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Abstract
Microalgae-based wastewater treatment technology is a sustainable and environmentally friendly alternative to conventional 
treatment systems. The biomass produced during microalgae-based wastewater treatment can be valorized via pyrolysis 
to generate multiple valuable products, such as biochar, bio-oil, and pyrolytic gas. This study summarizes the potential of 
pyrolysis for valorizing microalgal biomass produced from wastewater treatment. It shows how pyrolysis can provide a variety 
of valuable products, the composition of which is influenced by the type of microalgae used, the operating conditions of the 
pyrolysis process, and the presence of contaminants in the biomass. It also highlights the main challenges to be addressed 
before pyrolysis can be adopted to valorize microalgae biomass. These challenges include the high energy requirements of 
pyrolysis, the need for further research to optimize the process, and the potential for pyrolysis to produce harmful emissions. 
Despite this, pyrolysis appears as a promising technology with potential to contribute to the sustainable development of a 
circular economy. Future research should address these challenges and develop more efficient and environmentally friendly 
pyrolysis processes.
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Introduction

Access to good quality water is becoming increasingly 
scarce and it is essential for the sustainability of ecosystems, 
human health, and social and economic development. As 
the global population continues to grow and natural envi-
ronments become degraded, there is an increase in water 

demand and wastewater generation (Mishra et al. 2021). 
Wastewater is generated from various sources including 
agriculture, industries, and municipalities, and is typically 
rich in nitrogen, phosphorus and organic carbon. Depending 
on the type of wastewater, it can also contain a wide range 
of contaminants, such as heavy metals, pathogenic microor-
ganisms, and contaminants of emerging concern, including 
microplastics, pharmaceuticals, pesticides, and personal care 
products (Ahmed et al. 2022). Treating wastewater before 
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its discharge is crucial in order to prevent environmental 
pollution and ensure safe water reuse. Doing so can help 
mitigate the negative impacts on the environment and human 
health, while also contributing to sustainable development 
(Obaideen et al. 2022).

Traditional primary and secondary wastewater treatments 
are designed to remove easily settling solids and to oxidize 
organic matter, resulting in a seemingly clear effluent. How-
ever, this treated (secondary) effluent, which is discharged 
into natural water bodies, may still have organic micropol-
lutants and heavy metals which can pose long-term problems 
(Abdel-Raouf et al. 2012). In addition to the environmental 
concerns, conventional activated sludge wastewater treat-
ment systems are burdened with high costs due to the energy 
demand of aeration tanks and the treatment of produced 
sludge (Siatou et al. 2020). Hence, there is an urgent need 
for more cost-effective and sustainable solutions.

Microalgae offer an alternative to conventional biologi-
cal wastewater treatments due to their high flexibility to 
changing conditions, such as nutrient availability and light 
intensity, and their ability to grow photoautotrophically, 
heterotrophically, or mixotrophically. These microscopic 
organisms are capable of removing excess nutrients (such 
as nitrogen and phosphorus) from wastewater and incorpo-
rating them into their biomass in the form of organic com-
pounds. This biomass can then be used as a feedstock for 
producing biofuels, biofertilizers, animal feed, and bioactive 
compounds (Morais et al. 2021), thus promoting the circular 
bioeconomy principles. In addition, microalgae also possess 
the ability to remove organic contaminants from wastewater 
through processes such as bioaccumulation (Gojkovic et al. 
2019), biosorption (Abbas et al. 2014) or biodegradation 
(Matamoros et al. 2015), providing an added advantage to 
their use in wastewater treatment. Despite the advantages 
of using microalgae for wastewater treatment, biomass con-
tamination often impedes its reuse as food or feed, among 
other applications. Therefore, the biomass needs to undergo 
conversion processes that either degrade the contaminants 
or concentrate them into ash form (Abdel-Raouf et al. 2012).

