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Abstract

Which individual should we vaccinate to minimize the spread of a disease? Designing
optimal interventions of this kind can be formalized as an optimization problem on
networks, in which we have to select a budgeted number of dynamically important
nodes to receive treatment that optimizes a dynamical outcome. Describing this
optimization problem requires specifying the network, a model of the dynamics, and
an objective for the outcome of the dynamics. In real-world contexts, these inputs
are vulnerable to misspecification—the network and dynamics must be inferred from
data, and the decision-maker must operationalize some (potentially abstract) goal into
a mathematical objective function. Moreover, the tools to make reliable inferences—
on the dynamical parameters, in particular—remain limited due to computational
problems and issues of identifiability. Given these challenges, models thus remain
more useful for building intuition than for designing actual interventions. This thesis
seeks to elevate complex dynamical models from intuition-building tools to methods
for the practical design of interventions.

First, we circumvent the inference problem by searching for robust decisions that
are insensitive to model misspecification. If these robust solutions work well across a
broad range of structural and dynamic contexts, the issues associated with accurately
specifying the problem inputs are largely moot. We explore the existence of these
solutions across three facets of dynamic importance common in network epidemiology.

Second, we introduce a method for analytically calculating the expected outcome
of a spreading process under various interventions. Our method is based on message
passing, a technique from statistical physics that has received attention in a variety
of contexts, from epidemiology to statistical inference. We combine several facets of
the message-passing literature for network epidemiology. Our method allows us to
test general probabilistic, temporal intervention strategies (such as seeding or vac-
cination). Furthermore, the method works on arbitrary networks without requiring
the network to be “locally tree-like”. This method has the potential to improve our
ability to discriminate between possible intervention outcomes.

Overall, our work builds intuition about the decision landscape of designing inter-
ventions in spreading dynamics. This work also suggests a way forward for probing
the decision-making landscape of other intervention contexts. More broadly, we pro-
vide a framework for exploring the boundaries of designing robust interventions with
complex systems modeling tools.



The question isn’t “what are we going to do”, the question is “what aren’t we going
to do?”

-Ferris Bueller
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Chapter 1

Introduction

Mathematical models help us to better understand the behavior of the systems we

study. That understanding comes from two features of models. The first is models’

ability to abstract away detail and thereby expose the fundamental mechanisms that

drive the system’s behavior. The second is that models are sandboxes through which

we can explore the many possible outcomes that may arise due to randomness in

the system. Such exploration is especially useful when accidents of history drive the

system towards vastly different outcomes.

As an example, consider the spread of a disease through a population. When a

single individual becomes infected with a disease, we might get lucky and find that

none of the individuals that come into contact with this individual become infected,

resulting in the outbreak dying out quickly. By contrast, we might get particularly

unlucky if another did attract the disease and was then due to attend a large gathering

the next day, which could lead to a large and uncontrollable outbreak. It has been

shown that models of the spread of disease exhibit extremely heterogeneous outcome

distributions [1].
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We can contrast this rich picture of possible outcomes produced by our model with

the knowledge gained from observational data, where data is usually available for only

a single outbreak. To truly understand the underlying behavior of the system, we

would need to experience outbreaks many times to understand how a disease spreads.

Doing so would, of course, be highly unethical, as our goal should be to minimize the

spread of disease, not allow it for the purposes of data collection. Beyond ethics, real-

world systems present many reasons that limit our ability to gather representative

experimental data. In these situations, turning to models helps us explore the entire

range of possible outcomes and their probabilities.

Over and above providing a richer understanding of some system of interest, mod-

els can serve as testing grounds for policy interventions. Mathematical models are

specified by a potentially huge number of quantitative variables. Some of these pa-

rameters will be out of our control and are best set to values that accurately represent

the real world. Other parameters, however, could, in principle, be changed. Changing

the values of these decision parameters amounts to simulating what would happen if

we enacted a particular intervention. In the case of epidemics, non-pharmaceutical

interventions such as vaccination and social distancing reduce the number of people

who get the disease. By specifying who is immunized or social-distanced, we can

simulate many outbreaks under these conditions. Calculating the size of these out-

breaks allows us to evaluate various vaccine rollout strategies. The results of these in

silica experiments can then inform our choice about what intervention to implement

in reality.

The potential to use models in decision-making raises the stakes for our belief

about how well their behavior mimics reality. From a statistical perspective, spec-
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ifying the dynamics of a model constitutes making a causal assumption about the

behavior of the system. If we want to use models to make decisions about policy in-

terventions, we must remain confident that models meaningfully represent the world,

as ,isspecification of our model could lead to sub-optimal decisions. Moreover, bias

in our model specification could result in biased outcomes that disproportionately

favor some parts of the system over others. Hence, we should approach model-based

decisions with caution and be able to account for our inevitable inability to represent

the true dynamics of our system perfectly.

This thesis focuses on the potential for using complex systems models in decision-

making. How can we feel confident that our models do not lead us astray or introduce

bias in our decision-making? What are the stakes for model misspecification? To

explore these questions, we focus on models of spreading processes on networks, as

they provide a prototypical example of the complex network-dynamic behavior that

we experience in many real-world policy systems.

In the remainder of this chapter, we first introduce models of network spreading

dynamics. We then introduce a series of intervention design problems that apply

when considering interventions on spreading dynamics and close by highlighting the

challenges this thesis seeks to address.

1.1 Dynamical processes on networks

Many complex systems are comprised of many entities, which we refer to as agents.

These agents are often people but could equivalently be a huge range of other elements,

such as firms, countries, and governments in economics; proteins, cells, organisms, or
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species in biology; servers, and robots in autonomous systems. Each of these agents

maintains an internal state X and interacts with the world according to its state and

that of other agents in the system. In some systems, the state of any individual agent

depends on the state of every other in the system. In others, however, the behavior

of the system is distributed, meaning agents depend only on a small subset of others.

Consider the example of a group of people deciding whether to attend a social

gathering. Each individual will decide to attend based on whether they think others

will also be in attendance. However, we could reasonably assume that not every

individual’s decisions matter. Any given individual primarily cares whether their

friends will attend the party. Their behavior depends less directly (if at all) on those

they do not know. We refer to the specific ways in which agents’ behaviors depend

on each other as a network. In social contexts, the meaning of a social network is

clear; each individual has a friendship connection to others in the network. The

study of social networks—which reaches back to the 1930s [2] but proliferated in the

1970s—arose to study the strong patterns in the way we form friendships.

Beyond friends, sociological research on networks extends to a wide range of social

and cultural processes, including the adoption of beliefs [3], the diffusion of innova-

tions [4], information spreading [5], consensus and group decision-making [6], market

behavior [7], and science [8] [9]. More recently, in the late 1990s and early 2000s, re-

searchers from applied mathematics and statistical physics have expanded the scope

of network science to an even larger range of systems such as the internet [10] [11],

the brain [12], food webs [13], power grids [14] [15], and many more. The diversity

of systems exhibiting such similar structures has led network scientists to explore the

potentially universal role that network structure plays in the behavior of systems,
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such as scale-free properties [16] and critical behavior [17].

Networks can be represented mathematically by a graph G = (V, E). Each node

i in the set V refers to a specific agent in the system. Similarly, we use a pairwise

edge (i, j) to signify that the state Xi of agent i influences that of agent j. The set

E of all such pairs, along with the node set V , fully defines the graph.

The set of nodes that share an edge with node i is referred to as the neighbors of

i, which we denote ∂i. Dynamically, this means that i’s state Xi is a function of the

states of its neighbors X∂i, which we write

Xi = fi(X∂i). (1.1)

The notion that states influence each other has many interpretations. In some cases,

the states are correlated because some physical entity is literally spreading across

the network. This is true for the spread of a disease, where an interaction between

two agents leads to one infecting another. Another example of this type is power

grids, where power is distributed across terminals, and energy available to one node

is related to how much energy is distributed to it through its neighbors. A second

interpretation is that of influence, where an individual agent updates its own state in

response to others. Opinion dynamics is a common example, where an agent adjusts

their opinion because of exposure to the opinions of their neighbors. Regardless of

the interpretation, Eq. 1.1 abstractly defines a network dynamical process.

The discipline of network science seeks to understand the way dynamics on a

network are affected by the particular structure of the network. When all agents

respond to their neighbors in the same way, i.e., fi = f ∀i ∈ V , network structure is

the defining feature of how the states Xi evolve. This assumption is true for models of

5



the spread of disease or information, where we assume the disease spreads according

to some biological mechanism that is (roughly) the same for all individuals. We will

discuss this point further in the next section, where we describe specific models of

spreading processes. The important point is that network structure indeed plays a

critical role in the outcomes of these models.

1.1.1 Contagion models on networks

One important driver of network science research has been its application to the

spread of disease [18], and the last few years of the COVID-19 pandemic have painfully

illustrated the importance of such work. Researchers have used sophisticated net-

work science models to evaluate various intervention strategies [19] [20]. Ironically,

the same pandemic has also highlighted some other important spreading processes.

Throughout the pandemic, misinformation about the nature of the disease spread

rampantly through online social networks. Furthermore, people seemed to adopt pat-

terns of behavior, such as mask-wearing and social distancing, based on the behavior

of their peers. Even policy seemed to spread throughout the network as govern-

ments searched for the right intervention strategies [21]. COVID-19 also impacted

the economic sphere, where the fragility of supply chains became apparent [22] [23].

Mathematical models of spreading processes trace their origins to a model of epi-

demics put forth by Kermack and McKendrick in 1927 [24]. A common simplification

of their model, which nonetheless contains all the relevant details, is known as the

SIR model, so-called because individuals could occupy one of three distinct states:

susceptible (S), infected (I), or recovered (R). Susceptible agents can be infected,

infectious agents can recover from the disease, and recovered agents are resistant to
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further infection. The SIR model assumes that all individuals in a population in-

teract randomly, meaning the chance that a susceptible individual interacts with an

infected individual is proportional to the fraction of infected individuals in the popu-

lation. This assumption is known as random mixing and implies that each individual

in the population is identical. Because this infection probability depends only on the

average state of the system, the SIR model is known as a mean-field model.

To understand the SIR model formally, let S(t) and I(t) represent the fraction of

susceptible and infected individuals in the population, respectively, at time t. During

each interaction, susceptible individuals come into contact with an infected individual

with probability I(t). Those susceptible individuals that are exposed to an infectious

individual become infected with probability β, a parameter that specifies the conta-

giousness of the disease. Hence, the total probability that a randomly chosen indi-

vidual is infected at time t is the probability they are susceptible, S(t), multiplied

by the probability they interact with an infected individual I(t) multiplied by the

probability that they are infected β. Additionally, a fixed proportion α of infected

individuals recover from the disease at each time step. Using the above logic and

benefiting from random-mixing, we can write the straightforward set of differential

equations that completely describe the average state of the system:

dS

dt
= −βS(t)I(t)

dI

dt
= βS(t)I(t) − αI(t)

(1.2)

The problem with the standard SIR model is that random mixing is an unrealistic

assumption. Network science expanded on this model by letting the same SIR dy-

namics take place on a network. Now, at each time step, newly infected individuals

7



0 200 400

Time (t)

0.0

0.1

0.2

0.3

O
ut

br
ea

k
si

ze
〈I

(t
)〉

Random graph

Planted partition graph

Small world graph

Scale-free graph

Figure 1.1: An SIR process on three graphs with the same density of contacts: 1000
nodes and 5000 edges. The same process shows extremely different results depending on
the contact patterns of individuals in the network.

infect their neighbors with a fixed and independent probability β. If we design our

network such that connections between individuals are completely random, we recover

the behavior of the randomly mixed SIR model. However, if we introduce structural

features observed in real-world networks, we observe vastly different behavior to the

randomly mixed case, as shown in Figure 1.1.

The network SIR model is the foundation for a great many model variations that

capture additional detail. For example, not all individuals are equally susceptible to a

disease nor likely to infect another. Most generally, the probability of spread when two

individuals interact is some function of the properties of both individuals and their

interaction. We can represent this by defining the probability of transmission between

two nodes i and j as βij. Another implicit assumption in the mean-field SIR model is

that the number of recoveries in the system for a given time interval is proportional

to the number of infected individuals in the system. This assumption is necessary
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to make the mean-field SIR model Markovian and therefore amenable to description

by differential equations. By implication, the recovery time for a randomly chosen

individual follows an exponential distribution—which has this Markovian property.

Moreover, the most likely common recovery time is zero, an unlikely assumption

in practice. We can relax this assumption by assuming a general distribution of

recovery times. For our purposes, we will assume that the recovery time is constant

(i.e. described by a constant random variable). While this assumption is also not

perfectly realistic, it does represent an improvement over the exponential recovery

times. Furthermore, it provides a great deal of mathematical convenience. In the next

section, assuming constant recovery times will allow us to make an exact equivalence

between the SIR model and another mathematical process known as bond percolation

[25, 26]. Studying the spreading processes as a percolation will thus provide helpful

insights into the system’s behavior.

1.1.2 The independent cascade model

Percolation was originally studied in the context of liquid trickling through a porous

solid, such as rocks. If the solid was porous enough, a path through the solid would

allow liquid to percolate through it. One example is found in brewing coffee, where

water fails to percolate through coffee if it is ground too finely or tamped down too

hard. Mathematically, such problems were studied on regular lattices, where sites

were randomly removed from the lattice to signify the presence of a solid that prevents

any flow. With no sites on the lattice, the liquid will flow perfectly; with every site

occupied, no liquid will percolate. Such processes demonstrate a phase transition [27].

That is, the lattice would percolate only when the fraction of randomly removed sites

9



was below a certain value.

A similar process can be defined on networks. While site percolation considers

the removal of nodes, we consider bond percolation, where edges are removed with

probability 1 − p. If p is low, most edges will be removed, and the network will

be broken apart into many disconnected components. With a high p, the network

will stay largely connected to each other. On networks, we observe a similar phase

transition, where there exists a critical value pc that characterizes the transition.

