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Historical manuscripts are an essential source of original content. For many reasons, it is 

hard to recognize these manuscripts as text. This thesis used a state-of-the-art Handwritten Text 

Recognizer, TrOCR, to recognize a 16th-century manuscript. TrOCR uses a vision transformer to 

encode the input images and a language transformer to decode them back to text. We showed 

that carefully preprocessed images and designed augmentations can improve the performance of 

TrOCR. We suggest an ensemble of augmented models to achieve an even better performance. 
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CHAPTER I 

INTRODUCTION 

Historical manuscripts are an essential source of original content that we can learn from 

and connect to other content. They are “regarded primarily if not exclusively as materials for 

research” [1]. Although researchers and librarians have made well-designed archives of historical 

manuscripts, only a few are in a digital, searchable format. Researchers have recently used 

Handwritten Text Recognition (HTR) algorithms to convert modern and historical manuscripts 

from scanned images into digital text files. The earliest HTR tools use simple imaging 

techniques, such as Optical Character Recognition (OCR) scripting [2], feature-based 

classification and clustering [3], and feature word locating [4]. Later models used Artificial 

Intelligence (AI), such as the Hidden Markov Model (HMM) [5], RNN [6], and CNN-RNN 

Hybrid Networks [7].  

Advanced AI models improve the quality and performance of modern manuscripts HTR 

both in time of computation and accuracy. However, historical manuscripts introduce three 

significant challenges: the scarcity of transcriptions (labels), the language gap, and the diversity 

of writing styles. Modern AI models are preferably trained on an extensive collection of samples, 

usually millions. But while many scanned manuscripts exist, only a few have a reliable 

transcription. Large Language Models (LLM) cannot efficiently recognize historical manuscripts 

because of the language gap. While researchers train LLM on available modern language 

datasets, historical manuscripts convey a different language. Lastly, a sample of cursive writing 



 

2 

taken from historical documents is very different from modern ones and other historical 

documents. These three challenges make training a current AI model to digitize historical 

manuscripts challenging. 

The invention of transformer architecture [8] brought new directions to modeling 

language and vision. Transformer is a parallel encoder-decoder paradigm with attention and 

without the RNN building blocks. Its multi-head design and the availability of the encoder output 

to the decoder improve the performance of language models to scores never seen before. Later 

work (e.g., BERT [9]) trained the transformer on massive data and held the weights for later 

fine-tuned downstream tasks (transfer learning). Other works extend the transformer to vision 

(e.g., ViT [10]). This proposed work will use the transformer-based model, TrOCR [11], and 

augmentations to recognize historical Latin manuscripts from the 16th century. Augmentation 

and pre-trained transformer-based models can alleviate the challenges we presented previously. 

We will study the effectiveness of different augmentations on the performance of text 

recognition of historical manuscripts using TrOCR.  

Our contributions are: 

• We measure the effectiveness of different augmentations on the performance of 

TrOCR.  

• We showed that combining different augmentations by an ensemble of voters 

improves the overall performance of TrOCR. 

• We showed the effectiveness of the pluggable feature in TrOCR by recognizing 

Latin. 
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CHAPTER II 

LITERATURE REVIEW 

2.1 Attention 

While classical HTR models are feature-based on cursive characters [2], modern HTR 

models learn to find connections between input parts, e.g., between words in the text and 

between parts of the image. This architecture is called “attention.”  

 

Figure 2.1 Alpha carries the combined connection between different parts of the sentence 

input x [10]. 

 

Attention improves the performance of classic Deep Neural Networks (DNNs) [12] by 

mimicking the human processing of language and vision, i.e., by finding connections between 

parts of the input [13]. The standard building blocks of these classic DNNs are RNN, LSTM, and 

GRU (Figure 2.1). 
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2.2 Transformer 

Classic attention-based DNNs had sequential architecture (Figure 2.1). This property 

blocked the models from utilizing high-performance computing (GPUs) and limiting the 

attention mechanism’s effectiveness. [8] introduce Transformer (Figure 2.4), which has an 

attention architecture without sequential building blocks (RNN). The transformer has two parts: 

an encoder and a decoder. The attention mechanism is implemented in different parts, in the 

multi-head self-attention and combining the encoder output and the decoder input. This 

innovative design and other hacks make the transformer better than previous models.  

In the transformer paper [8], the authors noted two essential properties of this new 

architecture: parallelization and quadric complexity. The architecture of the transformer (Figure 

2.4) enables processing input in parallel, which utilizes modern GPUs. On the other side, its 

Query, Key, and Value with SoftMax design (Figure 2.2) and the multi-head design (Figure 2.3) 

have a complexity of (2.1), making it infeasible for high-dimension input problems. 

𝑂(𝑛2 · 𝑑) (2.1) 

 

 

Figure 2.2 “Scaled Dot-Product Attention.” The multiplication of the Q, K, and V matrices 

and the SoftMax standardization bring a quadratic complexity—image source [8]. 
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Figure 2.3 Multi-head (h) attention enables the transformer to process input in parallel and 

find better connections between different input parts—image source [8]. 
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Figure 2.4 Transformer architecture. In comparison to Figure 2.1, there are no RNN blocks. 

The most crucial parts of this design are the attention head and the combined input 

to the decoder, the encoder output combined with the decoder output. The 

transformer is the base of most state-of-the-art modern models—image source [8]. 

 

2.3 Modern HTR 

We can classify the current work on HTR as either attention-based HTR or transformer-

based HTR. Recent work [14] suggests an encoder-attention-decoder HTR. Their model has 

multi-stage processing with ResNet to extract features and LSTM to predict from the previous 
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stages. Previous similar work [15] did a grid search for the best hyperparameters on the encoder-

decoder attention model from CNN and BLSTM layers. 

2.4 Vision Transformer 

The original transformer [8] can get input from embedded vocabulary with a relatively 

low dimension vector of size 512. Each vector represents a word in the language. Contrary to 

text input, in vision, the input dimension is exponentially more significant, where the model’s 

input is images with multimillions of pixels on up to 3 (RGB) channels. Hence, the vision 

problems became intractable problems in the original transformer architecture. Vision 

Transformer (ViT) [10] (Figure 2.5) solves this dimensionality problem by inputting image 

patches instead of pixels without changing the original transformer!  

