
Mississippi State University Mississippi State University

Scholars Junction Scholars Junction

Theses and Dissertations Theses and Dissertations

12-8-2023

Study of augmentations on historical manuscripts using TrOCR Study of augmentations on historical manuscripts using TrOCR

Erez Meoded
Mississippi State University, meoderezjb@gmail.com

Follow this and additional works at: https://scholarsjunction.msstate.edu/td

 Part of the Artificial Intelligence and Robotics Commons, and the Data Science Commons

Recommended Citation Recommended Citation
Meoded, Erez, "Study of augmentations on historical manuscripts using TrOCR" (2023). Theses and
Dissertations. 6034.
https://scholarsjunction.msstate.edu/td/6034

This Graduate Thesis - Open Access is brought to you for free and open access by the Theses and Dissertations at
Scholars Junction. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of
Scholars Junction. For more information, please contact scholcomm@msstate.libanswers.com.

https://scholarsjunction.msstate.edu/
https://scholarsjunction.msstate.edu/td
https://scholarsjunction.msstate.edu/theses-dissertations
https://scholarsjunction.msstate.edu/td?utm_source=scholarsjunction.msstate.edu%2Ftd%2F6034&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/143?utm_source=scholarsjunction.msstate.edu%2Ftd%2F6034&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1429?utm_source=scholarsjunction.msstate.edu%2Ftd%2F6034&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsjunction.msstate.edu/td/6034?utm_source=scholarsjunction.msstate.edu%2Ftd%2F6034&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholcomm@msstate.libanswers.com

Template C v4.3 (beta): Created by T. Robinson 01/2021

Study of augmentations on historical manuscripts using TrOCR

By

TITLE PAGE

Erez Meoded

Approved by:

Jingdao Chen (Major Professor)

Shahram Rahimi

Sudip Mittal

T. J. Jankun-Kelly (Graduate Coordinator)

Jason M. Keith (Dean, Bagley College of Engineering)

A Thesis

Submitted to the Faculty of

Mississippi State University

in Partial Fulfillment of the Requirements

for the Degree of Master of Science

in Computer Science

in the Department of Computer Science and Engineering

Mississippi State, Mississippi

December 2023

Copyright by

COPYRIGHT PAGE

Erez Meoded

2023

Name: Erez Meoded

ABSTRACT

Date of Degree: December 8, 2023

Institution: Mississippi State University

Major Field: Computer Science

Major Professor: Jingdao Chen

Title of Study: Study of augmentations on historical manuscripts using TrOCR

Pages in Study: 63

Candidate for Degree of Master of Science

Historical manuscripts are an essential source of original content. For many reasons, it is

hard to recognize these manuscripts as text. This thesis used a state-of-the-art Handwritten Text

Recognizer, TrOCR, to recognize a 16th-century manuscript. TrOCR uses a vision transformer to

encode the input images and a language transformer to decode them back to text. We showed

that carefully preprocessed images and designed augmentations can improve the performance of

TrOCR. We suggest an ensemble of augmented models to achieve an even better performance.

ii

DEDICATION

I am dedicating this work to the world I knew as a child, to the open green fields full of

life that were replaced with sun-burning concrete. To the books, people read while riding the

public bus to their work. I am also dedicating this work to the next generations, who will have to

work hard and collaboratively to restore this world to the same place I knew it when I was a

child. My prayers, my guidance, and my hopes are with them. We trust you for your children!

iii

ACKNOWLEDGEMENTS

“A Psalm of thanksgiving.” (Psalm 100:1) to “The Lord is my shepherd” (Psalm 23:11). I

would like to thank the Mississippi State University for its excellent education system. The

committee members Jingdao Chen (Major Professor), Shahram Rahimi, and Sudip Mittal.

Special thanks to Professor Chen for his superb and close guidance. Last spring, I joined

Professor Rahimi’s seminar CSE 8011, where he gave the class all the knowledge on how to

write a successful paper and encouraged us to write a thesis. Without his advice and enthusiasm,

I would not write this thesis.

1 Both verses are from https://tehilim-online.co.il/%D7%AA%D7%94%D7%99%D7%9C%D7%99%D7%9D

https://tehilim-online.co.il/%D7%AA%D7%94%D7%99%D7%9C%D7%99%D7%9D

iv

TABLE OF CONTENTS

DEDICATION .. ii

ACKNOWLEDGEMENTS ... iii

LIST OF TABLES ... vi

LIST OF FIGURES .. vii

CHAPTER

I. INTRODUCTION ...1

II. LITERATURE REVIEW ..3

2.1 Attention ..3

2.2 Transformer ...4
2.3 Modern HTR ...6

2.4 Vision Transformer ...7

2.5 TrOCR ...8

2.6 Augmentation in HTR ...10
2.7 Character Error Rate (CER) ..10

2.8 Historical manuscripts ...11

III. DATASET ...13

3.1 Introduction ...13

3.2 Challenges ...13
3.3 Preprocessing and dataset split ..15

IV. AUGMENTATIONS ..16

4.1 Introduction ...16
4.2 The augmentations we used in our experiment ...16

V. EXPERIMENT ..18

5.1 Training ...18
5.2 Results ...19
5.3 Analysis ...21

v

5.4 Character Analysis ...25
5.5 Ensemble Learning ..28

5.6 Comparison to other papers ...30
5.7 Examples ...31

5.7.1 First Example ...31
5.7.2 Second Example ..32
5.7.3 Third Example ...33

VI. DISCUSSION ..34

6.1 Introduction ...34
6.2 Preprocessing and fine-tuning for TrOCR ..34
6.3 Augmentation ..35

6.4 Ensemble learning ...35

VII. CONCLUSION ...36

REFERENCES ..37

APPENDIX

A. TRAINING AND VALIDATION CODE ..41

B. AUGMENTATION CODE ...46

C. SOURCE CODE FOR PREPROCESSING AND CREATING THE LINE IMAGES

DATASET ..51

D. METADATA XML FILE USED TO CREATE THE LINE IMAGES55

E. COMPLETE TRAINING AND VALIDATION LOSS ...57

vi

LIST OF TABLES

Table 2.1 The Character Error Rate (CER) calculation consists of three basic parts:

Substitution, Deletion, and Insertion. ...11

Table 5.1 Comparison between different augmentations on the last epoch (20). The

source of the augmentation is either from the TrOCR training code, from our

work, or as a benchmark. ..21

Table 5.2 F1 score for the small-case characters. Other characters with low support are

not included for visibility. Macro average is the unweighted average of all f1

scores. The weighted average uses the support to calculate the average.

Accuracy is general accuracy. F1 scale up to 100 to improve the visibility.27

Table 5.3 Models and their predictions to line 22 of 1111690. The last line is the label.31

Table 5.4 Models and their predictions to line 15 of 1111823. The last line is the label.32

Table 5.5 Models and their predictions to line 0 of 1111832. The last line is the label.33

Table E.1 The complete output of the training and validation loss ..58

vii

LIST OF FIGURES

Figure 2.1 Alpha carries the combined connection between different parts of the

sentence input x [10]. ..3

Figure 2.2 “Scaled Dot-Product Attention.” The multiplication of the Q, K, and V

matrices and the SoftMax standardization bring a quadratic complexity—

image source [8]. ..4

Figure 2.3 Multi-head (h) attention enables the transformer to process input in parallel

and find better connections between different input parts—image source [8].5

Figure 2.4 Transformer architecture. In comparison to Figure 2.1, there are no RNN

blocks. The most crucial parts of this design are the attention head and the

combined input to the decoder, the encoder output combined with the

decoder output. The transformer is the base of most state-of-the-art modern

models—image source [8]. ...6

Figure 2.5 Vision Transformer (ViT) uses only the original transformer’s encoder. It

changes the input to patches of 16 by 16 pixels. ViT reduces the input

dimension by splitting the image into patches of size 16x16 pixels (Image

source [10]) ...8

Figure 2.6 TrOCR Architecture. The data flow is clockwise from the bottom right to the

top right. Base TrOCR has N of 12 and a vector of size 1024. The top left is

the ViT encoder, and the top right is the original RoBERTa [19] decoder.

