
Dual Critic Conditional Wasserstein GAN for Height-Map
Generation

Nuno Ramos
Instituto Superior Técnico

University of Lisbon
Lisbon, Portugal

nuno.m.ramos@tecnico.ulisboa.pt

Pedro A. Santos
Instituto Superior Técnico / INESC-ID

Lisbon, Portugal
pedro.santos@tecnico.ulisboa.pt

João Dias
University of Algarve and CCMAR

and INESC-ID
Faro, Portugal
jmdias@ualg.pt

ABSTRACT
Traditionally, video-game maps are either made by hand, requiring
manyman-hours to produce good results, or made using Procedural
Content Generation (PCG) techniques, which rely on a predeter-
mined algorithm to generate every feature of the map. More recent
studies have tried an approach using Deep Learning algorithms,
which have their own limitations, in particular taking away the
creative freedom of the designers. To circumvent this problem we
propose a system that transforms low fidelity sketches into realis-
tic height-maps through a Deep Learning model we call the Dual
Critic Conditional Wasserstein GAN (DCCWGAN), thus providing
high visual quality without removing control from the user. The
presented system is capable of producing images that resemble the
received input, and a user study with 79 participants showed that
observers are not able to distinguish between earth-based height-
map images and the images generated by our system.
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1 INTRODUCTION
Maps are a crucial part of most video-games: in exploration games
different areas can provide interesting challenges for the player,
in strategy games more defensible geography can be considered
a critical asset. If a video-game contains a map it is a reasonable
assumption that the quality of the player experience is somewhat
tied to the quality of this map.

In the video-game industry maps are made in one of two ways:
either by hand, which is a very time-consuming task, whose results
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depend both on the prowess of the designer, who designs the chal-
lenges present in the map, and the artist, whose job is to implement
those ideas; the other method is to procedurally generate those
maps, which involves designing an algorithm to create a map from
a set of parameters and random values; this approach has it’s own
problems, namely that it’s results have sub-par quality and take con-
trol away from the designer, who, for the most part can no longer
specify exactly which geographic formation appears where. Recent
works have tried to overcome the limitations of traditional PCG
techniques by implementing machine learning algorithms, using
real-world geographic information to train networks created for
this specific purpose[5, 7, 10]. While this approach produces promis-
ing results it has a fundamental flaw: similarly to PCG techniques,
it removes control from the designer.

Another line of works [2, 8] uses conditional GANs to intro-
duce some measure of designer control to the result, which became
possible due to recent advances in the area of image-to-image trans-
lation [3, 4, 6, 9]. In this line of research, we propose a conditional
WGAN that uses two critics - one focused in evaluating quality
or realism of an image, and another focused in evaluating how
close the generated image resembles a rough sketch of a map - to
alternately train the generator. Using this model we developed a
tool that allows developers to draw a rough sketch of a map that
will be transformed into a realistic version of the terrain depicted
in the sketch, thus maintaining the visual quality while reducing
effort without having to sacrifice control.

2 SYSTEM OVERVIEW
In [5] the authors focused heavily on testing multiple Deep Learn-
ing architectures for generating height maps and comparing their
results. We adapted one of the most successful models described, the
Wasserstein GAN [1], iterating the model based on results achieved.

Figure 1: Data flow for the system, user creates low-level sketches
(left) and the system outputs Realistic Height-maps (right).

The data flow for our system (illustrated on Figure 1) begins with
the low-level sketch, which is created by the user and exists only
during inference. While we illustrate a specific type of sketch it is
important to stress that the system is very easily adapted to use a
different tool to create sketches. The low-level sketch is then used
as input to a translation algorithm, which transforms it into what
we call the Intermediate Map Representation (IMR) format.
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For our system to function there needs to be a format that will
be used as input by the user, but is also able to be created from
the ground-truth data set, so as to compare if the content matches
during training, this format is the Intermediate Map Representation
(IMR). The IMR format exposes the average height of each cell in
a hexagonal grid. The IMR outputted by the translation algorithm
is then used as input to our deep learning model, the Dual Critic
Conditional Wasserstein GAN (DCCWGAN), both during inference
and training, resulting in the height-map.

