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Direction of Arrival estimation using unsteered antenna arrays, unlike mechanically scanned
or phased arrays, requires complex algorithms which perform poorly with small aperture arrays
or without a large number of observations, or snapshots. In general, these algorithms compute
a sample covriance matrix to obtain the direction of arrival and some require a prior estimate of
the number of signal sources. Herein, artificial neural network architectures are proposed which
demonstrate improved estimation of the number of signal sources, the true signal covariance matrix,
and the direction of arrival. The proposed number of source estimation network demonstrates robust
performance in the case of coherent signals where conventional methods fail. For covariance matrix
estimation, four different network architectures are assessed and the best performing architecture
achieves a 20 times improvement in performance over the sample covariance matrix. Additionally,
this network can achieve comparable performance to the sample covariance matrix with 1/8-th
the amount of snapshots. For direction of arrival estimation, preliminary results are provided

comparing six architectures which all demonstrate high levels of accuracy and demonstrate the



benefits of progressively training artificial neural networks by training on a sequence of sub-
problems and extending to the network to encapsulate the entire process.
Key words: Machine Learning, Neural Networks, Convolutional Neural Networks, Deep Learning,

Number of Sources Estimation, Direction of Arrival Estimation, Covariance Matrix Estimation,
Unsteered Antenna Arrays, RADAR
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CHAPTER I

INTRODUCTION

1.1 Motivation

In signal processing the general category of problems related to estimating the angles of
targets or signal sources with respect to an array of sensors is named Direction of Arrival (DOA)
estimation, or Angle of Arrival (AOA) estimation. In RADAR systems, DOA is achieved with
one of three possible configurations. Mechanically Scanned RADARs (MSR) are physically
rotating RADARs where arranging pulses according to the RADAR’s direction can produce a
power spectrum as a function of scanning angle. MSRs can produce 360° fine-angluar-resolution
data that is simple to create, but the rotation introduces additional mechanical points of failure
and imposes a relatively coarse temporal-angluar-resolution. Conversely, Phased Arrays are a
form of Electronically Scanned RADARs (ESR) which uses phase shifts on the transmitted signal
to perform beam steering. The traditional conformal array structures include planar, linear and
circular arrangements of antenna elements. Like MSRs, Phased Arrays can directly compile
the received signals into an angular product. As ESRs, Phased Arrays can have much finer
temporal-resolution than MSRs, but the stationary nature of these RADARs can result a Field
of View (FOV) less than 360° with many common configurations possessing FOVs less than
180°. Finally, RADARSs can be utilize unsteered arrays which are the focus of this dissertation.

Unsteered RADARSs simplify antenna construction by removing the need for phase shifters or

1



mechanical rotation, and the temporal-resolution is not dependant on scanning. However, these
systems require more complex algorithms to extract angular information. For example, Digital
Beamforming can be used to simulate the effects of beamsteering on the received data. While
MSRs or Phased Arrays are generally preferable, unsteered RADAR processing is important for
many array processing applications such as for low-power or repurposed RADAR systems as well
as RADARSs operating in either Passive or Signals of Opportunity modalities where manipulation
of a transmitting antenna is not possible. Additionally, the underlying principles can be applied to
other types of sensor arrays or extended to the larger problem of Blind Source Separation.
Associated with DOA estimation are the problems of Number of Sources estimation and
Covariance Matrix Estimation. The use of Sample Auto-Covariance Matrix as an input for DOA
algorithms is ubiquitous, thus improved estimation of the auto-covariance matrix can directly
benefit these algorithms. Regarding Number of Sources estimation, some DOA algorithms depend

on a prior estimate of the number of signal sources.

1.1.1 Number of Sources Estimation

The Number of Signal Sources, commonly referred to as targets, is an important metric for array
processing. The number of sources is itself usable information by a radar operator in many situations
such as indicating the amount of nearby objects of interest such as aircraft, vehicles, jammers, etc.
Additionally, some DOA estimation techniques such as MUItiple Slgnal Classification (MUSIC)
[61] and Estimation of Signal Parameters via Rotation Invariance Techniques (ESPRIT) [58] require

an accurate estimate of the number of signal sources as part of the algorithms’ computation.



The most common technique for Number of Sources estimation is the Akaike Information
Criterion [2] which is applied to the eigen-values of the covariance matrix. In the area Number of

Sources Estimation, an Artificial Neural Network (NN) is proposed herein which contributes:

* Arobust NN system that achieves state-of-the-art results and surpasses traditional eigenvalue-
based methods, which fail when the received data is coherent.

* Fusion of the spatially smoothed covariance matrix and the eigenvalues for joint analysis in
a unified NN structure.

* Enhanced results even under small number of receivers or pulses in a coherent processing
interval.

1.1.2 Covariance Matrix Estimation

Many DOA algorithms utilize the Sample Auto-Covariance Matrix of the received signal as an
input. The eigen-decomposition of the auto-covariance matrix separates the information related to
each signal source which is further detailed in section 2.3.1. Both DOA and Number of Sources
estimation algorithms exploit these properties, thus these algorithms benefit from more accurate
estimates of the covariance matrix.

The sample covariance matrix is the most common covariance matrix approximation. For
improved estimation, there exists family of algorithms [35, 36, 4, 80, 40, 29] which modify the
eigen-values of the sample covariance matrix to conform to the expected structure detailed in
section 2.3.1. Herein, a NN for auto-covariance matrix estimation is proposed. The contributions

to the area of Auto-Covariance Matrix Estimation presented herein include:

* A comparison of four covariance matrix estimation network architectures.
* Significantly improved estimation performance compared to the sample covariance matrix.

* A constrained network size allowing for efficient computation.



1.2 Direction of Arrival Estimation

Conventional techniques for DOA Estimation includes digital beamforming techniques and sub-
space techniques. Digital Beamforming algorithms, such as the Minimum Variance Distortionless
Response (MVDR) [9], performs an optimized projection of the auto-covariance matrix across an
angular spectrum. Sub-space algorithms, such as MUSIC [61], extends digital beamforming by
using eigen-decomposition to separate the noise and signal sub-spaces before projecting accross
an angular spectrum. Herein, multiple NN architectures are proposed for DOA Estimation which

contribute:

* An extension of the Covariance Matrix Estimation Network applied to DOA Estimation
using a classification network formulation.

* A comparison of six proposed network architectures for DOA Estimation.

* Preliminary results demonstrating accurate DOA estimates without the need for computa-
tionally inefficient matrix operations.
1.3 Overview
This dissertation is organized in six chapters. Following this chapter is a review of the
literature for Number of Sources Estimation, Covariance Matrix Estimation, and Direction of
Arrival Estimation. The chapters 3-5 detail the contributions to Number of Sources Estimation,
Covariance Matrix Estimation, and Direction of Arrival Estimation respectively. The final chapter

includes overall conclusions and suggestions for future work.



CHAPTER II

LITERATURE REVIEW

2.1 Angular Localization

Classical RADAR processing focuses on detection and localization relative to radial distance,
however, angular detection and localization is needed to find targets or other signal sources in 3D
space. MSRs obtain this information by physically rotating the sensor while ESRs use phase shifts
to move the beam with a stationary sensor array. Both of these techniques depend on steering of
the transmitted beam, but angular localization is still possible with a stationary beam if there are
multiple receiver elements. As receiver elements in an array are not perfectly co-located, the radial
distance from a signal source to each element will slightly differ resulting in a phase shift in the
reflected signal. This results in a sinusoid projected across the array with the arrangement of array
elements corresponding to the sampling. In the case of a Uniform Linear Array (ULA) the ideal,

projected sinusoid is given by equation 2.1:

T
X = Zak exp (—jZﬂgAxm sin (px) (2.1)
k=1

where x,, is the power measured by the m-th receive array element, ay is the amplitude of the k-th
signal source, T is the true number of sources, j = V-1, f is the operating frequency in hertz, c is
the speed of the light in a vacuum in meters per second, Ax is the spacing between array elements

in meters, m is the array element index, and ¢y, is the angle of the k — ¢h signal source in radians.
5



For unsteered arrays there are two primary estimation problems for angular localization. Firstis
angular detection which corresponds to the estimation of the Number of Signal Sources. Second is
the estimation of the Direction of Arrival (DOA) for each signal source. Related to these problems
is the estimation of the Auto-Covariance Matrix for this signal as the use of the covariance matrix

as an input for Number of Sources and DOA Estimation algorithms is ubiquitous.

2.2 Number of Sources Estimation

Estimating the number of plane wave sources is an important problem in fields such as radar,
sonar, and communication systems. In radar signal processing, estimating the number of signals
present in noisy data is a difficult problem which has been explored extensively. However, robust
solutions in this area are still required. It is advantageous for the radar to know how many sources
are present in a signal to facilitate improved target detection and tracking. Traditional approaches
include the Akike Information Criteria (AIC) estimator [2] and Minimum Description Length
(MDL) estimator [54] which exploit the structure of the eigenvalues of the sample covariance
matrix. This dependence exclusively on the eigenvalues however causes these methods to fail
when the received signals are coherent. Additionally, the MVDR can be utilized to both estimate
DOA and to estimate the number of sources, as long as the sources are separated adequately.

The AIC [2] is arguably the most widely used method for number of sources estimation in the
case of white Gaussian noise. It determines the number of sources by minimizing a criterion over
a range of detectable number of sources. However, the AIC is observed to provide inconsistent
estimates and often overestimates the number of signals in radar applications [54]. As an alternative,

the MDL was proposed in [54], but the MDL can lead to an underestimate of the signal subspace



dimension, most commonly when the number of samples are comparably small [53]. Another
model order criterion applied to source estimation is the Exponential Embedded Families (EEF)
criterion [78]. This method has been demonstrated to outperform the MDL in difficult scenarios
such as those with low SNR, closely spaced targets, and a limited number of signals.These methods
operate on the eigenvalues of the signal covariance matrix to estimate the dimensionality of the data.
More accurate methods have been proposed such as in [53] which uses a discriminate function on
the covariance eigenvalues to estimate the dimensionality of both the signal and noise subspaces.
These estimates are combined in another discriminate function to estimate the number of sources.

The techniques mentioned in here are designed for and work well when data is incoherent. It is
observed that the performance of both number of source estimation and DOA estimation degrades
when presented with coherent data [39, 49]. Additional pre-processing, such as spatial smoothing,
is required for coherent signals [62]. The processing of coherent signals has been explored in
[8,41, 15, 24, 31, 30, 39, 51, 52, 63, 62, 71, 75, 77, 81].

