposition methodology resulted in a 99.97% reduction in data size3

while explaining 97.72% (95% CI [97.698, 97.750]) of the variance. The decomposition had a

average per image accuracy4 of 26.133 (95% CI [25.711, 26.554]). Relative to the decomposition

per image RMSE, a 1 layer forecast had an average loss in accuracy of 13.498% (95% CI [11.150,

15.846]) indicating that forecasts captured the information in the decomposition with a moderate

3Training data 155 × 155 × 360 reduced to 4 × (155 + 155 + 360).
4Per image accuracy captured using decomposition on layer 27-41.
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level of effectiveness. The discrepancy between the forecast accuracy relative to the decompo-

sition between the 4D and 3D models can be accounted for by the greater accuracy of the 3D

decomposition.

Table 4.8 provides details on the average computation time for the decomposition (𝝁𝑑), the

modeling (𝝁𝑚), and the per image forecast (𝝁 𝑓 ) along with 95% confidence intervals. Note that

(𝝁 𝑓 ) is reported in milliseconds while (𝝁𝑑) and (𝝁𝑚) are reported in seconds. As with section 4.2,

all computations were done using a Dell Latitude 9420 equipped with a 3 GHz 11th Gen Intel Core

i7 processor.

Table 4.8

Computation time for T34,15.

𝝁𝑑 (s) 𝝁𝑚 (s) 𝝁 𝑓 (ms)
20.657, [18.139, 23.176] 10.670, [8.540, 12.801] 9.772, [9.054, 10.490]

4.3.3 Discussion

This experiment introduced a 3D tensor structure alternative to the 4D structure given in section

4.2, for forecasting the thermal history. As with the 4D structure, the 3D tensor model enabled mul-

tilayer forecasts, providing granular information of the melt pool temperature distribution. Using

the tensor decomposition methodology resulted in a 99.97% reduction in data size while explaining

97.72% of the variance. The model was validated using experimental data which demonstrated

higher accuracy with an average NRMSE per image of 3.481%, faster data approximation (20.657
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seconds), slower model training (10.670 seconds), and slower model forecasts (9.772 milliseconds

per image).

The 3D structure theoretically overcomes the deficiency of the 4D structure as there is no

need for consistent spatial samples. This idea will be tested experimentally in a later section.

Furthermore, the 3D structure achieved slightly more accurate results using less data and a lower

rank decomposition. However, this came at the expense of a more complex temporal model that

increased the model training time and forecast time. The model training time and the decomposition

time can be significantly shortened through the implementation of an update procedure to the

decomposition. The experiments conducted in the previous section and this section applied full

decompositions at each layer. As these decompositions are not unique, and are influenced by

initialization values, models are required to be fully retrained at each layer. If consistency can

be applied in the update of the decompositions, then limited retraining should be necessary. This

topic, and the speed and accuracy of the decomposition update, is explored in the next section.

4.4 Update Procedure Experiment

In this experiment, T34,15 is once again used to model 𝑡𝑤𝐴. However, the focus of this

experiment is to evaluate the update procedure outlined in section 3.3. A number of tasks were

identified for this experiment. Firstly, as was mentioned in section 3.3.1, a sampling strategy for

the intra-layer update needed to be selected. Secondly, the accuracy and the computation time of

the update procedure would need to be compared to a new decomposition. Lastly, the feasibility of

augmenting the NNAR with the updated temporal mode would need to be examined. These topics

are explored in this section.
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4.4.1 Identifying Sampling Strategy for Temporal Update

As outlined in section 3.3.1, the update in the temporal mode is solved via equation 3.16. To

simplify the optimization problem, a sample of X𝑛 ∈ R155×155 and the reconstruction is used.

Four sampling strategies with varying sample sizes were tested and compared: uniform random

sampling, Gaussian sampling, latin hypercube sampling (LHS), and maximin LHS. Uniform

random sampling assigns equal probability to each index. Gaussian sampling was constructed by

calculating the density from 1 to 155 with ` = 77.5 and 𝜎 = 25.53475, then performing weighted

sampling. The mean and standard deviation were selected to center the distribution on the melt

pool with good coverage of the HAZs5. LHS stratifies the sampling space in a 2-dimensional grid,

where the sample is considered a LHS if and only if there is only one sample taken from each row

and each column. Maximin LHS adds a constraint that maximizes the minimum pair-wise distance

between points. The stats [70] package is used to perform uniform and Gaussian sampling while

the lhs [13] package is used to perform LHS and maximin LHS. Figure 4.13 provides an illustration

of the sampling strategies using a sample size of 58.

The comparison between the four sampling strategies was performed as follows: using 𝑡𝑤𝐴,

layers 2 through 16 were used to form the training tensor and CPD was applied with a rank

four decomposition. Data for layer 17 was collected to be used to quantify error in the temporal

estimate. A parameter matrix, P1 ∈ R28,800×4, was constructed that included every combination of

four variables:

1. sample size: a vector with 10 values ranging from 10 to 155.

2. method: a vector identifying the four sampling methods.

3. iterations: a vector of length 30 providing unique identifiers for random seeds.

5Standard deviation was selected by optimizing on a specific image.
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Figure 4.13

An illustration of the sampling strategies explored for the intra-layer update procedure.

4. image key: an identifier for the image in layer 17 to be used for the test.

An additional parameter matrix, P2 ∈ R720×4, was constructed and appended to P1 that had a single

sample size of 1552 = 24, 025 (the entire image) with a single method labeled all; this was to

provide a comparison in the computational cost and accuracy between using the entire image and

a sample of the image. In total, 29,520 parameter combinations were evaluated.