It turns out that the process of percolation also maps exactly to the spreading

processes of the following model. We choose a node at random to act as the seed of the

contagion. This seed node infects each neighbor with probability p. In the following

time step, each of these neighbors infects their remaining neighbors (besides the seed

node) with probability p. The process proceeds until all nodes have been infected or

no infections occur in a time step.

Such a spreading process is equivalent to the model of percolation in the following

way. Create a random instance of the percolation process by removing each edge in the

network with probability 1 − p. The remaining configuration will contain only edges

that have (or could have) spread the disease. All that remains is to randomly choose a

seed node and observe which nodes are reachable (via an edge) in the given instance

of the percolation process. This mapping allows several convenient mathematical

advantages, which we’ll see in Chapter 2.

The model can be further expanded by removing an edge connecting nodes i

and j with probability 1 − pij instead of with the uniform probability 1 − p, thus

leading to much more variable and diverse dynamical outcomes. This more general

model is often referred to as the independent cascade (IC) model [28, 29] because the
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probability of spread through each of the network is independent of all others, though

heterogeneous.

For the purposes of this thesis, we consider the only case of a fixed p for all edges.

We note again that this restricted model is quite general, being equivalent to SIR-

processes when the recovery times are constant [25]. When this assumption fails, the

mapping is still quite good, if not exact, in most regimes [26]. Hence, our results

should have broad applicability to disease models on networks.

Beyond the spread of disease, many other types of contagions exist. In particular,

nodes might modify their state based on the state of more than one of their neighbors.

Rather than a node updating its state to I with probability p each time a neighbor

becomes infected, we say that a node updates its state I based on the states of all

its neighbors. One example of such a model is the k-threshold model, which requires

that at least k of an individual’s neighbors become infected for an agent to become

infected [30, 31, 32]. Such models are often used to describe the spread of behavioral

and cultural norms, where individuals seek to adopt behaviors more tentatively. For

the purposes of this thesis, we consider only the independent cascade model and leave

the exploration of these other dynamics to future work.

1.1.3 The outcomes of contagion models

Now that we’ve described the dynamics of contagion models on networks, we can now

turn to describing the outcomes of these processes mathematically. Unlike the mean-

field SIR model, the precise outcome of a spreading process is not determined simply

by the fraction of individuals in each state. We first define the end of a contagion

process as the moment when the number of new infections reaches zero, at which
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point no further nodes can become infected. Let X be the final state of the nodes

as a result of a stochastic spreading process. For each node, let Xi be the infection

status of node i, which can be defined as a boolean random variable

Xi =


1 i is infected,

0 i is susceptible.

(1.3)

We are most often be interested in the average state of a node over many instances

of the process, which we describe as the marginal probability of infection

πi =
∑
X

XiP (X), (1.4)

where P (X) is the probability that particular outcome occurred. The expected pro-

portion of infected individuals at the end of the process is

⟨I⟩ =
∑
X

∑
i

XiP (X) =
∑

i

πi. (1.5)

These expected quantities are easy to write down but difficult to compute in practice.

The support for X is a large space, with 2n possible states, where n is the number

of nodes, making exact calculation of these quantities seemingly impossible. To over-

come this difficulty, we can rely on Monte Carlo sampling, meaning we run a large

number of simulations and make the approximation

⟨I⟩ ≈ 1
N

N∑
k=1

∑
i

X
(k)
i , (1.6)
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Figure 1.2: The distribution of outbreak sizes for a SIR process on an Erdős-Réyni network
of N = 150 nodes and edge density p = 0.05 over 104 simulations.

where X
(k)
i is the outcome on sample k. In Chapter 2, we’ll develop a fast algorithm

that allows us to estimate these quantities more efficiently.

In Chapter 3, we take another approach to avoid sampling altogether using the

technique of message passing, which will allow us to calculate the expected value

analytically. Such a technique will be useful when we test various interventions for

the spreading process, where we’ll need to calculate the values of equation 1.5 for

many possible intervention candidates. We now turn to the problems that make such

testing necessary.

1.2 Node importance in networks

Given a spreading process on a social network, it is often the case that some nodes

have considerably more influence on the outcome of the system than others. We can

imagine that a meme shared on social media by a celebrity is far more likely to spread
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than the same meme shared by an average person. Determining which nodes have an

outsized influence on the system is referred to as node importance. Broadly, notions

of node importance fall into two categories: structural importance and dynamical

importance.

Structural importance refers to nodes that are important with respect to the way

nodes are connected to each other–their structure. For example, we might assume

that nodes with many connections are much more important than those with few

connections. This definition makes sense in the context of an online social media

platform, where we might deem users with millions of followers more important than

those with a few dozen. The number of a node’s connections is called its degree, and

the ranking of nodes by this measure is known as degree centrality. Another common

example is to define a node’s importance in terms of the importance of its neighbors.

In the social network context, an individual is important if their personal connections

are also important. This recursive but self-consistent definition of importance is

known as eigenvector centrality [18]. In both these examples, we measure importance

purely based on the structure of relationships between individuals. In doing so, we

ignore the fact that information is continually spread through the network and focus

instead on the structure of the connections through which that information spreads.

By contrast, dynamical importance is defined with respect to a specific dynami-

cal process happening on the network. Furthermore, dynamical importance can be

defined with respect to some objective about the outcome of the dynamical process

that takes place in the system. Though structural features should give an indication

of a node’s importance in a dynamical process, they do not have all the informa-

tion about the underlying system. As such, structural importance has been shown
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to be an imperfect predictor of dynamical importance for general notions of network

dynamics [33].

1.2.1 Notions of dynamical importance in net-

work epidemiology

A definition of importance depends again on what one might hope to achieve with an

intervention. Returning to the spread of disease on a network, consider three distinct

but related notions of dynamical importance, as described in [34].

Suppose we have only k doses of a vaccine available to protect against an outbreak.

Which nodes should receive the vaccine so that when an outbreak occurs, its total

size is minimized? This problem is known as targetted immunization.

Our second notion of dynamical importance concerns the case where we have

resources to surveil a subpopulation of k nodes, such that when one tests positive for

the disease, we detect the presence of an outbreak. Naturally, we should choose a set

of nodes that are likely to be infected early on in the spreading process. This problem

is known as sentinel surveillance.

Our third notion of dynamical importance concerns the search for nodes that are

best at spreading the disease widely through the network. Most often, this problem

is considered not in the context of epidemics but for viral marketing, where the goal

is to maximize the spreading through the network. More concretely, which set S of

k nodes will lead to the largest overall outbreak on average? This problem is known

as influence maximization. While this notion of importance differs from targeted

immunization, we might expect that influential spreaders are also the nodes we should
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immunize. We’ll discuss the relationship between different notions of importance in

Chapter 2.

1.2.2 Optimal interventions

These three definitions of dynamical importance imply the existence of a quality

function that allows us to compare the quality of different intervention sets. This

quality is defined with respect to the outcomes of the system. In the context of

resource-constrained interventions, an intervention set S of k nodes, chosen from

the n possible choices, that receive some treatment. For example, if we are doing

vaccination, the outcome on which we should evaluate the quality of S is the total

outbreak size ⟨I⟩, which we want to be as small as possible.

In the context of resource-constrained interventions, our decision constitutes choos-

ing a set of k nodes from the n possible choices. The number of possible sets is
(

n
k

)
,

a huge space that is computationally infeasible to search exhaustively. (It grows ex-

ponentially with system size when measured in bits.) The problem of choosing k

dynamically important nodes is a challenging and nonlinear combinatorial optimiza-

tion problem.

A number of global optimization strategies can be used to address problems, such

as simulated annealing and evolutionary documents [35]. In addition, some approx-

imation algorithms exist in special cases, such as a greedy algorithm that provides

1 − 1/e–approximation for the problem of influence maximization. For our purposes,

we adopt this greedy algorithm for efficiency and consistency across problems. While

the focus of our work is not on the optimization itself, it is worth noting that opti-

mization poses a challenge for problems of this type.

16



1.3 Model misspecification

Our ability to find optimal intervention problems is founded on a perfect knowledge of

the problem’s key parameters, such as the network structure and dynamics. We now

turn to the issues that could potentially arise if we misspecify the network dynamic

model and ways to tackle them.

One possible way of handling modeling specification is through statistical infer-

ence. If we can quantify uncertainty about the parameters of our model, decision-

makers have an adequate tool to use the model confidently and with knowledge of

the quality of its predictions. Ideally, we could gather a wealth of data on the system

to learn the parameters of the model. In the case of epidemiology, such a procedure

would involve inferring two things: (1) the structure of the physical contact network

that provides pathways for the spread of the disease and (2) the parameters of a

model that shows how people get infected when contact between a susceptible and

infections individual occur. Particularly with the latter, making reliable inferences of

the infection rate (or equivalently, the effective reproduction number R0) is extremely

challenging to do in practice. The first problem is that we usually only have summary

statistics, such as number of counts per day, and do not have the underlying specifics

of how the disease spreads. The second problem concerns the computational infea-

sibility of writing down a closed-form likelihood for the system. In practice, fitting

these models to data requires some kind of likelihood-free inference, which requires

an extreme number of numerical simulations [36].

To make matters worse, there often exists an even more fundamental problem.

These models are not usually identifiable with the data available to us. Often, with
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policy issues, we only have access to summary statistics and aggregated data, which

is usually insufficient to infer the exact underlying mechanisms of the system [37].

For the spread of disease, the data collected on who is infected is often far too noisy.

Unlike the computational issues, the limitations of the model and data cannot be

surmounted by brute force. Supposing we can improve on these methods, it remains

a challenge to use the parameter uncertainty to make decisions. We return to such

questions in Chapter 4.

1.4 Contributions of thesis

The goal of this thesis, broadly speaking, is to study node importance under problem

uncertainty. In doing so, however, our work sidesteps the inference problem alto-

gether. Instead, we attempt to provide insights to decision-makers in a different way,

by exploring the structure of the decision space. Suppose there exists an intervention

that is optimal regardless of the parameter space in question. Such a scenario is good

news for decision-makers since failing to infer the correct model parameters would not

lead to any loss of quality for the intervention. More generally, robust interventions

are those that work well in a variety of dynamical contexts. Finding robust solutions

is somewhat related to other mathematical tools, such as sensitivity analysis, where

we focus on finding how small changes in the model’s specification affect outcomes,

both qualitatively and quantitatively. However, our work focuses not only on how

the model outcomes themselves change but how optimal decisions change.

In 2, we consider the robustness of interventions in the context of network epi-

demiology. Doing so requires finding the optimal decision for the entire parameter
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space. Such optimization is challenging to do efficiently when testing and evaluat-

ing the quality of different interventions holds the same computational challenges as

using them for statistical inference. In Chapter 3, we explore the possibility of test-

ing the quality of interventions more efficiently with an applied probability theory

technique known as message passing. We expand the existing literature on message-

passing techniques for disease dynamics, making them suitable for probing the kinds

of questions explored in Chapter 2. We conclude by examining how a full uncertainty-

aware decision-making pipeline would work for network epidemiology and discuss the

possibilities of implementing such a thing in practice.
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Chapter 2

Evaluating node importance in the

face of model errors

An information-rich and networked society offers countless opportunities to make

targeted yet impactful interventions, from micro-targeting campaigns designed to af-

fect small behavior changes to large-scale immunization campaigns aiming to contain

emerging contagions. Ample theoretical and applied work has taught us how to se-

lect these interventions effectively, with results collected under the broad umbrella

of “nodal importance problems” outlined in Chapter 1. In importance problems, we

model a system of interest as a graph whose edges support the transmission of a

contagion—of information, of behavior, or of a pathogen. We then imagine spending

a limited budget to select dynamically important nodes which, when targeted with an

intervention, will modify the system’s outcome. Perhaps most famous among these

abstract problems is influence maximization [38], where the goal is to seed a subset

of nodes with information so as to maximize the extent of a contagion [39]. But

influence maximization is just one example of dynamical importance [34]; see Fig-
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ure 2.1. In the context of epidemiology, we may seek to limit the spread of a disease

by means of targeted immunization [40]. Yet another possible objective may be sen-

tinel surveillance [41], where we choose a subset of nodes to monitor such that we may

detect an outbreak as soon as possible when it occurs. Thus, a robust understanding

of dynamical importance can guide interventions in distributed systems of all kinds,

including financial systems [42, 43], supply chains [44], power grids [45], the spread

of information on social media [46], and, of course, marketing [39].

As we have alluded to in the introductory chapter, nodal importance is largely a

solved problem. On the modeling side, we know of numerous models that incorporate

dynamics believed to emulate real-world spread, whether it be the simple indepen-

dence cascade model [28, 29] possibly with assortative propensity for spread [48], or

complex behavior requiring, for example, adoptions by a certain fraction of an indi-

vidual social circle to move forward [49, 30, 32, 50]. On the optimization side, we

now know of several algorithms of varying degrees of complexity and accuracy, thus

allowing intervention designers to trade off compute and results’ quality [51]. For

instance, a greedy approach to influence maximization is known to cheaply [52] pro-

vides a 1 − 1/e approximation to the optimal solution of the NP-Hard problem of

finding a set of k maximally influential nodes [38]. At the other end of the spectrum,

an exhaustive search finds truly optimal solutions though its run-time scales expo-

nentially with problem size. And various meta-heuristics—like neighbor-hop-based

genetic algorithms [35], divide and conquer strategies [53], or simulated annealing

searches [54]—strike a balance. In a pinch, one can even use structural methods that

exploit a correlation between the structural and dynamical importance of nodes to

construct cheap solutions (though this correlation can be weak [33]).
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Figure 2.1: Dynamical importance problems on networks. Each panel shows the
same social network of 362 Facebook users [47], and highlights different sets of dynamically
important nodes in red. For influence maximization and vaccination (left), the optimized
outcome is the expected outbreak size ⟨I⟩ =

∑
i Ii where Ii is the marginal probability that

nodes i become contagious at any given point. These marginal probabilities are shown as
shades of blue. For sentinel surveillance, the minimized outcome is the expected infection
of the important nodes, ⟨ti⟩. The bottom-right panel shows the expected outbreak size over
a range of infection rates ϕ = p/pc, where pc is the critical threshold of the dynamics in the
absence of an intervention.
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A rich landscape of methodological work on nodal importance thus begs the ques-

tion of why these methods have not been deployed more visibly and widely. One

reason is possibly the wide gap between models and the real world: Models can be

misspecified, and correct specifications matter for optimal interventions [48]. Misspec-

ification can lurk in the structure [55] or dynamical model parameters [56, 48, 50],

or both [57, 55]. So-called “robust nodal importance” problems have thus attracted

growing attention, particularly the influence maximization; see Ref. [57] and refer-

ences therein for an overview of algorithms designed to circumvent adversarial and

random noise. Another reason for the lack of widespread deployment of nodal im-

portance techniques could be uncertainty around what one should even optimize for.