One drawback of ViT is its lack of locality, which CNN has. The authors of ViT solve 

that by expanding the size of the training datasets to hundreds of millions of samples. Later 

works, for example, [16] suggest solving the lack of locality in ViT by prefixing ViT with CNN 

layers. This hybrid architecture achieved even better performance on a much smaller training 

dataset. The ViT encoder in the Huggingface’s TrOCR implementation (which we will use in our 

study) also has one layer of Conv2d (input: image, output: 16x16 patches) before the ViT 

encoder.   
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Figure 2.5 Vision Transformer (ViT) uses only the original transformer’s encoder. It changes 

the input to patches of 16 by 16 pixels. ViT reduces the input dimension by 

splitting the image into patches of size 16x16 pixels (Image source [10]) 

 

2.5 TrOCR  

TrOCR2 [11] is a state-of-the-art (SOTA) complete transformer (with encoder and 

decoder) to recognize English text from images. It is a multi-transformer model with two pre-

trained variants of ViT [10] and BERT [9]; the former is an image encoder, and the latter is a 

language decoder. We will use the Huggingface [17] implementation of TrOCR. In Huggingface, 

DeiT [17] is the image encoder in this implementation, and XLM-RoBERTa [18] is the text 

decoder. XLM-RoBERTa is a multilingual model. Its vocabulary has 100 languages. 

TrOCR was trained in two steps: pre-training and fine-tuning. The pre-training step had 

two stages. In Stage 1, TrOCR was trained on 684M text lines from online PDF files. In Stage 2, 

it was trained on 17.9M synthetic handwritten text lines. In the second step, the authors fine-

tuned the stage 2 model to four downstream OCR tasks: printed, handwritten, receipt, and scene. 

 
2 The source code of TrOCR is available on https://github.com/microsoft/unilm/tree/master/trocr 

https://github.com/microsoft/unilm/tree/master/trocr
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To fine-tune and benchmark, they used standard datasets. Since these datasets are small, the 

authors used six different augmentations in addition to keeping the original image. Figure 4.1 

presents the augmentation for the handwritten task. TrOCR is available to the public in three 

sizes: small, base, and large, with different layers, hidden dimensions, and heads. Microsoft 

published twelve fine-tuned models and three pre-trained stage 1 models. It did not publish the 

pre-trained stage 2 models3. In this work, we will study the effectiveness of augmentations on 

TrOCRBASE. 

 

Figure 2.6 TrOCR Architecture. The data flow is clockwise from the bottom right to the top 

right. Base TrOCR has N of 12 and a vector of size 1024. The top left is the ViT 

encoder, and the top right is the original RoBERTa [19] decoder. (Image source 

[11]) 

 

TrOCR has a ViT encoder that accepts line images as input (Figure 2.6). ViT splits the 

image into patches of 16x16 pixels. Then, TrOCR processes the patches, similar to the original 

transformer processes text.   

 
3 https://github.com/microsoft/unilm/issues/831#issuecomment-1223778956 

https://github.com/microsoft/unilm/issues/831#issuecomment-1223778956
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The original TrOCR could recognize only an English dataset and could not identify other 

languages efficiently4. To expand TrOCR to recognize different languages, Huggingface’s 

TrOCR model replaces the original single language (English) RoBERTa decoder with an XLM-

RoBERTa decoder pre-trained on one hundred languages, including Latin. This modification, as 

shown in this work, makes the TrOCR capable of recognizing Latin text images efficiently. 

 

2.6 Augmentation in HTR 

Augmentation is a helpful technique for creating synthetic samples when there are 

insufficient samples [11] or improving the overall model performance [20]. It distorts the input 

images to new ones the model has never seen [21]. Augmentation is widely used in HTR to 

alleviate the scarcity of transcripted manuscripts and improve HTR models’ performance [22]. 

Common image distortions in HTR are rotation, translation, scaling, shearing (affine transform), 

grayscale erosion and dilation, rotations, skewing, and Gaussian noise [23], [24], [25], [26], blur, 

random noise, random stretch [22]. This work will study the six augmentations from the source 

code of TrOCR and the four augmentations we developed (see CHAPTER IV for technical 

information).  

2.7 Character Error Rate (CER) 

CER is a standard metric to evaluate the performance of text recognition algorithms. We 

will follow [27] and [28] and use CER as a performance metric. CER equation is a comparison 

between prediction and reference character by character, in the following formula (2.2): 

𝐶𝐸𝑅 =
𝑆 + 𝐷 + 𝐼

𝑁
=

𝑆 + 𝐷 + 𝐼

𝑆 + 𝐷 + 𝐶
 (2.2) 

 
4 https://github.com/microsoft/unilm/issues/500  

https://github.com/microsoft/unilm/issues/500
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Table 2.1 gives examples of how to measure the number of substitutions (S), deletions 

(D), and insertions (I). These three are operations to transform the predicted text to the label text. 

After summating these three numbers, we divide them by the total number of characters in the 

label. Hence, CER is the rate (or percentage) between two values: the number of operations and 

characters. 

 

Table 2.1 The Character Error Rate (CER) calculation consists of three basic parts: 

Substitution, Deletion, and Insertion. 

 Reference Predictions  

Substitution - S ABCD ABCE, 

AYUD 

S = 1 in the first example and 2 in the second 

Deletion - D ABCD ABC, ACD D = 1 in both examples 

Insertion - I ABCD ABCDE, 

ABOCD 

I = 1 in both examples 

𝐶 is the number of correct characters 

𝑁 is the number of characters in the true label (reference)  

Another way to calculate 𝑁 is simply by 𝑆 + 𝐷 + 𝐶. 

 

2.8 Historical manuscripts 

[1] defines historical manuscripts as: 

“Records of historical value, written by hand or typewriter or its equivalent (as 

distinguished from printed records), in single or multiple forms.” 

 

Historical manuscripts present many challenges to HTR: Lack of transcription, distorted 

alignment [29], variation of cursive writing, quality of writing, language and culture gaps, and 

other challenges. Nevertheless, they are an essential source of original information for research 

[1] that holds particular values [30]. ChatGPT returns an engaging text about the importance of 

historical manuscripts (see Figure 2.7). 
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Figure 2.7 ChatGPT answers: “Why are ancient manuscripts important in our modern life?” 

Retrieved from quora.com on July 27, 2023 
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CHAPTER III 

DATASET 

3.1 Introduction  

Following [28], we will study Rudolf Gwalther’s manuscripts from the 16th century. 

Gwalther was a pastor and the head of the Reformed Church of Zurich in the 16th century. The 

manuscript is available at https://www.e-manuscripta.ch/zuz/doi/10.7891/e-manuscripta-26750 

[31]. The authors of [28] used an AI-powered public service, Transkribus [32] 

(https://readcoop.eu/transkribus/), to recognize the images and made the output available to 

download at https://zenodo.org/record/4780947. We will note this output later as “the dataset.” 

3.2 Challenges 

Figure 3.1 contains one original page from the dataset. We can see that this example page 

has stains, deletions with scribbling, upward curvature writing, and up and down line crossing. 