For each parameter combination, the time to perform the optimization was collected and the

error between the reconstruction and layer 17 for a given image key was collected. For all methods

with sample sizes less than or equal to 155, the optimization time was similar with a median time of

0.035 seconds. Using a sample size of 24,025 produced an order of magnitude greater computation

time with a median time of 0.342 seconds, explaining why differences in computation time over

the sample sizes explored could not be distinguished. Regarding accuracy, a trend of diminishing

return as the sample size increased was clear. Overall, maximin LHS produced the lowest error at a
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Figure 4.14

An illustration of the computation time required and accuracy for the temporal update per sample
size and method.

sample size of 155 with a median RMSE of 27.542 ◦C. However, both LHS and uniform produced

similar results at a sample size of 155 with a median RMSE of 27.663 ◦C and 27.688 ◦C. The

Gaussian method had notably higher error at a sample size of 155 with a median RMSE of 28.605

◦C. Figure 4.14 provides an illustration of the computation time and accuracy per sample size and

method. Generalized additive models with a 95% confidence interval are used to represent error

to highlight trends. As there was little trade-off for computation time between methods and for

different sample sizes, maximin LHS with a sample size of 155 was selected.

Using the entire image produced no variation in the optimization procedure with the Nelder-

Mead method, and the error was always lower than that of the sampling procedure. However, the

results were close compared to the selected sampling procedure with a median relative difference
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Figure 4.15

An illustration comparing the difference in accuracy between using maximin LHS with a sample
size of 155 and the entire image for layer 17.

of 0.465%. Figure 4.15 provides an illustration comparing the difference in accuracy between

using maximin LHS with a sample size of 155 and the entire image. The top graph provides the

RMSE per image key for layer 17. As the differences are nearly indistinguishable, the bottom

graph provides the relative difference in error. That is, 𝑒𝑟𝑟𝑜𝑟𝑎𝑙𝑙−𝑒𝑟𝑟𝑜𝑟𝑚𝑚𝑙ℎ𝑠
𝑒𝑟𝑟𝑜𝑟𝑎𝑙𝑙

× 100% where the error

collected is the frobenius norm.

A single seed for sample generation was used in the subsequent experiments for consistency

and reproducibility of results. The seed was selected by performing 10,000 iterations of a maximin

LHS sample and identifying the sample structure with the lowest mean relative difference for

layer 17. The sample structure with the lowest mean relative error had a random seed of 6,548

and an average relative error of 0.280%. Figure 4.16 illustrates the selection procedure and the
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Figure 4.16

An illustration depicting the selection of the optimal sample structure and the selected structure.

selected sample structure. Each line in the left figure indicates one of the 10,000 sample structures

evaluated. The red line indicates the sample structure that produced the lowest mean relative error.

4.4.2 Evaluating the Cost and Accuracy of the Update Procedure

Using 𝑡𝑤𝐴, layers 2 through 16 were again used to form the training tensor, and CPD was

applied with a rank four decomposition. The accuracy of the decomposition was captured using

the RMSE. For the next 60 layers, the update procedure was applied along with a complete

decomposition. To elaborate, let 𝑠𝑡𝑒𝑝 = 0 indicate the initial decomposition applied to layers

2 through 16. Then 𝑠𝑡𝑒𝑝 = 1 will update the initial decomposition to layers 3 through 17 and

perform a new decomposition on layers 3 through 17. At 𝑠𝑡𝑒𝑝 = 2 an update will be applied

to the previously updated decomposition using layers 4 through 18 and a new decomposition on
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those same layers. This continues to layers 62 through 76. The accuracy and computation time of

both the update and the decomposition were collected at each layer. The average RMSE per step

was 27.636 ◦C (95% CI [27.283, 27.989]) and 26.902 ◦C (95% CI [26.599, 27.204]) for the new

decomposition and the update procedure, respectively. The average computation time was 9.744

seconds (95% CI [8.481, 11.008]) and 1.887 (95% CI [1.739, 2.035]) for the new decomposition6

and the update procedure, respectively.

Figure 4.17

Performance comparison of the update procedure to a new decomposition.

Figure 4.17 illustrates a comparison between the update procedure to a new decomposition. The

top image shows the RMSE per step while the bottom image shows the computation time per step.

6The disparity in the computation time reported here and that in table 4.8 was likely due to experiments in section
4.3 being run in parallel.
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The update procedure consistently produces a more accurate decomposition and a significantly

faster decomposition, with an average reduction in error of 2.583% (95% CI [1.812, 3.355]), and

an average reduction in computation time of 76.160% (95% CI [72.708, 79.613]). Furthermore,

a new decomposition was erratic in the amount of computation time required, with a standard

deviation of 4.891 seconds, while the update procedure was more stable with a standard deviation

of 0.573 seconds.

The majority of the computation time for the update procedure was for the inter-layer update

which accounted for an average of 73.859% (95% CI [70.520, 77.198]) of the computation time.

Figure 4.18 illustrates the breakdown of the computation time of the update procedure for the

inter-layer and intra-layer updates.

Figure 4.18

Comparing computation time of the intra-layer and inter-layer updates.
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Instances where the inter-layer update requires less time than the intra-layer are those where

the relative change in error were below the tolerance threshold.

4.4.3 Feasibility of Updating the NNAR Models

The purpose of this experiment was to investigate whether the lagged values of NNAR models

could be modified using the updated tensor without much loss in accuracy. The test was performed

in a similar manner as section 4.4.2 using the subsequent 30 layers for tensor updates.

Figure 4.19

Comparing the accuracy of a fully retrained NNAR and an augmented NNAR.