Superspreaders are not necessarily good immunization targets [58, 59], and super-

spreaders may not be good targets for networked surveillance. And thus, optimizing

for the wrong facet of a node’s dynamical importance may lead to incorrect interven-

tions [34].

This chapter addresses the problem of dynamical node importance under mis-

specification of the model and optimization objective. Our approach is empirical

rather than theoretical. Hence, instead of designing robust objectives with worst-case

guarantees in mind, we use a simulation on empirical networks to check how various

decisions fare, on average, when they are determined using incorrect assumptions. In

doing so, we are following in the steps of Holme [34], who used a similar methodology

to highlight the various faces of node importance in small networks (n ≤ 7 nodes).

Unlike Holme, however, we scale that analysis to realistic networks whose structure

is determined by human behavior. This comparison study is made possible by new

fast Monte Carlo simulation techniques developed by adapting the Newman-Ziff per-
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colation algorithm described in Ref. [60].

2.1 Methods

2.1.1 Dynamical importance

The goal of a dynamical importance problem is to find nodes that have an outsized

influence on the outcome of some spreading process on a network. Here, we will

consider that contagion is governed by the independent cascade (IC) model [61, 29,

38]. Recall from Chapter 1 that IC is a simple spreading process in which a cascade

spreads along an edge connecting active node i and inactive node j with probability

pij (this outcome is determined independently for all edges). Each edge is only given

a single chance of spreading the contagion, and this stochastic process stops once no

new nodes are infected. It has been shown that these dynamics map to the static

problem of edge percolation for both continuous [62] and discrete time. Hence, this

model applies to a wide range of applications. For simplicity, we consider only the

case when all edges have an equal probability of spreading the contagion, i.e., pij = p

for all edges (thus yielding a bond-percolation process [25]), but all the methods

presented here can be easily extended to the general case.

With the spreading dynamics fixed, we focus on quantifying how a set of nodes

is deemed important [34]. We do this by considering sets of nodes as intervention

targets and associating types of interventions with different notions of importance.

For influence maximization, we activate the nodes in S at the beginning of the
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cascade. A set’s quality is then given by the expected average outbreak size

⟨I(S)⟩ =
n∑

i=1
Ii(S), (2.1)

where Ii(S) is the marginal probability that node i becomes infected when the con-

tagion is seeded with S. A set is deemed more important when it leads to larger

outbreaks, and influence maximization is thus the problem of finding

Ŝ = argmax
S∈Sk

⟨I(S)⟩, (2.2)

where Sk is the space of all possible sets of k nodes in a network.

For targeted vaccination, we immunize the nodes in S, meaning that a cascade can

never become activated. We also use the average outbreak of Eq. (2.1) to quantify

a set’s quality, but now compute the marginal infection probabilities {Ii}i=1,...,n by

averaging over random initialization of the cascade at a single node. The goal of

targeted vaccination is then to find

Ŝ = argmin
S∈Sk

⟨I(S)⟩, (2.3)

i.e., the set of nodes that most limit spread when immunized.

Finally, for sentinel surveillance, we simply observe the nodes in S and our goal is

to learn of a cascade as rapidly as possible. We define the expected time to infection

⟨ti⟩ of node i as the average number of time steps before node i becomes infected

when a cascade is initialized at a node chosen uniformly at random from all the set

of all nodes. (When computing this average, we attribute a time to infection of tℓ
max,
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the length of a particular stochastic realization ℓ of the cascade, to nodes that never

get activated [34].) To evaluate the quality of a set, we then define the minimum

expected infection time of S as

t(S) = min
i∈S

⟨ti⟩ (2.4)

and define sentinel surveillance as the problem of finding

Ŝ = argmin
S∈Sk

t(S), (2.5)

i.e., the set of nodes that will learn about a cascade the earliest, on average.

2.1.2 Choosing optimal sets

Finding the best solution among the space of all possible sets of a fixed size k is

a challenging optimization problem. The design space grows as
(

n
k

)
∼ nk with the

number of nodes n, which is exponential in network size when calculated in bits,

and the problem is known to be NP-hard in the case of influence maximization [38]

with IC. We thus employ a greedy method for all three problems to approximate

the optimal sets. For the problem of influence maximization, this method provides

a 1 − 1/e–approximation to the optimal solution since the objective function (2.1)

is submodular [63, 38]. While no such guarantee exists for vaccination or sentinel

surveillance, we use the greedy solution for consistency of the comparison.

The basic greedy algorithm works by iteratively building the intervention set. We

begin by evaluating the quality of each node individually, yielding the best set of
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size k = 1, which we label S1. Formally, we proceed by adding the node that most

improves the quality of the existing set as

Sk = argmax
i/∈Sk−1

f(Sk−1 ∪ {i}). (2.6)

where f : S → R is the relevant objective (e.g., outbreak size for influence maximiza-

tion, and −1 times the outbreak size for targeted vaccination). Each stage of the

greedy algorithm requires testing the quality of each of the n − (k − 1) sets, which we

do by averaging over T realizations of the spread process, as described above. If we

require T realizations per set, each stage of the greedy algorithm requires ≈ O(nT )

simulations. (We assume a set of constant size k = O(1) with respect to problem size

n such that we need to inspect nearly all n nodes as candidates at every round of the

greedy algorithm.) The entire algorithm thus requires O(nTk) simulations. Here, we

use T = 105 for influence maximization and T = 103 for targeted vaccination and

sentinel surveillance. (But for the latter two, we also average over seeds, e.g., over

n = 362 starting location for the network of Facebook users shown in Fig. 2.1, thus

leading to a similar number of simulations)

2.1.3 Efficient Monte Carlo

Computing the averages in Eqs. (2.1) and (2.4) is the major bottleneck for practical

importance problems at scale, and some optimization steps are worth taking. Hence,

we modify a fast algorithm originally developed to simulate bond percolation [60] to

all three importance problems. Our method takes advantage of a well-known mapping

between (1) the final outcome of the dynamical process described by the independent
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cascade model and (2) the static process described by bond percolation, in which a

fraction p of a network’s edges are chosen to be active [64]. Indeed, we can think of

the edges used to transmit a cascade as the active edges of a bond percolation. As

such, if we list the nodes reachable from at least one seed in a realization of bond

percolation on a network, we have effectively run a Monte Carlo simulation of the IC

model.

The mapping between IC and bond percolation does not provide us with a faster

way to simulate IC in and of itself, but it allows us to leverage Newman and Ziff’s

fast percolation algorithm for IC [60]. This algorithm builds on the insight that a

particular percolation instance can be augmented by a single extra edge to provide

an additional data point—as in: another Monte Carlo simulation—nearly for free.

This thus shifts the Monte Carlo paradigm from simulating IC many times, with

each simulation costing O(m) operations where m is the number of edges, to create

a series of correlated percolation instances by adding one edge at a time (yielding

m instances for roughly the same costs of O(m) operations). All the bookkeeping

necessary to make this approach work can be made efficient with a union-find (also

known as disjoint-set) data structure, which is designed to maintain a collection of

growing and merging sets while allowing for efficient retrieval [65].

The algorithm goes as follows [60]. First, we start with all edges removed (inactive)

from the network. Each node is initially assigned a unique label to track its cluster,

signifying that each node is in its own cluster. We then add each edge to the network,

one at a time and in random order, using the union-find data structure to keep track

of which node is in which cluster. A union operation is performed each time a newly

added edge joins to nodes that were previously part of different clusters. We continue
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the algorithm until all m edges have been added to the network. We repeat the whole

process a number T times, yielding a total of mT percolation instances, m for each

sweep of the algorithm.

When it comes time to compute averages over the instances (e.g., of the outbreak

size), we need to correct for the fact not all of these samples are equally likely un-

der bond percolation or IC. Indeed, for any particular instance of percolation, the

probability it has exactly x ≤ m edges follows a binomial distribution of mass

Pr(m = x|p) =
(

m

x

)
px(1 − p)m−x (2.7)

We can thus compute averages of functions f(·) of percolation realizations by taking

the expectation

⟨f(S)⟩ ≈
T∑

t=1

m∑
x=1

f(Ωxt)Pr(m = x|p), (2.8)

where Ωxt is a percolation instance with x edges at the tth sweep of the algorithm.

We note that our samples are correlated since edges are added sequentially. However,

each sweep is drawn independently and identically from this process because we add

each edge in a randomly chosen order. Hence, when we run many sweeps, correlations

wash out, and the overall effect is an improved efficiency for calculating the average

⟨f(s)⟩.

This simulation strategy works to evaluate Eqs. (2.1) and (2.4) directly in the inner

loop of a greedy maximization algorithm, but it turns out we can solve importance

problems with a greedy search more efficiently if we mesh Monte Carlo simulations

and union-find more tightly.

For influence maximization, we note that the cluster membership of each node
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and the size of these clusters can both be queried cheaply from the union-find data

structure and that computing the total outbreak size for a seed set merely requires

summing the size of all clusters that include at least one of the seed. Hence, we

can compute the change in average quality f(Sk′−1 ∪ {i}) of all n − (k′ − 1) possible

updates to the greedy solution simultaneously as we run a sweep, with the quality of

given seed set changing only when a seed in involved in a merge.

We can use a similar technique for the targeted vaccination problem, though we

now need to account for the fact that each instance of the spreading process requires

choosing a node as the seed. As we run a sweep, we now track the average outbreak

size starting from all n− (k′ −1) seeds (vaccinated nodes cannot be seeds) and simply

forbid the addition of vaccinated nodes to clusters. Aside from the minimal overhead

required to save and retrieve the outbreak size for each seed, this is a nearly O(n)

speed-up.

The application of these ideas to sentinel surveillance is less straightforward be-

cause the union-find algorithm does not explicitly account for the time in which a

node is infected, but rather whether a node will be infected when the infection is

seeded at a particular seed. We solve this problem by maintaining an additional data

structure corresponding to the actual infection tree that occurred on the network, as-

suming the initial seed was node i. Lengths of shortest paths in this tree correspond

to infection times in a particular realization of IC. Once we have the tree, we can test

all surveillance sets easily, taking the minimum infection time of each node in the set.

To maintain the tree, we initialize it with an infection time of ∞ for all nodes except

the seed i, which has infection time t = 0. As we add edges to the network, we check

whether the shortest path to the seed node i has improved through the addition of
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this edge. (This can be done by checking the infection time of the node on either end

of the new edge, which should be equal or differ by at most one.) If so, we propagate

this information through the infection tree until the infection times are consistent,

which we do recursively by going through a stack of pairs of connected nodes with

inconsistent infection times.1

2.2 Results

Given a network, our general strategy for testing the impact of misspecification on

intervention efficacy will be to (1) construct an optimal intervention Ŝ with a greedy

approximation to Eqs (2.2),(2.3) or (2.5) with an assumed transmission probability

p, and (2) check whether the intervention Ŝ can be transferred to a different problem,

i.e., a nodal importance problem defined by a mismatched optimization target or the

wrong transmission probability p′.

For the purpose of this Chapter, we will focus our analysis on the small anonymized

ego network of 362 Facebook users shown in Figure 2.1, whose nodes are profiles

and edges are Facebook friendships [47]. Preliminary results show that our results

generalize to networks of an entirely different kind, such as infrastructure networks

(e.g., the Internet at the autonomous system level) and transportation networks (e.g.,

highly connected airports).
1This update is typically cheap, though it is possible to construct adversarial updates that need

to be propagated to as many as O(n) nodes, say when a new edge transforms a path of n nodes
whose end node is the seed into a cycle, in which case a full half of all nodes will receive a new
infection time.
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Figure 2.2: Evaluating quality loss on all pairs of problem instances. The qual-
ity loss (Eq. 2.9) measures the degree to which assuming the wrong problem during the
optimization results in a loss of quality during evaluation; this quantity is asymmetric
by construction. On the horizontal axis, we show the true importance problem instance
(maximization objective and transmission rate), while the horizontal axis represents the
importance problem we incorrectly assumed during evaluation. The plots on the diagonal
(bottom-left to top-right) show comparisons between problem instances within the same
importance problem but with varying incorrect transmission rates assumed (except on the
very center of that diagonal, where problems are correctly matched). The off-diagonal
plots make comparisons between problem instances with varying rates when the impor-
tance problem has been misspecified. For example, consider the top-left heatmap, where
the true importance problem is influence maximization. If S∗

sent is the optimal set for the
problem of sentinel surveillance at relative infection rate ϕsent and S∗

inf is the optimal set at
ϕinf , the heatmap shows the value finf(S∗

sent) − finf(S∗
inf). These results are computed using

the network of Facebook users shown in Figure 2.1.
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2.2.1 Robust outcome at the edge of criticality

Our first set of results aims to illuminate the quality of interventions constructed with

incorrect assumptions. More precisely, we want to quantify the extent to which the

optimal solution for original problem instance A (defined as an objective function and

transmission rate) is better than the optimal set for incorrect problem instance B,

with respect to the objective associated with problem instance A. If we let S∗
A and

S∗
B be the optimal sets for each problem instance, the quality loss associated with

misspecifying the importance problem is the asymmetric quantity

∆fAB = fA(S∗
A) − fB(S∗

B), (2.9)

where f(·) is: the outbreak size (influence maximization), minus one times the out-

break size (targeted vaccination), and the minimum time to infection counted (sentinel

surveillance). This metric is not only useful for quantifying performance loss across

importance problems but also for evaluating the cost associated with misspecifying

the correct dynamical parameter for a single importance problem.