Also, the writing style differs from the modern style: frequent character joining, mixing 

calligraphy with simple scripts, background color, quality of paper, and more. These challenges 

require the HTR developer’s particular attention to recognize the text. Also, it requires careful 

preparation of the input images and transforming them into the format the algorithm expects. 

 

https://www.e-manuscripta.ch/zuz/doi/10.7891/e-manuscripta-26750
https://readcoop.eu/transkribus/
https://zenodo.org/record/4780947
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Figure 3.1 Original page from the source dataset (file 1111637 in the dataset).  
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Figure 3.2 The first three lines of Figure 3.1, after preprocessing  

 

3.3 Preprocessing and dataset split 

The dataset has 142 full-page images. Each page has an XML metadata file (APPENDIX 

D) with the coordinates of each line in the image and the label. The XML file is the output from 

Transkribus and includes the coordinates and the AI-generated text of 4,037 lines. We used the 

coordinates to crop the images into line images (see the code in APPENDIX C). TrOCR accepts 

only line images, i.e., images with a single line of text. Figure 3.1 shows an entire page file, and 

Figure 3.2 shows its corresponding first three line images after preprocessing. We followed [28] 

and split the data set into 3,603 lines for training and 433 lines for validation. We split the dataset 

into training and validation datasets using Scikit-Learn’s [33] train_test_split API. 
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CHAPTER IV 

AUGMENTATIONS 

4.1 Introduction  

Usually, it is expensive to acquire labeled images. Hence, researchers are at risk of 

getting biased models. To alleviate this problem, researchers apply augmentation (distortion) to 

the original images to create synthetic images [34]. Augmentation is an essential tool in the 

toolset of a researcher. It helps lower the bias by training the model on more extensive datasets 

with images the model did not see. In this work, we will study the effect of different 

augmentations on the performance of TrOCR in text-recognizing historical manuscripts.  

4.2 The augmentations we used in our experiment 

Our study includes ten different augmentations in addition to the baseline model. The 

developers of TrOCR used six augmentations to create millions of synthetic handwritten samples 

in the training phase. We adopted these six augmentations without changing the code except for 

fixing minor bugs in the TrOCR’s augmentation code. So, our codes TrOCR’s augmentation 

code is identical. In addition to these six augmentations, we developed four more augmentations 

that we think can improve handwritten text recognition performance. See Figure 4.1 and 

APPENDIX B. 
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Figure 4.1 Ten augmentation models and baseline model. Elastic example in Figure 5.2 

Baseline - 

Original 
 

 Augmentations taken from the TrOCR source code 

Random 

Rotation 

 

Gaussian 

Blur 
 

Dilation 

 

Erosion 

 

Resize 
 

Underline 

 

 Augmentations suggested by us 

Random 

Affine 
 

Random 

Perspective 
 

Elastic 

 

Re-Resize 
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CHAPTER V 

EXPERIMENT 

5.1 Training  

In our experiment, we trained eleven models, one model for each of the ten 

augmentations and one baseline model. In each of the first ten models, the data loader chooses 

uniformly (p=0.5) either to load the image as is or to augment it before loading it. This practice 

saves storage and is common in practice. We did not mix augmentations in one model. We 

trained the baseline model on the original data without any augmentation. The purpose of the 

baseline model is to be a benchmark for the augmentation models. The training ran for twenty 

epochs; however, we logged all the training and validation losses and the CER metric for each 

epoch. We validate the model on unseen samples. We followed [28] and used the Character 

Error Rate (CER) as the benchmark score. The training and validation cross-entropy [11] losses 

are in APPENDIX E.  

We wrote the training code in Python and used the PyTorch API and Huggingface 

platform to load the TrOCR pre-trained base model and train it. Training the TrOCRBASE requires 

a modern GPU with at least 16 Gigabytes (GB) of memory. We loaded the dataset and the code 

on Google’s Colab cloud with the Pro+ plan. The training was on a single A100 GPU. It took 

about one hour to train and validate twenty epochs and about 15 minutes for five epochs. Since 

Colab is a share-based computation platform that allocates computation resources dynamically, 

we did not include the exact training time for each model as it varied considerably from run to 

run. 
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We kept the hyperparameters similar in all models’ fine-tuning. In practice, if the inputs 

of the fine-tuning and pre-training close (but not equal), it is better to fine-tune using similar (but 

not identical) hyperparameters used in the original pre-training phase. Following this, we used 

the same hyperparameters the developers of TrOCR used to train the handwritten model. The 

training source code and a complete list of the hyperparameters are in APPENDIX A.  

5.2 Results 

The following results are from the validation dataset. We did not tweak the 

hyperparameters, nor did we change them between models, and following [28], we used the 

validation dataset as our test dataset and compared the models based on it. The results are from 

the TrOCRBASE model.  

Figure 5.1 holds the Character Error Rate (CER) for each augmentation and each epoch. 

The scores are generally improving with the training. At the end of the fine-tuning, only two 

augmentation models are better than the baseline model, while all other models have higher 

CER.   
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Figure 5.1 CER score per augmentation. The first column is the baseline model. It is our 

benchmark model. The six augmentations next to the baseline are models with 

augmentations from the original handwritten TrOCR. The last four columns (on 

the right) are models from augmentations developed by us. 
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5.3 Analysis 

As said before, compared to the baseline model, we have two classes of performance: 

augmentations with better CER scores and augmentations with worse CER scores. We can sort 

them as in Table 5.1. Looking back on Figure 4.1, we can see that augmentations with visibly 

lower distortion have a faster conversion to a minimum and better CER scores than other 

augmentations with higher visible distortion.  

Table 5.1 Comparison between different augmentations on the last epoch (20). The source of 

the augmentation is either from the TrOCR training code, from our work, or as a 

benchmark. 

epoch Source Cer Augmentation 

20 TrOCR  1.86 Random Rotation 

20 Our  1.86 Elastic 

20 Benchmark 1.93 Baseline 

20 TrOCR  2.03 Underline 

20 TrOCR  2.04 Gaussian Blur 

20 Our  2.09 Re Resize 

20 Our  2.13 Random Affine 

20 Our  2.27 Random Perspective 

20 TrOCR  2.31 Dilation 

20 TrOCR  2.31 Resize 

 

The validation loss in Figure 5.3, in the higher range of epochs (above 10), is in a plateau 

(convergence), which gives a clue about the pre-loss stage. To better interpret the findings, we 

omitted the training loss from the plots; we supplied them in APPENDIX E.  

We can see an interesting (but not uncommon) phenomenon in Figure 5.3. At the same 

time, the cross-entropy loss of TrOCR is stable or even increases slightly in the higher epochs, 

and the CER metric continues to improve slightly. One possible explanation is that cross-entropy 

and CER are not fully correlated and measure the dissimilarity between True labels and 

predictions differently. Cross entropy measures the similarity of two probability distributions. In 
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our case, between the probability distributions of the True labels and the predict labels. In 

contrast, CER calculates the rate of operations (insert, delete, and replace) needed to transform 

one string to another. Another possible explanation is the stage of the training, and the CER is 

expected to worsen in further epochs behind the twentieth.  