2.1 Dual Critic Conditional WGAN
In order to choose an architecture for our deep learning model we
started by dividing the problem into two distinct learning processes:

• Create realistic maps.
• Create maps whose content corresponds to the given input.

Given this division, we opted for an architecture with a Genera-
tor, but two distinct critics, one for each of the necessary learning
processes. The first of these Critics evaluates only the visual qual-
ities of the images generated, and forces the Generator to create
more and more realistic images; for this reason we call this the Real-
ism Critic. The second critic is responsible for evaluating how well
the contents of the generated maps correspond to the input used in
their generation; this critic is called the Conversion Critic. Training
is done using one Critic at a time, depending on the current loss.
The decision of which Critic to use is explained in further detail in
Section 2.6.

2.2 Generator
The Generator is the network responsible for generating images. It
accepts two separate inputs: the IMR and a noise vector. The IMR
controls the general layout of the final result, while the noise vector,
similarly to other GAN’s, provides a source of entropy, adding a
layer of randomness to the output and allowing the same IMR input
to generate multiple different results.

Figure 2: Structure of the Generator.

Figure 2 represents the complete structure of the Generator. All
deconvolutional layers use kernel size of 3 and stride of 1, except
for the layer following the IMR input, which uses a kernel size of 3
and dilation rate of 2, and the final convolutional layer, which uses
a filter size of 5.

2.3 Conversion Critic
The Conversion Critic, unlike a traditional WGAN critic, receives
a paired input: a real or fake image and an IMR. The IMR given
is either generated from the real data set or, in the case of fake

images, the IMR used as input for the Generator. The purpose of
this network is to discriminate whether the general content of the
image matches that of the IMR given. In the case of real images the
pair should easily match since the IMR is created from the image
itself; in the case of fake images the network attempts to correct
the generator to force this content matching.

Figure 3 depicts the structure of the Conversion Critic, illus-
trating the two separate inputs (IMR and full image), which are
concatenated channel-wise. The goal of this network is to learn
to give a good score to examples where the IMR and the higher-
resolution images are structurally similar, and a bad score otherwise.
All convolutional layers use a filter size of 4, except for the layer
following the IMR input, which uses a kernel size of 3 and dilation
rate of 2, and the final convolutional layer, which uses a filter size
of 5. When image width and height decreases this is done using a
convolutional layer of stride 2.

Figure 3: Structure of the Conversion Critic.

The Conversion Critic has a much simpler task than that of the
Realism Critic, therefore requiring less parameters and less total
memory to train. It is worth noting that the Image Branch of this
network downsamples very rapidly, this is because, due to the way
in which we defined the IMR format, it is much easier to confirm
that the two branches have similar geographical content at a lower
resolution.

2.4 Realism Critic
This critic functions exactly as a critic in any generic WGAN. It
takes as input either a real or fake image and outputs a score of
the realness of the image received. Unlike the content critic, this
critic does not receive the IMR, and therefore judges only the visual
quality of the image, and not its accuracy.

Figure 4: Structure of the Realism Critic.

Figure 4 represents the complete structure of the Realism Critic.
All convolutional layers in this critic use a stride value of 1 and filter
size of 4. While on a surface level this network appears smaller, as
it contains less layers, it contains over 7 times more parameters.
This is because while the Conversion Critic only guides the broader
strokes of the image, the Realism Critic is responsible for the finer
detail, which is a more difficult task that will be held to a higher
standard by the end user.
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2.5 The data sets
As a starting point we were graciously given the data set used by the
researchers of GAN-Based Content Generation of Maps for Strategy
Games [5], which is itself a filtered and augmented version of the
Shuttle Radar Topography Missions (SRTM) 1 data set, created by
NASA. This data set is used as the ground-truth for this research,
but it requires a pair to be used as input of the model.

The pair to the ground-truth data set is the Intermediate Map
Representation (IMR), and is used both in training the Deep Learn-
ing model and is what the user will create as input to the final
system. We used a simple grid of discrete values in the range [0,1],
corresponding to the average elevation value in that area. The num-
ber of levels used was five, but the same principle works for any
number of discrete values.