(Image source [11]) ..9

Figure 2.7 ChatGPT answers: “Why are ancient manuscripts important in our modern

life?” Retrieved from quora.com on July 27, 2023 ..12

Figure 3.1 Original page from the source dataset (file 1111637 in the dataset).14

Figure 3.2 The first three lines of Figure 3.1, after preprocessing...15

Figure 4.1 Ten augmentation models and baseline model. Elastic example in Figure 5.217

Figure 5.1 CER score per augmentation. The first column is the baseline model. It is our

benchmark model. The six augmentations next to the baseline are models

with augmentations from the original handwritten TrOCR. The last four

columns (on the right) are models from augmentations developed by us.20

viii

Figure 5.2 Example of Elastic Augmentation. Image source pytorch.org22

Figure 5.3 Validation loss for each even epoch. The labels are the CER score for each

epoch...23

Figure 5.4 CER for each augmentation and each epoch. ...24

Figure 5.5 The performance of CER in the last five epochs. The training is close to

converging with clear, better augmentations. ...25

Figure 5.6 F1 is the combination of precision and recall. Higher values of f1 IFF

precision and recall are high. This figure demonstrates the correlation

between these three matrices. ...26

Figure 5.7 F1 (normalized to 100) for augmentations and small case characters.29

Figure 5.8 Confusion matrix between true and predicted labels. The values are the

average between all eleven models. ...30

Figure 5.9 Line 22 from file 1111690 ..31

Figure 5.10 Line 15 from file 1111823 ..32

Figure 5.11 Line 0 from file 1111832 ..33

Figure 6.1 IAM image..35

Figure A.1 Preparing the Colab environment and importing required libraries42

Figure A.2 Dataset class ...43

Figure A.3 Building the model ...43

Figure A.4 CER metric definition...44

Figure A.5 Creating the processor. Huggingface’s TrOCR tokenizer. ...44

Figure A.6 Training ..45

Figure B.1 TrOCR Dilation and Erosion code ...47

Figure B.2 TrOCR’s Underline and KeepOriginal code ..48

Figure B.3 Image Resize and Re-Resize code ..49

Figure B.4 More augmentations and creating the augmentation container (Python

dictionary)...50

ix

Figure C.1 Import section, followed by “global and useful” variables.52

Figure C.2 Function to split the original image into strict line images ..52

Figure C.3 Getting the correct coordinates around every line ..53

Figure C.4 Main code to prepare the line images ...54

Figure D.1 The first row of file 1111637..56

1

CHAPTER I

INTRODUCTION

Historical manuscripts are an essential source of original content that we can learn from

and connect to other content. They are “regarded primarily if not exclusively as materials for

research” [1]. Although researchers and librarians have made well-designed archives of historical

manuscripts, only a few are in a digital, searchable format. Researchers have recently used

Handwritten Text Recognition (HTR) algorithms to convert modern and historical manuscripts

from scanned images into digital text files. The earliest HTR tools use simple imaging

techniques, such as Optical Character Recognition (OCR) scripting [2], feature-based

classification and clustering [3], and feature word locating [4]. Later models used Artificial

Intelligence (AI), such as the Hidden Markov Model (HMM) [5], RNN [6], and CNN-RNN

Hybrid Networks [7].

Advanced AI models improve the quality and performance of modern manuscripts HTR

both in time of computation and accuracy. However, historical manuscripts introduce three

significant challenges: the scarcity of transcriptions (labels), the language gap, and the diversity

of writing styles. Modern AI models are preferably trained on an extensive collection of samples,

usually millions. But while many scanned manuscripts exist, only a few have a reliable

transcription. Large Language Models (LLM) cannot efficiently recognize historical manuscripts

because of the language gap. While researchers train LLM on available modern language

datasets, historical manuscripts convey a different language. Lastly, a sample of cursive writing

2

taken from historical documents is very different from modern ones and other historical

documents. These three challenges make training a current AI model to digitize historical

manuscripts challenging.

The invention of transformer architecture [8] brought new directions to modeling

language and vision. Transformer is a parallel encoder-decoder paradigm with attention and

without the RNN building blocks. Its multi-head design and the availability of the encoder output

to the decoder improve the performance of language models to scores never seen before. Later

work (e.g., BERT [9]) trained the transformer on massive data and held the weights for later

fine-tuned downstream tasks (transfer learning). Other works extend the transformer to vision

(e.g., ViT [10]). This proposed work will use the transformer-based model, TrOCR [11], and

augmentations to recognize historical Latin manuscripts from the 16th century. Augmentation

and pre-trained transformer-based models can alleviate the challenges we presented previously.

We will study the effectiveness of different augmentations on the performance of text

recognition of historical manuscripts using TrOCR.

Our contributions are:

• We measure the effectiveness of different augmentations on the performance of

TrOCR.

• We showed that combining different augmentations by an ensemble of voters

improves the overall performance of TrOCR.

• We showed the effectiveness of the pluggable feature in TrOCR by recognizing

Latin.

3

CHAPTER II

LITERATURE REVIEW

2.1 Attention

While classical HTR models are feature-based on cursive characters [2], modern HTR

models learn to find connections between input parts, e.g., between words in the text and

between parts of the image. This architecture is called “attention.”

Figure 2.1 Alpha carries the combined connection between different parts of the sentence

input x [10].

Attention improves the performance of classic Deep Neural Networks (DNNs) [12] by

mimicking the human processing of language and vision, i.e., by finding connections between

parts of the input [13]. The standard building blocks of these classic DNNs are RNN, LSTM, and

GRU (Figure 2.1).

4

2.2 Transformer

Classic attention-based DNNs had sequential architecture (Figure 2.1). This property

blocked the models from utilizing high-performance computing (GPUs) and limiting the

attention mechanism’s effectiveness. [8] introduce Transformer (Figure 2.4), which has an

attention architecture without sequential building blocks (RNN). The transformer has two parts:

an encoder and a decoder. The attention mechanism is implemented in different parts, in the

multi-head self-attention and combining the encoder output and the decoder input. This

innovative design and other hacks make the transformer better than previous models.

In the transformer paper [8], the authors noted two essential properties of this new

architecture: parallelization and quadric complexity. The architecture of the transformer (Figure

2.4) enables processing input in parallel, which utilizes modern GPUs. On the other side, its

Query, Key, and Value with SoftMax design (Figure 2.2) and the multi-head design (Figure 2.3)

have a complexity of (2.1), making it infeasible for high-dimension input problems.

𝑂(𝑛2 · 𝑑) (2.1)

Figure 2.2 “Scaled Dot-Product Attention.” The multiplication of the Q, K, and V matrices

and the SoftMax standardization bring a quadratic complexity—image source [8].

5

Figure 2.3 Multi-head (h) attention enables the transformer to process input in parallel and

find better connections between different input parts—image source [8].

6

Figure 2.4 Transformer architecture. In comparison to Figure 2.1, there are no RNN blocks.

The most crucial parts of this design are the attention head and the combined input

to the decoder, the encoder output combined with the decoder output. The

transformer is the base of most state-of-the-art modern models—image source [8].

2.3 Modern HTR

We can classify the current work on HTR as either attention-based HTR or transformer-

based HTR. Recent work [14] suggests an encoder-attention-decoder HTR. Their model has

multi-stage processing with ResNet to extract features and LSTM to predict from the previous

7

stages. Previous similar work [15] did a grid search for the best hyperparameters on the encoder-

decoder attention model from CNN and BLSTM layers.

2.4 Vision Transformer

The original transformer [8] can get input from embedded vocabulary with a relatively

low dimension vector of size 512. Each vector represents a word in the language. Contrary to

text input, in vision, the input dimension is exponentially more significant, where the model’s

input is images with multimillions of pixels on up to 3 (RGB) channels. Hence, the vision

problems became intractable problems in the original transformer architecture. Vision

Transformer (ViT) [10] (Figure 2.5) solves this dimensionality problem by inputting image

patches instead of pixels without changing the original transformer!

One drawback of ViT is its lack of locality, which CNN has. The authors of ViT solve

that by expanding the size of the training datasets to hundreds of millions of samples. Later

works, for example, [16] suggest solving the lack of locality in ViT by prefixing ViT with CNN

layers. This hybrid architecture achieved even better performance on a much smaller training

dataset. The ViT encoder in the Huggingface’s TrOCR implementation (which we will use in our

study) also has one layer of Conv2d (input: image, output: 16x16 patches) before the ViT

encoder.

8

Figure 2.5 Vision Transformer (ViT) uses only the original transformer’s encoder. It changes

the input to patches of 16 by 16 pixels. ViT reduces the input dimension by

splitting the image into patches of size 16x16 pixels (Image source [10])

2.5 TrOCR

TrOCR2 [11] is a state-of-the-art (SOTA) complete transformer (with encoder and

decoder) to recognize English text from images. It is a multi-transformer model with two pre-

trained variants of ViT [10] and BERT [9]; the former is an image encoder, and the latter is a

language decoder. We will use the Huggingface [17] implementation of TrOCR. In Huggingface,

DeiT [17] is the image encoder in this implementation, and XLM-RoBERTa [18] is the text

decoder. XLM-RoBERTa is a multilingual model. Its vocabulary has 100 languages.

TrOCR was trained in two steps: pre-training and fine-tuning. The pre-training step had

two stages. In Stage 1, TrOCR was trained on 684M text lines from online PDF files. In Stage 2,

it was trained on 17.9M synthetic handwritten text lines. In the second step, the authors fine-

tuned the stage 2 model to four downstream OCR tasks: printed, handwritten, receipt, and scene.

2 The source code of TrOCR is available on https://github.com/microsoft/unilm/tree/master/trocr

https://github.com/microsoft/unilm/tree/master/trocr

9

To fine-tune and benchmark, they used standard datasets. Since these datasets are small, the

authors used six different augmentations in addition to keeping the original image. Figure 4.1

presents the augmentation for the handwritten task. TrOCR is available to the public in three

sizes: small, base, and large, with different layers, hidden dimensions, and heads. Microsoft

published twelve fine-tuned models and three pre-trained stage 1 models. It did not publish the

pre-trained stage 2 models3. In this work, we will study the effectiveness of augmentations on

TrOCRBASE.