Another way to plot the comparison between different augmentations is in Figure 5.4, 

where we can see significant improvement in the first 15 epochs and close to convergence in the 

last five epochs in all augmentations. The convergence can be seen clearly in Figure 5.5 and 

Figure 5.5. These two last plots prove the superiority of some augmentations over all other ones: 

Elastic (our development) and Random Rotation (TrOCR source code). It is possible to explain 

their better performance if we look at Figure 3.1; the handwriting of Gwalther has rows with 

constant upward curvature (like convex), i.e., on the left part of the line, the direction of the line 

is upward, the middle is flattened, and the right part is down direction. Random Rotation imitates 

this phenomenon in Gwalther’s handwritten and supports the training. Similarly, Elastic 

augmentation supports the training by gently imitating the natural imperfection of the paper, pen, 

ink, and writer’s hand. See Figure 5.2. 

 

Figure 5.2 Example of Elastic Augmentation. Image source pytorch.org5  

 
5 https://pytorch.org/vision/stable/auto_examples/plot_transforms.html#elastictransform  

https://pytorch.org/vision/stable/auto_examples/plot_transforms.html#elastictransform
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Figure 5.3 Validation loss for each even epoch. The labels are the CER score for each epoch. 
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Figure 5.4 CER for each augmentation and each epoch.  

 



 

25 

 

Figure 5.5 The performance of CER in the last five epochs. The training is close to 

converging with clear, better augmentations. 

 

5.4 Character Analysis 

Another helpful way to evaluate the efficiency of the models is by other metrics. In this 

section, we will discuss three different metrics: precision (5.1), recall (5.2), and f1 (5.3). In 

Handwritten Text Recognition, precision measures the confidence that a prediction is correct and 

how many characters are predicted correctly. Recall measures the confidence that prediction is 

complete; how many characters were predicted correctly. When using them alone, these two 

measures have significant disadvantages in HTR. We might get a predictor with high precision in 

predicting a specific character but a high false negative, e.g., predicting incorrectly this particular 
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character. We might also have high recall and get a predictor with high false positives where it 

falsely predicts many characters, as is the specific character. 

One solution to the disadvantages of precision and recall is the F-score family, commonly 

used as the f1 score (5.3). F1 is the harmonic mean to two values, in our case, precision and 

recall. As seen in Figure 5.6, a higher score of f1 is highly correlated to higher scores in 

precision and recall. To our problem (HTR), a predictor with f1=1 means that its predictions are 

correct and complete. 

 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒
 (5.1) 

 

𝑟𝑒𝑐𝑎𝑙𝑙 =
𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑓𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒
 (5.2) 

 

𝐹1 = 2 ⋅
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ⋅ 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
 (5.3) 

 

 

Figure 5.6 F1 is the combination of precision and recall. Higher values of f1 IFF precision 

and recall are high. This figure demonstrates the correlation between these three 

matrices. 
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Table 5.2 F1 score for the small-case characters. Other characters with low support are not 

included for visibility. Macro average is the unweighted average of all f1 scores. 

The weighted average uses the support to calculate the average. Accuracy is 

general accuracy. F1 scale up to 100 to improve the visibility. 

 Baseline 
Random 

Rotation 

Gaussian 

Blur 
Dilation Erosion Resize Underline 

Random 

Affine 

Random 

Perspective 
Elastic 

Re 

Resize 

 

space 99.51 99.57 99.40 99.53 99.34 99.42 99.47 99.53 99.55 99.59 99.57  

a 99.28 99.20 98.95 98.87 98.86 98.99 99.16 98.91 98.48 99.16 98.69  

b 97.12 98.41 97.79 97.14 97.79 97.78 97.78 99.05 96.53 97.47 96.53  

c 98.96 99.12 99.20 98.80 98.65 98.96 99.28 99.04 98.48 99.44 99.12  

d 98.60 99.11 98.98 98.98 98.61 98.86 99.49 98.73 98.48 99.49 99.24  

e 98.59 98.71 98.53 98.15 97.99 98.17 98.29 98.41 98.16 98.41 98.29  

f 98.32 98.05 97.78 98.59 98.06 97.51 98.31 98.33 98.05 97.77 97.79  

g 98.68 99.33 99.01 99.34 99.01 98.68 98.68 99.01 98.68 99.67 98.68  

h 98.21 98.21 98.21 97.51 96.77 98.21 97.49 98.19 97.12 98.56 97.08  

i 98.98 99.39 99.18 98.95 98.84 99.11 99.15 98.81 98.67 98.84 99.15  

l 99.32 99.22 99.13 98.93 99.22 98.92 99.12 99.03 98.53 99.12 99.12  

m 98.51 98.30 98.31 98.24 98.17 98.10 98.31 97.91 98.03 98.31 98.31  

n 98.11 98.23 98.16 97.76 98.28 98.05 97.99 98.11 98.17 98.50 97.87  

o 98.71 98.60 98.25 97.43 98.13 98.08 98.43 97.79 97.73 98.26 98.02  

p 99.20 99.31 98.97 98.17 99.43 98.52 99.08 98.86 99.08 99.54 99.08  

q 98.84 98.84 98.27 97.39 98.27 97.42 97.97 98.56 98.84 98.55 96.83  

r 98.69 98.34 98.50 98.29 98.15 97.94 98.14 98.19 98.59 98.75 98.64  

s 99.08 99.03 98.94 98.89 98.80 98.61 98.85 98.94 98.71 98.98 98.85  

t 99.27 99.35 98.94 98.90 99.19 99.23 99.23 99.47 99.03 99.15 99.27  

u 98.41 98.51 98.64 98.00 98.38 98.14 98.28 98.60 98.51 98.73 98.33  

v 96.36 97.48 97.94 97.73 96.80 97.01 97.51 96.82 97.26 97.27 96.77  

x 97.84 97.18 98.59 97.87 96.50 96.45 97.18 97.14 95.65 98.59 97.84  

y 100.00 100.00 100.00 90.91 100.00 95.24 100.00 100.00 100.00 100.00 100.00  

accuracy 98.08 98.13 98.00 97.75 97.68 97.74 97.96 97.90 97.73 98.14 97.93 

 

macro 

avg 
80.79 83.36 78.34 80.61 81.52 84.22 78.08 83.66 82.39 82.87 82.49 

 

weighted 

avg 
98.26 98.26 98.09 97.90 97.61 97.90 98.03 97.90 97.81 98.25 98.03 

 

 

Table 5.2 shows the f1 scores for each lowercase character and each augmentation. 