To create the IMR format, we analyze each image in the ground-
truth data set and obtain the average elevation of all pixels that
correspond to each hex cell. Each of these averages is then compared
to the list of possible values for the IMR format and is attributed
one of the two closest values randomly based on how close it is to
either.

2.6 Training

Algorithm 1: WGAN training algorithm with 𝑛_𝑐𝑟𝑖𝑡𝑖𝑐 = 2
and 𝑏𝑎𝑡𝑐ℎ_𝑠𝑖𝑧𝑒 = 64
Normalize 𝑝_𝑑𝑎𝑡𝑎 between −1 and 1;
for 𝑒𝑝𝑜𝑐ℎ𝑠 do

shuffle 𝑝_𝑑𝑎𝑡𝑎;
ℎ𝑎𝑙 𝑓 _𝑏𝑎𝑡𝑐ℎ =

𝑏𝑎𝑡𝑐ℎ_𝑠𝑖𝑧𝑒
2 ;

𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 =
number of images of 𝑝_𝑑𝑎𝑡𝑎

ℎ𝑎𝑙 𝑓 _𝑏𝑎𝑡𝑐ℎ ;
for 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 do

Choose Critic 𝐶 to train according to loss;
for 𝑛_𝑐𝑟𝑖𝑡𝑖𝑐 do

𝑧_𝑣𝑒𝑐𝑡𝑜𝑟𝑠 = ℎ𝑎𝑙 𝑓 _𝑏𝑎𝑡𝑐ℎ samples from N(`, 𝜎2);
𝑟𝑒𝑎𝑙_𝑖𝑚𝑎𝑔𝑒𝑠 = ℎ𝑎𝑙 𝑓 _𝑏𝑎𝑡𝑐ℎ images from 𝑝_𝑑𝑎𝑡𝑎;
𝑓 𝑎𝑘𝑒_𝑖𝑚𝑎𝑔𝑒𝑠 = ℎ𝑎𝑙 𝑓 _𝑏𝑎𝑡𝑐ℎ samples from
𝐺 (𝑧_𝑣𝑒𝑐𝑡𝑜𝑟𝑠);

𝑦_𝑟𝑒𝑎𝑙 = ℎ𝑎𝑙 𝑓 _𝑏𝑎𝑡𝑐ℎ size vector of value −1;
𝑦_𝑓 𝑎𝑘𝑒 = ℎ𝑎𝑙 𝑓 _𝑏𝑎𝑡𝑐ℎ size vector of value 1;
Train 𝐶 with 𝑟𝑒𝑎𝑙_𝑖𝑚𝑎𝑔𝑒𝑠 labelled as 𝑦_𝑟𝑒𝑎𝑙
using gradient descent with Wasserstein
estimate;

Train 𝐶 with 𝑓 𝑎𝑘𝑒_𝑖𝑚𝑎𝑔𝑒𝑠 labelled as 𝑦_𝑓 𝑎𝑘𝑒
using gradient descent with Wasserstein
estimate;

𝑧_𝑣𝑒𝑐𝑡𝑜𝑟𝑠 = 𝑏𝑎𝑡𝑐ℎ_𝑠𝑖𝑧𝑒 samples from N(`, 𝜎2);
𝑦_𝑔𝑒𝑛 = ℎ𝑎𝑙 𝑓 _𝑏𝑎𝑡𝑐ℎ size vector of value −1;
Train 𝐺 with 𝑧_𝑣𝑒𝑐𝑡𝑜𝑟𝑠 and 𝑦_𝑔𝑒𝑛 labels using
gradient descent with Wasserstein estimate;

The training of our system, for each GAN, is identical to the algo-
rithm used to train any genericWGAN, as presented in Algorithm 1,
the only difference from this algorithm is that our system uses not
1https://www2.jpl.nasa.gov/srtm/

one, but two separate GAN’s that share the same Generator, and as
such, it is necessary to decide which GAN (or Critic) to train at any
given point, which is done depending on the critics losses’. After
some empirical tests, we realized that the Conversion Critic was
easier to train (due to having a simpler task and a simpler network)
and thus does not need to train as often. The final criterium used is
the following: if the loss of the Conversion Critic in fake examples
is more than twice the size of the Realism Critic in fake examples,
then the Conversion Critic will be selected, otherwise select the
Realism Critic.