Figure 2.6 TrOCR Architecture. The data flow is clockwise from the bottom right to the top

right. Base TrOCR has N of 12 and a vector of size 1024. The top left is the ViT

encoder, and the top right is the original RoBERTa [19] decoder. (Image source

[11])

TrOCR has a ViT encoder that accepts line images as input (Figure 2.6). ViT splits the

image into patches of 16x16 pixels. Then, TrOCR processes the patches, similar to the original

transformer processes text.

3 https://github.com/microsoft/unilm/issues/831#issuecomment-1223778956

https://github.com/microsoft/unilm/issues/831#issuecomment-1223778956

10

The original TrOCR could recognize only an English dataset and could not identify other

languages efficiently4. To expand TrOCR to recognize different languages, Huggingface’s

TrOCR model replaces the original single language (English) RoBERTa decoder with an XLM-

RoBERTa decoder pre-trained on one hundred languages, including Latin. This modification, as

shown in this work, makes the TrOCR capable of recognizing Latin text images efficiently.

2.6 Augmentation in HTR

Augmentation is a helpful technique for creating synthetic samples when there are

insufficient samples [11] or improving the overall model performance [20]. It distorts the input

images to new ones the model has never seen [21]. Augmentation is widely used in HTR to

alleviate the scarcity of transcripted manuscripts and improve HTR models’ performance [22].

Common image distortions in HTR are rotation, translation, scaling, shearing (affine transform),

grayscale erosion and dilation, rotations, skewing, and Gaussian noise [23], [24], [25], [26], blur,

random noise, random stretch [22]. This work will study the six augmentations from the source

code of TrOCR and the four augmentations we developed (see CHAPTER IV for technical

information).

2.7 Character Error Rate (CER)

CER is a standard metric to evaluate the performance of text recognition algorithms. We

will follow [27] and [28] and use CER as a performance metric. CER equation is a comparison

between prediction and reference character by character, in the following formula (2.2):

𝐶𝐸𝑅 =
𝑆 + 𝐷 + 𝐼

𝑁
=

𝑆 + 𝐷 + 𝐼

𝑆 + 𝐷 + 𝐶
 (2.2)

4 https://github.com/microsoft/unilm/issues/500

https://github.com/microsoft/unilm/issues/500

11

Table 2.1 gives examples of how to measure the number of substitutions (S), deletions

(D), and insertions (I). These three are operations to transform the predicted text to the label text.

After summating these three numbers, we divide them by the total number of characters in the

label. Hence, CER is the rate (or percentage) between two values: the number of operations and

characters.

Table 2.1 The Character Error Rate (CER) calculation consists of three basic parts:

Substitution, Deletion, and Insertion.

 Reference Predictions

Substitution - S ABCD ABCE,

AYUD

S = 1 in the first example and 2 in the second

Deletion - D ABCD ABC, ACD D = 1 in both examples

Insertion - I ABCD ABCDE,

ABOCD

I = 1 in both examples

𝐶 is the number of correct characters

𝑁 is the number of characters in the true label (reference)

Another way to calculate 𝑁 is simply by 𝑆 + 𝐷 + 𝐶.

2.8 Historical manuscripts

[1] defines historical manuscripts as:

“Records of historical value, written by hand or typewriter or its equivalent (as

distinguished from printed records), in single or multiple forms.”

Historical manuscripts present many challenges to HTR: Lack of transcription, distorted

alignment [29], variation of cursive writing, quality of writing, language and culture gaps, and

other challenges. Nevertheless, they are an essential source of original information for research

[1] that holds particular values [30]. ChatGPT returns an engaging text about the importance of

historical manuscripts (see Figure 2.7).

12

Figure 2.7 ChatGPT answers: “Why are ancient manuscripts important in our modern life?”

Retrieved from quora.com on July 27, 2023

13

CHAPTER III

DATASET

3.1 Introduction

Following [28], we will study Rudolf Gwalther’s manuscripts from the 16th century.

Gwalther was a pastor and the head of the Reformed Church of Zurich in the 16th century. The

manuscript is available at https://www.e-manuscripta.ch/zuz/doi/10.7891/e-manuscripta-26750

[31]. The authors of [28] used an AI-powered public service, Transkribus [32]

(https://readcoop.eu/transkribus/), to recognize the images and made the output available to

download at https://zenodo.org/record/4780947. We will note this output later as “the dataset.”

3.2 Challenges

Figure 3.1 contains one original page from the dataset. We can see that this example page

has stains, deletions with scribbling, upward curvature writing, and up and down line crossing.

Also, the writing style differs from the modern style: frequent character joining, mixing

calligraphy with simple scripts, background color, quality of paper, and more. These challenges

require the HTR developer’s particular attention to recognize the text. Also, it requires careful

preparation of the input images and transforming them into the format the algorithm expects.

https://www.e-manuscripta.ch/zuz/doi/10.7891/e-manuscripta-26750
https://readcoop.eu/transkribus/
https://zenodo.org/record/4780947

14

Figure 3.1 Original page from the source dataset (file 1111637 in the dataset).

15

Figure 3.2 The first three lines of Figure 3.1, after preprocessing

3.3 Preprocessing and dataset split

The dataset has 142 full-page images. Each page has an XML metadata file (APPENDIX

D) with the coordinates of each line in the image and the label. The XML file is the output from

Transkribus and includes the coordinates and the AI-generated text of 4,037 lines. We used the

coordinates to crop the images into line images (see the code in APPENDIX C). TrOCR accepts

only line images, i.e., images with a single line of text. Figure 3.1 shows an entire page file, and

Figure 3.2 shows its corresponding first three line images after preprocessing. We followed [28]

and split the data set into 3,603 lines for training and 433 lines for validation. We split the dataset

into training and validation datasets using Scikit-Learn’s [33] train_test_split API.

16

CHAPTER IV

AUGMENTATIONS

4.1 Introduction

Usually, it is expensive to acquire labeled images. Hence, researchers are at risk of

getting biased models. To alleviate this problem, researchers apply augmentation (distortion) to

the original images to create synthetic images [34]. Augmentation is an essential tool in the

toolset of a researcher. It helps lower the bias by training the model on more extensive datasets

with images the model did not see. In this work, we will study the effect of different

augmentations on the performance of TrOCR in text-recognizing historical manuscripts.

4.2 The augmentations we used in our experiment

Our study includes ten different augmentations in addition to the baseline model. The

developers of TrOCR used six augmentations to create millions of synthetic handwritten samples

in the training phase. We adopted these six augmentations without changing the code except for

fixing minor bugs in the TrOCR’s augmentation code. So, our codes TrOCR’s augmentation

code is identical. In addition to these six augmentations, we developed four more augmentations

that we think can improve handwritten text recognition performance. See Figure 4.1 and

APPENDIX B.

17

Figure 4.1 Ten augmentation models and baseline model. Elastic example in Figure 5.2

Baseline -

Original

 Augmentations taken from the TrOCR source code

Random

Rotation

Gaussian

Blur

Dilation

Erosion

Resize

Underline

 Augmentations suggested by us

Random

Affine

Random

Perspective

Elastic

Re-Resize

18

CHAPTER V

EXPERIMENT

5.1 Training

In our experiment, we trained eleven models, one model for each of the ten

augmentations and one baseline model. In each of the first ten models, the data loader chooses

uniformly (p=0.5) either to load the image as is or to augment it before loading it. This practice

saves storage and is common in practice. We did not mix augmentations in one model. We

trained the baseline model on the original data without any augmentation. The purpose of the

baseline model is to be a benchmark for the augmentation models. The training ran for twenty

epochs; however, we logged all the training and validation losses and the CER metric for each

epoch. We validate the model on unseen samples. We followed [28] and used the Character

Error Rate (CER) as the benchmark score. The training and validation cross-entropy [11] losses

are in APPENDIX E.

We wrote the training code in Python and used the PyTorch API and Huggingface

platform to load the TrOCR pre-trained base model and train it. Training the TrOCRBASE requires

a modern GPU with at least 16 Gigabytes (GB) of memory. We loaded the dataset and the code

on Google’s Colab cloud with the Pro+ plan. The training was on a single A100 GPU. It took

about one hour to train and validate twenty epochs and about 15 minutes for five epochs. Since

Colab is a share-based computation platform that allocates computation resources dynamically,

we did not include the exact training time for each model as it varied considerably from run to

run.

19

We kept the hyperparameters similar in all models’ fine-tuning. In practice, if the inputs

of the fine-tuning and pre-training close (but not equal), it is better to fine-tune using similar (but

not identical) hyperparameters used in the original pre-training phase. Following this, we used

the same hyperparameters the developers of TrOCR used to train the handwritten model. The

training source code and a complete list of the hyperparameters are in APPENDIX A.

5.2 Results

The following results are from the validation dataset. We did not tweak the

hyperparameters, nor did we change them between models, and following [28], we used the

validation dataset as our test dataset and compared the models based on it. The results are from

the TrOCRBASE model.

Figure 5.1 holds the Character Error Rate (CER) for each augmentation and each epoch.

The scores are generally improving with the training. At the end of the fine-tuning, only two

augmentation models are better than the baseline model, while all other models have higher

CER.

20

Figure 5.1 CER score per augmentation. The first column is the baseline model. It is our

benchmark model. The six augmentations next to the baseline are models with

augmentations from the original handwritten TrOCR. The last four columns (on

the right) are models from augmentations developed by us.