Another way to see the f1 score performance is from Figure 5.7. We can see that some characters 

are easier to predict, e.g., ‘i’ and ‘l,’ while others are hard to predict. Another important finding, 
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besides the fact that, as discussed, some models are better than others, is that some weak models 

have high f1 scores in specific characters underline and the character ‘d’. 

The confusion matrix in Figure 5.8 shows that average models have confusion between 

some characters, e.g., ‘m’ and ‘n’. Further looking into each specific model (not supplied here) 

shows that different models have slightly different confusion matrices. These findings we 

discussed in the past paragraphs suggest that although augmentation models can be ranked by 

their general accuracy (CER), they have different efficiencies. These lead us to the following 

discussion: can we improve the overall performance by prediction by combining all or part of the 

augmentation models? 

5.5 Ensemble Learning 

Ensemble learning is learning from multiple algorithms, in our case, multiple 

augmentation models. There are multiple ways to compose different models into a single 

predictor. In our work, we use the Voting form of ensemble. We did it in two ways: A: for each 

predicted sentence, we output the sentence that got the most votes from all eleven predictors. B: 

the voting was only between the best five models with the best overall f1 score (Elastic, Random 

Rotation, Underline, Gaussian Blur, and Baseline. These two ways look at the predicted 

sentence; we tried another more elaborate way by voting on each character. Although promising, 

this third way suffers from instability and was not included in our research. The average CER of 

all models is 2.11 in the range of 1.86 to 2.33. Ensemble A has a CER of 1.66, and Ensemble B 

has a CER of 1.60. 
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Figure 5.7 F1 (normalized to 100) for augmentations and small case characters.  
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Figure 5.8 Confusion matrix between true and predicted labels. The values are the average 

between all eleven models. 

5.6 Comparison to other papers 

 [28] in their work on the Gwalther dataset and TrOCR, they achieved the best CER score 

of 3.18 in the tenth epoch. They also gave a SOTA model HTR+ to achieve a CER of 2.74 in the 

50th epoch. As presented previously, all our models achieved better scores. The differences 
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between our scores and [28] require explanation. We suggest that since TrOCR was pre-trained 

on single-line images. The original Gwalther dataset has many images that include two or more 

lines. We think that [28] used the dataset as is, while we improved the dataset’s quality by 

cleaning all the images to be friendly to TrOCR by making all the images a single line. 

5.7  Examples  

Here, we will give a few examples where the models have challenges to recognize.  

5.7.1 First Example 

In this example, we will examine line 22 from file 1111690 Figure 5.9 and see how 

different augmentation models predict the line in Table 5.3. This line has a deletion by overline 

mark and line overflow from the top line. 

 

Figure 5.9 Line 22 from file 1111690 

Table 5.3 Models and their predictions to line 22 of 1111690. The last line is the label. 

Model Prediction 

Baseline  Hei sed ferre sed hanc levig tu potes ipse moram. 

Random Rotation Heu ferre sed hanc levis tu potes ipse moram. 

Gaussian Blur He lectled ferre sed hanc levis tu potes ipse moram. 

Dilation He tibi servi sed hanc levius tu potes ipse moram. 

Erosion Hęc tibi ded levior ferre sed hanc levis tu potes ipse moram. 

Resize Hei sed ferre sed hanc levique tu potes ipse moram. 

Underline He led ferne ferre sed hanc levis tu potes ipse moram. 

Random Affine Perre sed hanc levis tu potes ipse moram. 

Random Perspective Hei ferre sed hanc levius tu potes ipse moram. 

Elastic He ferre, ferre sed hanc levique tu potes ipse moram. 

Re Resize He deced ferre sed hanc levique tu potes ipse moram. 

Label  Ferre sed hanc levius tu potes ipse moram. 
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5.7.2 Second Example 

In this example, we will examine line 15 from file 1111823 Figure 5.10 and see how 

different augmentation models predict the line in Table 5.4. This first word in this line has 

excessive drawing, and the second to last word has deletion by scribble. 

 

Figure 5.10 Line 15 from file 1111823 

Table 5.4 Models and their predictions to line 15 of 1111823. The last line is the label. 

Model Prediction 

Baseline  Et nimiis mersus coecus vernas aquis. 

Random Rotation Et nimiis mersus coecus somnas aquis. 

Gaussian Blur Et nimiis mersus coecus formas aquis. 

Dilation Et nimiis mersus coecus Iothas aquis. 

Erosion Et nimiis mersus coecus formas aquis. 

Resize Et nimiis mersus coecus fortnas aquis. 

Underline Et nimiis mersus coecus vernas aquis. 

Random Affine Et nimiis mersus coecus poenas aquis. 

Random Perspective Et nimiis mersus coecus poenas aquis. 

Elastic Et nimis mersus coecus Iottinas aquis. 

Re Resize Est nimiis mersus coecus formas aquis. 

Label  Est nimiis mersus coecus Ionas aquis. 
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5.7.3 Third Example 

In this example, we will examine line 0 from file 1111832 Figure 5.11 and see how 

different augmentation models predict the line in Table 5.5. This line has background noise, 

probably because it is close to the edge of the page and prunes to an aging effect. Also, the 

writing is blurred. 

 

Figure 5.11 Line 0 from file 1111832 

Table 5.5 Models and their predictions to line 0 of 1111832. The last line is the label. 

Model Prediction 

Baseline  Quorum foedera mihi causa libido fuit. 

Random Rotation Quorum foedera mihi causa libido fuit. 

Gaussian Blur Quorum foedera mihi causa libido fuit. 

Dilation Quorum fada mihi causa libido fuit. 

Erosion Quorum foeda mihi causa libido fuit. 

Resize Quorum foedera mihi causa libido fuit. 

Underline Quorum foedera mihi causa libido fuit. 

Random Affine Quorum foedera mihi causa libido fuit. 

Random Perspective Quorum foedera mihi causa libido fuit. 

Elastic Quorum foeder mihi causa libido fuit. 

Re Resize Quorum foeda mihi causa libido fuit. 

Label  Quorum foeda mihi causa Libido fuit. 
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CHAPTER VI 

DISCUSSION 

6.1 Introduction 

We have seen in the previous chapters that TrOCR can achieve state-of-the-art HTR of 

historical manuscripts. Our work, which follows the dataset used [28], performed much better 

than the fine-tuned TrOCRBASE and SOTA HTR+ in the same paper. The building blocks of our 

model are well-prepared line images, fine-tuning TrOCR, augmentations, and ensemble learning. 

In this chapter, we will discuss these parts of our solution.  

6.2 Preprocessing and fine-tuning for TrOCR 

In our work, we fine-tuned TrOCR to recognize images it did not see. Selecting the 

correct hyperparameter in fine-tuning can improve the performance of the final model [35]. 