Additionally, methods making the assumption that the number of sources is known a priori
may give misleading results if the assumed number of sources is wrong [37]. In fact, the capability
of resolving two closely spaced sources by an array of sensors is limited by its ability to estimate
the number of sources correctly. If the number of sources can be determined more reliably, then

fine-resolution sub-space DOA estimation methods can be applied more effectively.

2.3 Covariance Matrix Estimation

Covariance matrices have many desirable properties which has led to their use as inputs for

many signal processing algorithms. A covariance matrix consists of the pairwise covariances



between two subsets of random variables. An auto-covariance matrix is the covariance matrix of a
set of random variables with itself and it is widely used in many communications, radar, and array
signal processing applications. The auto-covariance matrix is defined in equation (2.2), where u,
is a vector of the means for each random variable in the set of random variables x, and o is the
Hermitian Transpose When the random variables are zero mean, this equation simplifies to equation
for the auto-correlation matrix. Herein, all covariance matrices are zero-mean, auto-covariance

matrices.

K=E[x-p]E[x-p,]" = E[xx"] - p pl (2.2)

As the true covariance matrix is often not known in practice, the sample covariance matrix is

generally used as an approximation. The sample covariance matrix approximation for zero-mean
data is presented in equation (2.3) where P is the number of snapshots.

1
K, = EXXH (2.3)

Improved estimation of the auto-covariance matrix, compared to the sample covariance, is an
open area in signal processing with many recent developments. Knowledge of the application
scenario, such as the array configuration, can be used to achieve improved covariance matrix
estimation. In [80], interference steering vectors are used to reconstruct the interference plus noise
covariance matrix. Upadhya and Vorobyov [72] presented an algorithm for covariance matrix
estimation for Multiple-Input Multiple-Output (MIMO) systems. Deep neural networks are used

in [45] for covariance matrix estimation in a computer vision application. In [4], covariance matrix



estimation is modeled as an optimization problem using geometric considerations. In [35, 36],
Kang et al. present a Rank-Constrained algorithm for Covariance Matrix Estimation.

The underlying principle of conventional Covariance Matrix Estimation algorithms such as
[35, 36, 4, 80, 40, 29], is to improve the estimate of the eigenvalues by using a prior estimate of the
number of sources to force the eigenvalues to conform to the ideal structure discussed in section
2.2. However, these techniques have no benefit to algorithms such as MUSIC which rely solely
on the eigenvectors. Furthermore, the eigen-values are related signal power, which is explained
in section 2.3.1, but the signal source’s direction of arrival is related to the frequency information

contained with the unmodified eigen-vectors.

2.3.1 Properties of the Eigen-Decomposition of the Auto-Covariance Matrix

Most of the aforementioned algorithms exploit the desirable properties of the Auto-Covariance
Matrix. As the individual receiver array elements vary slightly in relative distance to a measured
signal source, there are variations in the phase of the measured signal. This results in a series
of sinusoids, one for each signal source, projected across the array with the array geometry
determining the sampling. The simplest geometry, the Uniform Linear Array (ULA), equates to
uniform sampling. The frequency of the projected sinusoids are related to relative angle between
the signal source and the receiver. This is discussed further in section 3.3.1.

As sinusoids of different frequencies are orthogonal, the eigen-decomposition of the auto-
covariance matrix separates this sinusoids except in the case of coherent signals. The resulting
eigen-vectors correspond to these sinusoids with their corresponding eigen-values equaling the

sum of the signal and noise power. Of course, the number of signal sources is not always equal



to the number of receivers, thus the remaining eigen-vectors are related to the noise and their
eigen-values are equal to the noise power.

This behavior is distorted when using an estimated covariance matrix such as the sample
covariance matrix; thus, techniques like those presented in section 2.2 are required to estimate the
Number of Signal Sources from estimated eigen-values by trying to find a similarly valued group
among the smallest eigen-values. Similarly, the MUSIC algorithm exploits this structure by using

an estimate of the Number of Signal Sources, to separate the signal and noise subspaces.

2.4 Direction of Arrival Estimation

Conventional DOA Estimation techniques include digital beamforming and many related tech-
niques. Beamforming techniques such as the Minimum Variance Distortionless Response (MVDR)
[9] apply steering vectors to the covariance matrix of a signal to project the signal power across an
angular spectrum. Subspace algorithms exploit the desirable properties of the eigen-decomposition
of the covariance matrix as the signals and noise are separated into orthogonal subspaces. The
MUSIC algorithm [61] applies beamforming to eigen-vectors corresponding to the noise sub-
space. While subspace methods such as MUSIC or ESPRIT require an estimate of the number
of signal sources, other techniques such as MVDR can produce an angular power spectrum with
beamforming alone. These techniques specifically are called super resolution techniques as they
can localize more accurately than the Rayleigh Resolution [73]. Moreover, these superresolution
techniques, in general, require extensive computations and are generally too slow for real-time
implementation [17]. The Maximum Likelihood Estimator (MLE) is an accurate DOA estimation

method, but even its efficient implementation [82] can be too computationally burdensome. The
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MLE requires a prior estimate of the number of sources and like MUSIC or MVDR it requires a
parameter sweep. Its computational complexity grows exponentially with dimension.

More recently, approaches based on spatial sparsity of angle domain using compressive sensing
[64, 23], smoothed-{y norm [44], sub-Nyquist sampling [46] or quadrilinear decomposition [76]
have been successfully applied to DOA estimation problems. Sparsity based DOA approaches
solve constrained optimization problems or apply greedy approaches such as Orthogonal Matching
Pursuit (OMP) [70]. Selections of constraints or stopping criteria for these techniques either require

knowledge of the number of sources or good estimation of noise level in the measurements.

2.4.1 Digital Beamforming

Classical approaches to DOA Estimation use beamforming to project the signal power across
an angular spectrum. These techniques rely on steering vectors constructed from the geometry of
the array. For a 1-D array, the steering vector constructed with equation 2.4 where 6 is the angle
on which the covariance matrix is being projected, —j is V-1, i is the receiver element index, d is
the spacing between receiver elements in meters, and A is the wavelength in meters corresponding

to the operating frequency of the array.

v(0)[i] = exp (—j2m§ sin 9) (2.4)

A large variety of beamforming techniques exist which apply the steering vector to project
onto a given angle. An example is the MVDR [9] which minimises the noise variance in the
projected direction. The MVDR beamforming weights are given by equation 2.5, from which the

projected power measurement in direction 6 can be obtained as WAH,IVD R(OKWyvpr(6), where
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K is the Sample Covariance Matrix and v(6) is the steering vector in direction #. An angular
power spectrum can be produced by evaluting these equations for multiple values of 6 with the

location of signal sources appearing as peaks in the angle spectrum.

K;v(0)

A 2.5
v(O)HK; v (0) -

Wuvpr(6) =

24.2 MUSIC

The MUSIC [61] algorithm is similar to beamforming techniques, but first separates the signal
and noise subspaces. By using a prior estimate of the Number of Signal Sources, T, the signal
subspace can be found using the aforementioned properties of the eigen-decoposition of the Auto-
Covariance Matrix. Specifically, the T largest eigen-values and their corresponding eigen-vectors
correspond to the signal subspace with the remaining set corresponding to the noise subspace. The
MUSIC algorithm constructs an approximate covariance matrix of noise subspaces as product of
the matrix constructed from the noise eigen-vectors and the Hermitian transpose of this matrix.
By using the steering vector presented in equation 2.4, this noise matrix is projected across an
angular spectrum, producing minima at the angles corresponding to the signal sources; however,
the spectrum is typically inverted to produce maxima at the target angles like the spectrums from
beamforming techniques. Thus, the equation for a sample of a MUSIC spectrum is usually given

as shown in equation 2.6 where U, is the matrix constructed from the noise eigen-vectors.

MUSIC () =

2.
v(0)1U, Uy (9) (2.6)
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2.5 Neural Networks

Artificial Neural networks (NNs) are a family of machine learning function approximation
techniques loosely meant to mimic neurons in the brain. Traditional NNs are known as Multi-layer
Perceptrons (MLP) which arrange a few layers of perceptron functions and non-linear activation
functions to allow for the approximation of non-linear functions. It has been proven that a two-
layer MLP is sufficient to approximate any function [12], but number of perceptrons required is
often too computationally burdensome. The introduction of batch normalization has allowed for
stable networks with more layers. It has been observed that networks with more layers can often
achieve superior results with a smaller overall structure than a two-layer MLPg. Additionally,
Deep Learning (DL) has enabled practical use of convolutional layers leading to spatially-focused

Convolutional Neural Networks (CNN) becoming one of the most common NN architectures.

2.5.1 Covariance Matrix Estimation with Neural Networks

The estimation of the Auto-Covariance Matrix with NN for array signal processing has not been
widely explored. Some work has been performed for estimating the channel covariance [42, 79] for
communications applications. Hoffbeck, et al. [29] presented a non-NN, learning-based algorithm
for covariance estimation. NNs have also been used to estimate covariance matrices in the area of
finance [13, 43]. In [6], a neural network is used to estimate the covariance matrices of antenna
array subsets on which MUSIC is applied to estimate the DOA.

Many proposed covariance estimation algorithms are only tested using hundreds of snapshots

which corresponds to an unreasonable time delay for real-time operation.
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2.5.2 Direction of Arrival Estimation with Neural Networks

Several works have developed NN approaches to DOA estimation in radar over the past 30
years [33, 48] using a wide variety of NN architectures. In [1], a classical 3-layer Multi-Layer
Perception (MLP) NN is applied to 2D DOA estimation. El Zoohgby et al. [16, 17, 18] utilized
the covariance matrix and a radial basis function (RBF) NN to estimate the DOA of multiple
radar signals. RBFNNs were also used in [48, 69, 25, 34, 59, 60, 48]. [49] also uses a RBFNN
and focuses on estimation of the DOAs for two signal sources whereas many DOA estimation
algorithms focus on estimation for a single signal source. Kim, et al. [37] apply NN to estimate
the DOA of human targets with a small antenna array unlike most algorithms which focus on
large arrays. In [65], a Fuzzy NN was applied to DOA estimation using the phase difference as
an input. Du et al. [14] examines several NN architectures for antenna array signal processing:
multi-layer perceptrons, Hopfield networks, Radial-Basis Function NN (RBFNN), PCA-based NN,
and Fuzzy NN. In [20], a NN-based DOA Estimation algorithm is embedded into a compact digital
signal processing module demonstrating the integration of these algorithms in classical hardware,
however this device only has an FOV of 45°. A DOA estimation NN is extended to angular
tracking in [11]. In [68] a NN is proposed for adaptive beamforming which can adapt to failures
and imperfections in a phase array.