21

5.3 Analysis

As said before, compared to the baseline model, we have two classes of performance:

augmentations with better CER scores and augmentations with worse CER scores. We can sort

them as in Table 5.1. Looking back on Figure 4.1, we can see that augmentations with visibly

lower distortion have a faster conversion to a minimum and better CER scores than other

augmentations with higher visible distortion.

Table 5.1 Comparison between different augmentations on the last epoch (20). The source of

the augmentation is either from the TrOCR training code, from our work, or as a

benchmark.

epoch Source Cer Augmentation

20 TrOCR 1.86 Random Rotation

20 Our 1.86 Elastic

20 Benchmark 1.93 Baseline

20 TrOCR 2.03 Underline

20 TrOCR 2.04 Gaussian Blur

20 Our 2.09 Re Resize

20 Our 2.13 Random Affine

20 Our 2.27 Random Perspective

20 TrOCR 2.31 Dilation

20 TrOCR 2.31 Resize

The validation loss in Figure 5.3, in the higher range of epochs (above 10), is in a plateau

(convergence), which gives a clue about the pre-loss stage. To better interpret the findings, we

omitted the training loss from the plots; we supplied them in APPENDIX E.

We can see an interesting (but not uncommon) phenomenon in Figure 5.3. At the same

time, the cross-entropy loss of TrOCR is stable or even increases slightly in the higher epochs,

and the CER metric continues to improve slightly. One possible explanation is that cross-entropy

and CER are not fully correlated and measure the dissimilarity between True labels and

predictions differently. Cross entropy measures the similarity of two probability distributions. In

22

our case, between the probability distributions of the True labels and the predict labels. In

contrast, CER calculates the rate of operations (insert, delete, and replace) needed to transform

one string to another. Another possible explanation is the stage of the training, and the CER is

expected to worsen in further epochs behind the twentieth.

Another way to plot the comparison between different augmentations is in Figure 5.4,

where we can see significant improvement in the first 15 epochs and close to convergence in the

last five epochs in all augmentations. The convergence can be seen clearly in Figure 5.5 and

Figure 5.5. These two last plots prove the superiority of some augmentations over all other ones:

Elastic (our development) and Random Rotation (TrOCR source code). It is possible to explain

their better performance if we look at Figure 3.1; the handwriting of Gwalther has rows with

constant upward curvature (like convex), i.e., on the left part of the line, the direction of the line

is upward, the middle is flattened, and the right part is down direction. Random Rotation imitates

this phenomenon in Gwalther’s handwritten and supports the training. Similarly, Elastic

augmentation supports the training by gently imitating the natural imperfection of the paper, pen,

ink, and writer’s hand. See Figure 5.2.

Figure 5.2 Example of Elastic Augmentation. Image source pytorch.org5

5 https://pytorch.org/vision/stable/auto_examples/plot_transforms.html#elastictransform

https://pytorch.org/vision/stable/auto_examples/plot_transforms.html#elastictransform

23

Figure 5.3 Validation loss for each even epoch. The labels are the CER score for each epoch.

24

Figure 5.4 CER for each augmentation and each epoch.

25

Figure 5.5 The performance of CER in the last five epochs. The training is close to

converging with clear, better augmentations.

5.4 Character Analysis

Another helpful way to evaluate the efficiency of the models is by other metrics. In this

section, we will discuss three different metrics: precision (5.1), recall (5.2), and f1 (5.3). In

Handwritten Text Recognition, precision measures the confidence that a prediction is correct and

how many characters are predicted correctly. Recall measures the confidence that prediction is

complete; how many characters were predicted correctly. When using them alone, these two

measures have significant disadvantages in HTR. We might get a predictor with high precision in

predicting a specific character but a high false negative, e.g., predicting incorrectly this particular

26

character. We might also have high recall and get a predictor with high false positives where it

falsely predicts many characters, as is the specific character.

One solution to the disadvantages of precision and recall is the F-score family, commonly

used as the f1 score (5.3). F1 is the harmonic mean to two values, in our case, precision and

recall. As seen in Figure 5.6, a higher score of f1 is highly correlated to higher scores in

precision and recall. To our problem (HTR), a predictor with f1=1 means that its predictions are

correct and complete.

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒
 (5.1)

𝑟𝑒𝑐𝑎𝑙𝑙 =
𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑓𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒
 (5.2)

𝐹1 = 2 ⋅
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ⋅ 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
 (5.3)

Figure 5.6 F1 is the combination of precision and recall. Higher values of f1 IFF precision

and recall are high. This figure demonstrates the correlation between these three

matrices.

27

Table 5.2 F1 score for the small-case characters. Other characters with low support are not

included for visibility. Macro average is the unweighted average of all f1 scores.

The weighted average uses the support to calculate the average. Accuracy is

general accuracy. F1 scale up to 100 to improve the visibility.

 Baseline
Random

Rotation

Gaussian

Blur
Dilation Erosion Resize Underline

Random

Affine

Random

Perspective
Elastic

Re

Resize

space 99.51 99.57 99.40 99.53 99.34 99.42 99.47 99.53 99.55 99.59 99.57

a 99.28 99.20 98.95 98.87 98.86 98.99 99.16 98.91 98.48 99.16 98.69

b 97.12 98.41 97.79 97.14 97.79 97.78 97.78 99.05 96.53 97.47 96.53

c 98.96 99.12 99.20 98.80 98.65 98.96 99.28 99.04 98.48 99.44 99.12

d 98.60 99.11 98.98 98.98 98.61 98.86 99.49 98.73 98.48 99.49 99.24

e 98.59 98.71 98.53 98.15 97.99 98.17 98.29 98.41 98.16 98.41 98.29

f 98.32 98.05 97.78 98.59 98.06 97.51 98.31 98.33 98.05 97.77 97.79

g 98.68 99.33 99.01 99.34 99.01 98.68 98.68 99.01 98.68 99.67 98.68

h 98.21 98.21 98.21 97.51 96.77 98.21 97.49 98.19 97.12 98.56 97.08

i 98.98 99.39 99.18 98.95 98.84 99.11 99.15 98.81 98.67 98.84 99.15

l 99.32 99.22 99.13 98.93 99.22 98.92 99.12 99.03 98.53 99.12 99.12

m 98.51 98.30 98.31 98.24 98.17 98.10 98.31 97.91 98.03 98.31 98.31

n 98.11 98.23 98.16 97.76 98.28 98.05 97.99 98.11 98.17 98.50 97.87

o 98.71 98.60 98.25 97.43 98.13 98.08 98.43 97.79 97.73 98.26 98.02

p 99.20 99.31 98.97 98.17 99.43 98.52 99.08 98.86 99.08 99.54 99.08

q 98.84 98.84 98.27 97.39 98.27 97.42 97.97 98.56 98.84 98.55 96.83

r 98.69 98.34 98.50 98.29 98.15 97.94 98.14 98.19 98.59 98.75 98.64

s 99.08 99.03 98.94 98.89 98.80 98.61 98.85 98.94 98.71 98.98 98.85

t 99.27 99.35 98.94 98.90 99.19 99.23 99.23 99.47 99.03 99.15 99.27

u 98.41 98.51 98.64 98.00 98.38 98.14 98.28 98.60 98.51 98.73 98.33

v 96.36 97.48 97.94 97.73 96.80 97.01 97.51 96.82 97.26 97.27 96.77

x 97.84 97.18 98.59 97.87 96.50 96.45 97.18 97.14 95.65 98.59 97.84

y 100.00 100.00 100.00 90.91 100.00 95.24 100.00 100.00 100.00 100.00 100.00

accuracy 98.08 98.13 98.00 97.75 97.68 97.74 97.96 97.90 97.73 98.14 97.93

macro

avg
80.79 83.36 78.34 80.61 81.52 84.22 78.08 83.66 82.39 82.87 82.49

weighted

avg
98.26 98.26 98.09 97.90 97.61 97.90 98.03 97.90 97.81 98.25 98.03

Table 5.2 shows the f1 scores for each lowercase character and each augmentation.

Another way to see the f1 score performance is from Figure 5.7. We can see that some characters

are easier to predict, e.g., ‘i’ and ‘l,’ while others are hard to predict. Another important finding,

28

besides the fact that, as discussed, some models are better than others, is that some weak models

have high f1 scores in specific characters underline and the character ‘d’.

The confusion matrix in Figure 5.8 shows that average models have confusion between

some characters, e.g., ‘m’ and ‘n’. Further looking into each specific model (not supplied here)

shows that different models have slightly different confusion matrices. These findings we

discussed in the past paragraphs suggest that although augmentation models can be ranked by

their general accuracy (CER), they have different efficiencies. These lead us to the following

discussion: can we improve the overall performance by prediction by combining all or part of the

augmentation models?

5.5 Ensemble Learning

Ensemble learning is learning from multiple algorithms, in our case, multiple

augmentation models. There are multiple ways to compose different models into a single

predictor. In our work, we use the Voting form of ensemble. We did it in two ways: A: for each

predicted sentence, we output the sentence that got the most votes from all eleven predictors. B:

the voting was only between the best five models with the best overall f1 score (Elastic, Random

Rotation, Underline, Gaussian Blur, and Baseline. These two ways look at the predicted

sentence; we tried another more elaborate way by voting on each character. Although promising,

this third way suffers from instability and was not included in our research. The average CER of

all models is 2.11 in the range of 1.86 to 2.33. Ensemble A has a CER of 1.66, and Ensemble B

has a CER of 1.60.