A five layer forecast was calculated using a fully retrained NNAR model as done in section 4.3

and an augmented NNAR model. The augmented model was trained on the initial decomposition,

then at each update, the lagged values were updated. The calculated RMSE for each of the two
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models represents all five layers forecasted. Figure 4.19 provides an accuracy comparison between

the two models. The top plot shows the five layer forecast RMSE for each model while the bottom

plot shows the change in accuracy of the augmented model relative to the fully retrained model.

Both models follow a similar pattern in their accuracy, but the augmented model consistently

decreases in accuracy relative to the fully retained model for each layer updated. At 30 layers,

the augmented model is nearly 30% less accurate than the fully retrained model. Regarding

computation time, the augmented model is significantly faster, as expected. The fully retrained

model had an average computation time of 9.405 seconds (95% CI [8.420, 10.391]) while the

average computation time for the augmented model was 0.081 seconds (95% CI [0.072, 0.089])

resulting in a 99.142% reduction.

4.4.4 Discussion

The experiments in this section demonstrated that the tensor update methodology could signif-

icantly reduce the computation time to model the data with mixed results regarding accuracy. The

update procedure reduced the decomposition cost by 76.2% and the model cost by 99.1%. The

accuracy of the decomposition update was slightly improved over a new decomposition with error

being reduced by 2.6%. However, the augmented NNAR had a steady decline in accuracy relative

to a fully retrained NNAR. After 30 new layers were updated, the augmented NNAR had declined

by 30%.

As the tensor decomposition accounts for nearly two-thirds of the computational cost, the 76.2%

reduction while producing a more accurate estimate represents a success for the methodology. More

investigation is needed to identify if the updated temporal components can be incorporated into a
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previously trained NNAR without sacrificing much accuracy. As it currently stands, the reduction

in accuracy of the augmented NNAR is likely not worth the savings in computational cost.

4.5 Transfer Learning Experiment

In this experiment, the decomposed tensor of the form used in model T34,15 of dataset 𝑡𝑤𝐴 is

extended to 𝑡𝑤𝐵 using the transfer learning methodology outlined in section 3.4. Of interest in

this experiment is the accuracy of the learned decomposition over time, the cost of the learning

procedure, and feasibility of forecasting early in the transfer process.

4.5.1 Evaluation Procedure

A rank 4, 15 layer decomposition of layers 2-16 of 𝑡𝑤𝐴 are adjusted via the transfer learning

methodology to newly observed data from 𝑡𝑤𝐵. For brevity, this decomposed tensor will be

refereed to as T̂𝐴. As 𝑡𝑤𝐴 was formatted to have a consistent number of images per layer (24), the

decomposed tensor is of dimensions T̂𝐴 ∈ R155×155×360.

Table 4.9

Number of images per layer for first 13 layers in 𝑡𝑤𝐵.

Layer 1 2 3 4 5 6 7 8 9 10 11 12 13
N𝑖 23 28 26 28 28 26 31 26 21 28 28 23 31

For this experiment, images were iteratively incorporated from 𝑡𝑤𝐵 using the first 360 images.

Since 𝑡𝑤𝐵 has a varying number of images per layer and on average more images per layer, the first

360 images of 𝑡𝑤𝐵 include up to layer 14, with layer 14 incomplete. As updates are completed at
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the end of each layer, the first 13 layers are evaluated which equates to the first 347 images. Table

4.9 lists the number of images N𝑖 per layer for the first 13 layers for 𝑡𝑤𝐵.

Using the notation adopted in section 3.4, let B̂0 = T̂𝐴 [, , 1:347] and T𝐵 ∈ R155×155×347 represent

the tensor constructed from 𝑡𝑤𝐵 that is to be estimated and is used for evaluation in this experiment.

Metrics on accuracy and computation time are captured after the addition of each layer.

4.5.2 Transfer Procedure Cost and Accuracy

Figure 4.20 illustrates the accuracy of the transfer as new layers are added.

Figure 4.20

Accuracy of the transfer as layers are added.

Each line segment of length 𝑛 depicts the accuracy at each layer after 𝑛 layers. That is, the line

segment of length 1 (single point) is the per layer RMSE of B̂23 [, , 1 : 23] and T𝐵 [, , 1 : 23] while
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the line segment of length 2 is the per layer RMSE of B̂51 [, , 1 : 51] and T𝐵 [, , 1 : 51], etc, where

the values 1:23 and 1:51 are the cumulative N𝑖’s corresponding to the layer index. The first 2 layers

of T𝐵 contain unusual spatial characteristics indicated by the higher error compared to the other 11

layers. A significant decline in error occurs after the first 2 layers. By layer 3, small improvement

in the approximation occurs with only marginal improvement occurring after layer 7. Figure 4.21

provides a specific example of the accuracy of the decomposition as layers are added for the first

image in layer = 1. Residuals here are calculated as predicted - actual. Thus positive residuals

indicate over prediction and negative residuals indicate under prediction.

Figure 4.21

Accuracy of the transfer as layers are added for T𝐵 [:, :, 1].

Figure 4.22 illustrates the cost of the transfer update per layer. The second update requires the

most time by a large margin at 15.036 seconds while all other updates require less than 3.7 seconds.

The mean update time is 3.558 seconds (95% CI [1.452, 5.664]). Excluding the second update,

the mean time is 2.601 seconds (95% CI [2.269, 2.933]).
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Figure 4.22

Computational cost of the transfer per layer.

To evaluate the feasibility of forecasting early in the transfer process, forecasts using an NNAR

were examined. Since the NNAR requires at least 2 layers to incorporate layer effect, forecasts

began at layer 3. Figure 4.23 illustrates the accuracy of the forecasts compared to the accuracy of

mean-centering the previously learned temporal modes.