NN have also been applied in the area of Blind Source Separation of which DOA estimation is
a subproblem. Amari and Cichocki [3] examined adaptive blind signal processing using NN and
provided a list of ten open questions in the field. Solazzi et al. [67] developed a spline NN to

address blind source separation. These networks are not directly applicable for radar as the radar
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data is complex. Complex NNs have been studied for about 20 years now [27, 28], but there is
little published on radar processing using a complex NNs.

Deep Learning (DL) has gained much attention in various research communities due to sig-
nificant performance gains of many DL systems over more standard (hand—crafted) feature based
learning. Deep networks can learn very complicated features and decision boundaries directly
from the raw data. Grais et al. [22] utilized a deep (five layer) NN where the initial estimates were
generated using non-negative matrix factorization. Their system identified the data source (source
one or source two) in speech processing. Vesperini et al. [74] put forth a DL system that could
handle both static and moving sound sources. In [47] a sequence of an auto-encoder and a set of
classification networks is proposed for DOA Estimation which is robust to array imperfections.

Among the state-of-the-art techniques for DOA Estimation is the deep CNNs presented in
[19, 50]. This CNN utilizes a Binary-Cross Entropy Loss function to train the network as a
classification problem with the output being the angle spectrum. This network achieves accurate
results but is only evaluated on data with thousands of snapshots which is not practical for most
real-time applications.

Most of the proposed DOA algorithms exhibit one or more of the following issues when
evaluating the algorithms performance: the algorithm only estimates single signal source’s angle,
the antenna array used is very large which is not true for all antennas, or hundreds snapshots are
used to construct the sample covariance matrix which imposes a significant time delay in real-time

operations.

15



CHAPTER III

NUMBER OF SOURCES ESTIMATION NETWORK

3.1 Introduction

This chapter introduces a NN architecture for estimating the Number of Signal Sources with

an unsteered antenna array. This work was published in the following:

* J. Rogers, J. E. Ball, and A. C. Gurbuz, “Estimating the Number of Sources via Deep
Learning,” 2019 IEEE Radar Conference (RadarConf). IEEE, 2019, pp. 1-5.

* J. Rogers, J. E. Ball, and A. C. Gurbuz, “Robust estimation of the number of coherent radar
signal sources using deep learning,” IET Radar, Sonar & Navigation, vol. 15, no. 5, 2021,
pp. 431-440.

3.2 Background

Estimating the number of plane wave signal sources is an important problem in fields such as
radar, sonar, and communication systems. An accurate estimation of the number of signal sources
is required by many DOA algorithms. Conventional Number of Sources Estimation techniques
exploit the properties of the eigen-decompostion described in section 2.3.1 to define the number of
signal sources as the number of non-equal eigenvalues. However, the eigenvalues corresponding
to the noise subspace are only equal in the ideal case, thus metrics such as the Akaike Information
Criterion (AIC) [2] and Minimum Description Length (MDL) [54] are required. As a more accurate
estimate of the covariance matrix will more closely conform to the desired eigenvalue structure,
these techniques can directly benefit from improved covariance matrix estimation.
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3.2.1 Conventional source estimation methods

The AIC[2] is minimized over a range of detectable number of sources to find the most likely
estimate. However, the AIC is observed to provide inconsistent estimates and often overestimates
the number of signals in radar applications [54]. An alternative, the MDL was proposed in [54], but
this algorithm tends to underestimate of the signal subspace dimension, most commonly when the
number of samples are comparably small [53]. An additional model order criterion, the Exponential
Embedded Families (EEF) criterion[78] has been proposed for number of sources estimation. This
method has been demonstrated to outperform the MDL in difficult scenarios such as those with
low SNR, closely spaced targets, and a limited number of signals. All of these algorithms operate

solely on the eigenvalues of the signal covariance matrix to estimate the dimensionality of the data.

3.2.2 Coherent source estimation methods

The aforementioned techniques are designed for and work well when data is incoherent. It has
been observed that the performance of both number of source estimation and the DOA estimation
degrades in the presence of coherent data. Additional pre-processing, such as spatial smoothing, is
required for processing coherent signals [62]. The most common approach to separating coherent

signal source is spacial smoothing which is described in section 3.3.2.

3.3 Methodology

Herein, a NN for number of source estimation is presented. This work focuses on the number of
sources in coherent signals and utilizes spatial smoothing on the input sample covariance matrices.
The proposed NN utilizes inputs constructed from the separated real and imaginary values of the

covariance matrix and its eigenvalues. The proposed network attempts to fuse these inputs in an
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optimal manner to give a robust estimator of the number of sources in a signal. The network

proposed herein is associated with the work presented in [55, 56].

3.3.1 Signal Model

All the methods proposed herein utilize synthetic data created by simulating a Uniform Linear
Array (ULA) according to the following:

T

X = Zakexp(—j2ﬂ£Axmsin(¢k) + 1y (3.1)
k=1

where x,, is the power measured by the m-th receive array element, ay is the amplitude of the k-th
signal source, T is the true number of sources, j = V—1, f is the operating frequency in hertz, c is
the speed of the light in a vacuum in meters per second, Ax is the spacing between array elements
in meters, m is the array element index, ¢y is the angle of the k — th signal source in radians, and
np, 1s independent and identically distributed (i.i.d) complex white Gaussian noise observed by the
m — th array element. A single array measurement is simulated by arranging x,, measurements
for all M receive elements as a vector with randomly generated complex noise. The final signal is
constructed by arranging P snapshots of the array measurement into a [M X P| matrix X.

These simulated signal matrices are further processed to obtain the sample and true covariance
matrices. As the signal is sinusoidal and the noise is white, the simulated signal matrices have a
true mean of 0, thus the covariance matrix is equal to the correlation matrix. Therefore, the sample

covariance matrix, K can be calculated as the approximated correlation matrix defined as follows:

K, = —Xx” (3.2)



Likewise the true covariance matrix is equal to the true correlation matrix given by:

K = E[XX"] (3.3)

As the noise is independent for each receiver array element, the true covariance between
different elements is unaffected by noise. As the covariance matrix diagonal contains the variance
for each element, these values are effected by noise . The diagonal terms are equal to the diagonal
terms of the corresponding noiseless covariance matrix plus the noise variance. Therefore, the true
covariance matrix can be found using (3.4) where s is a vector containing a noiseless measurement
of the signal constructed using only the bracketed portion of (3.1), o7 is the noise power, and I is

the identity matrix.

K, =ss" + 0’1 (3.4)

To adjust the coherency between signal sources, the data is first made incoherent by simulating
the response for each signal source separately and inducing random phase shifts. These vectors are
then combined into a matrix. Then a coherency matrix is constructed such that the off-diagonal
terms correspond to the level of coherency between each pair of targets with the main diagonal
equaling one. This Hermitan matrix is separated and multiplied by the aforementioned matrix
of signal source response vectors. The off-diagonal coherency terms range from O to 1 with all
0’s resulting in an identity matrix preserving the incoherence introduced by the random phase
shifts. Conversely, all 1’s produces a matrix of ones which equalizes the phase shifts creating fully

coherent signals.
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3.3.2 Spatial Smoothing

Spatial smoothing [62] utilizes subarrays to separate the signal information. This method
divides the receiver array into multiple overlapping subarrays of equal size. The signal covariance
matrix is calculated for each subarray and averaged to produce a single covariance matrix for the
signal. Variations on spatial smoothing include Du and Kirlin’s method [15] which considers
the cross—correlation of the subarray outputs and Hung and Kaveh’s method [30] which uses so—
called “focussing matrices”. Another method employs an exchange matrix with correlated/coherent
signals content and then uses a search over the parameter space and peak—finding [52].

Let a radar receiver have M channels, and define the [M X P] receiver data matrix as X, where
M is the number of reciver elements and P is the number of pulses. To estimate the non-spatially
smoothed (e.g. standard) covariance matrix, one can use

1

K, = FXXH (3.5)

where the Hermitian matrix transpose is denoted by (.)?. The covariance matrix will be sized
[M x M]. To estimate the smoothed covariance matrix, the receiver is divided into S-element
subarrays, where the m-th subarray corresponds to receiver elements {m,m+1,--- ,m+S — 1},
and let the m-th subarray data be X,,,. The spatially smoothed subarray covariance matrix will have

size [S X S| and is calculated as

1 M-5+1
R Z H

where spatial smoothing is indicated by the superscript S.
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3.3.3 Network Input Formatting

In order to estimate the number of sources, a combination of the estimates of the covariance
matrix itself and the covariance matrix eigenvalues is used herein. For each case analyzed, the
[M x M] covariance data matrix is estimated using the same spatial smoothing averaging methods
used in [77] and [62].

Herein, the spatially-smoothed covariance matrix is unrolled to produce a [ZM 2 x 1] feature

vector as follows, where M = S:

real {K3 (1,1)}

real {Kf (2, 1)}

real {K3 (M, 1)}

real {Kf (M, M)}
fr = . (3.7)
imag {Kf (1, 1)}

imag {K3 (2,1)}

imag {Kf (M, 1)}

_ imag {Kf (M, M)} |
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Although the diagonal terms of the covariance matrix should be real, for simplicity, all entries of
the covariance matrix is unrolled for the feature vector. Thus, the omission of zero imaginary parts
of diagonal elements is an opportunity for optimization not implemented here. The eigenvalues
are computed using the Singular Value Decomposition (SVD) [5] as follows from the covariance
matrix:

KS = UAU”, (3.8)

where A is the diagonal singular—value matrix whose diagonals are the covariance matrix eigenval-
ues: A = diag (/lf, /lg, cee /li,[), where /l‘f > /lg > > /li/l. The eigenvalue features are placed

in the [M x 1] feature vector as follows

£ = [45,25,---,45,]". (3.9)

The final data feature is the [(2M? + M) x 1] vector given by

f= . (3.10)
f/lS

Whereas, the smoothed covariance matrix and its eigenvalues were the primary inputs used in
the experiments, the unsmoothed covariance matrix estimate K; and its eigenvalues A4 were also
tested as network inputs. Figure 3.1 shows the data preprocessing stages to produce the four input
data sources. In this figure, the “Input Select and Formatting” block selecting combinations of the
input data sources and converting these to a single vector as discussed previously in this section.
Herein, six combinations were tested as network inputs. All four inputs were tested independently

as well as each covariance matrix paired with its corresponding eigenvalues.
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3.3.4 Radar parameters

The dataset utilized herein simulates a radar consisting of a notional uniform linear array
operating at f = 5.0 GHz with element spacing Ax = A1/2. There are M = 11 receivers in the
array, and this value was chosen to present a small array (in order to challenge the algorithms). The
number of pulses per coherent processing interval is P = 10, which was also chosen to be a smaller
number of pulses in order to evaluate the proposed method with a smaller number of pulses. The

subarray size used in spatial smoothing is § = 6.