An alternative and novel approach is to pyrolyze the 
microalgal biomass cultivated in wastewater. Pyrolysis is a 
thermochemical process that involves heating organic mate-
rials in the absence of oxygen or with limited oxygen sup-
ply, causing them to decompose into volatile gases, liquids, 
and solid residues. This process enables the conversion of 
various organic substances, including biomass, plastics, and 
waste materials, into valuable products such as bio-oil, pyro-
lytic gas, and biochar (Sekar et al. 2021) while mitigating 
environmental impacts by minimizing emissions and reduc-
ing the reliance on landfill disposal or traditional combustion 
methods. These pyrolysis products may have applications in 
other systems. For instance, bio-oil can be utilized as biofuel 
(Zhang et al. 2007), thereby contributing to the sustainability 

of fuels production; and pyrolytic gas can be used to gen-
erate thermal and electrical energy (Chen et al. 2017). As 
far as biochar is concerned, it could be applied as a filter 
within the microalgae wastewater treatment system, creating 
a closed-loop system (Xiang et al. 2020).

This review focuses on the valorization of the biomass 
produced during microalgae-based wastewater treatment 
via pyrolysis. While several reviews have already discussed 
wastewater treatment by microalgae (Yu et al. 2017; Lage 
et al. 2018; Daverey et al. 2019; Nagarajan et al. 2019; Hus-
sain et al. 2021; Yadav et al. 2021), the present one high-
lights pyrolysis not only as a process for bioenergy conver-
sion, but also for obtaining high-value products. The review 
summarizes different sources of wastewater, contaminants, 
microalgae species or consortia, and compares the compo-
sition of the biomass produced for potential valorization. 
Since pyrolysis involves the thermal degradation of biomass 
in the absence of oxygen, not only can contaminated biomass 
be used in this process, but it can also lead to the formation 
of multiple products, namely biochar, bio-oil and pyrolytic 
gas, thereby transforming waste into valuable products.

Microalgae and wastewater treatment

Biomass production in wastewater treatment 
systems

Two main characteristics of microalgae strains for wastewa-
ter treatment are high productivity and tolerance to extreme 
conditions (Morais et al. 2021). Generally, the strains that 
are most suitable for this type of cultivation are either geneti-
cally modified or have been isolated from environments with 
harsh conditions, such as those near power plants or waste 
treatment facilities (Lage et al. 2018). Among the different 
genera, Chlorella and Scenedesmus have demonstrated the 
best performance in developing under adverse conditions, as 
they are more robust (Álvarez-Díaz et al. 2017).

A notable feature of wastewater treatment with microal-
gae is that it seldom involves monoculture. Typically, micro-
organisms present in the medium grow rapidly and coexist 
with the inoculated strain. Mixed cultures are better adapted 
to wastewater and offer greater stability (Lage et al. 2018). 
Moreover, there is a symbiosis between microalgae and het-
erotrophic bacteria, by which microalgae provide oxygen 
through their photosynthesis wheras heterotrophic bacteria 
consume it in their respiration and release CO2 which is 
again consumed by microalgae. Recently, research has also 
focused on other consortia such as fungi-microalgae (Leng 
et al. 2021). Mixed consortia have proven to be highly effec-
tive in wastewater bioremediation and biomass harvesting, 
owing to their larger morphology.
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The treatment of waste effluents via microalgae is mainly 
conducted by green algae (such as Chlorella, Scenedes-
mus, Botryococcus, Chlamydomonas) and cyanobacteria 
(including Spirulina/Arthrospira, Phormidium, Microcystis, 
and Synechococcus) (Cai et al. 2013; Passos et al. 2015). 
Additionally, microalgae have the capacity to remove heavy 
metals and some toxic organic compounds, thus preventing 
secondary pollution (Abdel-Raouf et al. 2012; García-Galán 
et al. 2018; Moondra et al. 2020; Chaudry 2021).

Considering the concept of microalgae biorefinery, 
biomass from wastewater treatment has great potential to 
produce various bioproducts, such as proteins, fatty acids, 
pigments, biofertilizers, biochar and animal feed (Cai et al. 
2013; Moondra et al. 2020). The composition of wastewater 
affects the growth of microalgae and the production of bio-
products. Some examples of wastewater that can be treated 
with microalgae culture include agricultural (García-Galán 
et al. 2018), municipal (Tang et al. 2023), and industrial 
wastewater (Amin et  al. 2022). Microalgal treatment is 
also outlined as one of the technologies appropriate for the 
remediation of wastewater from the textile industry, often 
polluted with dyes. These effluents are highly toxic and com-
prise intricate, harmful, and challenging-to-treat components 
(Shabir et al. 2022).