The left graph depicts the cumulative accuracy of the transfer with forecasts. Layer = 0

represents the RMSE calculated from the residuals of B̂0 and T𝐵 before any modes were mean-

centered. Layer = 1 represents the RMSE calculated from the residuals of B̂23 and T𝐵 with the

initial mean-centering. Layer = 2 to layer = 12 represents the RMSE calculated from the residuals

of B̂51 and T𝐵, B̂77 and T𝐵, etc, with a comparison of NNAR forecasts and mean centering where

forecasts begin at layer 3. Layer = 13 represents the RMSE calculated from the residuals of B̂347
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Figure 4.23

Illustration of accuracy of forecasts during transfer using NNAR and mean centered modes.

and T𝐵 which represents the final learned decomposition. The right graph gives a similar visual as

given in Figure 4.20. Here, the line segment represents the forecast accuracy at each layer. The line

segment beginning at layer = 𝑛 represents the forecasts made after learning the first 𝑛 − 1 layers.

It can be seen in both figures that the NNAR consistently has better performance than simply

mean-centering. Additionally, the accuracy of the NNAR significantly increases up to layer 6.

Forecasts beginning at layer 7 and beyond only have marginal improvements. The median RMSE

per layer for an NNAR forecast from layer 2 is 58.347 ◦C, by layer 7 it is 35.238 ◦C, and by layer

10 it is 33.705 ◦C. Figure 4.24 provides a specific example of the accuracy of the NNAR forecast

as layers are added using the last image in layer = 13. The NNAR models required an average of
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2.229 seconds (95 % CI [1.616, 2.843]) to train and forecast the temporal modes. Here, again,

residuals here are calculated as predicted - actual.

Figure 4.24

Accuracy of the forecast during transfer as layers are added for T𝐵 [:, :, 347].

4.5.3 Discussion

The experiment in this section demonstrated that a previously learned decomposition can be

quickly adjusted to data from a new process and that it is possible to make accurate forecasts early

in the transfer process. By three layers, dominant spatial patterns within the data are captured and

by seven layers, the decomposition only improves marginally meaning spatial patterns in the data

are mostly learned by seven layers.

Regarding the forecast, an NNAR can begin making forecasts after two layers are learned.

However, the accuracy of the forecasts increases significantly after six layers are learned, with only

marginal improvements beyond that point meaning temporal patterns in the data are mostly learned

by six layers.
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CHAPTER V

CONCLUSION AND FUTURE WORK

One of the challenges that hinders more widespread adoption of AM technologies is the reli-

ability of the fabricated parts. This reliability is dependent on the microstructural properties of a

part which can be at least partially explained by the part’s thermal history during its manufacture.

The focus of this study was on a data-driven online modeling framework that could quickly ap-

proximate melt pool thermal history data, capturing the significant spatial and temporal influences,

then produce accurate forecasts of the melt pool thermal history. The modeling framework was

evaluated using two experimental datasets of melt pool thermal history, 𝑡𝑤𝐴 and 𝑡𝑤𝐵, collected

during the manufacture of two different thin walls via direct laser deposition. Some core challenges

in modeling this data came from the noise present within the data and the dimensionality of the

data. These problems were addressed by using tensor decomposition, namely canonical polyadic

decomposition. This approach enabled identification of a low-rank structure of the data which both

reduced noise and simplified the learning process for forecasting models by significantly reducing

the size of the data.

The first experiment in this study evaluated a 4D representation of 𝑡𝑤𝐴 where images were

stacked across track-position and layer. This formulation allowed layer-wise trends to be modeled

explicitly using ARIMA models. Through a TSCV procedure, a rank 5 decomposition using 25
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layers was identified as a good structure. The decomposition achieved a high-level of accuracy,

capturing 97.54% of the variance in the data, while requiring an average of 24.651 seconds to learn

the low-rank structure. Additionally, the forecasting models had good accuracy with an average

RMSE of 29.701 ◦C and an NRMSE of 3.554% per image for 1-5 layers forecasted with the

models requiring an average of 0.214 seconds to train. When compared to a seasonal naı̈ve model,

which had an RMSE and NRMSE of 38.454 ◦C and 4.601% respectively, the tensor model had

a statistically significant increase in accuracy. While the 4D model was successful in accurately

approximating and forecasting the thermal history, its rigid structure would pose an issue were it

to be used to model thermal data from a part with a more complex geometry.

For the second experiment in this study, a 3D representation of 𝑡𝑤𝐴 was adopted to overcome

the potential shortcoming of the 4D representation. In the 3D representation, images were stacked

across time with the interaction of track-position and layer being captured by NNAR models.

Through a TSCV procedure, a rank 4 decomposition using 15 layers was identified as a good

structure. The 3D decomposition achieved a slightly higher level of accuracy, explaining 97.72%

of the variance in the decomposition but had a slightly lower reduction in data size at 99.97%.

The decomposition was faster requiring an average of 20.657 seconds due to the lower rank and

smaller size. The forecasting models slightly outperformed in accuracy with an average RMSE

and NRMSE per image of 29.323 ◦C and 3.481% respectively for 1-5 layers. However, the more

complex NNAR required significantly more time to train averaging 10.670 seconds. Overall, the 3D

representation succeeded in giving comparable results to the 4D representation while overcoming

the 4D’s rigid data structure requirement.
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In the third experiment, an update procedure to the 3D decomposition was evaluated on 𝑡𝑤𝐴.

Given the initial decomposition, an in-situ process was simulated where as images were observed the

learned parameters in the decomposition would be adjusted to fit the new data. This was performed

in two procedures: an intra-layer update and an inter-layer update. The intra-layer update would

be performed within each layer and would only adjust the temporal mode of the decomposition

using a maximin LHS sample of the newly observed image while keeping the spatial modes fixed.