29

Figure 5.7 F1 (normalized to 100) for augmentations and small case characters.

30

Figure 5.8 Confusion matrix between true and predicted labels. The values are the average

between all eleven models.

5.6 Comparison to other papers

 [28] in their work on the Gwalther dataset and TrOCR, they achieved the best CER score

of 3.18 in the tenth epoch. They also gave a SOTA model HTR+ to achieve a CER of 2.74 in the

50th epoch. As presented previously, all our models achieved better scores. The differences

31

between our scores and [28] require explanation. We suggest that since TrOCR was pre-trained

on single-line images. The original Gwalther dataset has many images that include two or more

lines. We think that [28] used the dataset as is, while we improved the dataset’s quality by

cleaning all the images to be friendly to TrOCR by making all the images a single line.

5.7 Examples

Here, we will give a few examples where the models have challenges to recognize.

5.7.1 First Example

In this example, we will examine line 22 from file 1111690 Figure 5.9 and see how

different augmentation models predict the line in Table 5.3. This line has a deletion by overline

mark and line overflow from the top line.

Figure 5.9 Line 22 from file 1111690

Table 5.3 Models and their predictions to line 22 of 1111690. The last line is the label.

Model Prediction

Baseline Hei sed ferre sed hanc levig tu potes ipse moram.

Random Rotation Heu ferre sed hanc levis tu potes ipse moram.

Gaussian Blur He lectled ferre sed hanc levis tu potes ipse moram.

Dilation He tibi servi sed hanc levius tu potes ipse moram.

Erosion Hęc tibi ded levior ferre sed hanc levis tu potes ipse moram.

Resize Hei sed ferre sed hanc levique tu potes ipse moram.

Underline He led ferne ferre sed hanc levis tu potes ipse moram.

Random Affine Perre sed hanc levis tu potes ipse moram.

Random Perspective Hei ferre sed hanc levius tu potes ipse moram.

Elastic He ferre, ferre sed hanc levique tu potes ipse moram.

Re Resize He deced ferre sed hanc levique tu potes ipse moram.

Label Ferre sed hanc levius tu potes ipse moram.

32

5.7.2 Second Example

In this example, we will examine line 15 from file 1111823 Figure 5.10 and see how

different augmentation models predict the line in Table 5.4. This first word in this line has

excessive drawing, and the second to last word has deletion by scribble.

Figure 5.10 Line 15 from file 1111823

Table 5.4 Models and their predictions to line 15 of 1111823. The last line is the label.

Model Prediction

Baseline Et nimiis mersus coecus vernas aquis.

Random Rotation Et nimiis mersus coecus somnas aquis.

Gaussian Blur Et nimiis mersus coecus formas aquis.

Dilation Et nimiis mersus coecus Iothas aquis.

Erosion Et nimiis mersus coecus formas aquis.

Resize Et nimiis mersus coecus fortnas aquis.

Underline Et nimiis mersus coecus vernas aquis.

Random Affine Et nimiis mersus coecus poenas aquis.

Random Perspective Et nimiis mersus coecus poenas aquis.

Elastic Et nimis mersus coecus Iottinas aquis.

Re Resize Est nimiis mersus coecus formas aquis.

Label Est nimiis mersus coecus Ionas aquis.

33

5.7.3 Third Example

In this example, we will examine line 0 from file 1111832 Figure 5.11 and see how

different augmentation models predict the line in Table 5.5. This line has background noise,

probably because it is close to the edge of the page and prunes to an aging effect. Also, the

writing is blurred.

Figure 5.11 Line 0 from file 1111832

Table 5.5 Models and their predictions to line 0 of 1111832. The last line is the label.

Model Prediction

Baseline Quorum foedera mihi causa libido fuit.

Random Rotation Quorum foedera mihi causa libido fuit.

Gaussian Blur Quorum foedera mihi causa libido fuit.

Dilation Quorum fada mihi causa libido fuit.

Erosion Quorum foeda mihi causa libido fuit.

Resize Quorum foedera mihi causa libido fuit.

Underline Quorum foedera mihi causa libido fuit.

Random Affine Quorum foedera mihi causa libido fuit.

Random Perspective Quorum foedera mihi causa libido fuit.

Elastic Quorum foeder mihi causa libido fuit.

Re Resize Quorum foeda mihi causa libido fuit.

Label Quorum foeda mihi causa Libido fuit.

34

CHAPTER VI

DISCUSSION

6.1 Introduction

We have seen in the previous chapters that TrOCR can achieve state-of-the-art HTR of

historical manuscripts. Our work, which follows the dataset used [28], performed much better

than the fine-tuned TrOCRBASE and SOTA HTR+ in the same paper. The building blocks of our

model are well-prepared line images, fine-tuning TrOCR, augmentations, and ensemble learning.

In this chapter, we will discuss these parts of our solution.

6.2 Preprocessing and fine-tuning for TrOCR

In our work, we fine-tuned TrOCR to recognize images it did not see. Selecting the

correct hyperparameter in fine-tuning can improve the performance of the final model [35].

However, choosing the correct hyperparameters can be challenging and requires an extensive

search [35], [36]. To avoid this, we prepared the line images to be similar to those originally

TrOCR was trained on and used similar hyperparameters used in the pre-training of TrOCR [36].

Handwritten TrOCR was pre-trained with line images from the IAM dataset6, see Figure

6.1. TrOCR expects line images with a single line. However, in our dataset, lines’ coordinates in

XML files (Error! Reference source not found.) include points overflowing to neighbor lines, s

o the output images have more than one line. Although some other algorithms can handle this

6 https://fki.tic.heia-fr.ch/databases/iam-handwriting-database

https://fki.tic.heia-fr.ch/databases/iam-handwriting-database

35

situation, this negatively affects the performance of TrOCR. We corrected the coordinates so line

images have only one line of text. Also, we converted the images to black and white images.

These two steps make our images very similar to the images TrOCR was pre-trained on, enabling

us to choose hyperparameters close to the pre-training step of TrOCR, eventually improving the

performance.

Figure 6.1 IAM image

6.3 Augmentation

Image augmentation is a well-known tool to improve the performance of models [22],

[34], [37]. Our findings also found that some augmentations improved the TrOCR performance

while others did not. However, a deep investigation of the augmentation results shows that

different models perform differently on the overall and specific character bases. This diversity

[38] leads us naturally to seek an ensemble learning model.

6.4 Ensemble learning

Ensemble learning [39]–[42] is an efficient algorithm to join similar but different learners

to achieve better performance than any learners alone. Our work also shows that the best

augmentation–the elastic model has a CER score of 1.86. When we ensemble all the algorithms

for a vote, we achieve a CER of 1.66, and if we take a vote of the five models with the best F1,

we even get a better CER of 1.60.

36

CHAPTER VII

CONCLUSION

In this work, we presented a SOTA model to recognize Latin text from 16th-century

manuscripts. We showed that with carefully prepared images, transformer-based algorithms,

augmentations, and ensemble learning, it is possible to recognize historical manuscripts with a

Character Error Rate (CER) of 1.60, an improvement of 50% from the previous TrOCRBASE-

based solution and a gain of 42% from other previous SOTA solution [28].

TrOCR constitutes two pluggable pre-trained transformers: an encoder and a decoder.

The former is a vision transformer that encodes line images into a “code” consumed by the latter

language transformer, which finally outputs the predicted text. Originally, TrOCR was pre-

trained in a single language, English. In our work, which followed [28], we showed that plugging

a multilanguage transformer decoder (XLM-RoBERTa) extends TrOCR into a multilanguage

text recognizer. We used SOTA tools, Python, PyTorch, and Huggingface to achieve this, which

already implemented this extension to TrOCR.

Further research will extend our work to other languages with different character sets,

e.g., Hebrew and Arabic. Another possible extension to our work is character-based ensemble

learning, where voting is done on the character level and not on the line level, as done in this

work.

37

REFERENCES

[1] L. J. Cappon, “Historical Manuscripts as Archives: Some Definitions and Their

Application,” The American Archivist, vol. 19, no. 2, pp. 101–110, 1956.

[2] J. Makhoul, R. Schwartz, C. Lapre, and I. Bazzi, “A script-independent methodology for

optical character recognition,” Pattern Recognition, vol. 31, no. 9, pp. 1285–1294, 1998.

[3] L. Wolf, L. Potikha, N. Dershowitz, R. Shweka, and Y. Choueka, “Computerized

paleography: Tools for historical manuscripts,” in 2011 18th IEEE International

Conference on Image Processing, Brussels, Belgium: IEEE, Sep. 2011, pp. 3545–3548.

doi: 10.1109/ICIP.2011.6116481.

[4] T. M. Rath and R. Manmatha, “Features for word spotting in historical manuscripts,” in

Seventh International Conference on Document Analysis and Recognition, 2003.

Proceedings., Edinburgh, UK: IEEE Comput. Soc, 2003, pp. 218–222. doi:

10.1109/ICDAR.2003.1227662.