Radar Signal
Generation

Hlﬁ

| Covariance I Spatial

% Smoothing
S Covariance
I K$ ¢
Singular Value Singular Value
Decomposition Decomposition
y) K KS A5

I Input Select and Formatting I

I Proposed Machine Learning Framework I

Number of
Sources
Estimation

Figure 3.1

Block diagram of Number of Sources Estimation Network data pre-processing stages
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3.3.5 Proposed Network

The network proposed herein produces robust results with a small amount of neurons. In the
case of receiver with 11 channels utilizing subarrays of six elements each for spatial smoothing, the
network will have 78 input features. The proposed network has nine fully—connected (FC) layers,
a parametric rectified linear unit (PReLLU) and a batch normalization layer.

The PReLLU [26] is a non-linear operator that allows both positive and negative values to pass
through the layer. Improved performance was observed compared to a similar network using
rectified linear unit (ReLU) activations, which do not allow negative inputs to pass through. The

PRelL U is defined as

fx) = , (3.11)

where « is a network-learned parameter.

To mitigate overfitting (that is, learning the training data at high accuracy but not being able
to generalize well to novel data), a dropout layer is used. After the last FC layer, a softmax and
classifier layer provide the final outputs. During training, the dropout layer randomly selects 50%
of the outputs connections to be set to 0. During testing, all outputs are available. The FC layers
have a connection to each output of the previous layer. They also have an activation function and
compute their output as the dot product of the input vector with the internal weight vector plus the
bias term. Then the linear or non-linear activation function is applied to provide the final FC output.
The batch normalization layers learn input data distribution mean and variance and normalize the

output by making it tend to zero mean and unity variance. Batch normalization layers are utilized
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to allow for a larger amount of network layers [32]. Finally, the softmax layer in conjunction with
the classification layer learns a distribution to estimate the number of sources [7].

Herein, the network weights are initialized randomly from Gaussian distribution with zero
mean and variance 0.01, and the biases are initialized as zero, and the network weights are updated
using stochastic gradient descent with momentum [7]. The NN architecture is described in Table

3.3. The sizes of the FC layers are integer multiples of the input vector size.

3.4 Data sets

The network presented herein is tested on simulated data and compared to contemporary
methods. Table 3.1 shows the various train and test cases utilized. In Table 3.1, the function
rand [ A, B] represents the selection of a random value from a uniform distribution in the range
A < x < B. The SNR values in Table 3.1, are independent for each signal.

Each signal features zero to three sources. If no source is simulated, the signal contains only
noise. The angles of sources are selected randomly from a uniform distribution within a limited
FOV of —60° to 60°. A minimum source spacing is enforced in the case of multiple sources as
sufficiently close sources are impossible to distinguish. This minimal spacing is set to A¢ = 0.5°
for all cases. With these parameters, coherent signals are simulated and added together with i.i.d
complex WGN. To simulate coherent sources first independent signals are generated and Cholesky
decomposition of the covariance matrix with desired coherency level o is used to generate coherent
signals as detailed in [21, 66].

Test case A has all targets at 10 dB SNR. This test case might be for a case of tracking up to

three large vehicles. Test case B assumes all targets have random SNRs from 0 to 20 dB, which is a
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much harder case. Test case C is similar to test case B, but the targets are restricted to the range 13
to 20 dB SNR. This third test case assumes that 13 dB SNR is required to reliably detect a target.
In all cases, the SNR in dB is calculated as 10/ogq of the ratio of signal power to the noise power

at the input channel of the receiver array.

Table 3.1

Number of Sources Estimation Network Experimental training and testing scenarios

Testing
0: 20,000
1: 20,000 @ 10dB
2: 20,000 @ 10dB
3: 20,000 @ 10dB
Total: 80,000
0: 20,000
1: 20,000 @ rand[0,20] dB

| Case | Training \

0: 20,000

1: 20,000 @ 10dB

A | 2:20,000 @ 10dB

3: 20,000 @ 10dB

Total: 80,000

0: 20,000

1: 20,000 @ rand[0,20] dB

2: 20,000 @ rand[0,20] dB
3: 20,000 @ rand[0,20] dB
Total: 80,000

2: 20,000 @ rand[0,20] dB
3: 20,000 @ rand[0,20] dB
Total: 80,000

0: 20,000

1: 20,000 @ rand[13,20] dB
2: 20,000 @ rand[13,20] dB
3: 20,000 @ rand[13,20] dB

0: 20,000

1: 20,000 @ rand[13,20] dB
2: 20,000 @ rand[13,20] dB
3: 20,000 @ rand[13,20] dB

Total: 80,000 Total: 80,000

3.5 Results and Discussion

Herein, as discussed above, synthesized radar returns from the same range bin are utilized
in this study. Returns from different range bins can be processed separately (and similarly for
range/Doppler processing). To compare results, the proposed method is compared to AIC, MDL,

and EEF using spatial smoothing of the covariance matrix. The proposed method results are
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shown as confusion matrices and also summarized in terms of the overall accuracy, the percentage
of correct entries, underestimates and overestimates. Also, the overall accuracies for the proposed

method, AIC, MDL, and EEF are compared.

3.5.1 Training Parameters
Table 3.2 shows the training parameters used for the networks. In all cases, stochastic gradient
descent with momentum [7]. The network is updated relative to the classification cross entropy

loss assuming multiple mutually exclusive classes.

Table 3.2

Number of Sources Estimation Network Training parameters

Learning M ) Max. | Mini-batch
Rate omentum Epochs Size
] 0.05 \ 0.92 \ 50 \ 500 \

3.5.2 Test Case Analysis

For the datasets used herein, the training data is independent of the testing data, and the training
data is only used to train the network. For all testing, the test data is utilized (the AIC, MDL, and
EEF comparison methods do not require training).

A breakdown of results using confusion matrices are provided in tables 3.4, 3.6, and 3.8. These
tables can be interpreted as follows. The top row indicates the correct number of sources in a signal,

whereas the first column indicates the network output. Therefore, the diagonal terms correspond
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Table 3.3

Proposed deep Number of Sources Estimation network architecture
PB = Processing Block: Fully Connected, Parametric ReLU, Batch Normalization,
DR = Dropout, SM = Softmax, CL = Classifier

’ Layers \ Type \ Size ‘
Input | 78
1-3 PB 234
4-6 PB | 468
7-9 PB | 780
10 DR | 50%
11-13 | PB 4
14 SM 4
15 CL 4

to correct estimates. Additionally, the upper triangle corresponds to underestimates and the lower
triangle corresponds to overestimates.

Table 3.4 shows the confusion matrix and table 3.5 shows the overall results for case A,
respectively. These tables show the network demonstrated perfect performance for Case A. Tables
3.6 and 3.7 show results for test case B. This case is much more difficult than case A, as the
lower bound for SNR is zero and there is a 20 dB SNR range of the signals. Correspondingly, the
network demonstrates a performance drop of approximately 5%. Tables 3.8 and 3.9 show results
for test case C. These results achieve near perfect classification accuracy due to both the higher
SNR sources and the reduced range of SNR values.

For all cases, the training and testing data results are very similar, indicating the network is not

overtraining to the training datasets.
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Table 3.4

Proposed Method Case A test confusion matrix

0 1 2 3
0 | 20,000 0 0
1 0 20,000 0 0
2 0 0 20,000 0
3 0 0 0 20,000
Table 3.5

Proposed Method Case A overall results

Case A \ Train Test
Overall Accuracy (%) | 100.000 | 100.000

Underestimated (%) 0.000 0.000
Overestimated(%) 0.000 0.000

Table 3.6

Proposed Method Case B test confusion matrix

0 1 2 3
0 | 20,000 0 0 0
1 0 19,960 | 622 11
2 0 40 18,553 | 2661
3 0 0 825 17,328
Table 3.7

Proposed Method Case B overall results

| Case B | Train | Test |
Overall Accuracy (%) | 95.218 | 94.801
Underestimated (%) | 3.886 | 4.118

Overestimated(%) 0.896 | 1.081

Table 3.10 shows the proposed method compared to the AIC, MDL, EEF methods. In all
cases proposed method’s performance is over 6% higher than the compared methods in all cases.

Additionally, in all of the test cases, AIC, MDL,zgnd EEF have very similar performance.



Table 3.8

Proposed Method Case C test confusion matrix

0 1 2 3
0 | 20,000 0 0 0
1 0 20,000 58 0
2 0 0 19,834 | 339
3 0 0 108 19,661
Table 3.9

Proposed Method Case C overall results

Case 3 \ Train \ Test ‘
Overall Accuracy (%) | 99.453 | 99.369
Underestimated (%) | 0.436 | 0.496
Overestimated(%) 0.111 | 0.135

Table 3.10

Overall Number of Sources Estimation Network test results shown as accuracy in percent.
AIC, MDL, and EEF utilize spatial smoothing (The best results are in bold)

| | Proposed | AIC | MDL | EEF |
A1 100.00 [89.67 [ 89.48 [ 89.47
B | 94.80 |[8822]87.85]87.88
C| 9937 [91.92[91.73[91.73

Two questions about the network performance are “how will the network perform with only the
covariance matrix or eigenvalues as inputs?” and “How does the full covariance matrix compare to
the smoothed covariance matrix?” In order to address these questions, the network was modified for
the following cases: (1) the full (e.g. non-spatially-smoothed) covariance matrix only (input vector
size of 242), (2) full covariance matrix eigenvalues only (input size 11), (3) concatenation of the

full covariance matrix and it’s eigenvalues (input size 253), (4) smoothed covariance matrix only
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(input size 72), and (5) the smoothed covariance eigenvalues only (input size 6). Table 3.11 shows
results for the network with these different inputs. From the table, the best results are obtained from
the input being the concatenation of the spatially smoothed covariance matrix plus it’s eigenvalues.
The combined smoothed eigenvalue and covariance matrix demonstrate over 5% improvement
over all cases not using spatial smoothing. The network shows significant degradation when only
provided with eigenvalues regardless of spatial smoothing. All results featuring the covariance
matrix feature acceptable results. Interestingly, the addition of the eigenvalues to the covariance
matrix degrades the networks performance when comparing the results using the covariance matrix

without spatial smoothing.