Figure 2.2 shows our results, the quality loss ∆fAB for all possible combinations

of problems and transmission rate. We use a budget of k = ⌊
√

n⌋ = 19 nodes for this

analysis. We measure this transmission rate as a multiple ϕ of the critical threshold

pc ≈ 0.043 in the absence of intervention.2

Focusing first on the diagonal, where problems are compared to themselves, we

see that we consistently find ∆fAB ≈ 0, indicating unsurprisingly that optimizing
2There is arguably no critical threshold in finite systems, so we use the susceptibility of the

percolation process to detect a finite-size analog [66].
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under correct assumptions is the best thing to do. In fact, there is a relatively

generous region around this diagonal where the quality loss is nearly 0, indicating

that getting the transmission rate wrong is not dramatic if we’re not off by much.

That said, we also observe a roughly block-diagonal structure in the case of influence

maximization, where assuming a sub- (super-) critical process leads to a dramatic

reduction in performance.

This sub- versus super-critical distinction becomes key once we move off the di-

agonal and compare entirely different problems. For example, when we evaluate

important sets on the influence maximization task, any sets of nodes found with a

low assumed transmission rate perform well if the true transmission rate is also low—

even if they are found for different purposes, such as sentinel surveillance. This is

due to the fact that outbreak size is very small in this regime, such that nearly any

intervention is likely to result in a similar outbreak. As such, the solution is not

transferable to influence maximization with a much higher transmission rate.

Importantly, we find that the most influential nodes found with ϕ ≈ 1—i.e.,

when the contagion is at the proverbial edge of criticality—seem to work across all

problems. This finding thus suggests a possible empirical strategy for practical nodal

importance: simply find influential nodes with ϕ ≈ 1 and transfer the solution to

vaccination or sentinel surveillance—a rare trifecta of objective satisfied by the same

decision.

2.2.2 The composition of optimal choice sets

Having compared the quality of solutions, we now turn to the solutions themselves.

Is there anything particular about the selected nodes? Are the sets of optimal nodes
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Figure 2.3: Similarity of optimal sets within an importance problem. Each
plot shows the similarity (Eq. 2.10) of the optimal decision set for all three importance
problems when this set is found for a relative transmission rate ϕx versus when found with
a different transmission rate ϕy. The importance problems are: (a) influence maximization
(b) sentinel surveillance, and (c) vaccination. These results are again computed on the
network of Facebook users, shown in Figure 2.1.

similar at all?

As a means of capturing nuanced notions of similarity between sets of nodes

(S, S ′), we use a network-based metric based on minimum distances, defined as

D(S, S ′) = 1
k

max
π∈P

[∑
v∈S

1
1 + d(v, π(v; S ′))

]
, (2.10)

where d(u, v) is the length of the shortest path between nodes u and v (defined as

0 if u = v and as ∞ when there is no such path), and where π(v; S ′) is a bijective

mapping between every node v ∈ S to a node in S ′ and P is the space of all such

mapping. Conceptually, we’re searching for a mapping π that minimizes the distance

between all nodes and their image (and thus, that maximizes their similarity.) This

metric is a special case of the assignment problem [65], which can be solved using the

Hungarian algorithm in O(k3) [67], and hence poses no computational challenge in
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Figure 2.4: Similarity of optimal sets across importance problems. This fig-
ure shows essentially the same results as Fig. 2.3—the similarity of solutions to various
importance problems—but compares solutions to different importance problems instead
of comparing problems with itself. (a) Comparison of sentinel surveillance and influence
maximization. (b) Comparison of targeted vaccination and influence maximization. (c)
Comparison of vaccination and sentinel surveillance.

practice since k is typically small.

This metric has the nice property of being defined even if some terms involve nodes

(u, v) that are not connected or that are paired with themselves. It also varies slowly

enough to offer a more granular view of similarity (instead of acting as a 0 − 1 loss

like a Jaccard similarity, which does not distinguish between sets with no common

nodes, regardless of their distance) Finally, it varies from |S| when a set is compared

to itself to 0 if all optimally matched nodes are in different components. 3

Figures 2.3-2.4 show the similarity of the decision sets for all pairs of problems,

as quantified Eq. (2.10). Unlike the performance loss discussed in Sec. 2.2.1, this

quantity is symmetric, and we can thus use six heatmaps to summarize our findings.

Figure 2.3 compares problems with themselves. Focusing on influence maximization
3We note that the metric imposes a somewhat arbitrary scale of what distance matters for the

purposes of set comparison. One could imagine a version of the metric with a tunable exponent,
i.e., 1/(1 + d(i, j)α). Here, we use α = 1 for simplicity.
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first, we see that no optimal set persists for very long when we vary phi—the diagonal

displays a narrow band of similar solutions. Echoing the results of Sec. 2.2.1, we also

notice that the optimal set remains largely the same below the critical threshold

and further that it bears no resemblance to the optimal solution above the critical

threshold.

Interestingly, we see much less variation for the sentinel surveillance and vaccina-

tion problems: All optimal solutions are largely similar irrespective of ϕ. This result

is consistent with the performance loss analysis of the previous section, in Fig. 2.2,

which shows that these two problems are much less sensitive to transmission rate

misspecification.

When comparing different problems, in Fig. 2.4, we see that sentinel surveillance

and vaccination are largely the same (rightmost panel). In line with our previous

results, we also see that the solution to influence maximization is similar to that of

these two problems—when a subcritical regime is assumed for influence maximization.

Taken together, all our observations explain why optimizing for influence max-

imization at the edge of criticality might be a good strategy: Doing so gets us a

solution to influence maximization that can work robustly across transmission rates

for that problem. When we port this solution to the other problems, this solution

remains good regardless of the assumed rate because they are not very sensitive to

rates in the first place.
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2.3 Conclusion

In this chapter, we have studied the impact of model misspecification on the efficacy

of interventions on networks. Using a small Facebook social network as an exam-

ple, we evaluated the performance loss when the problem was incorrectly specified

during the design of targeted interventions. We found that influence maximization

solutions optimized near criticality were robust across all objectives, providing an

empirical strategy for real-world applications where model inputs may be uncertain.

This computationally intensive analysis was enabled by adapting efficient Monte Carlo

simulation techniques to important problems, a contribution in its own right.

Our results demonstrate that, despite inevitable uncertainty, interventions de-

signed with theoretical tools like influence maximization can still prove useful when

applied in practice. We organize avenues for future work in two categories: Empirical

analyses and technical innovations.

On the empirical front, it would be worth expanding this analysis to a larger set

of networks: Do the findings hold up across the spectrum of human behavior-driven

networks? Do significant differences in budgets lead to different findings at all? And

are there structural correlates that can predict nodal importance when it matters—at

the edge of criticality?

On the technical side, it would be interesting to devise new estimators that for-

mally take the type of robustness highlighted here into consideration [50, 68], perhaps

using ideas around Bayesian decision theory. Developing Monte Carlo algorithms for

generic IC models would also be a significant advance, unlocking the possibility of

running more nuanced analyses of robustness (with rich transmission dynamics char-
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acterized by heterogeneous transmission rates.)

Finally, to facilitate the practical deployment of importance problems in scenarios

where the bottleneck is network size rather than the large number of simulations

needed to study robustness, it would be important to develop scalable methods to

evaluate the objective itself. The next chapter addresses this open challenge.
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Chapter 3

Message passing equations for prob-

abilistic, temporal interventions

in spreading dynamics on networks

with loops

Designing good interventions in network dynamics requires evaluating how a large

number of alternatives impact the outcomes of a system. For disease models, this

outcome is the expected outbreak size, which we have thus far calculated using the

sampling approximation of Eq. 1.6. This chapter introduces the method of message

passing, which can be used to calculate the expected outbreak size directly, thus

avoiding the sampling approximation altogether. Our algorithm can be used to test

interventions on networks under a variety of scenarios, including those discussed in

Chapter 2.

For example, our method enables us to test probabilistic scenarios such as partial
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immunity and temporal interventions such as vaccine rollouts or determining the

average quality of a sentinel set. Furthermore, our method can be applied to a

broader class of networks than standard message passing techniques.

We begin this chapter by reviewing the existing literature on message passing for

network epidemiology. We then introduce a series of progressively more sophisticated

passing methods that can be used for tree or tree-like networks, networks with many

short loops, temporal dynamics, and finally network interventions of several types.

3.1 Message passing for network epidemi-

ology

Message passing, as a technique, was first introduced by Bethe in the context of

statistical physics in the 1930s [69] and more recently by Pearl in 1982 as a broadly

applicable technique in computer science [70]. It has since been used for a variety of

purposes in computer science, Bayesian inference, and statistical physics [71]. The

method centers around causal relations between subsets of variables. In many cases,

any single variable is directly caused by only a small number of other variables. For

example, the probability node i is infected directly depends only on the infection

probability of its neighbors, in the sense that the only mechanism for i to be infected

is by one of its neighbors. Since these variables depend on each other in specific

ways, the structure of these interactions forms a network. In this case, the physical

interaction network defined on the set of nodes also represents the causal diagram for a

set of random variables: the marginal probabilities of those nodes. When this network

is a tree, message passing algorithms give exact answers, allowing us to calculate the
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average outcome of the system without resorting to Monte Carlo sampling.

Message passing has been applied to a variety of applications within network

science such as percolation [72], community detection [73], spin glasses [74, 71], and

others [75]. In the context of epidemiology, message passing has been extended to a

dynamical context for general SIR models [76] and recurrent-state (SIS) models [77].

These dynamic message passing (DMP) algorithms accurately represent not only the

final state of the system but also the state of the system over time. Message passing

has also been applied to the problem of optimal vaccination [78, 46].

The traditional message passing framework, as defined in the examples above,

is only exact on trees. In practice, networks that are tree-like—meaning the region

around any given node is a tree—also produce very accurate message passing solu-

tions. Moreover, even when the tree-like assumption is not true, as is the case for

many empirical networks, the tree-like approximation still works surprisingly well in

many cases [79]. However, the networks for which message passing fails most strik-

ingly are those that contain many short loops. These loops are common in social

systems, which tend to have a high degree of clustering. Recent methods have cor-

rected this failure by accounting for short loops explicitly [80, 81]. The message

passing on networks with loops (MPL) framework is the basis of our method, which

additionally combines features from the vaccination framework of [? ] and dynamic

message passing [76, 77].

While we use message passing to test interventions, it can also be used for statisti-

cal inference. In the context of network epidemiology, message passing has been used

to infer the origin of an epidemic [82] from data on the final infection status of each

node. While we do not explore such applications here, the methods we develop here
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could be used to expand the applications of such an inference procedure to networks

with more loops.

Our approach for this chapter will be as follows. We first introduce the message

passing framework for the independent cascade model. We then modify the model to

explicitly account for networks with loops. Finally, we show how the framework can

be used to test interventions and validate those applications empirically.

3.2 An introduction to message passing

equations

Designing a message passing algorithm begins with establishing the set of probabili-

ties whose value we are interested in learning. In the context of network epidemiology,

we want to calculate the expected fraction of infected individuals from a contagion

that has spread via the independent cascade (IC) model, which we discussed in Sec-

tions 1.1.2 and 1.1.3. Recall that under this model, each edge has an independent

probability pij of spreading the contagion. Let Xi be a boolean random variable

that describes the infection status of node i at the end of a contagion process. All

possible outcomes of the system can be represented as a joint outcome distribution

P (X) = P (X1, X2, . . . , Xn) over these node-level variables. From this distribution, we

can calculate the fraction of infected individuals, which can be written as I = 1
n

∑
i Xi,
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and its expected value as

⟨I⟩ =
∑
X

(
1
n

∑
i

Xi

)
P (X)

= 1
n

∑
i

∑
X

XiP (X)

= 1
n

∑
i

πi

, (3.1)

where πi is the marginal probability of infection for node i. The fact that our quantity

of interest can be represented as a sum of marginal expectations is quite useful since

it will be these marginals that we will calculate directly through message passing.

As a starting point, we observe that the marginal πi for node i is simply a function

of the same quantity for i’s neighbors, which we denote ∂i. In other words, suppose we

knew the probability that one of i’s neighbors k would be infected with probability πk.

The probability that i becomes infected due to this node is pkiπk. Naively aggregating

over all neighbors, the probability that i is infected is

πi = 1 −
∏

k∈∂i

(1 − pkiπk) , (3.2)

which can be interpreted as the probability that at least one neighbor has infected

i. This equation is a great start except for one problem: the values πk are unknown.

However, a similar equation can be written for any neighboring node πk, assuming

we knew the values of the marginals for each of its neighbors. The intuition behind

message passing, then, is to write down a set of equations for each of the marginals

πi. These equations should be self-consistent, such that if we found the true marginal

probabilities for each node, all the equations would satisfy each other. In practice,
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once we have this set of self-consistent equations, we can choose any convenient start-

ing value and iterate the equations to convergence.

If we try this approach for Eq. 3.2, we run into several problems, which we will

demonstrate with a simple example. Consider a graph with just two nodes that are

connected by an edge. Let each of the nodes have an initial infection probability of
1
2 , the probability node 1 infects node 2 is p12 = 1

4 , and the probability node 2 infects

node 1 is p21 = 1
2 .