[5] J. A. Rodríguez-Serrano and F. Perronnin, “A Model-Based Sequence Similarity with

Application to Handwritten Word Spotting,” IEEE Transactions on Pattern Analysis and

Machine Intelligence, vol. 34, no. 11, pp. 2108–2120, Nov. 2012, doi:

10.1109/TPAMI.2012.25.

[6] V. Frinken, A. Fischer, R. Manmatha, and H. Bunke, “A Novel Word Spotting Method

Based on Recurrent Neural Networks,” IEEE Transactions on Pattern Analysis and

Machine Intelligence, vol. 34, no. 2, pp. 211–224, Feb. 2012, doi:

10.1109/TPAMI.2011.113.

[7] K. Dutta, P. Krishnan, M. Mathew, and C. V. Jawahar, “Improving CNN-RNN Hybrid

Networks for Handwriting Recognition,” in 2018 16th International Conference on

Frontiers in Handwriting Recognition (ICFHR), Aug. 2018, pp. 80–85. doi:

10.1109/ICFHR-2018.2018.00023.

[8] A. Vaswani et al., “Attention Is All You Need.” arXiv, Dec. 05, 2017. doi:

10.48550/arXiv.1706.03762.

[9] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training of Deep

Bidirectional Transformers for Language Understanding.” arXiv, May 24, 2019. doi:

10.48550/arXiv.1810.04805.

38

[10] A. Dosovitskiy et al., “An Image is Worth 16x16 Words: Transformers for Image

Recognition at Scale.” arXiv, Jun. 03, 2021. doi: 10.48550/arXiv.2010.11929.

[11] M. Li et al., “TrOCR: Transformer-based Optical Character Recognition with Pre-trained

Models.” arXiv, Sep. 06, 2022. doi: 10.48550/arXiv.2109.10282.

[12] D. Bahdanau, K. Cho, and Y. Bengio, “Neural Machine Translation by Jointly Learning

to Align and Translate.” arXiv, May 19, 2016. doi: 10.48550/arXiv.1409.0473.

[13] K. Cho, B. Van Merrienboer, D. Bahdanau, and Y. Bengio, “On the Properties of Neural

Machine Translation: Encoder–Decoder Approaches,” in Proceedings of SSST-8, Eighth

Workshop on Syntax, Semantics and Structure in Statistical Translation, Doha, Qatar:

Association for Computational Linguistics, 2014, pp. 103–111. doi: 10.3115/v1/W14-

4012.

[14] D. Kass and E. Vats, “AttentionHTR: Handwritten Text Recognition Based on Attention

Encoder-Decoder Networks.” arXiv, Sep. 12, 2022. Accessed: Jul. 20, 2023. [Online].

Available: http://arxiv.org/abs/2201.09390

[15] J. Michael, R. Labahn, T. Grüning, and J. Zöllner, “Evaluating Sequence-to-Sequence

Models for Handwritten Text Recognition.” arXiv, Jul. 15, 2019. doi:

10.48550/arXiv.1903.07377.

[16] Y. Li, K. Zhang, J. Cao, R. Timofte, and L. Van Gool, “LocalViT: Bringing Locality to

Vision Transformers.” arXiv, Apr. 12, 2021. Accessed: Jul. 26, 2023. [Online].

Available: http://arxiv.org/abs/2104.05707

[17] T. Wolf et al., “HuggingFace’s Transformers: State-of-the-art Natural Language

Processing.” arXiv, Jul. 13, 2020. doi: 10.48550/arXiv.1910.03771.

[18] A. Conneau et al., “Unsupervised Cross-lingual Representation Learning at Scale.”

arXiv, Apr. 07, 2020. doi: 10.48550/arXiv.1911.02116.

[19] Y. Liu et al., “RoBERTa: A Robustly Optimized BERT Pretraining Approach.” arXiv,

Jul. 26, 2019. doi: 10.48550/arXiv.1907.11692.

[20] J. Han et al., “You Only Cut Once: Boosting Data Augmentation with a Single Cut,” in

Proceedings of the 39th International Conference on Machine Learning, PMLR, Jun.

2022, pp. 8196–8212. Accessed: Jul. 26, 2023. [Online]. Available:

https://proceedings.mlr.press/v162/han22a.html

[21] Ms. A. Bansal, Dr. R. Sharma, and Dr. M. Kathuria, “A Systematic Review on Data

Scarcity Problem in Deep Learning: Solution and Applications,” ACM Comput. Surv.,

vol. 54, no. 10s, p. 208:1-208:29, Sep. 2022, doi: 10.1145/3502287.

39

[22] S. Minz, R. Kanojia, T. Yadav, and N. Jayanthi, “Enhancing Accuracy in Handwritten

Text Recognition with Convolutional Recurrent Neural Network and Data Augmentation

Techniques,” in 2023 Third International Conference on Secure Cyber Computing and

Communication (ICSCCC), May 2023, pp. 803–808. doi:

10.1109/ICSCCC58608.2023.10176601.

[23] J. Puigcerver, “Are Multidimensional Recurrent Layers Really Necessary for

Handwritten Text Recognition?,” in 2017 14th IAPR International Conference on

Document Analysis and Recognition (ICDAR), Kyoto: IEEE, Nov. 2017, pp. 67–72. doi:

10.1109/ICDAR.2017.20.

[24] A. F. de Sousa Neto, B. Leite Dantas Bezerra, A. Hector Toselli, and E. Baptista Lima,

“A robust handwritten recognition system for learning on different data restriction

scenarios,” Pattern Recognition Letters, vol. 159, pp. 232–238, Jul. 2022, doi:

10.1016/j.patrec.2022.04.009.

[25] T. Wilkinson and A. Brun, “Semantic and Verbatim Word Spotting Using Deep Neural

Networks,” in 15th International Conference on Frontiers in Handwriting Recognition,

ICFHR 2016, Shenzhen, China, October 23-26, 2016, IEEE Computer Society, 2016, pp.

307–312. doi: 10.1109/ICFHR.2016.0065.

[26] G. Retsinas, G. Sfikas, B. Gatos, and C. Nikou, “Best Practices for a Handwritten Text

Recognition System,” in Document Analysis Systems, S. Uchida, E. Barney, and V. Eglin,

Eds., in Lecture Notes in Computer Science. Cham: Springer International Publishing,

2022, pp. 247–259. doi: 10.1007/978-3-031-06555-2_17.

[27] J. A. Sánchez, V. Romero, A. H. Toselli, M. Villegas, and E. Vidal, “A set of

benchmarks for Handwritten Text Recognition on historical documents,” Pattern

Recognition, vol. 94, pp. 122–134, Oct. 2019, doi: 10.1016/j.patcog.2019.05.025.

[28] P. B. Ströbel, S. Clematide, M. Volk, and T. Hodel, “Transformer-based HTR for

Historical Documents.” arXiv, Mar. 21, 2022. Accessed: Jul. 20, 2023. [Online].

Available: http://arxiv.org/abs/2203.11008

[29] E. Chammas, C. Mokbel, and L. Likforman-Sulem, “Handwriting Recognition of

Historical Documents with few labeled data,” in 2018 13th IAPR International Workshop

on Document Analysis Systems (DAS), Apr. 2018, pp. 43–48. doi: 10.1109/DAS.2018.15.

[30] E. S. M. Penn, “Exploring archival value: an axiological approach,” PhD Thesis, UCL

(University College London), 2014.

[31] P. Stotz and P. Ströbel, “bullinger-digital/gwalther-handwriting-ground-truth: Initial

release.” Zenodo, May 22, 2021. doi: 10.5281/zenodo.4780947.

[32] L. Seaward and M. Kallio, “Transkribus: Handwritten Text Recognition technology for

historical documents.,” in DH, 2017.

40

[33] F. Pedregosa et al., “Scikit-learn: Machine Learning in Python,” MACHINE LEARNING

IN PYTHON.

[34] M. Xu, S. Yoon, A. Fuentes, and D. S. Park, “A Comprehensive Survey of Image

Augmentation Techniques for Deep Learning,” Pattern Recognition, vol. 137, p. 109347,

May 2023, doi: 10.1016/j.patcog.2023.109347.

[35] M. Subramanian, K. Shanmugavadivel, and P. S. Nandhini, “On fine-tuning deep

learning models using transfer learning and hyper-parameters optimization for disease

identification in maize leaves,” Neural Comput & Applic, vol. 34, no. 16, pp. 13951–

13968, Aug. 2022, doi: 10.1007/s00521-022-07246-w.

[36] H. Li et al., “Rethinking the Hyperparameters for Fine-tuning.” arXiv, Feb. 19, 2020. doi:

10.48550/arXiv.2002.11770.

[37] R. Heil and E. Breznik, “A Study of Augmentation Methods for Handwritten

Stenography Recognition.” arXiv, Mar. 05, 2023. Accessed: Jul. 27, 2023. [Online].

Available: http://arxiv.org/abs/2303.02761

[38] L. I. Kuncheva and C. J. Whitaker, “Measures of Diversity in Classifier Ensembles and

Their Relationship with the Ensemble Accuracy,” Machine Learning, vol. 51, no. 2, pp.

181–207, May 2003, doi: 10.1023/A:1022859003006.