The inter-layer update would be performed at the completion of each layer and would adjust all

modes using the CP-algorithm where the modes are initialized with the previously learned values.

The update procedure produced more accurate approximations than a new decomposition with an

average reduction in error of 2.583%. Furthermore, the update procedure achieved a 76.160%

reduction in the computation time of the decomposition with an average update time of 1.887

seconds per layer. In addition to the decomposition accuracy and computation time, the feasibility

of augmenting an NNAR using the updated temporal mode opposed to fully retraining the NNAR

was evaluated. While the augmented NNAR was significantly faster requiring an average of 0.081

seconds compared to an average of 9.405 seconds for the fully retrained NNAR, the accuracy

declined at a consistent rate. After 30 layers, the augmented NNAR was approximately 30% less

accurate than a fully retrained NNAR.

In the fourth experiment, a transfer learning procedure to the 3D decomposition was evaluated

on 𝑡𝑤𝐵. Given an initial decomposition trained on 𝑡𝑤𝐴, an in-situ process was simulated where as

images were observed from 𝑡𝑤𝐵 the learned parameters in the decomposition would be adjusted to

fit the new data. This process used an augmented form of the update procedure to accomplish this

process. The results of the experiment indicated that the transfer learning procedure could quickly
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adjust to the new process by 3 layers, and by 7 layers the process is seemingly learned as only

marginal improvement occurs thereafter. The computation time of the transfer was minor with

one notable spike at layer 2 requiring 15.036 seconds. The average of the remaining twelve layers

tested was 2.601 seconds. Forecasts during the transfer process using an NNAR could feasibly be

made after 2 layers had been transferred. Error in the forecasts declined significantly after learning

a few layers. The median RMSE per layer after transferring 2, 7, and 10 layers was 58.347 ◦C,

35.238 ◦C, and 33.705 ◦C respectively. The NNAR models required an average of 2.229 seconds

to train and forecast during the transfer process.

The results of this research have demonstrated that the proposed modeling framework can

accurately capture and forecast melt pool thermal history data in an online manner, and transfer a

learned model to data from a new process. However, several opportunities exist for future work.

Firstly, only two datasets were examined in this research with both datasets coming from thin wall

builds. The modeling framework should be tested on builds using more complex geometries where

the heat source will traverse in different directions. This will require additional preprocessing of the

data, rotating the melt pool images to align in a single direction. An image registration technique

like that used by Esfahani et al. [20] could be employed in this process. Additionally, it would be

valuable to test the methodology on datasets collected from different metal printing technologies

where monitoring the melt pool is feasible.

Secondly, limited attention was given to fine tuning the NNAR models in this study. Future

research could explore hyperparameter tuning of the NNAR as well as other modeling strategies.

Furthermore, no treatment was given to handling the missing images in 𝑡𝑤𝐵 and the model did

not incorporate the time gap between the end of one layer and the beginning of another, i.e. the
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temporal mode index was treated as the time step. Accounting for these discrepancies in the

temporal model formulation should lead to greater accuracy. Additionally, feature engineering to

identify more relevant variables for the NNAR could prove useful. For instance, a binary variable

identifying the start of a new layer as a spike in temperature typically occurred at the start of a new

layer. Lastly, anomaly detection based on decomposition accuracy and temporal patterns should

be explored in greater detail. Appendix A offers an introduction to this approach demonstrating its

viability, but a full treatment using multiple datasets from different builds should be explored.

79



REFERENCES

[1] D.-G. Ahn, “Directed energy deposition (DED) process: State of the art,” International
Journal of Precision Engineering and Manufacturing-Green Technology, vol. 8, 2021, pp.
703–742.

[2] O. Aljarrah, J. Li, A. Heryudono, W. Huang, and J. Bi, “Predicting part distortion field in
additive manufacturing: a data-driven framework,” Journal of Intelligent Manufacturing,
vol. 34, no. 4, 2023, pp. 1975–1993.

[3] S. C. Altıparmak and B. Xiao, “A market assessment of additive manufacturing potential for
the aerospace industry,” Journal of Manufacturing Processes, vol. 68, 2021, pp. 728–738.

[4] Asharkyu, “A depiction of material extrusion,”, https://d12oja0ew7x0i8.cloudfront.
net/image-handler/ts/20220105085819/ri/750/src/images/news/ImageForNews 57817
16413910976555346.jpg, Unknown publication date, [Online; accessed August 10, 2023].

[5] ASTM Committee F42 on Additive Manufacturing Technologies. Subcommittee F42. 91
on Terminology, Standard terminology for additive manufacturing technologies, ASTM
International, 2012.

[6] M. M. Bappy, C. Liu, L. Bian, and W. Tian, “In-situ Layer-wise Certification for Direct
Energy Deposition Processes based on Morphological Dynamics Analysis,” Journal of
Manufacturing Science and Engineering, 2022, pp. 1–35.

[7] R. H. Bartels, J. C. Beatty, and B. Barsky, “An Introduction to the use of splines in computer
graphics.,” 1987.

[8] J. B. Bento, C. Wang, J. Ding, and S. Williams, “Process Control Methods in Cold Wire Gas
Metal Arc Additive Manufacturing,” Metals, vol. 13, no. 8, 2023, p. 1334.

[9] B. Berman, “3-D printing: The new industrial revolution,” Business horizons, vol. 55, no. 2,
2012, pp. 155–162.

[10] C. M. Bishop et al., Neural networks for pattern recognition, Oxford university press, 1995.