Such a simple system can be solved analytically quite easily by enumerating all

possibilities in the system. We begin by considering all possible outcomes for node 2

and the probability of these outcomes. Node 2 could become infected in one of two

ways: it is either initially infected, or it is infected by node 1. The former happens,

of course, with probability 1
2 . The latter happens with probability 1

2 × 1
2 × 1

4 , which

is the probability that 2 was not infected initially times the probability node 1 is

initially infected times the probability the transmission is successful. All together,

the probability 2 is infected is 1
2 +

(
1
2

)2 1
4 = 9

16 . By the same logic, the probability 1

is infected as 1
2 +

(
1
2

)3
= 5

8 .

Now, we can calculate these same probabilities using message passing. According

to Eq.3.2, the message passing equations for the system are

π1 = p21π2

π2 = p12π1.

(3.3)

Setting π1 = π2 = 1
2 initially, we run message passing to convergence and find that

the self-consistent solution is π1 = π2 = 0, as shown in Figure 3.1b. Clearly, we have

an error.
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Figure 3.1: (a) A minimal two-node network on which message passing algorithms have
been run. (b) Evolution of the message passing solution according to Eq. 3.2. (c) Evolution
of the message passing solution according to Eq. 3.4.

One problem is that Eq. 3.2 assumes node i could only be infected in one way:

through infection by one of its neighbors. In actuality, i could also be infected initially

as a seed of the contagion. These two possibilities are mutually exclusive, which

implies that Eq. 3.2 does not apply when i is initially infected (and hence could

not be infected again). To fix this problem, let the quantity si be the probability

that node i is initially infected and is the seed of a contagion. The updated message

passing equation then becomes

πi = si + (1 − si)
1 −

∏
k∈∂i

(1 − pkiπk)
 . (3.4)

Returning to our simple two-node graph, we set s1 = s2 = 1
2 . The message passing
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equations become

π1 = 1
2(1 + p21π2) (3.5)

π2 = 1
2(1 + p12π1). (3.6)

With si > 0, we now choose to set π1 = π2 = 0, initially. Testing the effect of these

updated equations, we observe something closer to expected. After the first iteration

of the algorithm (Figure 3.1c), both nodes gain additional probability due to the

possibility of being infected by the other. The marginals of each node then continue

to increase and converge to a self-consistent equilibrium, just as expected.

Why did we choose πi = 0? We could have chosen any other value (aside from

π1 = π2 = 1), and the equations would still have converged to the same value. The

reason is that πi = 0 results in marginals that represent the initial state of the system,

before any infections across edges have taken place. This similarity is more than just

a convenience. It turns out that, by setting the initial value of the system in such a

way, the progression of the marginals as they converge to their equilibrium is exactly

equivalent to temporal marginals of the discrete-time system. In other words, the

value of πi after t steps of message passing is exactly πi(t) in the real system. Taking

advantage of this exact correspondence is known as dynamic message passing, which

we discuss more explicitly in Section 3.5.

Consider the example of our two-node system, where πi(0) = 1
2 for both nodes,

which exactly matches the message passing solution. After a single iteration of the

algorithm, the marginals increase directly to their true final values, just as we expect

in the real system. Very often, nodes are infected initially, but sometimes, they may
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also be infected by their neighbor, and the marginals πi(1) reflect this fact. In this

simple two-node system, the contagion process lasts a maximum of one time step,

since if one node infects the other, both are infected and there is nothing else that

could happen.

In light of this dynamic interpretation, Eq. 3.4 has another problem. The

marginals continue to equilibrate after 1 time step of the message passing algorithm,

whereas the dynamic interpretation of message passing suggests that this should not

happen. Once π1 increases due to potential infection from node 2, node 2 now in-

creases its own probability π2 in response to this change. With respect to the true

disease model, this additional update violates common sense. How could π2 increase

due to an increase in π1, when node 2 was the cause of that increase in π1 in the first

place?

In terms of probability theory, the marginal πi represents an aggregate of two

mutually exclusive events, the probability that i was initially infected and the prob-

ability that i was infected by another. When we update the marginal for node 2, it

should not cause a further increase in π1 because the increase was due to a scenario

for which π2 has already accounted (node 2 was a seed). Because of this effect, we

observe a feedback loop where both nodes overestimate their probabilities πi. The

extent of the overestimation is the sum of all the possible paths that are admitted by

Eq. 3.4 but excluded in the actual system. For example, Eq. 3.4 allows for node 1 to

be infected in the following ways:

1. initial infection (→ 1), with probability s

2. path 2 → 1, with probability p21
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3. path 1 → 2 → 1, with probability p12p21

4. path 2 → 1 → 2 → 1, with probability p21p12p12, and so on.

Any of these recurrent paths are incompatible with respect to the disease model and

thus should be excluded. Describing these pathways through which π1 provides some

intuition to the name “message passing”. The messages being passed around the

network are probabilities. Each node sends a message to its neighbors, describing

the probability it has been infected. The feedback loop described above is known as

backtracking, where messages that have traversed an edge of the network then have an

effect that traverses that same edge in the opposite direction. Because backtracking

effectively creates marginal probability where it should not, we will try to mitigate

its effects.

To adjust for backtracking, we would like the “message” that j receives from its

neighbor i to contain only the probability that node i has been infected by some other

source than j itself. We denote this quantity πi\j, and it will form the foundation of

a successful message passing approach. Modifying the message passing equations of

our two-node system one more time, we get

π1 = 1
2(1 + p21π2\1) (3.7)

π2 = 1
2(1 + p12π1\2). (3.8)

In the case of our two-node graph, π2\1 = π1\2 = s because the only other way for

either node to be infected is through being initially infected. In general, this will not

be the case, and πi\j is a quantity that needs to be updated dynamically. Nevertheless,

we were able to calculate πi\j easily for this small example, and Eq. 3.8 does produce
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the correct answer.

This simple example has demonstrated, in very rudimentary terms, all the ele-

ments of message passing that will be relevant. We first defined initial infection as an

independent event that should be treated separately from infection by peers. Next,

we briefly discussed the dynamic interpretation of the message passing equations, a

subject to which we will return to later. Finally, we introduced a way of preventing

messages from backtracking, helping us avoid overestimation of the marginal prob-

abilities. Now, we turn to describing the standard message passing for tree (and

tree-like) networks.

3.3 Message passing on trees

When nodes have more than one neighbor, we need a more general way of avoiding

the over-estimation of message passing due to inadmissible infection pathways. The

key to avoiding these pathways lies in the quantity πi\j that we introduced in the

previous section. This quantity represents the probability i has been infected by a

node other than j and can be written as

πi\j = si + (1 − si)
1 −

∏
k∈∂i\j

1 − pkiπk\i

 . (3.9)

We observe this equation is quite similar in form to Eq. 3.4, with the only difference

being that we prevent backtracking by excluding the previous influences of j from the

message i sends to j.

To show that this equation works, consider the tree in Figure 3.2a. We start by

analyzing the messages passed between nodes 2 and 4. From the perspective of leaf
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Figure 3.2: (a) A small tree for demonstrating message passing equations. (b) The
marginal probabilities πi for each node in the network, assuming si = 1/n and the in-
fection rates are slightly randomized, with pij ∼ Beta(10, 10).

node 4, the situation is nearly identical to the two-node network discussed earlier.

Node 4 can be infected in two ways: either it was initially infected or was infected by

node 2. The message that 4 sends to 2 is

π4\2 = s4 + (1 − s4) [1 − 1] = s4 (3.10)

which only contains the first possibility. We exclude the possible infection of 4, since

we want to avoid counting the case where 2 infects 4, only to be infected again by

2. The scenario from the perspective of node 2 is only slightly different. It can be

infected in four ways: it could either be initially infected or infected by one of nodes

2, 5, or 1. Three of these events have nothing to do with node 4, so the message node

2 sends to 4 will be the combined effect of each of them,

π2\4 = s2 + (1 − s2)
[
1 − (1 − p52π5\2)(1 − p12π1\2)

]
. (3.11)
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The sources that make up the message π4\2 are shown in Figure 3.3d. The only

excluded possibility is the probability that 4 has infected 2, since 2 would be returning

the message that 4 already sent it.

(a)
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(b)
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Figure 3.3: A visual explanation of the messages πi\j passed on the tree in Figure 3.2.
Each path represents a source of infection that i aggregates and passes to j. Each row
shows all the messages passed by nodes 1 and 2, respectively.

Hence, node 2 will never over-estimate its probability of infection due to node 4

because 4 has no influence on any of the sources of infection it receives in the message

π2\4. By symmetry, the same arguments hold for nodes 5, 6, and 7.

We can tell a similar story for more central edges. Consider the messages passed

between nodes 1 and 2. The message 2 passes to 1 is visualized in Figure 3.3c. It

includes only infections due to nodes 4 and 5. For these messages to be part of an
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inadmissible path, they would have to be infected via node 1 by some other pathway

than through 2.

Now that we have shown that Eq. 3.9 can generate self-consistent solutions for the

quantities πi\j, it becomes straightforward to use them to calculate the true marginals

πi by aggregating all possible sources of infection at once:

πi = si + (1 − si)
1 −

∏
k∈∂i

1 − pkiπk\i

 . (3.12)

This equation generalizes Eq. 3.8, for our simple two-node system. In that simple

case, we could calculate the probabilities π1\2 and π2\1 directly since they depended

only on the initial infection probability. A general system requires Eq. 3.9 to find a

solution to the interdependent values of πi\j first.

Importantly, Eqs. 3.9 and 3.12 both assume that the probabilities πk\i are sta-

tistically independent. Looking at the tree network in Figure 3.2a, this condition is

satisfied because for any node i’s neighbors have no way of being infected by each

other except through i. This feature is true of all tree networks. If an alternative

path did exist for a neighbor j to be infected by i itself, then backtracking would not

be able to account for this issue. Such an alternative path would form a loop in the

network. In other words, this independence condition is satisfied if and only if the

network has no loops, which is true of trees by definition.

In practice, most empirical networks are not trees, which may seem to doom the

practical use of message passing. However, the message passing equations (Eq. 3.9

and Eq. 3.12) turn out to work quite well when networks are “locally tree-like” [79].

This property applies when the immediate neighborhoods around nodes are trees, a

feature that implies the only loops in the network are usually quite long. Such long
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Figure 3.4: (a) A locally tree-like network and (b) Zachary’s karate club [83], a network
with many small loops. Each edge is colored according to the shortest path on which that
edge appears.(c)-(d) A comparison between the message passing approach and the true
solution, calculated via simulation. Each network uses p = 0.5 and seeds are chosen at
random.

loops are a minimal issue for the message passing equations because the probability

of a node being infected by a long path is small. If the probability of infection is p

for each edge, the probability of a node being infected by a loop of length ℓ is pℓ,

a quantity which decays exponentially. Figure 3.4 demonstrates the varying effect

based on loop lengths by comparing two networks, one with many short loops and

one with a few long ones.
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Figure 3.5: (a) A simple network with short loops. (b) The over-estimation of traditional
message passing techniques.

3.4 Message passing on networks with

loops

When short loops do appear in the network, the standard message passing equations

are not sufficient. The problem is that Eq. 3.12 assumes that the neighbors of any

node i are infected with independent probability. To demonstrate this independence,

it will be helpful to instead consider the conditional probability that node i is not

infected, P (Xi = 0|X∂i), where X∂i = (Xk1 , Xk2 , . . .) represents the states of the

neighbors of i. Eq. 3.12 implicitly assumes that this probability can be factorized as

P (Xi = 0|X∂i) =
∏

k∈∂i

P (Xi = 0|Xk). (3.13)

When networks have loops, this assumption is not true, as we expect the random

variables to have some conditional dependence.
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As an example, consider the network in Figure 3.5a. Consider the marginal prob-

ability of infection for node 1

π1 = s1 + (1 − s1)
[
1 − (1 − pπ2\1)(1 − pπ3\1)

]
(3.14)

There are two important inputs to the marginal: π2\1 and π3\1. The message that 2

passes to 1 is the probability that 2 has been infected by a node other than 1, which

we write

π2\1 = 1 − (1 − pπ3\2). (3.15)

which implicitly depends on the marginal of node 3. However, the marginal π1 already

depends on node 3 via the message 3 sends directly to 1. We’ve now implicitly ac-

counted for two infection pathways that occur through node 3. One that depends on

the probability π3\2 and another that depends on the probability π3\1. If these proba-

bilities were somehow independent, then we would have no problem with accounting

for both pathways. Unfortunately, this is not true since both are conditionally depen-

dent on π4\3. These correlations cause Eq. 3.12 to overestimate the infection status

of node 1.

We can also view this overestimation problem from a different lens. Working

backwards from our expression for π2\1, consider the message that 3 sends 2 is

π3\2 = 1 − (1 − pπ1\3)(1 − pπ4\3). (3.16)

Now we have a problem. Because π2\1 implicitly depends on the message π3\2, it also

implicitly depends on itself through the probability π1\3. In other words, the message

passing equations account for an inadmissible infection pathway. More generally, the
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loop between nodes 1, 2, and 3 causes an infinite number of inadmissible infection

pathways due to the endless feedback between the marginals: π2\1 depends on π3\2,

which depends on π1\3, which depends on the π2\1, and so on and so forth. We can

visualize the correlations in Figure 3.6. Like in our simple two-node system, failing

to account for inadmissible pathways will cause message passing to overestimate the

marginals πi.

To resolve the problem, it would be preferable for 3 to instead send 2 the proba-

bility it has not been infected by either 2 itself or 1, which we write as π3\1,2. This

quantity suggests a way forward that might help us avoid the inadmissible infection

pathways that the current message passing techniques fail to take into account.

We start by defining a neighborhood Ni as the edges in some region around node

i. In this case, we choose the neighborhood around node 1 to be

N1 = {(1, 2), (1, 3), (2, 3)} (3.17)

Though a neighborhood is a set of edges, we will also occasionally refer to the set

of nodes in the neighborhood as all those part of at least one edge. We will explain

later why we choose these specific edges in Ni, but first it is helpful to consider an

example.