Table 3.11

Comparison of Number of Sources Estimation Network test results for case B with different input
combinations
C,SC = cov., smoothed cov. E,SE = eigenvalues cov. and smoothed cov.
C&E,SC&SE = cov. and eigs., smoothed cov. and eigs. OA = Overall Accuracy,
UE = Underestimated, OE = Overestimated (Best results in bold)

Input E C C&E SE SC | SC&SE
(Dim) | (11) (242) | (253) (6) (72) (78)
OA % | 63.104 | 88.710 | 84.790 | 63.004 | 89.526 | 94.801
UE % | 14.119 | 8.249 | 10.397 | 11.865 | 7.746 | 4.118
OE % | 22.777 | 3.041 | 4.813 | 25.131 | 2.728 | 1.081

To test the performance of the network relative to SNR, the network trained on Case B was used
to evaluate multiple single SNR datasets. Each single SNR dataset contained 1000 signals for each
possible number of sources 0 through 3 for a total of 4000 with all sources set at a single SNR value.
31 single SNR datasets were created for each integer SNR value from -5 to 25 dB. The accuracy as

well as the number of over and under estimates for each case are plotted against SNR in Figure 3.2.
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This plot shows steep declines in performance outside of the training dataset SNR range of 0 to 20

dB for both low and high SNR regimes. Additionally, a slight decline in accuracy can be observed

at both ends of the trained SNR range, specifically 0-5 dB and 15-20 dB. A gradually decline of

5% accuracy is observed as the SNR is reduced from 15 to 5 dB. For low SNR values all errors are

underestimates as expected. For high SNR targets a trend of overestimation is observed up until 20

dB when underestimates begin to occur. This behavior is likely caused by the limited maximum

output value of the network which prevents 3 source cases from ever being overestimated. These

observations indicate that when applying this method to actual radar systems, the network should

be trained on a range of SNR values larger that what the radar is expected to observe.
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Figure 3.2

Accuracy of the proposed Number of Sources Estimation Network as a function of SNR

The effect of the number of pulses included in each signal was tested by generating datasets

with the same parameters as Case B and varying the number of pulses. These datasets correspond

to pulse counts of 1-10, 20, and 30. The network was retrained for each of these datasets and
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Peformance vs Number of Pulses
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Figure 3.3

Accuracy of the proposed Number of Sources Estimation Network as a function of Number of
Pulses

the training and testing accuracy is reported in Figure 3.3. As this plot is constructed from
single training instances and the small scale of accuracy variations, the plot is not monotonically
increasing but a general trend of increased pulse counts corresponding to increased accuracy
is observed. For pulse counts over 10 only 1% improvement is observed despite the increased
complexity of computing the signal covariance matrix. When decreasing the number of pulses,
the network is able to maintain adequate performance even with a small number of pulses.

Timing experiments were performed to indicate the run time of the network compared to the
AIC, MDL, and EEF methods. All experiments were performed using MATLAB 2018B. The
PC used for experiments runs Windows Server 2012 with an Intel Xeon E5-2670 CPU, 128GB of
RAM, and a Nvidia GTX 970 GPU.

All methods require computation of the smoothed covariance matrix eigenvalues, therefore all
methods feature the same pre-processing. This pre-processing time was estimated by computing

the smoothed covariance matrix and its eigenvalues for the testing dataset in Case B. This process
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took 13.7s which corresponds to an average of 171.4us per signal. The network performance was
evaluated in the same manner. The trained network took 3.4s to estimate the number of sources for
all signals which corresponds to an average of 42.8us per signal. The average times for the AIC,
MDL, and EEF using the same methodology were 54.5us, 55.7us, and 100.8us respectively. A

breakdown of the number of mathematical operations for a similar network is presented in [55].

3.6 Conclusions

Standard solutions for estimating the number of sources, such as AIC and MDL, all fail in
cases where the signals present are coherent. However, spatial smoothing is an effective method
to address coherent signals.

The proposed DL system which fuses the spatially smoothed covariance matrix and eigenvalues
was found to accurately estimate the number of sources, even when the number of receiver channels
is small and the number of pulses is also modest. The proposed method outperformed two state—
of-the—art methods, namely AIC and MDL, when they also used spatial smoothing for inputs. This
1s an important contribution, because signal-subspace methods such as MUSIC and MLE require
a priori estimates of the number of sources. Also, the proposed method does not require matrix
inversion or diagonal loading which artificially inflates the noise floor.

Using the spatially smoothed covariance matrix and eigenvalues provides the best results, and
the DL network is smaller than the DL network required when the non—-smoothed covariance
matrix and eigenvalues are used. The downside of any method using spatial smoothing is that
there are fewer overall elements, and thus the number of sources that are detectable is smaller than

if the full covariance matrix is used. For realistic subarray sizes, this may not be a large issue
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in practice. Also, spatial smoothing allows a fewer number of receiver elements to be processed
simultaneously, which limits the array resolution, as pointed out by [62].

There could be potential electronic countermeasure (ECM) applications, such as detecting how
many low power radars are operating in an area. Classification of jamming environments also
require estimation of number of sources to make inference on the number of jamming signals
affecting each range bin within the radar range swath [10]. There is also potential for non—radar
applications, such as modifying the method to not only estimate the number of sources, but also
to estimate the relative SNRs of the different sources. This would require adding additional NN
regression modules. This approach could have many applications in wireless communications,such

as estimating the number of radios talking simultaneously on a channel.
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CHAPTER IV

COVARIANCE MATRIX ESTIMATION NETWORK

4.1 Introduction

This chapter presents an analysis of four CNN architectures for Covariance Matrix Estimation
and proposes and optimized network. This performance of this network is assessed relative to
array construction imperfections. This entire body of work in this chapter has been submitted for

publication and includes work intially presented in the following conference paper:

* J. T. Rogers, J. E. Ball, and A. C. Gurbuz, “Data-Driven Covariance Estimation,” 2022 IEEE
International Symposium on Phased Array Systems Technology (PAST), 2022, pp. 1-5.
4.2 Background
The Sample Auto-Covariance Matrix is a common input to many DOA and Number of Sources
Estimation algorithms. These algorithms are designed to exploit the desirable characteristics of
ideal covariance matrix discussed in section 2.3.1, thus, the performance of these algorithms can

be improved by utilizing a more accurate estimation for the auto-covariance matrix.

4.2.1 Conventional Covariance Matrix Estimation

Conventional covariance matrix estimation techniques such as Kang et al’s Rank-Constrained
Maximum Likelihood Estimation [35, 36], Aubry et al.’s geometric approach [4], and others

[80, 40, 29] attempt to adjust the eigenvalues of the sample covariance matrix to conform to
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the previously discussed values. Therefore, these techniques require a prior estimate of the
number of signal sources. As the eigenvalues only correspond to the amplitude information of the
signal projected across the array, these techniques have little effect on DoA estimation accuracy.
Additionally, these techniques have no effect on subspace DoA estimation algorithms which rely

solely on the eigenvectors.

4.2.2 Array Imperfections

Imperfections in the physical construction of antennas and related hardware can create addi-
tional sources of errors that affect the quality of the received signal. These problems can be worse
for antenna arrays due to variances between antenna elements. Differences in material purity and
physical dimensions can cause slight differences in the effective operating frequency of antenna
elements. Likewise, variances in the performance of amplifiers attached to these elements can
cause distortions in both amplitude and DC offset, as well as introduce inconsistency between the
I and Q channels. Finally, for the previously discussed applications of DOA Estimation, variations
in the spacing between antenna elements will distort the relative phases of the signal projected

across the array according to the relative locations of the signal source and antenna array.

4.3 Methodology

Herein, multiple CNN topologies and configurations are trained and tested to estimate the
covariance matrices of signals from a simulated Uniform Linear Array (ULA). The best performing
architecture was further optimized and its performance was assessed relative to SNR and the number
of pulses used to construct the input sample covariance matrix. Additionally, array imperfections

were simulated to assess the networks tolerance to these imperfections Figure 4.1 shows the
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proposed system with the best performing network architecture.The networks and tests proposed

herein is associated is associated with the work presented in [57].
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Figure 4.1

Proposed Covariance Matrix Estimation Architecture

4.3.1 Simulated Array Imperfections

To introduce the effects of array imperfections four error terms were introduced into the signal
model presented in eq. (4.1) to produce the following signal model:

Xy = Z (aresa +1) -exp ( ]Zﬂ'f Axm sin (¢g) + &g || + nm + Epc “4.1)

k=1

The terms €4, €, &4, and £pc correspond to errors in the amplitude, frequency, phase, and DC
offset respectively. The amplitude and DC offset errors, in volts, simulate the effects of imperfect

amplifier hardware whereas the frequency and phase error correspond to imperfections in the
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antenna array. The phase errors correspond to alignment imperfections whereas frequency errors
are introduced by imperfections in the individual receive elements.

These errors are drawn from zero-mean i.i.d. Gaussian distributions. Multiple distributions
with differing variances are used, and the performance of the proposed network is assessed relative

to the standard deviation denoted as o~ with subscripts matching the corresponding error term.

4.3.2 Simulation Data

Using the signal model presented in 3.3.1 data was generated that simulates an 11 element
ULA RADAR operating at 5GHz and 32 snapshots. The receive array element spacing is set to
one-half of the wavelength. Signal sources are randomly distributed within a 180° Field of View
(FOV) with a minimum spacing of 20°. The simulated signals contain O to 4 signal sources with
per source SNR values ranging from —10dB to 20dB measured at the receiver. The training dataset
contains 10, 000 signals for each number of sources providing a total of 50, 000 signals. Likewise,
the testing dataset contains 1, 000 signals for each number of sources. Additional testing datasets
are used for assessing performance relative to SNR and the number of snapshots. The dataset for
the former contains 100 signals for each number of sources and each integer SNR value between
—10dB and 20dB resulting in a total of 15, 500 signals. The range of snapshots tested includes the
first 8 powers of 2, ranging from 1 to 128. 1000 signals are generated for each value of the number
of sources and snapshots resulting in 40, 000 signals.