3 RESULTS
All tests were done on a server using a Intel(R) Xeon(R)W-2223 CPU
with 98 GB’s of RAM and two GeForce RTX 3090 GPU’s, however,
only one was ever used at a time.

All the experiments described are compiled with the RMSProp
optimizer, with a learning rate of 0.00025 for the Conversion GAN
and 0.0005 for the Realism GAN. The training was done for 5000
epochs.

3.1 Conversion Results
In this section we present the results obtained by our system in
terms of being able to convert a low-resolution image or sketch
into an image with higher quality or detail.

Figure 5: Examples of pairs of images. On the left side of the pair we
have the lower-resolution IMR and on the right side the
final image generated by our system.

In Figure 5 we can observe some maps generated from our final
model. We believe these results to be of high quality, reproducing
the given content successfully, with few artifacts or added noise.
We can observe that the model maintains the general profile of
the terrain while adding some texture. It should be noted that the
contour of the coastline is kept identical to the IMR used, while the
elevation within the land differs slightly, fluctuating depending on
the noise vector given. This vector requires a careful balancing of
the model as, if the vector is not given enough importance, then
there will be little randomness in the images, in the extreme case
each IMR input can only generate a single output map. On the other
hand, if the noise vector is given too much importance then the IMR
input will not be respected and the output map will not represent
the given input.

In order to analyse how well the system creates any type of
terrain from a rough sketch, and to ensure it wasn’t overfitting, we
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created a new set of examples, by first creating 32 hexagonal maps
using a hexagonal map creation tool, and subsequently translating
the hexagonal maps into the IMR format.

Figure 6: Examples of maps generated from the custom IMR data set.
For each set: Left: Original hex map. Center: IMR. Right:
Resulting height-map.

Figure 6 represents some of the results obtained from the model
when given IMR representations not present in the training data.
These examples could be problematic to our model, not only be-
cause they were never observed, but also because they can express
terrain that may be unrealistic. Although the quality of the gener-
ated images for these examples is sometimes lower, by generating
multiple samples of the same input, some have quality on par with
the previously observed results, further demonstrating the impor-
tance of the noise vector.

3.2 Realism Results
In order to evaluate our results on the goal of generating realistic
images we wanted to determine if users were unable to distinguish
images generated from our system and images from the original
NASA STRM data set. To that end we conducted a user test where
participants were shown 20 height-maps and corresponding 3D-
renders, 10 of which from the NASA SRTM data set, and 10 gen-
erated by our system. Participants were then asked to evaluate
the origin of each map, using the sentence “This map represents
geographic information from the Earth" and asking participants
how much they agree with the sentence, in a Likert scale of 1 to 7.

We obtained a total of 79 participants in the study. Figure 7
shows a boxplot with the values obtained for both groups of images.
Because our data is non-parametric, we used the Wilcoxon’s paired
rank test, from which we determined that there was no statistical
difference between the two populations, in otherwords, participants
were unable to distinguish between ground-truth maps and maps
generated using our system (𝑍 = −0.399, 𝑝 = 0.69).

Figure 7: User perception of realism of maps generated with Earth’s
geographical data, vs. generated by our system.

4 CONCLUSION
Our goal was to provide an alternative way of generating height-
maps for video-games. We needed a system that would create realis-
tic and visually appealing results, without requiring too much work
from the part of user, but still allowing the user to specify desired
geographical features. In order to accomplish this goal we intro-
duced the Dual Critic Conditional Wasserstein GAN (DCCWGAN),
a new type of conditional WGAN using two critics: The first Critic
to evaluate the content of the input matches that of the generated
map, while the second Critic guides the results to be more realistic.
Results show the content of the outputted maps closely match those
of the supplied input, and that in terms of realism a test with 79 hu-
man participants showed that observers are not able to distinguish
between real images and images generated by our system. Overall,
we consider that, while there is room for improvement, we achieved
the goals we set out for, and contributed to existing knowledge by
implementing a system that performs a form of sketch-to-image
translation using multiple critics.
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