Our goal is to calculate the probability that node 1 is infected. We should return

to the quantity π3\1,2 and realize that it is equivalent to the probability that node 3

was infected in the absence of any edge in the neighborhood N1. As a step towards

the general method, it will be more helpful to consider the quantity π3\N1 . A similar

quantity can be written for node 2 representing the probability it was infected except

through nodes 1 or 3 as π2\N1 . We note that the quantities π2\N1 and π3\N1 are
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Figure 3.6: A visualization of the information for a sample of messages on a loopy network.
The arrow shows the source of the message each node sends. For example, the message π1
implicitly relies on the marginal π3\1, so there is an arrow pointing from node 3 to node
2, where the message is being sent. Collectively, each row of messages produces a cycle
through which nodes can effectively infect themselves.
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Γ1 Active edges (Γ1) P (Γ1)
Reachable nodes

from 1 P (X1 = 1|Γ1)
1 {∅} (1 − p)3 None 0
2 {(1, 2)} p(1 − p)2 2 π2\N1

3 {(1, 3)} p(1 − p)2 3 π3\N1

4 {(2, 3)} p(1 − p)2 None 0
5 {(1, 2), (2, 3)} p2(1 − p) 2, 3 1 − (1 − π2\N1)(1 − π3\N1)
6 {(1, 3), (2, 3)} p2(1 − p) 2, 3 1 − (1 − π2\N1)(1 − π3\N1)
7 {(1, 2), (1, 3)} p2(1 − p) 2, 3 1 − (1 − π2\N1)(1 − π3\N1)
8 {(1, 2), (1, 3), (2, 3)} p3 2, 3 1 − (1 − π2\N1)(1 − π3\N1)

Table 3.1: All possible realizations of Γ for calculating the probability that 1 is infected
via nodes 2 or 3.

independent, since nodes 2 and 3 are not connected by any path once the edges in N1

are removed. Together these probabilities are all we need to calculate the marginal

π1. Doing so, however, is more involved than applying a simple product, as in Eq.

3.9.

Instead, calculating π1 will require considering all the possible ways in which 1

could be infected via nodes 2 and 3. Recall from Section 1.1.2 that the independent

cascade model can me mapped to the static problem of bond percolation, in which

edges in the network are randomly removed from the network with probability 1 − p.

Let Γ1 be a random variable whose support is the outcomes of a percolation process

on the edges in the neighborhood N1. We list all possible outcomes of Γ1 in the first

two columns of Table 3.1. The table also lists probabilities of each outcome, which

are simply pm(1 − p)3−m, where m is the number of active edges in the instance of Γi.

Once we’ve enumerated the possible outcomes of Γ, we need to understand whether

1 would be infected in each scenario. Given a particular instance of Γ1, let N(Γ1)

be the reachable nodes from 1. If any of these reachable nodes are infected, node 1

will be infected with certainty. Therefore, the conditional probability that node 1 is

59



infected is

P (X1 = 1|Γ1) = 1 −
∏

j∈N(Γ1)
(1 − πj\N1) (3.18)

Since the quantities πj\N1 are independent, this equation makes no approximation.

Finally, we can calculate the expected probability that node i becomes infected as

the expected outcome over all outcomes of Γ1.

Consider the case when edges (1, 2) and (2, 3) are both active, which we label

Γ(5)
1 (line 5 of Table 3.1). If either 2 or 3 becomes infected, we know—with certainty,

because we know which edges are active—that 1 will become infected. The probability

that at least one of these nodes are infected is

P (X1 = 1|Γ1 = Γ(5)
1 ) = 1 − (1 − π2\1,3)(1 − π3\1,2). (3.19)

Finally, to calculate the total probability that 1 is infected due to the neighborhood

N , we can marginalize over all the various outcomes Γ1, yielding

π1 =
∑
Γ1

P (X1 = 1|Γ1)P (Γ1)

= p(1 − p)2
[
π2\N1 + π3\N1

]
+ p2(3 − 2p)

[
1 − (1 − π2\N1)(1 − π3\N1)

] (3.20)

Naturally, this result is quite different from what we would obtain by the independence

assumption of Eq. 3.9. Now that we have considered an example, we will describe

the approach formally in the next section.
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3.4.1 General case

The general approach for message passing on networks with loops will be to define

a neighborhood around node i, which we label Ni. Within this neighborhood, we

will take into account correlations in the marginals by explicitly calculating the paths

through which i could become infected.

The assumption remains, however, that any message passed into the neighborhood

Ni, i.e. from some external source, will be completely independent. In general,

this assumption will not be true, as it would be impractical to account for every

loop in a network since some loops can be quite long. To make the neighborhood

approach exact, we would need to establish extremely large neighborhoods around

each node, and at that point, we might as well just do simulations on the entire

network. Hence, the neighborhood approach will still be an approximation, in the

same way that Eq. 3.9 is an approximation on tree-like networks. However, as we

previously discussed (Figure 3.4), short loops have a greater impact on over-estimation

than long ones. It will turn out that if we take into account short loops, we can

improve quite significantly on the standard approach.

We now turn to defining what edges should be included in the neighborhood

Ni. Let a primitive cycle of length ℓ be a cycle that starts and ends at node i and

that contains at least one edge not in any shorter primitive cycle. We define the

neighborhood of node i to be all edges on any primitive cycle of length ℓ ≤ r +2. The

parameter r represents the size of the neighborhood we construct around i. Setting

r = 0 corresponds to the tree-like approximation since the only primitive cycles of

length ℓ = 2 are cycles that move to a neighboring node and immediately return.
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Increasing r will include more edges (and possibly more nodes) in the neighborhood

of i.

In the standard version of message passing, we wrote down a set of self-consistent

equations (Eq. 3.9) for the quantities πi\j and then modified the equation slightly as

a means of calculating the marginals (Eq. 3.12). This time, we will proceed in reverse

work in reverse, as it will be easiest to write down the equation for the marginals first

and adjust it accordingly to obtain the quantities πi\Nj
.

As in the example above, we calculate the marginals in a two-step process. First,

we calculate the probability that i becomes infected given a specific outcome Γi of the

bond percolation process on Ni. Then, we marginalize this conditional probability

P (Xi = 1|Γi) over all outcomes.

The conditional probability that i is infected given a particular outcome of Γi

P (Xi = 1|Γi) = si + (1 − si)
1 −

∏
j∈N(Γi)

(1 − πi\Ni
)
 , (3.21)

where N(Γi) is the set of nodes reachable from node i under the configuration Γi. Eq.

3.21 effectively calculates the probability that at least one of the potential sources

of infection N(Γi) has infected i. Now, we can get the total infection probability for

node i by marginalizing over these conditional probabilities, as

πi =
∑
Γi

P (Xi = 1|Γi)P (Γi). (3.22)

To compute the quantities πi\Nj
, we don’t have to change much in Eq. 3.22.

We simply have to exclude from our counting any infection pathways that use edges

appearing in Nj. We represent this constrained neighborhood as Ni\j and the con-
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strained space of percolation outcomes on this neighborhood as Γi\j. The conditional

probability given a specific outcome is

P (Xi = 1|Γi\j) = si + (1 − si)
1 −

∏
k∈N(Γi\j)

(1 − πk\Ni
)
 , (3.23)

and marginalizing over the outcomes of Γi\j, the final marginal becomes

πi\Nj
=
∑
Γi\j

P (Xi = 1|Γi\Nj
)P (Γi\j). (3.24)

Together, Eqs. 3.21 - 3.24 completely define the MPL framework. We now turn to

some important details for implementing the method in practice.

3.4.2 Computation and algorithmic performance

Computing Eq. 3.24 requires marginalizing over all possible outcomes of the random

variable Γi\j. For a node i of degree ki, even the r = 0 (tree-like) approximation, the

number of possible outcomes of Γi is 2k. As k increases to even a modest size, enu-

merating these possibilities becomes computationally infeasible, in the same way that

calculating the probabilities for the system as a whole is computationally infeasible.

Fortunately, we can rely on Monte Carlo sampling and a few computational tricks to

overcome this obstacle. To make this sampling efficient, we leverage the same bond

percolation algorithm used in Chapter 2 for this purpose [60].

Suppose we have T samples from the random variable Γi\j, which we denote γz.
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Then, we can approximate Eq. 3.24 in the following way:

πi\Nj
= 1

T

T∑
x=1

P (Xi = 1|γx). (3.25)

The above expression is the computational bottleneck of message passing with loops.

At each step of the algorithm, we need to sample T times from Γi\j and then com-

pute Eq. 3.23 for each sample γx. Fortunately, we can re-use the samples generated

for each neighborhood, as the probability P (Γi\j = γ) depends only on the infection

rate p. Using the same set of samples throughout the algorithm has other beneficial

properties besides computational efficiency, one being that the marginals will increase

monotonically throughout the algorithm. Otherwise, sampling would introduce fluc-

tuations to their values as they reach convergence.

There are a few ways we can make the sampling over the neighborhood Γi\j more

efficient. One source of performance improvement is to take advantage of structure

in the neighborhood Ni. Let N −
i be the set of edges in Ni which are not connected

to node i. For r = 0, N −
i is the null set, since only edges connected i to its neighbors

are present. The neighborhood N −
i represents a subgraph of the network, which is

comprised of one or more independent components. These components each infect i

with independent probability, and can therefore be computed separately. Let C be an

independent component of N −
i , and let Γ(C)

i\k be a random variable that represents the

outcome of a percolation process on the subset of edges present in C. We can thus

factor the outcome distribution of the percolation process on Ni as

P (Γi\j) = P (Γ(C1)
i\k )P (Γ(C2)

i\k ) . . . P (Γ(Cc)
i\k ), (3.26)
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where c is the number of independent components in Ni.

A second computational advantage also concerns the neighborhood subset N −
i .

For simplicity, we will assume that the neighborhood Ni is one single component.

Consider a percolation process on N −
i , which we represent with the variable Γ−

i\j. We

can compute the probability that i is infected given an outcome of this percolation

process on a more constrained set of edges. For a particular outcome of this random

variable, we will observe a series of independent components, which we will label

C(Γ) to distinguish that these are components created via a specific instance of a

percolation process on the edges Ni.

By the same logic as before, we can calculate the probability that i is infected

due to each of these independent components. The calculation involves two terms.

The first is the probability that at least one node in the component C(Γ) becomes

infected. If this occurs, all nodes will become infected with certainty, conditioned on

the particular outcome of Γ−
i\j. The second term is the probability that i is connected

to the cluster of active edges C(Γ) via an active edge. If there are q(C(Γ)) of such

edges, each of which has a probability p of being active, the second can be written

1 − (1 − p)q(C(Γ)). Combining these two terms, we can calculate the probability that i

is infected for a particular outcome of Γ−
i\j and a particular component of active edges

in that cluster as

P (Xi = 1|Γ−
i\j, C(Γ)) =

[
1 − (1 − p)q(C(Γ))

] 1 −
∏

k∈N(C(Γ))
(1 − πk\Ni

)
 , (3.27)

where, in a slight abuse of notation, we let N(C(Γ)) be the nodes present in component
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C(Γ). Aggregating over all clusters, we get

P (Xi = 1|Γi\j) = 1 −
∏

C(Γ)

(
1 − P (Xi = 1|Γ−

i\j, C(Γ))
)

, (3.28)

which represents the probability that Xi was infected due to at least one cluster in

Γi\j. By defining the neighborhood in this way, we reduced the size of the Monte

Carlo sampling space to the size of N −
i .

Another computational concern is how to set the values of r and T . These hyper-

parameters govern how much complexity we add to the message passing algorithm.

For r = 0, the message passing equations are the most straightforward, as they are

the same as the standard approach. For large values of r, we may be performing

Monte Carlo simulations for very large neighborhoods that may even span the entire

network. Setting r this high would be wasteful since we would be sampling over sets

of neighborhoods that overlap considerably.

In practice, the sampling accuracy is quite good after surprisingly few number

of samples T , regardless of the value of r, as shown in Figure 3.7. By contrast, the

value of r is more significant to performance and therefore to the computation time

in practice. As we will see later, the performance of MPL improves each successive

value of r.

3.5 Dynamic message passing

Up to this point, we have used message passing equations to calculate the node

marginals πi, where πi represents the probability i is infected at the end of the process.

As we briefly claimed in Section 3.2, by choosing initial values for the marginals πi
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that correspond to the initial state of the system, the value of πi after t steps of

the message passing algorithm is exactly the temporal marginal πi(t), the probability

that node i has been infected after t discrete-time steps of the independent cascade

model. The purpose of this section is to justify that claim.

To demonstrate that dynamic message passing works, we consider the example of

a simple line network, as shown in Figure 3.8. Consider the case when node 1 is the

only node initially infected. The only way for node 4 to be infected is through the

path 1 → 2 → 3 → 4. This infection, if it does occur, must happen at exactly three

time steps, one for each of the three edges in the path. There is no other path that

allows 5 to be infected. A similar argument can be made for any other starting node.

If, instead, we allow each node to be a seed with probability si = 1/5 to be the

seed, then more options are possible. Node 4 can now be infected by a number of

sources. If it is infected, it’s most likely to be infected by an immediate neighbor.

An infection from further away, e.g. node 1, carries less probability because each

edge in the chain must be active for the node to be infected. We see this effect

in Figure 3.8(f), where the marginal probability increases at each time step due to

the possibility that more potential infection pathways are possible. Furthermore, we

observe that at t = 3, the marginal probability increases less than at time step 1,

indicating that the marginal is less impacted by pathways that are further away.

Hence, to appropriately interpret message passing in a dynamic context, we should

describe πi(t), the value of πi at the tth iteration of message passing, as the probability

that node i has been infected by a path of length ≤ t. As a consequence of this

interpretation, we should observe that all marginals converge in exactly tmax = d

time steps, where d is the longest path in the network. This rule, however, is not
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true when loops are involved. Recall that loops introduce infection pathways that

may pass through node i more than once. For a network with loops, the number of

pathways in the network is infinite, so technically speaking, the marginals πi(t) will

continue increasing forever, though they will asymptotically approach some value due

to the fact that long loops are extremely unlikely. The important point is that as

the number of time steps increases, message passing includes more inadmissible are

accounted for in the system. At t = 1, no inadmissible pathways are possible, so the

tree-like message passing is exact on any network. With further time steps, errors are

possible in loopy networks (Figure 3.4). We now turn to the temporal interpretation

of message passing with loops, which requires a bit of careful consideration.