Within these datasets the signals are processed into input-label pairs. The inputs are the sample
covariance matrices of the signals computed according to equation 3.2. Likewise, the labels are

the true covariance matrix computed according to equation 3.4. To mitigate the effect of the SNR
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range the network inputs and labels are normalized. As the norm of the true covariance matrix
would not be available in any practical application, the Frobenius norm of the sample covariance
matrix is used for all normalization. As shown in Figure 4.2, the input sample covariance matrix
is normalized using its Frobenius norm for each input. The same factor is used to normalize the
true covariance matrix, which serves as the data label. Finally this factor is multiplied by the
network output to return it to the appropriate scale. The normalized form of the input and labels
are pre-computed before training the networks.

When assessing the tolerance to array imperfections the same training data was used, the same.
However, additional evaluation datasets were generated for each of the simulated array imperfec-
tions. These datasets contain 100 samples for each potential number of sources value for each
level of imperfection. The imperfection levels are determined by the variance of the distribution
from which the errors are generated as discussed in section 4.3.1. Ten values logarithmically
spaced from O to the maximum variance are used as the levels of imperfections. For the array

T

alignment (phase) imperfections the maximum is 5 radians. The maximum for amplitude and

S]]

frequency imperfections is 2. The DC offset maximum is 5. For I-Q variance, the same variances
for the previous four imperfections are simulated simultaneously, but independently for the real
and imaginary components of the signal.

As support for complex-value neural networks is not yet widespread, the real and imaginary

components of these matrices are separated to form two [M X P X 2] multidimensional arrays.
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Figure 4.2

Normalization Flowchart

4.3.3 Utilized Neural Network Structures

The evaluated network architectures are all Convolutional Neural Networks (CNNs) utilizing of
two dimensional convolution layers. These layers can vary in number of convolutional masks, mask
size, and mask stride. Additionally, a convolutional layer can employ zero-padding. Convolutional
transpose layers also utilize a set of masks with the same parameters to expand the input size by
multiplying all values of the mask by a single sample from the input.

Fully Connected layers are also utilized. These layers consists of an arrangement of multiple
linear perceptrons. These layers can vary in the number of perceptrons used.

The Scaled Exponential Linear Unit (SELU) [38] is the sole activation function used in these
networks. The SELU is defined in equation (4.2) where A and « are predefined constants set to
1.05070098 and 1.67326324 respectively. This activation function is self-normalizing eliminating
the need for batch normalization layers. Additionally, the SELU, unlike the more commonly used
Rectified Linear Unit (ReLU), can return negative values which are necessitated by the Hermitian
nature of the estimated matrices. A SELU function follows all convolutional layers and fully

connect layers in the evaluated networks except for the output layers.
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X x>0
SELU(x) = A , (4.2)

ae*—a x<0

All networks are trained using batch processing. The Mean Square Error (MSE) with a learning

rate of 0.001 is used as the loss function. All networks are trained for 100 epochs with a batch size

of 100.

4.3.4 Error Metrics

Each network topology is assessed using the Normalized Mean Square Error (NMSE). Because
the scale of the covariance matrix is influenced by the signal power, noise power, and number of
signal sources, normalized error metrics are required. The NMSE utilizes the Frobenius Norm of

the true covariance matrix to normalize the error as shown in (4.3) where K is the true covariance

matrix, K is an estimated covariance matrix, and || - || is the Frobenius norm.
N K-K
NMSE[K] = IIK = Kilr (4.3)
1K

4.4 Results and Discussion

All network’s performance were assessed by taking the average NMSE for 5 training instances.
Outlying error values for individual networks were observed, but only for larger-than-average errors
which indicates inconsistent training convergence. These outliers were not observed for results

presented in this section.
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4.4.1 Evaluated Architectures

Four major networks architectures were evaluated. The first network utilized two convolutional
layers followed by two matching convolutional transpose layers to produce a symmetric structure
which constricts the size of the intermediate data structures. The second network uses four
convolutional layers with zero-padding to maintain the same size for first two dimensions for each
intermediate data structure. The third network expands the size of the intermediate data structures
by utilize two convolutional transpose layers, followed by two symmetric convolutional layers. The
final network uses a traditional CNN structure with two convolutional layers and terminates with
two fully connected layers.

Table 4.1 shows the layers and relevant parameters for each network. Layers are indicated
using the following notation: Convolutional layers are denoted as Conv(Number of Masks, Mask
Size), Convolutional Transpose as ConvT(Number of Masks, Mask Size), Fully Connected as
FC(Number of Perceptrons), Batch Normalization as BN, and Scaled Linear Unit as SELU. The
layer parameters presented in table 4.1 were selected to allow a fair comparison between the 4
proposed architectures.

The results for the four tested architectures are given in table 4.3 as well as the performance using
the sample covariance matrix. All four networks demonstrated improved performance compared
to the sample covariance matrix with network 4 demonstrating the best overall performance.

As the fourth network contained significantly more learned parameters than the other three, a
second experiment was performed after balancing the number of learned parameters. The modified
parameters include the number of neurons in perceptron layers and the number of masks in the

convolutional and convolutional transpose layers. The balanced networks are shown in table 4.2.
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Table 4.1

Covariance Matrix Estimation Network Architectures

| Network 1 | Network 2 | Network 3 | Network 4 |

Conv(32,5) | Conv(32,5) | ConvT(32,3) | Conv(32,5)
SELU SELU SELU SELU
Conv(32,3) | Conv(32,5) | ConvT(32,5) | Conv(32,3)
SELU SELU SELU SELU

ConvT(32,3) | Conv(32,3) | Conv(32,5) FC(242)
SELU SELU SELU SELU
ConvT(2,5) | Conv(2,3) Conv(2,3) FC(242)
’ Number of Learned Parameters ‘
] 21,922 37,282 52,642 \ 264,140 \
Table 4.2

Balanced Covariance Matrix Estimation Network Architectures

| Network 1 | Network 2 | Network 3 | Network 4 |

Conv(64,5) | Conv(48,5) | ConvT(40,3) | Conv(64,5)
SELU SELU SELU SELU
Conv(64,3) | Conv(48,5) | ConvT(40,5) | Conv(64,3)
SELU SELU SELU SELU
ConvT(64,3) | Conv(48,3) | Conv(40,5) FC(22)

SELU SELU SELU SELU
ConvT(2,5) | Conv(2,3) Conv(2,3) FC(242)
Number of Learned Parameters
80,706 | 82,034 | 81,802 | 81280

4.4.2 Final Network Results

performance and was selected for further improvement.

The results for the adjusted networks are shown in table 4.4. Network 4 still exhibits the best

The final network architecture is shown in Table 4.5. After selecting from the four proposed
networks, each parameter was modified and tested one at a time to improve the networks perfor-

mance. The network utilizes zero-padding as this allows for an increased variety in convolutional
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Table 4.3

Covariance Matrix Estimation Network Architectures Results (Best results in bold)

Average NMSE
Training | Testing
K; 0.1048 0.1041

Network 1 | 0.0238 | 0.0237
Network 2 | 0.0119 | 0.0119
Network 3 | 0.0140 | 0.0140
Network 4 | 0.0060 | 0.0062

Table 4.4

Balanced Covariance Matrix Estimation Network Architectures Results (Best results in bold)

Average NMSE
Training | Testing
K; 0.1048 | 0.1041

Network 1 | 0.0167 0.0167
Network 2 | 0.0108 | 0.0108
Network 3 | 0.0120 | 0.0120
Network 4 | 0.0071 0.0073

mask arrangements as well as a decrease in error. The remaining parameters were modified in the
following order: convolutional mask size, number of convolutional layers, number of convolutional
masks, number of perceptrons in the third layer, number of fully connected layers, batch size, and
learning rate.

The final results this network are shown in table 4.6. The final network’s error is approximately
1/20¢h of the error when using the sample covariance matrix.

The performance of the network relative to SNR is shown in figure 4.3. The final network
demonstrates robust performance relative to SNR as the performance for all tested SNR levels is

superior to the sample covariance matrix at high SNR levels.

45



Table 4.5

Finalized Covariance Matrix Estimation Network Architecture

Conv(2,3)
SELU
Conv(2,3)
SELU
FC(88)
SELU
FC(242)

Table 4.6

Finalized Covariance Matrix Estimation Network Results

Average NMSE
Training | Testing
K 0.1048 0.1041

Mean 0.0055 0.0056
Minimum | 0.0053 0.0053
Maximum | 0.0058 0.0059
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Figure 4.3

Performance vs SNR for Network Results and Sample Covariance Matrix
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Figure 4.4

Performance vs Number of Snapshots for Network Results and Sample Covariance Matrix

The performance relative to the number of snapshots used when constructing the input sample
covariance matrices is shown in figure 4.4 with the exact values given in table 4.7. For all number
of snapshots tested, the proposed method demonstrates lower error than the sample covariance
matrix. Additionally, the error decreases monotonically as the number of snapshots increases
demonstrating the networks ability to generalize despite being trained on a dataset with inputs
containing 32 snapshots exclusively.

To demonstrate the benefit of improved estimation of the signal covariance matrix, the MUSIC
spectrum of a single target case is shown in figure 4.5. This case was randomly selected from the

testing dataset. The target is located at —23.5° with an SNR of 154B.

4.4.3 Results with Simulated Array Imperfections

Herein, the behavior of the Covariance Matrix Estimation NMSE relative to the four distorted

factors (amplitude, frequency, phase, and offset) is presented.
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Normalized MUSIC Spectrum using the Network Results and Sample Covariance Matrix
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Performance vs Phase Distortions

Figure 4.6 show the performance relative to the phase distortions associated with imperfect
array element arrangement. The performance maintains satisfactory performance until the phase
distortion variance is greater than 0.2, and doesn’t surpass the error level of the undistorted Sample

Covariance matrix until a variance of at least 0.5.
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Performance vs Frequency Distortions
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Figure 4.8

Performance vs Amplitude Distortions

The performance relative to frequency distortions, shown in figure 4.7, degrades at lower levels
of distortion variance. However, the network still outperforms the undistorted Sample Covariance
Matrix with frequency distortions up to approximately 0.1. This is the earliest breakdown of the

four distortions examined.

49



Performance with differing IQ Distortions
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Performance vs DC Offset Distortions

The behavior of the performance relative to amplitude, shown in figure 4.8, is similar to the the
phase distortions with performance degrading at approximately 0.2.

Figure 4.9 shows the performance relative to DC offsets. The network was most resilient to
these distortions which maintain performance until a variance level of at least 0.3.