[11] Y. Cai, J. Xiong, H. Chen, and G. Zhang, “A review of in-situ monitoring and process control
system in metal-based laser additive manufacturing,” Journal of Manufacturing Systems, vol.
70, 2023, pp. 309–326.

80



[12] D. D. Camacho, P. Clayton, W. J. O’Brien, C. Seepersad, M. Juenger, R. Ferron, and
S. Salamone, “Applications of additive manufacturing in the construction industry–A forward-
looking review,” Automation in construction, vol. 89, 2018, pp. 110–119.

[13] R. Carnell, lhs: Latin Hypercube Samples, 2022, R package version 1.1.6.

[14] L. Chechik, A. D. Goodall, K. A. Christofidou, and I. Todd, “Controlling grain structure
in metallic additive manufacturing using a versatile, inexpensive process control system,”
Scientific Reports, vol. 13, no. 1, 2023, p. 10003.

[15] F. Chen, M. Yang, and W. Yan, “Data-driven prognostic model for temperature field in
additive manufacturing based on the high-fidelity thermal-fluid flow simulation,” Computer
Methods in Applied Mechanics and Engineering, vol. 392, 2022, p. 114652.
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APPENDIX A

VIABILITY OF POROSITY DETECTION USING DECOMPOSITION
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A.1 Introduction

In this chapter, a brief demonstration of anomaly detection using logistic regression without

any hyperparameter tuning is given. While this analysis is limited, it serves as motivation for

further development of detection schemes based on this tensor decomposition approach.

Figure A.1

Porosity locations in 𝑡𝑤𝐵.

A.2 Data Description and Evaluation Procedure

𝑡𝑤𝐵, as outlined in section 4.1, was used in conjunction with X-ray CT scan data. The X-ray

CT scan data was used to identify pores and their locations, with the location of each pore being

assigned to the closest image in 𝑡𝑤𝐵, and pore sizes ranging from 0.05 mm to 1.00 mm. Of

the 1,564 images in 𝑡𝑤𝐵, 1,486 images had no porosity, 71 images had porosity, and 7 images
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were missing values. Figure A.1 illustrates the porosity locations in 𝑡𝑤𝐵 with the missing values

removed. A class label of pore indicates porosity while normal indicates no porosity was detected.

The reader can refer to Ho et al. [37] for a further discussion of the X-ray CT data.

Following the procedure employed in section 4.5, the decomposition learned from 𝑡𝑤𝐴 was

applied to 𝑡𝑤𝐵. The transfer learning procedure was used to fully update the learned decomposition

using the first 360 images. The remaining images were incorporated using the update procedure

without any drop off, that is, the final decomposition had a dimension of 155 × 155 × 1564. The

residuals per image were calculated then statistics on the residuals collected (RMSE, skewness,

and kurtosis). These statistics, along with the learned temporal modes from the decomposition,

were used as predictors for the logistic regression model. Five fold cross-validation with stratified

sampling was used to evaluate the performance of the model.

Table A.1

Confusion matrix of cross-validation results.

Ground Truth
pore normal Total

Prediction pore 56 11 67
normal 15 1, 475 1, 490
Total 71 1, 486 1, 557

A.3 Results and Discussion

Table A.1 presents the confusion matrix for the cross-validation results. The logistic model had

an accuracy of 98.33% (1531
1557 ) with a recall (true positive rate) of 78.87% (56

71 ) and a false positive
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rate of 0.74% ( 11
1486 ). The area under the receiver operating characteristic (ROC) curve was 0.990.

Figure A.2 illustrates the probability of a pore from the logistic model and the ROC curve.

Figure A.2

Probability of pore and ROC curve.

In the left figure, the x-axis gives the predicted probability of a pore from the logistic model.

A spread is added along the y-axis to aid in visualization. It can be seen in this figure that the

majority of normal images have a probability close to 0 of containing a pore, whereas the pore

images have probabilities spread from 0 to 1 with most near 1. In the right figure, the ROC curve

illustrates the relationship between the false positive rate (FPR) and the true positive rate (TPR).

As the classification threshold is moved from a higher probability to a lower probability, both the

FPR and the TPR will increase. The steep incline of the ROC curve indicates that a significant
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gain in the TPR can be had by lowering the classification threshold while having little impact on

the FPR. Indeed, if the classification threshold is set to 28.07% for instance, the TPR is 98.99%

and the FPR is 1.01%.

This brief demonstration provides strong evidence that an anomaly detection method driven by

the tensor decomposition procedure is viable and should be further investigated. The strength of

this approach comes from the ability to quickly gather the predictors, and an expected uniformity of

most of these predictors as they are statistics of the residuals related to the decomposition. However,

it will need to be investigated whether the learned temporal modes can serve as consistent predictors

as they will vary given different decompositions, though a standardized version should offer the

same explanatory power. Furthermore, a deeper investigation into the misclassifications should be

performed as there is reason to believe the class labels could extend across layers. For instance, with

the threshold set to 28.07% 15 locations are incorrectly identified as having pores (false positives).

Of these 15 locations, 7 of the locations reside a layer above or a layer below the location classified

as having a pore. If it is possible for a pore to be located across two layers, then it’s effect on

the thermal history may be seen at more than one location meaning the FPR may be overstated.

Additionally, more complex models should be evaluated. A logistic regression model represents a

high-bias classification model; models with greater flexibility should be explored and compared.
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RELEVANT CODE
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A listing of the relevant codes developed for this study. Note that %>% is the pipe operator

from the magrittr package. Unless otherwise noted using the double colon, function calls are

from base R and dplyr.

B.1 Model a Decomposed 4D Tensor
Description

Produce a model of a fourth-order decomposed tensor as described in 4.2.

Arguments
1. U: A list of the mode matrices calculated from the CP decomposition. Output of the cp

function from the rTensor package.