However, choosing the correct hyperparameters can be challenging and requires an extensive 

search [35], [36]. To avoid this, we prepared the line images to be similar to those originally  

TrOCR was trained on and used similar hyperparameters used in the pre-training of TrOCR [36]. 

Handwritten TrOCR was pre-trained with line images from the IAM dataset6, see Figure 

6.1. TrOCR expects line images with a single line. However, in our dataset, lines’ coordinates in 

XML files (Error! Reference source not found.) include points overflowing to neighbor lines, s

o the output images have more than one line. Although some other algorithms can handle this 

 
6 https://fki.tic.heia-fr.ch/databases/iam-handwriting-database  

https://fki.tic.heia-fr.ch/databases/iam-handwriting-database
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situation, this negatively affects the performance of TrOCR. We corrected the coordinates so line 

images have only one line of text. Also, we converted the images to black and white images. 

These two steps make our images very similar to the images TrOCR was pre-trained on, enabling 

us to choose hyperparameters close to the pre-training step of TrOCR, eventually improving the 

performance. 

 

Figure 6.1 IAM image 

 

6.3 Augmentation 

Image augmentation is a well-known tool to improve the performance of models [22], 

[34], [37]. Our findings also found that some augmentations improved the TrOCR performance 

while others did not. However, a deep investigation of the augmentation results shows that 

different models perform differently on the overall and specific character bases. This diversity 

[38] leads us naturally to seek an ensemble learning model. 

6.4 Ensemble learning 

Ensemble learning [39]–[42] is an efficient algorithm to join similar but different learners 

to achieve better performance than any learners alone. Our work also shows that the best 

augmentation–the elastic model has a CER score of 1.86. When we ensemble all the algorithms 

for a vote, we achieve a CER of 1.66, and if we take a vote of the five models with the best F1, 

we even get a better CER of 1.60.  
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CHAPTER VII 

CONCLUSION 

In this work, we presented a SOTA model to recognize Latin text from 16th-century 

manuscripts. We showed that with carefully prepared images, transformer-based algorithms, 

augmentations, and ensemble learning, it is possible to recognize historical manuscripts with a 

Character Error Rate (CER) of 1.60, an improvement of 50% from the previous TrOCRBASE-

based solution and a gain of 42% from other previous SOTA solution [28].  

TrOCR constitutes two pluggable pre-trained transformers: an encoder and a decoder. 

The former is a vision transformer that encodes line images into a “code” consumed by the latter 

language transformer, which finally outputs the predicted text. Originally, TrOCR was pre-

trained in a single language, English. In our work, which followed [28], we showed that plugging 

a multilanguage transformer decoder (XLM-RoBERTa) extends TrOCR into a multilanguage 

text recognizer. We used SOTA tools, Python, PyTorch, and Huggingface to achieve this, which 

already implemented this extension to TrOCR. 

Further research will extend our work to other languages with different character sets, 

e.g., Hebrew and Arabic. Another possible extension to our work is character-based ensemble 

learning, where voting is done on the character level and not on the line level, as done in this 

work. 
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APPENDIX A 

TRAINING AND VALIDATION CODE 



 

42 

This appendix includes the training and validation code we used in our work. We used 

this code on Google Colab. Part of the code is from TrOCR’s code7,  Huggingface8 , and its 

referenced tutorial notebooks.9 

 

Figure A.1 Preparing the Colab environment and importing required libraries 

 
7 https://github.com/microsoft/unilm/tree/master/trocr  
8 https://huggingface.co/docs/transformers/model_doc/trocr  
9 https://github.com/NielsRogge/Transformers-Tutorials/tree/master/TrOCR  

https://github.com/microsoft/unilm/tree/master/trocr
https://huggingface.co/docs/transformers/model_doc/trocr
https://github.com/NielsRogge/Transformers-Tutorials/tree/master/TrOCR
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Figure A.2 Dataset class 

 

 

 

Figure A.3 Building the model 
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Figure A.4 CER metric definition 

 

 

Figure A.5 Creating the processor. Huggingface’s TrOCR tokenizer. 
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Figure A.6 Training  
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APPENDIX B 

AUGMENTATION CODE 



 

47 

We used the following code to augment the images. Please note that to replicate the 

augmentation used in TrOCR’s pre-training, we copied the code from the TrOCR source code10 

and fixed a few minor bugs. 

 

Figure B.1 TrOCR Dilation and Erosion code 

 

 

 
10 https://github.com/microsoft/unilm/tree/master/trocr  

https://github.com/microsoft/unilm/tree/master/trocr
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Figure B.2 TrOCR’s Underline and KeepOriginal code 

 

 



 

49 

 

Figure B.3 Image Resize and Re-Resize code 
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Figure B.4 More augmentations and creating the augmentation container (Python dictionary) 
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APPENDIX C 

SOURCE CODE FOR PREPROCESSING AND CREATING THE LINE IMAGES DATASET 



 

52 

We used the following code to preprocess the images. 

 

Figure C.1 Import section, followed by “global and useful” variables. 

 

Figure C.2 Function to split the original image into strict line images 
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Figure C.3 Getting the correct coordinates around every line  
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Figure C.4 Main code to prepare the line images 
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APPENDIX D 

METADATA XML FILE USED TO CREATE THE LINE IMAGES 
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XML file used to get the coordinates of lines. 

 

Figure D.1 The first row of file 1111637 
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APPENDIX E 

COMPLETE TRAINING AND VALIDATION LOSS 
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Table E.1 The complete output of the training and validation loss 