[39] D. Opitz and R. Maclin, “Popular Ensemble Methods: An Empirical Study,” Journal of

Artificial Intelligence Research, vol. 11, pp. 169–198, Aug. 1999, doi: 10.1613/jair.614.

[40] R. Polikar, “Ensemble based systems in decision making,” IEEE Circuits and Systems

Magazine, vol. 6, no. 3, pp. 21–45, 2006, doi: 10.1109/MCAS.2006.1688199.

[41] L. Rokach, “Ensemble-based classifiers,” Artif Intell Rev, vol. 33, no. 1, pp. 1–39, Feb.

2010, doi: 10.1007/s10462-009-9124-7.

[42] I. D. Mienye and Y. Sun, “A Survey of Ensemble Learning: Concepts, Algorithms,

Applications, and Prospects,” IEEE Access, vol. 10, pp. 99129–99149, 2022, doi:

10.1109/ACCESS.2022.3207287.

41

APPENDIX A

TRAINING AND VALIDATION CODE

42

This appendix includes the training and validation code we used in our work. We used

this code on Google Colab. Part of the code is from TrOCR’s code7, Huggingface8 , and its

referenced tutorial notebooks.9

Figure A.1 Preparing the Colab environment and importing required libraries

7 https://github.com/microsoft/unilm/tree/master/trocr
8 https://huggingface.co/docs/transformers/model_doc/trocr
9 https://github.com/NielsRogge/Transformers-Tutorials/tree/master/TrOCR

https://github.com/microsoft/unilm/tree/master/trocr
https://huggingface.co/docs/transformers/model_doc/trocr
https://github.com/NielsRogge/Transformers-Tutorials/tree/master/TrOCR

43

Figure A.2 Dataset class

Figure A.3 Building the model

44

Figure A.4 CER metric definition

Figure A.5 Creating the processor. Huggingface’s TrOCR tokenizer.

45

Figure A.6 Training

46

APPENDIX B

AUGMENTATION CODE

47

We used the following code to augment the images. Please note that to replicate the

augmentation used in TrOCR’s pre-training, we copied the code from the TrOCR source code10

and fixed a few minor bugs.

Figure B.1 TrOCR Dilation and Erosion code

10 https://github.com/microsoft/unilm/tree/master/trocr

https://github.com/microsoft/unilm/tree/master/trocr

48

Figure B.2 TrOCR’s Underline and KeepOriginal code

49

Figure B.3 Image Resize and Re-Resize code

50

Figure B.4 More augmentations and creating the augmentation container (Python dictionary)

51

APPENDIX C

SOURCE CODE FOR PREPROCESSING AND CREATING THE LINE IMAGES DATASET

52

We used the following code to preprocess the images.

Figure C.1 Import section, followed by “global and useful” variables.

Figure C.2 Function to split the original image into strict line images

53

Figure C.3 Getting the correct coordinates around every line

54

Figure C.4 Main code to prepare the line images

55

APPENDIX D

METADATA XML FILE USED TO CREATE THE LINE IMAGES

56

XML file used to get the coordinates of lines.

Figure D.1 The first row of file 1111637

57

APPENDIX E

COMPLETE TRAINING AND VALIDATION LOSS

58

Table E.1 The complete output of the training and validation loss

Row epoch Training Loss Validation Loss CER Augmentation

0 1 1.078 0.519562 0.06008 Baseline

1 2 1.078 0.403055 0.041943 Baseline

2 3 0.4087 0.364726 0.037409 Baseline

3 4 0.2467 0.343347 0.032704 Baseline

4 5 0.1777 0.313211 0.03055 Baseline

5 6 0.1181 0.316009 0.029984 Baseline

6 7 0.0881 0.338562 0.02987 Baseline

7 8 0.067 0.343294 0.026299 Baseline

8 9 0.0527 0.319898 0.025279 Baseline

9 10 0.0325 0.311561 0.024939 Baseline

10 11 0.0325 0.318875 0.024032 Baseline

11 12 0.0197 0.33979 0.024089 Baseline

12 13 0.015 0.300684 0.021482 Baseline

13 14 0.008 0.305111 0.021878 Baseline

14 15 0.007 0.302782 0.021822 Baseline

15 16 0.0033 0.307577 0.021425 Baseline

16 17 0.0023 0.30581 0.021595 Baseline

17 18 0.0017 0.304262 0.019781 Baseline

18 19 0.0006 0.305313 0.019101 Baseline

19 20 0.0004 0.306508 0.019271 Baseline

20 1 1.1432 0.527584 0.05651 Random Rotation

21 2 1.1432 0.383074 0.040186 Random Rotation

22 3 0.4447 0.346119 0.035595 Random Rotation

23 4 0.2715 0.326685 0.032307 Random Rotation

24 5 0.1989 0.350332 0.032761 Random Rotation

25 6 0.1571 0.313284 0.028907 Random Rotation

26 7 0.1129 0.303798 0.027716 Random Rotation

27 8 0.087 0.316333 0.027943 Random Rotation

28 9 0.0643 0.314933 0.025449 Random Rotation

29 10 0.0449 0.291711 0.024202 Random Rotation

30 11 0.0449 0.290608 0.023239 Random Rotation

31 12 0.0297 0.284602 0.022615 Random Rotation

32 13 0.0207 0.297219 0.023919 Random Rotation

33 14 0.0154 0.28809 0.023239 Random Rotation

34 15 0.0081 0.282304 0.020008 Random Rotation

35 16 0.0062 0.290071 0.020858 Random Rotation

36 17 0.0049 0.29592 0.022048 Random Rotation

37 18 0.003 0.296295 0.019838 Random Rotation

38 19 0.0021 0.285791 0.018818 Random Rotation

39 20 0.0012 0.283552 0.018591 Random Rotation

59

Table E.1 (continued)

Row epoch Training Loss Validation Loss CER Augmentation

40 1 1.0643 0.477105 0.052145 Gaussian Blur

41 2 1.0643 0.391859 0.041206 Gaussian Blur

42 3 0.3901 0.350529 0.036218 Gaussian Blur

43 4 0.2508 0.32103 0.029133 Gaussian Blur

44 5 0.173 0.344791 0.031911 Gaussian Blur

45 6 0.1206 0.33 0.030664 Gaussian Blur

46 7 0.0832 0.335416 0.028056 Gaussian Blur

47 8 0.0617 0.325686 0.026413 Gaussian Blur

48 9 0.049 0.307256 0.02902 Gaussian Blur

49 10 0.0315 0.307448 0.024429 Gaussian Blur

50 11 0.0315 0.305244 0.026639 Gaussian Blur

51 12 0.0224 0.326817 0.026469 Gaussian Blur

52 13 0.012 0.302345 0.022955 Gaussian Blur

53 14 0.0072 0.314744 0.022048 Gaussian Blur

54 15 0.0039 0.300724 0.022218 Gaussian Blur

55 16 0.0036 0.299853 0.021085 Gaussian Blur

56 17 0.0012 0.296029 0.020065 Gaussian Blur

57 18 0.0027 0.311083 0.020348 Gaussian Blur

58 19 0.0014 0.311263 0.019951 Gaussian Blur

59 20 0.0004 0.312543 0.020405 Gaussian Blur

60 1 1.1166 0.565416 0.068469 Dilation

61 2 1.1166 0.476236 0.051182 Dilation

62 3 0.4186 0.399126 0.045797 Dilation

63 4 0.2623 0.43333 0.047611 Dilation

64 5 0.1794 0.376297 0.039109 Dilation

65 6 0.1214 0.366847 0.037125 Dilation

66 7 0.091 0.360929 0.034405 Dilation

67 8 0.0645 0.395488 0.034235 Dilation

68 9 0.0468 0.352025 0.031967 Dilation

69 10 0.0322 0.345662 0.031457 Dilation

70 11 0.0322 0.345543 0.031004 Dilation

71 12 0.0198 0.362451 0.031231 Dilation

72 13 0.0138 0.348637 0.029247 Dilation

73 14 0.0059 0.349265 0.026129 Dilation

74 15 0.005 0.342616 0.028 Dilation

75 16 0.0031 0.345011 0.028113 Dilation

76 17 0.0016 0.336828 0.022445 Dilation

77 18 0.0013 0.337236 0.022955 Dilation

78 19 0.0009 0.334826 0.023182 Dilation

79 20 0.0007 0.339993 0.023125 Dilation

80 1 1.1638 0.613491 0.07374 Erosion

60

Table E.1 (continued)