3.5.1 Dynamic message passing on networks with

loops

For the loopy version of message passing, we sample many possible infection pathways

that could occur in the neighborhood of i. For r > 0, these neighborhoods include

pathways that of lengths greater than 1. Hence, we actually require an amendment

to the original equations.

For a particular outcome of Γi, we need to account for all the possible pathways

through which i could be infected. For each node k ∈ N(Γi), i.e. the nodes reachable

from i, let ℓk be the shortest path from node i to k using only edges that are active

in Γi. Because we know exactly which edges are activated for a given Γi, we know

with certainty that if k is infected at time t − ℓk, then i will be infected at time t.

The probability that i is infected under a particular Γi at time t is that at least one
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of these events happens, i.e.,

P (Xi = 1|Γi)(t) = 1 −
∏

k∈N(Γi)

(
1 − πi\Ni

(t − ℓk)
)

. (3.29)

With this, we now have a fully temporal framework message passing loops. What

remains is to see how we can use these equations to test interventions such as the

ones discussed in Chapter 2.

3.6 Interventions in the message passing

framework

We can use the message passing framework to test any possible intervention that can

be defined by fixing a random variable to a particular state. Interventions constitute

altering the causal structure of a model. Under the discrete-time independent cascade

model, there are a few parameters we can adjust. The first is the edge-independent

infection probabilities pij. The second is the probability that nodes are initially

infected si.

Any intervention in the system can be evaluated by fixing one or more of these

variables. For example, if we want to test the outcome of a spreading process where

a specific set of nodes is initially infected, we simply set si = 1 for all seed nodes

and si = 0 otherwise. This is useful for testing interventions related to influence

maximization.

For vaccination, our goal is to fix the system such that a vaccinated node should

never be infected, meaning that we want to achieve πi(t) = 0. To accomplish this, we
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set si = 0 for all vaccinated nodes, ensuring that vaccinated nodes are not initially

infected. (For the remaining nodes should set si = 1
n−k

, where k is the number of

vaccinated nodes.) To ensure vaccinated nodes remain uninfected for the course of

the dynamics, we set pij = 0 for all edges connected to vaccinated nodes i, since i will

never infect any of its neighbors. Adjusting both of these variables will effectively

eliminate vaccinated nodes from the network.

We can also test partial immunity within this framework, and we have two ways

of doing so. For example, we know that the COVID-19 vaccine is not completely

effective, meaning vaccinated individuals may still be infected but with decreased

probability. However, how should we model this reduction in probability? The ques-

tion is still under investigation, and it does have consequences. It has been proposed

that partial immunity could cause a random-targeting vaccination strategy to out-

perform one that targets high-risk individuals [84].

Modeling partial immunity requires us to know whether a vaccine works perfectly

on a fraction of individuals or imperfectly for every individual. In other words, does a

vaccinated node become infected via 5% of interactions that ordinarily would spread

the disease, or is the vaccine completely ineffective for 5% of nodes that get immu-

nized? Our framework allows both, but they must be specified differently. The former

is specified by scaling the pairwise infection rates pij with σiσjpij, where σi is the frac-

tion of breakthrough interactions for node i. Naturally, σi = 1 for non-vaccinated

nodes, and the value can be variously adjusted to consider partial immunity. The

second way to intervene is to suggest that node i has a probability vi of being com-

pletely immune to the disease. To write this formally, let Vi ∼ Bernoulli(vi) be a

random variable that indicates whether the vaccination was successful. The marginal
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can be re-written as

πi = P (Xi = 1)

= P (Xi = 1|Vi = 0)P (Vi = 0) + P (Xi = 1|Vi = 1)P (Vi = 1)

= P (Xi = 1|Vi = 0)P (Vi = 0)

= P (Xi = 1|Vi = 0)(1 − vi)

, (3.30)

where we used the fact that P (Xi = 1|Vi = 1) = 0 remove the second term. The core

message passing equations (allowing for vaccination of both types) become

πi\j = (1 − vi)

si + (1 − si)
1 −

∏
k∈∂i\j

1 − pkiσiσjπk\i

 . (3.31)

The distinction between edge- and node-based immunity does make a difference,

for example, when nodes have many connections. Even with substantial vaccine

efficacy, only one of these connections must be successful for this node to be infected,

mitigating the effect of vaccination. In such cases, it may be more worthwhile to

vaccinate lower-degree nodes that may, for example, lie at critical junctures between

communities. On the contrary, perfect vaccination for some individuals does not have

the same drawback, and vaccinating high-degree nodes may be worth the risk.

Finally, we could also test temporal vaccination strategies. Let vi(t) be the prob-

ability that the vaccine was effective at time t. Suppose that a vaccine becomes

available at t = 10, at which time we vaccinate a subset of nodes. This case amounts

to setting vi(t > 10) = 1 for vaccinated nodes. A similar approach can be done for

intervening on interaction immunity by setting σi(t).

Testing the quality of sentinel surveillance sets seems straightforward since sen-
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tinels do not actually impact the dynamics of the system. Therefore, it may seem we

can simply run message passing once and then evaluate each potential sentinel set

using the marginals πi(t). Recall that the quality of a sentinel set is the time at which

the first node in the sentinel set becomes infected. We can calculate the probability

that at least one sentinel has been infected by time t as

P (XS = 1|t) = 1 −
∏
s∈S

(1 − πs(t)), (3.32)

where XS is a random variable that takes the value of 1 if at least one node in

the sentinel set S is infected. Unfortunately, this equation (once again) improperly

assumes that the temporal states of each sentinel are uncorrelated random variables.

By contrast, we expect that two sentinels that are very close to each other in the

network should have correlated infection probabilities. Failing to take into account

such correlations could lead one to choose sentinels in the same area of the network

when such an approach is less than optimal.

Fortunately, we can reinterpret our message passing equations to suit the problem

of sentinel surveillance. Let π
(S)
i be the probability that i has been infected by a

path that does not contain a node in the sentinel set S. In other words, this quantity

calculates the sources of infection that have not already passed through a sentinel

node. Such a quantity is almost identical to the original marginal πi in that it depends

on its neighbors in the same way. The only modification is that sentinels should not

spread the infection further, as this would violate the definition of π
(S)
i . The message
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passing equation for testing sentinel sets (on tree-like networks) is

π
(S)
i\j (t) = 1 −

∏
k∈∂i\j

(1 − pki1[k /∈ S]π(S)
k\i (t)), (3.33)

where 1[z] = 1 if expression z is true and zero otherwise. Effectively, this intervention

is the same as our approach to vaccination, where instead of preventing a vaccinated

node from infecting others, we apply this property to sentinels.

This adjustment removes the possibility of errors in Eq. 3.32. It doesn’t, however,

deal with correlations due to network structure. Fortunately, we can leverage the MPL

framework to modify the above equations in the same way as for the standard case.

Now that we’ve defined how to implement interventions in these systems, we turn to

how well they work in practice.

3.7 Empirical results

As a means of testing how interventions work, we test our message passing algorithm

on a small friendship network (n = 362) from Facebook, the same one we used in

Chapter 2. This network has a very high clustering coefficient, a metric that indicates

the presence of many short loops. As such, it is a difficult challenge for any message

passing algorithm. Despite taking into account short loops, the network has many

medium and longer-length loops, which MPL does not take into account. Hence, we

expect MPL to not correspond exactly to the simulation.

We test a selection of N = 25 intervention sets of size k =
√

n, N = 20 of which

are chosen randomly. The remaining N = 5 sets are composed by selecting the top k

nodes according to five structural centrality rankings: degree centrality, betweenness
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centrality, k-core centrality, closeness centrality, and eigenvector centrality [18]. We

compute the expected outbreak size ⟨I⟩ after each node in the vaccination set has been

vaccinated. As in Chapter 2, we calculate the simulated solution with the modified

percolation algorithm we used in Chapter 2 [60].

The correspondence between these sets is shown in Figure 3.9. We observe that

for all infection rates, the performance increases for higher values of r. The extent to

which this happens depends on the infection rate ϕ = p/pc. As we discussed in 3.3,

short loops pose a bigger problem for message passing than long ones because the

probability of a node being infected by a loop of length ℓ is pℓ. This term also exposes

a dependence on p. In particular, this term decays less quickly for larger infection

rates, which explains the degrading performance as ϕ increases.

Furthermore, there appears to be a somewhat abrupt transition in the onset of

this error. This transition occurs at the crossover from low infection rates, where

the correspondence is extremely accurate, to higher infection rates, where message

passing overestimates the expected outbreak size considerably. We show this abrupt

transition in Figure 3.10. Furthermore, higher values of r can stave off this transition

for higher infection rates than low values of r. The explanation for this abrupt change

is that, around the critical threshold, message passing will fail to see correlations that

exist, leading it to inflate the extent of infection in the network. to a supercritical

expected outbreak size when the true value is still subcritical.

Despite this error, whether we might still be able to use message passing for testing

interventions? It appears from Figure 3.9 that the rank-ordering of the nodes is well-

preserved by message passing. If the ranking is preserved, we could still use it to

choose the optimal intervention set from a range of choices.
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Figure 3.9: Comparing message passing with simulation for N = 25 vaccination sets. As
the relative infection rate ϕ = p/pc increases, message passing becomes more difficult. A
larger neighborhood size staves off the error produced by message passing.
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To measure the rank correspondence between the two methods, we apply Spear-

man’s rank correlation coefficient to the selection of intervention sets described above

[85]. We treat the qualities calculated via message passing and simulation as two in-

dependent rankings. This metric is useful because it does not assume the relationship

between two rankings is linear, which is the case for some of the fits shown in Figure

3.9.

The correlation is shown in Figure 3.11. While the rank preservation is reasonably

good in all cases, we observe a noticeable dip in the correlation for some values of

ϕ. This dip is largely due to a non-uniformity in which different intervention sets

differ from the true solution. In other words, message passing exhibits greater error

for some intervention sets than others. More work must be done to determine more

precisely the source of this nonuniform error, but the abrupt transition we discussed

in Figure 3.10. Essentially, the rank ordering gets jumbled around this threshold,

where some sets are suddenly supercritical much sooner than others. Once message

passing establishes all of these sets as supercritical, the rank-preservation increases

once again. Understanding exactly what structural features lead to these nonuniform

errors is a subject for future work.

3.8 Conclusion and future work

We proposed a message passing method for computing the temporal marginals for

the independent cascade model on networks with many short loops. The method has

the theoretical potential to be used to evaluate the quality of interventions, though

it does not work perfectly for in all cases.
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Figure 3.11: The rank correlation between message passing and simulation, compared
using Spearman’s rank correlation coefficient for different values of r

We found that, despite accounting for loops, message passing struggles with high

infection rates, which seems inevitable for any approximate message passing algo-

rithm. Furthermore, message passing seems to show a particular bias towards certain

interventions in a way that does affect the node rankings. Previous work has sug-

gested that this bias is due to the structural property of k-coreness [86], though more

work is needed to understand this bias thoroughly.

Existing literature also suggests a few possible ways to further improve the per-

formance of MPL. For example, previous work on message passing for non-treelike

networks has focused on small motifs in the network, such as triangles [87] or fully

connected cliques [74], that may appear in the network. These motifs can be treated

easily analytically, offering a potential performance improvement. By definition, any

node that is attached to a clique will contain all the edges of that clique in its neigh-

borhood, assuming r > 0. Thus, accounting for cliques would not necessarily improve
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the estimation of MPL, but it may allow us to compute the probability P (Xi = 1|Γi)

more efficiently.

Nevertheless, this notion of finding highly connected regions of the network also

suggests further work on hybrid message passing techniques. For example, there may

be general ways of dividing the network into quasi-independent regions and nesting

message passing algorithms within each other. Some work of this flavor has already

been explored for exact percolation algorithms on small networks [88].

In spite of the challenges, message passing does preserve ranking reasonably well.

It would be interesting to explore whether the performance improvements from mes-

sage passing could allow us to expand a study like Chapter 2 to larger graphs.
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Chapter 4

Conclusion

We began this thesis by recognizing that complex systems models have the ability

to capture representative behavior of true policy systems but that the challenges of

statistical inference with such models make them difficult to trust as an empirically

backed representation of the world. This lack of trust is an essential criterion for a

model to be confidently used for decisions with real-world impact. So, what tools

would allow models to ascend from their role as intuition-builders to true decision-

making tools? As a means of reflecting on future directions for robust decision-

making, we discuss how modeling, statistical inference, and decision theory could

come together to enable confident model-based decision-making. Our discussion will

continue to focus on models of epidemiology, but the concepts apply more broadly.

We begin by discussing a Bayesian framework for handling uncertainty in model

parameters. We also briefly discuss model selection and model comparison as tools for

considering other kinds of model misspecification. Finally, we review the contributions

as a whole and propose steps for future work.
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4.1 A Bayesian framework for interven-

tion design under uncertainty

In what follows, we consider the following pipeline for model-based decision-making.

We start by defining a model M that is parameterized by a network A and some

dynamical parameters θ. We assume the true world can be described well by some

values of A and θ. Next, data must be collected on the system. We then use this data

and the tools of Bayesian inference to infer the true parameters of the model, A and θ.

Naturally, the inference procedure cannot determine the values of the true parameters

exactly; instead, it will produce some uncertainty over their values. Finally, once

an objective function is defined over the potential outcomes of the system, we use

Bayesian decision theory to determine an optimal intervention in the system.