Row epoch Training Loss Validation Loss CER Augmentation 

0 1 1.078 0.519562 0.06008 Baseline 

1 2 1.078 0.403055 0.041943 Baseline 

2 3 0.4087 0.364726 0.037409 Baseline 

3 4 0.2467 0.343347 0.032704 Baseline 

4 5 0.1777 0.313211 0.03055 Baseline 

5 6 0.1181 0.316009 0.029984 Baseline 

6 7 0.0881 0.338562 0.02987 Baseline 

7 8 0.067 0.343294 0.026299 Baseline 

8 9 0.0527 0.319898 0.025279 Baseline 

9 10 0.0325 0.311561 0.024939 Baseline 

10 11 0.0325 0.318875 0.024032 Baseline 

11 12 0.0197 0.33979 0.024089 Baseline 

12 13 0.015 0.300684 0.021482 Baseline 

13 14 0.008 0.305111 0.021878 Baseline 

14 15 0.007 0.302782 0.021822 Baseline 

15 16 0.0033 0.307577 0.021425 Baseline 

16 17 0.0023 0.30581 0.021595 Baseline 

17 18 0.0017 0.304262 0.019781 Baseline 

18 19 0.0006 0.305313 0.019101 Baseline 

19 20 0.0004 0.306508 0.019271 Baseline 

20 1 1.1432 0.527584 0.05651 Random Rotation 

21 2 1.1432 0.383074 0.040186 Random Rotation 

22 3 0.4447 0.346119 0.035595 Random Rotation 

23 4 0.2715 0.326685 0.032307 Random Rotation 

24 5 0.1989 0.350332 0.032761 Random Rotation 

25 6 0.1571 0.313284 0.028907 Random Rotation 

26 7 0.1129 0.303798 0.027716 Random Rotation 

27 8 0.087 0.316333 0.027943 Random Rotation 

28 9 0.0643 0.314933 0.025449 Random Rotation 

29 10 0.0449 0.291711 0.024202 Random Rotation 

30 11 0.0449 0.290608 0.023239 Random Rotation 

31 12 0.0297 0.284602 0.022615 Random Rotation 

32 13 0.0207 0.297219 0.023919 Random Rotation 

33 14 0.0154 0.28809 0.023239 Random Rotation 

34 15 0.0081 0.282304 0.020008 Random Rotation 

35 16 0.0062 0.290071 0.020858 Random Rotation 

36 17 0.0049 0.29592 0.022048 Random Rotation 

37 18 0.003 0.296295 0.019838 Random Rotation 

38 19 0.0021 0.285791 0.018818 Random Rotation 

39 20 0.0012 0.283552 0.018591 Random Rotation 
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Table E.1 (continued) 

Row epoch Training Loss Validation Loss CER Augmentation 

40 1 1.0643 0.477105 0.052145 Gaussian Blur 

41 2 1.0643 0.391859 0.041206 Gaussian Blur 

42 3 0.3901 0.350529 0.036218 Gaussian Blur 

43 4 0.2508 0.32103 0.029133 Gaussian Blur 

44 5 0.173 0.344791 0.031911 Gaussian Blur 

45 6 0.1206 0.33 0.030664 Gaussian Blur 

46 7 0.0832 0.335416 0.028056 Gaussian Blur 

47 8 0.0617 0.325686 0.026413 Gaussian Blur 

48 9 0.049 0.307256 0.02902 Gaussian Blur 

49 10 0.0315 0.307448 0.024429 Gaussian Blur 

50 11 0.0315 0.305244 0.026639 Gaussian Blur 

51 12 0.0224 0.326817 0.026469 Gaussian Blur 

52 13 0.012 0.302345 0.022955 Gaussian Blur 

53 14 0.0072 0.314744 0.022048 Gaussian Blur 

54 15 0.0039 0.300724 0.022218 Gaussian Blur 

55 16 0.0036 0.299853 0.021085 Gaussian Blur 

56 17 0.0012 0.296029 0.020065 Gaussian Blur 

57 18 0.0027 0.311083 0.020348 Gaussian Blur 

58 19 0.0014 0.311263 0.019951 Gaussian Blur 

59 20 0.0004 0.312543 0.020405 Gaussian Blur 

60 1 1.1166 0.565416 0.068469 Dilation 

61 2 1.1166 0.476236 0.051182 Dilation 

62 3 0.4186 0.399126 0.045797 Dilation 

63 4 0.2623 0.43333 0.047611 Dilation 

64 5 0.1794 0.376297 0.039109 Dilation 

65 6 0.1214 0.366847 0.037125 Dilation 

66 7 0.091 0.360929 0.034405 Dilation 

67 8 0.0645 0.395488 0.034235 Dilation 

68 9 0.0468 0.352025 0.031967 Dilation 

69 10 0.0322 0.345662 0.031457 Dilation 

70 11 0.0322 0.345543 0.031004 Dilation 

71 12 0.0198 0.362451 0.031231 Dilation 

72 13 0.0138 0.348637 0.029247 Dilation 

73 14 0.0059 0.349265 0.026129 Dilation 

74 15 0.005 0.342616 0.028 Dilation 

75 16 0.0031 0.345011 0.028113 Dilation 

76 17 0.0016 0.336828 0.022445 Dilation 

77 18 0.0013 0.337236 0.022955 Dilation 

78 19 0.0009 0.334826 0.023182 Dilation 

79 20 0.0007 0.339993 0.023125 Dilation 

80 1 1.1638 0.613491 0.07374 Erosion 
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Table E.1 (continued) 

Row epoch Training Loss Validation Loss CER Augmentation 

81 2 1.1638 0.435962 0.047101 Erosion 

82 3 0.4306 0.471658 0.052996 Erosion 

83 4 0.2707 0.392846 0.035992 Erosion 

84 5 0.1916 0.346806 0.034858 Erosion 

85 6 0.1307 0.353428 0.034461 Erosion 

86 7 0.094 0.357213 0.033611 Erosion 

87 8 0.0693 0.369908 0.034858 Erosion 

88 9 0.0487 0.353795 0.02936 Erosion 

89 10 0.0314 0.350402 0.02868 Erosion 

90 11 0.0314 0.343966 0.028056 Erosion 

91 12 0.0197 0.352663 0.02715 Erosion 

92 13 0.0125 0.357017 0.02749 Erosion 

93 14 0.0069 0.365086 0.026639 Erosion 

94 15 0.0054 0.372907 0.025733 Erosion 

95 16 0.0031 0.367379 0.025959 Erosion 

96 17 0.0015 0.355053 0.023862 Erosion 

97 18 0.0011 0.355267 0.024202 Erosion 

98 19 0.0008 0.364577 0.024202 Erosion 

99 20 0.0004 0.361567 0.023295 Erosion 

100 1 1.3185 0.55012 0.061101 Resize 

101 2 1.3185 0.42272 0.04353 Resize 

102 3 0.4627 0.36906 0.038656 Resize 

103 4 0.2895 0.36019 0.037522 Resize 

104 5 0.202 0.322729 0.035935 Resize 

105 6 0.1315 0.313287 0.032081 Resize 

106 7 0.0945 0.334587 0.029473 Resize 

107 8 0.0678 0.379378 0.030777 Resize 

108 9 0.0525 0.353082 0.030777 Resize 

109 10 0.0347 0.330066 0.02749 Resize 

110 11 0.0347 0.332629 0.026583 Resize 

111 12 0.0216 0.334915 0.027263 Resize 

112 13 0.0139 0.331957 0.025506 Resize 

113 14 0.0096 0.322734 0.025449 Resize 

114 15 0.0072 0.320495 0.024146 Resize 

115 16 0.0044 0.326471 0.024939 Resize 

116 17 0.0026 0.325962 0.024032 Resize 

117 18 0.0024 0.327345 0.023125 Resize 

118 19 0.0008 0.325227 0.022559 Resize 

119 20 0.0009 0.327641 0.023069 Resize 

120 1 1.1076 0.527811 0.057643 Underline 

121 2 1.1076 0.399528 0.042793 Underline 
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Table E.1 (continued) 