The performance of all four distortions applied simultaneously with different distortions on the
I and Q channels is shown in figure 4.10. As this distortions used different maximum variances
in order to utilize appropriate values, multiple axes are given to show the error level for each
of the distortions that were simultaneously applied to each step of the dataset. Having different
distortions on the I and Q channels appears to have little effect as the performance begins to degrade
at approximately the same level as the frequency distortions.

Additionally, for all five distortion scenarios, the proposed network outperforms the sample

covariance matrix for the entire evaluated region.
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Performance with Differing 1Q Distortions

4.5 Conclusions

Herein, a comparison of simple neural networks representative of common CNN configurations
is presented. The traditional architecture of using convolutional layers followed by fully connected
perceptron layers demonstrated the universal best performance. This network was further optimized
and demonstrated improved performance compared to the sample covariance matrix optimization.
The proposed network exhibited reduced error and significantly improved resilience to lower SNR
levels. Additionally, the proposed network can consistently match the performance of the sample
covariance matrix with 1/8¢h the amount of snapshots. This proposed network demonstrates

improved estimation accuracy of the auto-covariance matrix that is robust to imperfections in the
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sensor array and related hardware. The network maintains it’s accuracy up to error variances of at
least 0.1 for all tested perturbations: phase, frequency, amplitude, DC offset, and 1Q variations.
These improved covariance matrix estimates can directly benefit DOA algorithms as well as

any other array processing algorithm which uses the covariance matrix as an input.

Table 4.7

Results with Varied Number of Snapshots using Proposed Network Estimates and Sample
Covariance Matrices

| Snapshots | Estimate | Sample |

1 0.5547 | 3.3872
2 0.2553 1.6747
4 0.1104 | 0.8388
8 0.0451 | 0.4254
16 0.0151 0.2057
32 0.0063 | 0.1045
64 0.0043 | 0.0524
128 0.0036 | 0.0262
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CHAPTER V

DIRECTION OF ARRIVAL ESTIMATION

5.1 Introduction
This chapter presents a comparison of six CNN architectures for DOA Estimation. The work

presented herein has not yet been published or submitted for publication elsewhere.

5.2 Background

The estimation of the Direction of Arrival of the a signal with stationary beams is much
more difficult than with scanning sensors. Within this domain, digital beamforming techniques,
such as the Minimum Variance Distortionless Response (MVDR) [9], employ steering vectors
to manipulate the covariance matrix of a signal. This manipulation facilitates the projection of
signal power across an angular spectrum. Subspace algorithms leverage the favorable properties
of the eigen-decomposition of the covariance matrix to effectively separate signals from noise,
segregating them into orthogonal subspaces. For instance, the MUSIC algorithm [61], employs
beamforming on eigenvectors corresponding to the noise subspace. While subspace methods
like MUSIC or ESPRIT necessitate knowledge of the number of targets, some techniques like
MVDR are capable of generating an angular power spectrum through beamforming alone. All
of these techniques are considered super-resolution methods, as they can achieve more precise

localization than the Rayleigh Resolution [73]. However, it’s important to note that super-resolution
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techniques, in general, demand extensive computational resources and are often too slow for real-
time implementation [17].

The Maximum Likelihood Estimator (MLE) serves as a highly accurate D)A estimation method,
but even its efficient implementation [82], can impose significant computational burdens. The
MLE requires a prior estimate of the number of sources and, like MUSIC or MVDR, involves
a parameter sweep. As the dimensionality increases, the computational complexity of the MLE
grows exponentially.

More recently, DoA estimation approaches have emerged based on the spatial sparsity in the
angle domain. These approaches utilize techniques like compressive sensing [64, 23], smoothed-
{p norm [44], sub-Nyquist sampling [46], or quadrilinear decomposition [76] to successfully
address DOA estimation problems. Sparsity-based DOA approaches either solve constrained
optimization problems or employ greedy methods such as Orthogonal Matching Pursuit (OMP)
[70]. However, the selection of constraints or stopping criteria for these techniques typically
requires prior knowledge of the number of sources or a reliable estimation of the noise level in the

measurements.

5.3 Methodology

Herein, six neural network architectures are constructed and evaluated on two datasets. The
architectures shown in figure 5.2 are all CNNs and explore multiple combinations of a novel four
layer CNN for DOA paired with the Covariance Matrix Estimation network from Chapter IV.

Additionally, multiple transfer-learning style weight initialization schemes are explored.
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5.3.1 Network Architecture

Six network architectures (shown in figure 5.2) were designed, trained, and evaluated. These
architectures were constructed from a variety of combinations of two component networks: the
covariance estimation network from Chapter IV and new DOA Estimation network.

The DOA Estimation network design was adapted from the covariance matrix estimation
network. The same composition of layers was used with the size of the final layer adjusted to 181
to output an angular power spectrum with an FOV of £90°. Additionally, the network was modified
to function as a binary classification problem. To support this, a sigmoid activation function was
added to the final layer and the network was trained using a Binary Crossentropy loss function.
Initial testing revealed that layer size parameters used for Covariance Matrix Estimation were too
small to support DOA. The final proposed DOA estimation network component is shown in figure
5.1.

The architectures constructed from the Covariance Matrix Estimation and DOA Estimation
network components are shown in figure 5.2. The first architecture is a classical transfer learning
approach where Covariance Matrix Estimation network is modified to support DOA. This network
takes the first three layers from the proposed Covariance Matrix Estimation network and combines
them with the final layer from the DOA Estimation network. The first three layers’ weights are
initialized to the values learned in Chapter I'V.

The second architecture evaluates the proposed DOA network component in a standalone
configuration. This architecture has no pre-trained weight initialization and takes the sample

covariance matrix as an input.
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DOA Network Component Architecture

The third architecture involves arranging the two network components in sequence. For the
Covariance Matrix Estimation the pre-trained network from Chapter IV is used to pre-process all
the sample covariance matrices which are then used to train the DOA Estimation network.

The fourth architecture combines the two components as a single network. This combined

network is trained on the sample covariance matrices.
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Figure 5.2

Evaluated DOA Network Architectures
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The fifth architecture takes the combined networks from the previous architecture, but initializes
the Covariance Estimation network component with the pre-trained weights and initializes the DOA
Estimation network component with the weights learned in architecture 2.

The sixth and final architecture takes the same approach as the fifth, but uses the weights learned

by architecture 3 when initializing the DOA network compoenent’s weights.

5.3.2 Simulated Data

The first dataset used herein is a simplified version of the datasets introduced in section 4.3.2.
As evaluating DOA accuracy for multiple signal sources involves both the detection and angular
estimate accuracy, the simulated signals in this dataset only contained one signal source. Like
the previous dataset, the signal simulated an 11-element ULA RADAR operating at SGHz and 32
snapshots. For initial testing the SNR range was reduced to 0 to 20 dB. The total amount of training
data was increased for a total of 100,000 simulated signals with an additional 1,000 for testing.

The second dataset was more challenging. It utilized the extended SNR range, —10 to 20dB,
that was used in the previous chapters. Additionally, the simulated signals could contain up to 4
signal sources. However, unlike the previous chapters, no target cases were not explored as the
error metrics used are inadequate to assess the performance for these cases. The final difference

with this dataset was the expansion to 1,000,000 training samples.

5.3.3 Error Metrics
Analysis of these architectures was performed using traditional binary classification metrics.
The sigmoid activation function bounds the network outputs to the region [0, 1]. A threshold of

0.5 is applied to the output to convert it to a binary vector. As only one out of the 181 values for
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case are expected to be set 1, this problem has a massive class imbalance. For this reason, neither
the accuracy nor recall metric are reported. Instead the results are primarily characterized with the
probability of detection (P;) defined as the ratio of accurate signal sources over the total number
of signal sources. Additionally the probability of a miss (P,,) defined as the ratio of missed signal
sources over the total number signal sources and the probability of a false alarm (P,) defined as
the ratio of the number of false alarms over the total number of samples in the dataset, are reported.
A final metric is used to assess the amount of predictions close to accurate. For this metric, the
values near all missed signal sources are investigated. If either of the neighboring values in the
angular spectrum (corresponding to +1°) are 1, the probability of detection is modified as if the

case was accurately classified. The modified probability of detection is denoted as leo.

5.4 Results and Discussion

Each of the six architectures were trained 5 times with the average results presented in table
5.1. All architectures gave satisfactory performance with approximately 85% of signal sources

estimated as accurately as possible for the resolution used for the angular spectrum.

Table 5.1

DOA Architectures’ Results with 1 signal source (Best results in bold)

| Pa | Pw | Pra |

1. Transfer Learning | 0.8514 | 0.1486 | 0.1466
2. Standalone 0.8356 | 0.1644 | 0.1516

3. Sequence 0.8462 | 0.1538 | 0.1510

4. Combined 0.8514 | 0.1486 | 0.1566

5. CombStand 0.8528 | 0.1472 | 0.1522

6. CombSeq 0.8360 | 0.1640 | 0.1416
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The worst architecture was the standalone (2) DOA estimation network. This is expected as
it only uses one network component and utilizes no weight initialization. Architecture 3, both
networks in sequence, has the same concerns, but the improved Covariance Matrix Estimates
correspond to a 1% increase in performance.

The combined architecture (4) gives somewhat better performance, but it’s P, is exactly equal
to the transfer learning architecture (1) which also has less false alarms. This shows that progressive
training schemes can allow accurate results with smaller networks.

The best performing architecture was the combined network using the weight initialization
learned in the standalone network (5). Unlike the previous four, this is the first network to utilize
the combined structure and weight initialization.

The final architecture’s (6) performance was the second worst with almost the same performance

as the standalone architecture.

Table 5.2

DOA Architectures’ Results with +1° Tolerance (Best results in bold)

1. Transfer Learning | 0.9532
2. Standalone 0.9395
3. Sequence 0.9488
4. Combined 0.9600
5. CombStand 0.9614
6. CombSeq 0.9398

The results when considering a tolerance of +1° are shown in figure 5.2. All networks

demonstrate approximately a 10% increase indicating that approximately two-thirds of false alarms
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lie within this region. The relative performance of the architecture is mostly unchanged for these
results. Architecture 4 now outperforms architecture 1 rather than being tied, while the gap between
architectures 2 and 6 narrowed.

Ultimately, these probabilities are too similar to assert that any architecture is clearly superior
to another.