2. params: A list of predictors associated with each mode.

Output

A list containing models for each mode of each component.

R Code

model4DTensor = function(U, params) {

imgy_mods = apply(U[[1]], 2, FUN = function(y) {

stats::splinefun(

x = params[[1]], y = y, method = "natural"

) %>%

return()

})

imgx_mods = apply(U[[2]], 2, FUN = function(y) {

stats::splinefun(

94



x = params[[2]], y = y, method = "natural"

) %>%

return()

})

y_mods = apply(U[[3]], 2, FUN = function(y) {

stats::splinefun(

x = params[[3]], y = y, method = "natural"

) %>%

return()

})

l_mods = apply(U[[4]], 2, FUN = function(y) {

forecast::auto.arima(

y, max.p = 10, max.q = 10,

max.P = 10, max.Q = 10,

max.order = 30, max.d = 5,

stepwise = T, approximation = F

) %>%

return()

})

modl = list(

imgy_mods = imgy_mods, imgx_mods = imgx_mods,

y_mods = y_mods, l_mods = l_mods

)
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return(modl)

}

B.2 Forecast Layers from 4D Model
Description

Forecast layers given model of a fourth-order decomposed tensor as described in 4.2.

Arguments
1. tensor mod: A list containing models for each mode of each component. Output of the

model4DTensor function.

2. n layers: The number of layers to forecast.

3. lambdas: The _ values obtained from the CP decomposition. Output of the cp function
from the rTensor package.

4. params: A list of predictors for the forecast associated with each mode.

Output

A tensor providing the estimate for the next n layers.

R Code

predictTensorLayers = function(tensor_mod, n_layers, lambdas, params) {

A_hat = lapply(1:length(lambdas), function(i) {

img_y = tensor_mod[[1]][[i]](params[[1]])

img_x = tensor_mod[[2]][[i]](params[[2]])

y_t = tensor_mod[[3]][[i]](params[[3]])

l = forecast::forecast(

tensor_mod[[4]][[i]], h = n_layers

)$mean %>%
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as.numeric()

A_i = outer(img_y, img_x) %>%

`*`(lambdas[i]) %>%

outer(y_t) %>%

outer(l) %>%

rTensor::as.tensor()

}) %>% Reduce(f = "+")

}

B.3 Model a Decomposed 3D Tensor
Description

Produce a model of a third-order decomposed tensor as described in 4.3.

Arguments
1. U: A list of the mode matrices calculated from the CP decomposition. Output of the cp

function from the rTensor package.

2. params: A list of predictors associated with each mode.

3. d: The decay parameter for the neural network. A value of 10 was used in this study.

4. maxit: Maximum number of iterations to train the neural network.

Output

A list containing models for each mode of each component.

R Code

model3DTensor = function(U, params, d = 10, maxit = 100) {

imgy_mods = apply(U[[1]], 2, FUN = function(y) {
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stats::splinefun(

x = params[[1]], y = y, method = "natural"

) %>%

return()

})

imgx_mods = apply(U[[2]], 2, FUN = function(y) {

stats::splinefun(

x = params[[2]], y = y, method = "natural"

) %>%

return()

})

t_mods = apply(U[[3]], 2, FUN = function(y) {

forecast::nnetar(

y, xreg = params[[3]], repeats = 30,

lambda = "auto", decay = d, maxit = maxit

) %>%

return()

})

mod_list = list(

imgy_mods = imgy_mods, imgx_mods = imgx_mods, t_mods = t_mods

)

return(mod_list)

}
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B.4 Forecast Layers from 3D Model
Description

Forecast time steps ahead given model of a third-order decomposed tensor as described in 4.3.

Arguments
1. tensor mod: A list containing models for each mode of each component. Output of the

model3DTensor function.

2. n steps: The number of time steps to forecast.

3. lambdas: The _ values obtained from the CP decomposition. Output of the cp function
from the rTensor package.

4. params: A list of predictors for the forecast associated with each mode.

Output

A tensor providing the estimate for the next n layers.

R Code

predictTensor3D = function(tensor_mod, n_steps, lambdas, params) {

A_hat = lapply(1:length(lambdas), function(i) {

img_y = tensor_mod[[1]][[i]](params[[1]])

img_x = tensor_mod[[2]][[i]](params[[2]])

t_cor = forecast::forecast(

tensor_mod[[3]][[i]], h = n_steps, xreg = params[[3]]

)$mean %>%

as.numeric()

A_i = outer(img_y, img_x) %>%

`*`(lambdas[i]) %>%
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outer(t_cor) %>%

as.tensor()

}) %>% Reduce(f = '+')

}

B.5 Loss Function for Intra-Layer Update
Description

Calculate the error given some temporal mode values and a sample structure.

Arguments
1. par vec: A vector containing the estimated temporal mode values for one time step. The

vector will be of length R, where R is the rank of the decomposition.

2. old tensor: The tensor being updated.

3. target vec: A vector containing the sampled values from the image to be estimated.

4. tb indices: A data frame containing the indices of the sampled values.

Output

A scalar indicating the error.

R Code

tLossFunctionS = function(par_vec, old_tensor, target_vec, tb_indices) {

lambdas = old_tensor$lambdas

row_i = tb_indices$x1

col_i = tb_indices$x2

X_vec = lapply(1:length(lambdas), function(i) {

img_y = old_tensor$U[[1]][,i][row_i]
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img_x = old_tensor$U[[2]][,i][col_i]

t_cor = par_vec[i]

img_y*img_x*lambdas[i]*t_cor

}) %>% Reduce(f = '+')

loss = norm(target_vec - X_vec, type = "2")

return(loss)

}

B.6 Intra-Layer Update
Description

Estimate the temporal modes, with spatial modes fixed, given new data.