Row epoch Training Loss Validation Loss CER Augmentation

81 2 1.1638 0.435962 0.047101 Erosion

82 3 0.4306 0.471658 0.052996 Erosion

83 4 0.2707 0.392846 0.035992 Erosion

84 5 0.1916 0.346806 0.034858 Erosion

85 6 0.1307 0.353428 0.034461 Erosion

86 7 0.094 0.357213 0.033611 Erosion

87 8 0.0693 0.369908 0.034858 Erosion

88 9 0.0487 0.353795 0.02936 Erosion

89 10 0.0314 0.350402 0.02868 Erosion

90 11 0.0314 0.343966 0.028056 Erosion

91 12 0.0197 0.352663 0.02715 Erosion

92 13 0.0125 0.357017 0.02749 Erosion

93 14 0.0069 0.365086 0.026639 Erosion

94 15 0.0054 0.372907 0.025733 Erosion

95 16 0.0031 0.367379 0.025959 Erosion

96 17 0.0015 0.355053 0.023862 Erosion

97 18 0.0011 0.355267 0.024202 Erosion

98 19 0.0008 0.364577 0.024202 Erosion

99 20 0.0004 0.361567 0.023295 Erosion

100 1 1.3185 0.55012 0.061101 Resize

101 2 1.3185 0.42272 0.04353 Resize

102 3 0.4627 0.36906 0.038656 Resize

103 4 0.2895 0.36019 0.037522 Resize

104 5 0.202 0.322729 0.035935 Resize

105 6 0.1315 0.313287 0.032081 Resize

106 7 0.0945 0.334587 0.029473 Resize

107 8 0.0678 0.379378 0.030777 Resize

108 9 0.0525 0.353082 0.030777 Resize

109 10 0.0347 0.330066 0.02749 Resize

110 11 0.0347 0.332629 0.026583 Resize

111 12 0.0216 0.334915 0.027263 Resize

112 13 0.0139 0.331957 0.025506 Resize

113 14 0.0096 0.322734 0.025449 Resize

114 15 0.0072 0.320495 0.024146 Resize

115 16 0.0044 0.326471 0.024939 Resize

116 17 0.0026 0.325962 0.024032 Resize

117 18 0.0024 0.327345 0.023125 Resize

118 19 0.0008 0.325227 0.022559 Resize

119 20 0.0009 0.327641 0.023069 Resize

120 1 1.1076 0.527811 0.057643 Underline

121 2 1.1076 0.399528 0.042793 Underline

61

Table E.1 (continued)

Row epoch Training Loss Validation Loss CER Augmentation

122 3 0.4062 0.389996 0.04285 Underline

123 4 0.2513 0.356835 0.034291 Underline

124 5 0.1755 0.311959 0.031741 Underline

125 6 0.1176 0.319518 0.029417 Underline

126 7 0.0923 0.319267 0.028226 Underline

127 8 0.0641 0.328906 0.026129 Underline

128 9 0.0459 0.324883 0.026526 Underline

129 10 0.0299 0.318598 0.025052 Underline

130 11 0.0299 0.337376 0.025506 Underline

131 12 0.0194 0.313705 0.023749 Underline

132 13 0.014 0.316792 0.023976 Underline

133 14 0.0078 0.318613 0.021935 Underline

134 15 0.0052 0.320133 0.022672 Underline

135 16 0.0043 0.320846 0.022332 Underline

136 17 0.0029 0.317413 0.022388 Underline

137 18 0.0025 0.313905 0.020575 Underline

138 19 0.0014 0.312034 0.020801 Underline

139 20 0.0007 0.312286 0.020348 Underline

140 1 1.3664 0.522218 0.057303 Random Affine

141 2 1.3664 0.39962 0.043247 Random Affine

142 3 0.608 0.388454 0.042907 Random Affine

143 4 0.427 0.327208 0.034178 Random Affine

144 5 0.3178 0.318385 0.032818 Random Affine

145 6 0.2555 0.415137 0.053222 Random Affine

146 7 0.1959 0.294005 0.029984 Random Affine

147 8 0.1531 0.28361 0.028567 Random Affine

148 9 0.1239 0.316811 0.031174 Random Affine

149 10 0.099 0.273864 0.025563 Random Affine

150 11 0.099 0.276069 0.027546 Random Affine

151 12 0.0756 0.283561 0.025846 Random Affine

152 13 0.0594 0.273119 0.024599 Random Affine

153 14 0.0476 0.290156 0.024939 Random Affine

154 15 0.0417 0.274205 0.024486 Random Affine

155 16 0.0297 0.266478 0.021028 Random Affine

156 17 0.027 0.279343 0.022332 Random Affine

157 18 0.0207 0.27608 0.022445 Random Affine

158 19 0.015 0.274905 0.021595 Random Affine

159 20 0.0141 0.274926 0.021312 Random Affine

160 1 1.6312 0.581474 0.068299 Random Perspective

161 2 1.6312 0.43874 0.048915 Random Perspective

162 3 0.7344 0.414392 0.046817 Random Perspective

62

Table E.1 (continued)

Row epoch Training Loss Validation Loss CER Augmentation

163 4 0.4938 0.350126 0.036898 Random Perspective

164 5 0.3468 0.349374 0.038826 Random Perspective

165 6 0.2842 0.315118 0.032818 Random Perspective

166 7 0.2213 0.326544 0.032874 Random Perspective

167 8 0.1678 0.336331 0.031287 Random Perspective

168 9 0.1371 0.303089 0.028283 Random Perspective

169 10 0.1058 0.289244 0.027886 Random Perspective

170 11 0.1058 0.304415 0.028793 Random Perspective

171 12 0.0815 0.311864 0.027206 Random Perspective

172 13 0.0633 0.307015 0.026186 Random Perspective

173 14 0.0504 0.301629 0.025789 Random Perspective

174 15 0.039 0.296656 0.023409 Random Perspective

175 16 0.0292 0.29267 0.024712 Random Perspective

176 17 0.0249 0.287982 0.023012 Random Perspective

177 18 0.0172 0.285475 0.022729 Random Perspective

178 19 0.0139 0.28892 0.022899 Random Perspective

179 20 0.0098 0.287999 0.022729 Random Perspective

180 1 1.2867 0.515767 0.05651 Elastic

181 2 1.2867 0.406968 0.042566 Elastic

182 3 0.4896 0.385982 0.037522 Elastic

183 4 0.3174 0.340185 0.031344 Elastic

184 5 0.2153 0.324556 0.031797 Elastic

185 6 0.1592 0.339001 0.031797 Elastic

186 7 0.1181 0.333239 0.032024 Elastic

187 8 0.0877 0.328647 0.028 Elastic

188 9 0.0672 0.321553 0.025789 Elastic

189 10 0.0449 0.315571 0.025449 Elastic

190 11 0.0449 0.31439 0.026073 Elastic

191 12 0.035 0.326755 0.024202 Elastic

192 13 0.0246 0.330861 0.024146 Elastic

193 14 0.0202 0.310808 0.023295 Elastic

194 15 0.0122 0.301151 0.021822 Elastic

195 16 0.0092 0.292605 0.019044 Elastic

196 17 0.0074 0.3003 0.020121 Elastic

197 18 0.0038 0.302104 0.019044 Elastic

198 19 0.0024 0.299638 0.018591 Elastic

199 20 0.0018 0.297659 0.018591 Elastic

200 1 1.2119 0.491272 0.052542 Re Resize

201 2 1.2119 0.399982 0.04336 Re Resize

202 3 0.4672 0.353607 0.035085 Re Resize

203 4 0.2855 0.352745 0.032421 Re Resize

63

Table E.1 (continued)

Row epoch Training Loss Validation Loss CER Augmentation

204 5 0.1872 0.321231 0.032194 Re Resize

205 6 0.1377 0.357808 0.031627 Re Resize

206 7 0.0962 0.330003 0.029417 Re Resize

207 8 0.0646 0.345332 0.02953 Re Resize

208 9 0.053 0.318062 0.026129 Re Resize

209 10 0.0287 0.324819 0.02834 Re Resize

210 11 0.0287 0.333619 0.025506 Re Resize

211 12 0.0243 0.323817 0.026186 Re Resize

212 13 0.0168 0.326259 0.023125 Re Resize

213 14 0.008 0.32286 0.021708 Re Resize

214 15 0.0073 0.331472 0.022729 Re Resize

215 16 0.0041 0.327241 0.020915 Re Resize

216 17 0.0019 0.324864 0.020575 Re Resize

217 18 0.001 0.330449 0.020971 Re Resize

218 19 0.0007 0.330838 0.020858 Re Resize

219 20 0.0004 0.329976 0.020858 Re Resize

Last p

Hidden text to allow template to find last page in document

	Study of augmentations on historical manuscripts using TrOCR
	Recommended Citation

	TITLE PAGE
	COPYRIGHT PAGE
	ABSTRACT
	DEDICATION
	ACKNOWLEDGEMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	CHAPTER I
	CHAPTER II
	2.1 Attention
	2.2 Transformer
	2.3 Modern HTR
	2.4 Vision Transformer
	2.5 TrOCR
	2.6 Augmentation in HTR
	2.7 Character Error Rate (CER)
	2.8 Historical manuscripts

	CHAPTER III
	3.1 Introduction
	3.2 Challenges
	3.3 Preprocessing and dataset split

	CHAPTER IV
	4.1 Introduction
	4.2 The augmentations we used in our experiment

	CHAPTER V
	5.1 Training
	5.2 Results
	5.3 Analysis
	5.4 Character Analysis
	5.5 Ensemble Learning
	5.6 Comparison to other papers
	5.7 Examples
	5.7.1 First Example
	5.7.2 Second Example
	5.7.3 Third Example

	CHAPTER VI
	6.1 Introduction
	6.2 Preprocessing and fine-tuning for TrOCR
	6.3 Augmentation
	6.4 Ensemble learning

	CHAPTER VII
	REFERENCES
	APPENDIX A
	APPENDIX B
	APPENDIX C
	APPENDIX D
	APPENDIX E