Figures 5.3 and 5.4 show scatterplots of the results for the best and worst performing net-
works, 2 and 5 respectively. Neither architecture produced results with extreme outliers; however,

architecture 2 has inaccuracies up to 7° whereas architecture 2 stays within 3°.
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Figure 5.3

DOA Scatterplot with architecture 2. Standalone

5.4.1 Multiple Signal Sources
The same six architectures were also trained on the second dataset described in section 5.3.2.
The results for this dataset are summarized in table 5.3. This dataset is much more challenging with

poor performance from all architectures; however, the relative performance of the architectures
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DOA Scatterplot with architecture 5. CombStand

differs enough to draw meaningful conclusions. The transfer learning (1) architecture is by far the
worst performer with only 40% of signal sources detected at the proper angle. This architecture does

have the least amount of false alarms but this is clearly indicative of significant underestimation.
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Figure 5.5

DOA Scatterplot with architecture 6, CombSeq, and 1 to 4 signal sources
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Table 5.3

DOA Architectures’ Results with 1 to 4 signal sources (Best results in bold)

| Pa | Pu | P | Py |

1. Transfer Learning | 0.3884 | 0.6116 | 0.1208 | 0.4359
2. Standalone 0.5465 | 0.4535 | 0.1458 | 0.6402

3. Sequence 0.4989 | 0.5011 | 0.1291 | 0.5916

4. Combined 0.4779 | 0.5221 | 0.1319 | 0.5559

5. CombStand 0.5475 | 0.4525 | 0.1451 | 0.6485

6. CombSeq 0.5672 | 0.4328 | 0.1700 | 0.6728

The Sequence (3) and Combined (4) architectures demonstrate slightly better performance
with P;’s of approximately 50%. Finally, the remaining three architectures all demonstrate similar
performance with P;’s of approximately 55%. It is expected that the last two architectures
perform best as these are the only architectures to exploit the combined network structure and
weight initialization; however, it is surprising that the Standalone (2) architecture achieves similar
performance while the Sequence (3) architecture does not as these differ only in the preprocessing
of the covariance matrix.

Inspection of the angle scatterplot of architecture six, shown in figure 5.5, shows very few
significant outliers with slightly less precision; however, this plot fails to account for missed
signal sources. For this plot, 2, 588 signal sources had no corresponding DOA estimate which is
approximately one quarter of the 10, 000 signal sources in the testing dataset.

To improve performance alternative thresholds were explored. Inspection of the histograms of
the network outputs indicated a significant amount of missed signal sources could be detected with
a lower threshold without greatly increasing the number of false alarms. Through trial-and-error

a modified threshold of 0.25 was found to achieve significantly improved performance without an
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Table 5.4

DOA Architectures’ Results with 1 to 4 signal sources and a 0.25 threshold (Best results in bold)

| Pa | Pu | P | Py |

1. Transfer Learning | 0.5895 | 0.4105 | 0.4869 | 0.6453
2. Standalone 0.6852 | 0.3148 | 0.3863 | 0.7936

3. Sequence 0.6460 | 0.3540 | 0.3819 | 0.7461

4. Combined 0.6843 | 0.3157 | 0.3860 | 0.8167

5. CombStand 0.6804 | 0.3196 | 0.3714 | 0.7934

6. CombSeq 0.6829 | 0.3171 | 0.3815 | 0.8155

excess of false alarms. Additionally, the scatterplots generated with this threshold do not have
missed signal sources.

The performance of all architectures with the reduced threshold are shown in table 5.4. The
overall performance all architectures improves by approximately 20% but the relative performance
of all architectures is mostly unchanged. The transfer learning (1) architecture is still the worst
performer, and Sequence (3) architecture is still only somewhat better. However, with the reduced
threshold, four architectures (2,4,5,6) achieve the best performance with less than 1% variation in
their P;’s.

The scatter plots for all six architectures with the reduced threshold are shown in figures
5.6,5.7,5.8,5.9, 5.10, and 5.11. The number of false alarms included in these scatterplots are
summarized in table 5.5. Clearly, these false alarms outnumber the significant outliers in the
scatterplots indicated most of the false alarms are multiple detections near a single signal source.
All architectures demonstrate good performance with precise angle estimates with a small number

of significantly outlying false alarms.
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Table 5.5

Number of false alarms in DOA scatterplots

| False Alarms |

1. Transfer Learning 746
2. Standalone 572
3. Sequence 514
4. Combined 817
5. CombStand 609
6. CombSeq 620

5.5 Comparison with similar Networks

A similar 8-layer CNN structure is proposed in [50]. This CNN demonstrates accurate per-
formance in the presence of low-SNR signals, however this network was primarily tested on
covariance matrices constructed from thousands of snapshots which is too large for many real-time
applications. When assessing the performance of the network relative to the number of snapshots,
a minimum of 100 snapshots was used which is more than the 32 used for the six architectures
presented in this chapter. At 100 snapshots and two targets, the RMSE in degrees for the network
presented in [50] was between 1° and 1°. For compassion the RMSE for architecture 6 utilizing
a threshold of 0.25 with 1 to 4 signal sources is approximately 1.38° with less than one-third the

number of snapshots used.

5.6 Conclusions

The six evaluated architectures explored the benefits of a variety of approaches to implementing
Transfer Learning. All six architectures produced accurate angular power spectrums for DOA with
up to 4 signal sources. Additionally the architectures are robust to low SNR signal sources.

The relative performance of the architectures do not sufficiently differ to indicate a single best
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Figure 5.6

DOA Scatterplot with architecture 1, Transfer Learning, with a 0.25 threshold and 1 to 4 signal
sources

architecture, but the transfer learning (1) and sequence (3) architectures were clearly inferior to the
other four.

The proposed architectures all produce accurate DOA estimates without the need for computa-
tionally complex operations such as matrix inversion or eigen-decompostion which are required by
conventional algorithms. Additionally, the proposed architectures do not require a prior estimate
of the number of signal sources. As the results presented were achieved with simple thresholding,
it is clear that the spectrums produced by these architectures do not require a robust peak finding
algorithm to produce DOA estimates in the presence of multiple signal sources. Additionally, the
proposed architecture demonstrates competitive performance to state of the art techniques [50]
when utilizing a practical number of snapshots for estimating the covariance matrix

Future work in this area includes using more training data, testing on more difficult scenarios,
and testing with real data. Additonaly, the use of temporal networks could be used to expand this

work to angular tracking.
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Figure 5.7

DOA Scatterplot with architecture 2, Standalone, with a 0.25 threshold and 1 to 4 signal sources
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Figure 5.8

DOA Scatterplot with architecture 3, Sequence, with a 0.25 threshold and 1 to 4 signal sources

67



DOA Scatterplot

80

Estimated Angle (degrees)

-80 -60 -40 -20 0 20 40 60 80
True Angle (degrees)

Figure 5.9

DOA Scatterplot with architecture 4, Combined, with a 0.25 threshold and 1 to 4 signal sources
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Figure 5.10

DOA Scatterplot with architecture 5, CombStand, with a 0.25 threshold and 1 to 4 signal sources
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Figure 5.11

DOA Scatterplot with architecture 6, CombSeq, with a 0.25 threshold and 1 to 4 signal sources
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CHAPTER VI

CONCLUSIONS AND FUTURE WORK

6.1 Discussion

The network architectures presented herein provide estimates for the related problems of Direc-
tion of Arrival (DOA), Number of Sources, and Covariance Matrix Estimation. All the networks
produce accurate estimates in the presence of low SNR levels, multiple signal sources, a small
array configuration, and constrained number of snapshots. Additionally, the proposed networks
are relatively small compared to modern deep networks allowing for efficient implementation.

The proposed Number of Sources Estimation network is more accurate than all three con-
ventional techniques used for comparison. Additionally, the average per-sample speed of the NN
implementation was faster than the computation of the conventional techniques for the implemen-
tations used herein. Sub-space DOA algorithms can directly benefit from these improved estimates
as inaccurate estimates causes improper separation of the noise and signal subs-paces and missed
signal sources.

In the area of Covariance Matrix Estimation, four networks were compared and the standard
CNN structure provided the most accurate estimates. The optimized variant of this network provides
a 20-times more accurate estimate than the Sample Covariance Matrix relative to the Normalized
Mean Square Error. Additionally, the proposed network demonstrates robust performance in the

presence of array imperfections despite being trained on data assuming a perfect array. As array
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construction is typically a precise process, the results presented indicate the proposed network
should maintain it’s performance within the regions of error for an array of acceptable quality.
As the Sample Covariance Matrix is used as the network input, the proposed algorithm is more
computationally burdensome than the calculation of the Sample Covariance Matrix; however, the
proposed network does not require the calculation of eigen-decomposition like other improved
Covariance Matrix Estimation algorithms. Additionally, the proposed network estimates the entire
matrix rather than only adjusting the eigen-values like the other investigated algorithms [35, 36,
4, 80, 40, 29]. As the information of interest for DOA Estimation primarily lies within the eigen-
vectors, these techniques have little benefit for DOA Estimation and have no effect on sub-space
algorithms.

For DOA Estimation, six architectures were evaluated. All six architectures demonstrated
accurate estimates in the presence of multiple targets and low SNR signal sources. No single
architecture demonstrated clearly superior performance with the four best architectures achieving
comparable performance in the most difficult scenario tested. The RMSE error in degrees for these
architectures is comparable to that of a state-of-the-art network [50] with the proposed networks

utilziing less than one-third the number of snapshots.

6.2 Future Work

Future work in this area includes application of these algorithms to real data. As the signal
model used herein assumes a narrowband array, this work could also be extended to account for
wideband arrays. Additionally, the network architectures could be adapted to accommodate other

array geometries.
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For Covariance Matrix Estimation, the proposed network should be trained on a specific, real
array to determine if the network can learn the array’s imperfections for improved performance.
Post-processing to enforce known matrix structures, such as the Toeplitz structure in the case of a
ULA, could be applied.

Further testing is needed with the proposed DOA architectures to determine the superior
architecture. This testing should include a larger training dataset and more difficult scenarios.
Additional architectures, which initialize all but the final layer should be constructed to determine
the effect of biasing the network towards as specific local minima on the error gradient.

The implementation of complex-valued variants of the networks presented herein should be
explored as the data is complex. Deep Residual Networks may also provide improved accuracy;
however, these networks would be more computationally complex. Additionally, the benefits
of recurrent network architectures, such as transformer networks, could be explored as data in
practical applications will be time sequenced. The use of recurrent networks would also allow for

the extension to signal source tracking.
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