Row epoch Training Loss Validation Loss CER Augmentation 

122 3 0.4062 0.389996 0.04285 Underline 

123 4 0.2513 0.356835 0.034291 Underline 

124 5 0.1755 0.311959 0.031741 Underline 

125 6 0.1176 0.319518 0.029417 Underline 

126 7 0.0923 0.319267 0.028226 Underline 

127 8 0.0641 0.328906 0.026129 Underline 

128 9 0.0459 0.324883 0.026526 Underline 

129 10 0.0299 0.318598 0.025052 Underline 

130 11 0.0299 0.337376 0.025506 Underline 

131 12 0.0194 0.313705 0.023749 Underline 

132 13 0.014 0.316792 0.023976 Underline 

133 14 0.0078 0.318613 0.021935 Underline 

134 15 0.0052 0.320133 0.022672 Underline 

135 16 0.0043 0.320846 0.022332 Underline 

136 17 0.0029 0.317413 0.022388 Underline 

137 18 0.0025 0.313905 0.020575 Underline 

138 19 0.0014 0.312034 0.020801 Underline 

139 20 0.0007 0.312286 0.020348 Underline 

140 1 1.3664 0.522218 0.057303 Random Affine 

141 2 1.3664 0.39962 0.043247 Random Affine 

142 3 0.608 0.388454 0.042907 Random Affine 

143 4 0.427 0.327208 0.034178 Random Affine 

144 5 0.3178 0.318385 0.032818 Random Affine 

145 6 0.2555 0.415137 0.053222 Random Affine 

146 7 0.1959 0.294005 0.029984 Random Affine 

147 8 0.1531 0.28361 0.028567 Random Affine 

148 9 0.1239 0.316811 0.031174 Random Affine 

149 10 0.099 0.273864 0.025563 Random Affine 

150 11 0.099 0.276069 0.027546 Random Affine 

151 12 0.0756 0.283561 0.025846 Random Affine 

152 13 0.0594 0.273119 0.024599 Random Affine 

153 14 0.0476 0.290156 0.024939 Random Affine 

154 15 0.0417 0.274205 0.024486 Random Affine 

155 16 0.0297 0.266478 0.021028 Random Affine 

156 17 0.027 0.279343 0.022332 Random Affine 

157 18 0.0207 0.27608 0.022445 Random Affine 

158 19 0.015 0.274905 0.021595 Random Affine 

159 20 0.0141 0.274926 0.021312 Random Affine 

160 1 1.6312 0.581474 0.068299 Random Perspective 

161 2 1.6312 0.43874 0.048915 Random Perspective 

162 3 0.7344 0.414392 0.046817 Random Perspective 
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Table E.1 (continued) 

Row epoch Training Loss Validation Loss CER Augmentation 

163 4 0.4938 0.350126 0.036898 Random Perspective 

164 5 0.3468 0.349374 0.038826 Random Perspective 

165 6 0.2842 0.315118 0.032818 Random Perspective 

166 7 0.2213 0.326544 0.032874 Random Perspective 

167 8 0.1678 0.336331 0.031287 Random Perspective 

168 9 0.1371 0.303089 0.028283 Random Perspective 

169 10 0.1058 0.289244 0.027886 Random Perspective 

170 11 0.1058 0.304415 0.028793 Random Perspective 

171 12 0.0815 0.311864 0.027206 Random Perspective 

172 13 0.0633 0.307015 0.026186 Random Perspective 

173 14 0.0504 0.301629 0.025789 Random Perspective 

174 15 0.039 0.296656 0.023409 Random Perspective 

175 16 0.0292 0.29267 0.024712 Random Perspective 

176 17 0.0249 0.287982 0.023012 Random Perspective 

177 18 0.0172 0.285475 0.022729 Random Perspective 

178 19 0.0139 0.28892 0.022899 Random Perspective 

179 20 0.0098 0.287999 0.022729 Random Perspective 

180 1 1.2867 0.515767 0.05651 Elastic 

181 2 1.2867 0.406968 0.042566 Elastic 

182 3 0.4896 0.385982 0.037522 Elastic 

183 4 0.3174 0.340185 0.031344 Elastic 

184 5 0.2153 0.324556 0.031797 Elastic 

185 6 0.1592 0.339001 0.031797 Elastic 

186 7 0.1181 0.333239 0.032024 Elastic 

187 8 0.0877 0.328647 0.028 Elastic 

188 9 0.0672 0.321553 0.025789 Elastic 

189 10 0.0449 0.315571 0.025449 Elastic 

190 11 0.0449 0.31439 0.026073 Elastic 

191 12 0.035 0.326755 0.024202 Elastic 

192 13 0.0246 0.330861 0.024146 Elastic 

193 14 0.0202 0.310808 0.023295 Elastic 

194 15 0.0122 0.301151 0.021822 Elastic 

195 16 0.0092 0.292605 0.019044 Elastic 

196 17 0.0074 0.3003 0.020121 Elastic 

197 18 0.0038 0.302104 0.019044 Elastic 

198 19 0.0024 0.299638 0.018591 Elastic 

199 20 0.0018 0.297659 0.018591 Elastic 

200 1 1.2119 0.491272 0.052542 Re Resize 

201 2 1.2119 0.399982 0.04336 Re Resize 

202 3 0.4672 0.353607 0.035085 Re Resize 

203 4 0.2855 0.352745 0.032421 Re Resize 
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Table E.1 (continued) 

Row epoch Training Loss Validation Loss CER Augmentation 

204 5 0.1872 0.321231 0.032194 Re Resize 

205 6 0.1377 0.357808 0.031627 Re Resize 

206 7 0.0962 0.330003 0.029417 Re Resize 

207 8 0.0646 0.345332 0.02953 Re Resize 

208 9 0.053 0.318062 0.026129 Re Resize 

209 10 0.0287 0.324819 0.02834 Re Resize 

210 11 0.0287 0.333619 0.025506 Re Resize 

211 12 0.0243 0.323817 0.026186 Re Resize 

212 13 0.0168 0.326259 0.023125 Re Resize 

213 14 0.008 0.32286 0.021708 Re Resize 

214 15 0.0073 0.331472 0.022729 Re Resize 

215 16 0.0041 0.327241 0.020915 Re Resize 

216 17 0.0019 0.324864 0.020575 Re Resize 

217 18 0.001 0.330449 0.020971 Re Resize 

218 19 0.0007 0.330838 0.020858 Re Resize 

219 20 0.0004 0.329976 0.020858 Re Resize 
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