4.1.1 Handling uncertainty

In the framework of Bayesian statistics, we describe uncertainty over the parameters

θ parameters mathematically using probability distributions. More specifically, we

assume that each model parameter θ has a true value and that our lack of knowledge

about that true value can be summarized as the distribution P (θ). Describing pa-

rameters as probability distributions is quite general. For example, the case of perfect

certainty can be described with a probability distribution where all weight is placed

on a single value. For discrete distributions, we say that P (θ = θ∗) = 1 for the true

value θ∗ and zero probability for all other values of θ. Furthermore, these probability

distributions describe our uncertainty regardless of how that uncertainty is produced.
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If we do not use any data to describe our belief, our uncertainty is known as a prior

probability distributions. Prior distributions could describe other sources of knowledge

about the parameter or, in cases where we know nothing at all about the parameter,

place equal weight on every possible value that it may take. Once we used data to

update our beliefs about the parameter, we refer to this distribution as a posterior

probability distribution, e.g., P (θ|data). The process of updating our beliefs is known

as Bayesian inference, which comes from an application of Bayes’ rule:

P (θ|data) = P (data|θ)P (θ)
P (data) . (4.1)

The term P (data|θ), called the likelihood, describes a stochastic generative process

that created the data. From this likelihood, we can use Bayesian inference to describe

our posterior belief about the value of our parameter. This flexible approach to

describing uncertainty is useful in contexts when modelers must collate various pieces

of information about the system, whether it be expertise from domain practitioners

or data from previous studies.

4.1.2 Uncertainty in network structure

Through the thesis, we have employed networks to describe the patterns of interaction

between individuals in a population. We have defined this network by placing an edge

between two nodes signifies the presence of an interaction between them. However,

what qualifies as an interaction? Should two people co-author an academic paper

together, follow each other on social media, or attend several of the same activities

throughout the week? Any such notion of interaction might be valid in a particular
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problem context. This definition is formalized using a model to describe what data

we’d expect to see with and without the presence of an edge. It is helpful to view the

network not as a directly measurable feature of the system but rather as a mathe-

matical object that must be constructed from data. This data is often noisy, leading

to uncertainty with respect to the true network structure.

In the context of the spread of disease, what defines contact between two individ-

uals? Should they be friends? What if they stood in the checkout line in the grocery

store together? One promising source of data used for expressly these purposes in the

COVID-19 pandemic has been detailed mobile phone location data. Using this data,

we determine the presence of an edge between pairs of individuals that have been in

the same location with each other. However, this definition is far from complete. We

could imagine a variety of reasons why we might find two people who were not in

close contact sharing the same location data. Perhaps they attended a coffee shop at

the same time but sat on opposite sides of a large room. If our proximity criteria are

too broad, we might detect an edge between these people where none exists. This

scenario is known as a false positive. Alternatively, suppose someone’s phone runs

out of battery halfway through the day. We might miss the concert they attended

that evening with hundreds of people. This is an example of an edge (or many) that

should exist but doesn’t, or a false negative. These sources of noise will produce errors

in the data.

To formalize this noisy data-creation process, we’ll start by representing the true

network as an adjacency matrix A, defined as an N ×N matrix with elements Aij = 1

when an edge exists from i to j. We also have data, which we assume takes the form

of an N matrix X, with elements Xij equal to the number of observations suggesting
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an edge should be placed between i and j. In many cases, these elements will be one

at maximum because repeated measurements of the system were not made. In other

cases, such as with location data, we might have multiple observations by compiling

data over time, e.g., if two nodes appeared in a coffee shop together and later arrived

at the same restaurant. To link the true network to the data we have, we’ll define

a generative model P (X|A), which describes the noisy process from which the data

were created. This function is known as the likelihood.

Using the likelihood, our goal is to find the true network’s adjacency matrix A.

One possible approach could be to find the A that maximizes this likelihood function.

Such an approach would return a single network–a point estimate–from which we can

use to calculate one or more notions of dynamical importance described above. How-

ever, choosing a point estimate does not capture our uncertainty about our inference

procedure. Intuitively, if we are not so confident in our specification of the network,

we might want to account for the fact that other, different networks might also be

the ground truth.

As an alternative to maximum likelihood estimation, we can then infer the network

A using Bayesian inference [89], which defines a posterior probability that A is the

network from which the data were created. The posterior is defined as

P (A|X) = P (X|A)P (A)
P (X) . (4.2)

Crucially, the posterior distribution does not force us to choose one single network

that we believe is the ground truth. Rather, it encapsulates a general notion of how

confident we are about all possible networks A.

This extra information, however, introduces new challenges to our notion of dy-
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namical importance. How should we choose dynamically important nodes when the

dynamics are happening on a graph we do not know precisely? The solution is to find

important nodes in sets of networks broadly compatible with the data. To produce

these representative networks, we can use sampling techniques such as Markov Chain

Monte Carlo (MCMC) to produce a set of samples {Ai} that we know are drawn

from the full posterior distribution. Though this inference procedure is mathemat-

ically described in terms of the full posterior distribution, it can be algorithmically

convenient to think of uncertainty on a set of sample graphs {Ai} that could each

represent the true graph.

4.1.3 Uncertainty in contagion model

Consider the independent cascade model described in section 1.1.1. Suppose a viral

marketing company expects the spread of information about a new product to behave

roughly according to this model. In other words, it expects that each individual shar-

ing the product will be equally likely to share it with all their friends. Furthermore,

suppose previous products launched by the same company have spread virally. We

might use data from these previous products to perform Bayesian inference and deter-

mine a posterior distribution P (p|data) for the contagion model parameter. Assuming

it expects the next product will spread according to the same class of dynamics as

the previous products, the posterior distribution describes our uncertainty of the true

model parameters.

Alternatively, imagine instead we have several possible contagion models that we

believe might be taking place on the network. A recent study of information spreading

and behavioral adoption in rural India is a relevant example here [90]. A company in
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India advertised microfinance loans to a few leaders in the community. Subsequently,

community members both chose whether to take advantage of the loan as well as

whether to share information about it with peers. The team conducting the study

posited two models. One model posits a stronger adoption rate for people who heard

about the loan from someone who ultimately did accept the loan. The other treats

the probability of information sharing as independent of adoption status. This model

uncertainty can be encompassed in our framework as

P (θ) = P (θ|M1)P (M1) + P (θ|M2)P (M2) (4.3)

Defining these models separately is necessary when the dynamics of each model belong

to a completely separate class. As long as we can specify the probability of each

dynamical instance, we have defined our uncertainty of the underlying dynamics.

Now that we have defined a process for quantifying uncertainty for both structural

and dynamical parameters, the question becomes how we should go about using this

uncertainty to choose optimal interventions.

4.1.4 Bayesian decision theory

Decision theory refers to a broad branch of science dedicated to understanding how

decisions are made. Normative decision theory refers more specifically to how deci-

sions should be made, defined in terms of a mathematical definition of rationality.

Within the framework of normative decision theory, we define the concept of utility

as a way of describing a decision-maker’s preferences for outcomes.

Ordinal utility refers to an ordering of outcomes according to one’s preferences.
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If we prefer outcome A to outcome B, then A ⪰ B, and the ordinal utility function

u obeys

u(A) ≥ u(B). (4.4)

When we introduce randomness into the decision-making context, a simple ordering

of outcomes does not contain enough information for us to choose an optimal strategy.

We need a notion of how much better one option is compared to another. Under a set

of well-defined rationality axioms, Von Neumann and Morgenstern showed in 1947

that rational decision-making was equivalent to maximizing a cardinal utility function

[91].

To place the expected-utility framework in terms of contagion models, let’s start

by assuming a fixed graph G and fixed contagion model parameters θ. We can

then define the outcome distribution P (X|G, θ, S), which additionally depends on

our decision variables S. Our particular notion of importance defines the utility of

each outcome u(X). With this utility function defined for all possible outcomes, our

decision problem amounts to maximizing the expected utility

q(S; G, θ) = E
X

[u(X)] =
∑
X

u(X)P (X|G, θ, S). (4.5)

Reintroducing uncertainty in our graph P (G|data) and contagion model parameters

P (θ), we can write the expected utility for our decision variable as

f(S) =
∑
G

∑
θ

q(S; G, θ)P (G|data)P (θ|data). (4.6)

The key idea is that we use the posterior probabilities of various input parameters

to evaluate the quality of a particular decision. From here, Bayesian decision theory
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suggests we should choose the decision variables that maximize this expected utility.

4.2 Model selection and model complex-

ity

Beyond accurately inferring the parameters of a model, the usefulness of our models

also depends on their level of specificity. Just because we want our models to accu-

rately reflect the true world does not mean they should do so for every aspect of reality

[92] [93]. Ideally, we should tailor our models to the questions at hand. Excessively

complex models confound our ability to interpret them, limiting our trust in their

use for policy interventions. The more mechanisms a model has, the less likely we

are to be able to determine the effects of interventions from byproducts of arbitrary

modeling decisions. Conversely, our model should be specific enough to represent the

entire range of policy interventions we want to consider. 1 Moreover, models with

a lack of sufficient detail might also mask the richness of the true system’s outcome

distribution. The tension between simplicity and complexity is well-recognized in

both statistical and mathematical modeling and is often described as Occam’s razor.

From a statistical perspective, Occam’s razor can be managed with the large

suite of tools dedicated to model selection. These tools define quantities, such as

information criteria and or minimum description length, to judge the quality of fit of

a model. However, in small-data regimes, we’re likely to select simple models that
1Many have raised concerns that using quantitative models causes us to more readily consider

interventions for which measures of success are easily quantified. These concerns highlight the
importance of the modeling process and, to some extent, operate beyond the scope of this work
[94, 95, 96].
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might leave flexibility for decision-making on the table. Such regimes are a challenge

because we know simple models are insufficient, but we have to use them anyway.

4.3 Deep uncertainty and robust decision-

making

As we mentioned in the introduction, the data availability limits our ability to do

effective Bayesian inference on complex models. In such situations, it may be imprac-

tical to define reasonable posterior distribution for model parameters. This condition

is sometimes referred to as deep uncertainty, and the success of formal decision the-

ory might is no longer appropriate [97]. How can we proceed without any formal

definition of uncertainty over model parameters?

One might take a scenario-based approach, in which we define a set of scenarios

that demonstrate different possible outcomes of the system. This approach is com-

monly used, though it can be quite ad hoc. A model with appreciable complexity

can not be readily intuited from a few scenario choices. The framework of robust

decision-making lays out a human-centered process for making decisions in condi-

tions of deep uncertainty [97]. It charts a course between formal decision theory and

scenario-based approaches. We will not describe the framework in detail, but the

basic idea is robust decisions should be designed iteratively using many scenarios.

According to the framework, one should define a guess for a robust decision. Then,

one should look for weaknesses or scenarios in which the decision fails. Then, more

decisions can be defined to hedge against these weaknesses, and more weaknesses

can be found until tradeoffs between various model parameters become clear. This
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human-in-the-loop process provides a way to balance model-based decision-making

and human expertise. Human expertise is not something that we should overlook,

particularly in scenarios where data is relatively difficult to collect. Especially when

fully model-based approaches aren’t sufficient, good decision-making requires using

all the available resources on hand.

The robust decision-making framework does well in this respect. However, as we

continue to improve our ability to collect data, it may be possible to (appropriately)

allow models to do more of the heavy lifting. It would be interesting to explore

approaches that fall somewhere between a fully formal decision-theoretic avenue to

robust decision-making. For example, could we survey experts systematically and

construct some kind of prior distribution? Could we build models collaboratively,

or in parallel and collate them together? Along these lines, could we encompass a

more diverse set of objectives for the system? Recent work on robust decision-making

seems to be moving in this direction [98].

4.4 Future work

Our work has invited several interesting avenues for future work.

The first is the notion of bias, a natural discussion point for any work on algo-

rithmic decision-making. If we did implement a formal Bayesian decision-theoretic

formalism, as described above, bias could appear in several places. Consider the

scenario that nodes in the network have two types and that one group makes up a

majority of the nodes.

In data collection, it may be the case that we are unable to capture the entire
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interaction network completely. In such scenarios, the method of sampling the net-

work has been shown to introduce bias with respect to these groups [99, 100, 101].

This could be due to differences in the number of connections that are attached to

at least one member of the majority group compared with the minority. The second

place that bias may appear is in the choosing of dynamically important nodes. Some

work has been done exploring how structural rankings, such as degree or eigenvector

centrality, can be biased by common global properties often found in networks, such

as homophily [102, 103]. Similar biases may be introduced in the dynamical context.

It may be that the objective function is more likely to select the majority of nodes

due to their position in the network. An analysis of this effect would be an interesting

topic for future work.

The second line of future work could involve expanding our work to other kinds of

network dynamics. Complex contagions are known to exhibit very different behavior

in many circumstances. As such, optimal interventions are expected to be quite

different. For example, the social reinforcement mechanisms of complex contagion

might encourage that they are much closer together in the network [104].

Beyond contagions, voter models represent another class of dynamics that could

be studied in a similar framework. Voter models are often used in the context of

opinion dynamics, where individuals change their opinions to match those of their

neighbors. Interventions could take the form of introducing zealots or nodes that do

not change their state regardless of [105, 106].
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4.5 Conclusion and future work

Studying intervention in the context of network dynamics is an extremely challenging

problem. Fortunately, there are many cases in which the system’s causal structure

is not so interconnected. For example, if one is interested in designing interventions

to improve educational outcomes, the structure of the problem allows one to assume

some degree of independence. For instance, it is unlikely that an intervention in one

school will affect the performance of an intervention in another. In these cases, the

suite of tools dedicated to causal inference is much more appropriate. If we needed

to choose which schools, among many, to receive an intervention, a simple ranking

would suffice. By contrast, if we were looking to choose amongst students within a

single school, the interactions between students might make a great deal of differ-

ence. Here, taking into account network structure might be appropriate to maximize

the effect of an intervention if not necessary. With such problems, computational,

methodological, and data-related challenges remain challenging barriers to designing

optimal interventions on these systems in practice.
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