Arguments
1. A u: The decomposed third-order tensor to be updated. Output of the cp function from the

rTensor package.

2. index slice: A vector of the indices to be updated. If a tensor update is being performed,
indices will correspond to subsequent images beginning at 1. If tensor transfer, indices will
correspond to learned mode.

3. tb sample structure: A data frame containing the indices of the sampled values.

4. img list: A list containing the new data to be fitted.

5. transfer: Logical. Whether a tensor transfer is being performed or a tensor update.

6. total index: A vector corresponding to the indices that have been updated, including in-
dex slice. Used in the tensor transfer.

Output

A newly estimated temporal mode matrix.
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R Code

temporalUpdate = function(

A_u, index_slice, tb_sample_structure,

img_list, transfer = F, total_index

) {

U3 = A_u$U[[3]]

R = ncol(U3); n = nrow(U3)

for (j in index_slice) {

if (transfer) {

if (j == 1) {

initial_vec = U3 %>%

as.data.frame() %>%

slice(j) %>%

unlist()

} else {

initial_vec = U3 %>%

as.data.frame() %>%

slice(j-1) %>%

unlist()

}

} else {

initial_vec = U3 %>%

as.data.frame() %>%
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tail(1) %>%

unlist()

}

target_vec = img_list[[j]] %>%

reshape2::melt() %>%

rename(x1 = Var1, x2 = Var2) %>%

right_join(tb_sample_structure, by = c("x1", "x2")) %>%

arrange(x1, x2) %>%

pull(value)

par_optim = optim(

initial_vec, tLossFunctionS,

old_tensor = A_u, target_vec = target_vec,

tb_indices = tb_sample_structure

)

if (transfer) {

U3[j, 1:R] = par_optim$par

} else {

U3 = rbind(

U3[2:nrow(U3), 1:4],

matrix(par_optim$par, nrow = 1)

)

}

}
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if (transfer) {

for (k in 1:R) {

x_new = U3[total_index, k]

x_old = U3[(1:n)[-total_index], k]

mu_adj = mean(x_old) - mean(x_new, trim = 0.025)

x = (x_old - mu_adj)

U3[(1:n)[-total_index], k] = x

}

}

return(U3)

}

B.7 Inter-Layer Update
Description

Reestimate the CP decomposition with initialized values. Code adapted from the cp function

from the rTensor package [51].

Arguments
1. A cp: The decomposed third-order tensor to be updated. Output of the cp function from the

rTensor package.

2. A new: A tensor containing the newly available data.

3. max iter: The maximum number of iterations the ALS algorithm should be applied.

4. tol: The tolerance for the relative change in error between updates.

Output

A decomposed tensor.
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R Code

updateCP = function (A_cp, A_new, max_iter = 25, tol = 1e-05) {

num_modes = A_cp$est@num_modes

modes = A_cp$est@modes

U_list = A_cp$U

tnsr_norm = fnorm(A_new)

unfolded_mat = lapply(1:num_modes, function(m) rs_unfold(A_new, m = m)@data)

Z = rTensor:::.superdiagonal_tensor(

num_modes = num_modes, len = ncol(U_list[[1]]), elements = A_cp$lambdas

)

est = ttl(Z, U_list, ms = 1:num_modes)

curr_iter = 2

converged = FALSE

fnorm_resid = rep(0, max_iter)

fnorm_resid[1] = A_cp$fnorm_resid

CHECK_CONV = function(est) {

curr_resid = fnorm(est - A_new)

fnorm_resid[curr_iter] <<- curr_resid

if (curr_iter == 1) {

return(FALSE)

}

if (abs(curr_resid - fnorm_resid[curr_iter - 1])/tnsr_norm < tol) {

return(TRUE)
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} else {

return(FALSE)

}

}

pb = txtProgressBar(min = 0, max = max_iter, style = 3)

norm_vec = function(vec) norm(as.matrix(vec))

while ((curr_iter < max_iter) && (!converged)) {

setTxtProgressBar(pb, curr_iter)

if (curr_iter == 2) {

if (CHECK_CONV(est)) {

converged <- TRUE

setTxtProgressBar(pb, max_iter)

lambdas = A_cp$lambdas

} else {

curr_iter <- curr_iter + 1

}

} else {

for (m in 1:num_modes) {

V <- hadamard_list(lapply(U_list[-m], function(x) {

t(x) %*% x

}))

V_inv <- solve(V)

tmp <- unfolded_mat[[m]] %*% khatri_rao_list(
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U_list[-m],

reverse = TRUE

) %*% V_inv

lambdas <- apply(tmp, 2, norm_vec)

U_list[[m]] <- sweep(tmp, 2, lambdas, "/")

Z = rTensor:::.superdiagonal_tensor(

num_modes = num_modes,

len = ncol(U_list[[1]]),

elements = lambdas

)

est <- ttl(Z, U_list, ms = 1:num_modes)

}

if (CHECK_CONV(est)) {

converged <- TRUE

setTxtProgressBar(pb, max_iter)

} else {

curr_iter <- curr_iter + 1

}

}

if (!converged) {

setTxtProgressBar(pb, max_iter)

}

}
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close(pb)

fnorm_resid <- fnorm_resid[fnorm_resid != 0]

norm_percent <- (1 - (tail(fnorm_resid, 1)/tnsr_norm)) * 100

invisible(

list(

lambdas = lambdas, U = U_list, conv = converged,

est = est, norm_percent = norm_percent,

fnorm_resid = tail(fnorm_resid, 1), all_resids = fnorm_resid

)

)

}
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