The process of urbanization and the consequent increase 
in urban populations have led to the production of higher 
quantities of municipal wastewater containing relatively 
large amounts of heavy metals such as lead, zinc, and cop-
per compared to liquid effluents from animal sources (Cai 
et al. 2013). Municipal wastewater used for microalgae cul-
tivation can be broadly classified into the following catego-
ries: (1) raw sewage, which refers to municipal wastewater 
prior to primary settling; (2) primary effluent, which refers 
to municipal wastewater after primary settling for suspended 
solids removal; and (3) secondary effluent, which refers to 
municipal wastewater after biological treatment for organic 
matter removal. The nutritional profiles of different types 
of municipal wastewater can vary significantly, leading to 
significant differences in microalgal growth (Arashiro et al. 
2019). For example, the biomass productivity of microalgae 
cultured in primary effluent can be as low as 25% of that in 
Tris–acetate phosphate medium, which may be overcome by 
using combined cultures with high concentrations of CO2 
(5–15%) (Zhao and Su 2014).

Agricultural wastewaters, particularly those from ani-
mal manure, are typically rich in nitrogen and phosphorus. 
About half of the nitrogen in animal waste is in the form 
of ammonium, while the rest is in organic nitrogen form. 
The nutrient content is significantly influenced by factors 
such as animal diet, age, use, productivity, management, 
and location. The nitrogen-to-phosphorus ratio (N/P) typ-
ically ranges from 2 to 8 for wastewater from confined 
dairy, swine, and bovine cattle operations (Cai et al. 2013; 

Li et al. 2019b). However, the high suspended solid and 
ammonia contents make this type of wastewater unsuitable 
for direct use in microalgae-based treatment systems. To 
treat manure, anaerobic digestion is typically used, fol-
lowed by land application of the digestate. During the pro-
cess, most of the organic carbon is converted into methane, 
an important greenhouse gas, leaving nitrogen and phos-
phorus in the digested effluent (Zhu et al. 2013; Bohutskyi 
et al. 2015). The C/N ratio is relatively low compared to 
that of concentrated manure, making digested manure an 
ideal medium for the growth of certain microalgae, such 
as Rhizoclonium hieroglyphicum, Chlorella, Micractinium, 
and Actinastrum (Pittman et al. 2011). However, the high 
concentration of nutrients can inhibit the growth of many 
strains (Pittman et al. 2011; Zhu et al. 2013).

Most industrial wastewater contains higher levels of 
heavy metals and lower amounts of nitrogen or phospho-
rus than other types of wastewaters, depending on the 
source (Morais et al. 2021). Certain species of microalgae 
can effectively remove toxic heavy metals in wastewater 
through absorption and adsorption, while others are sen-
sitive to metal toxicity. Microalgae cells can assimilate 
heavy metals in low concentrations through micronutrient 
transporters, ultimately detoxifying them in specific cel-
lular compartments, or removing them using the unique 
extracellular ultrastructure of the microalgae (Morais 
et al. 2021), making it possible to treat industrial waste-
water with low levels of heavy metals. Chlorella, Ankis-
trodesmus, and Scenedesmus have been found to be effec-
tive in treating industrial wastewater (Rawat et al. 2011; 
Li et al. 2019b), along with some cyanobacteria (Arashiro 
et al. 2020). Concerning wastewater from textile indus-
tries, it is characterized by high salinity, temperature, 
variable pH, and strong colors, as well as a high chemi-
cal oxygen demand (COD). Microalgae can remove these 
colored dyes through biosorption or reducing mechanisms 
(Wang et al. 2016).

Microalgae present a versatile and environmentally ben-
eficial approach to wastewater treatment. They excel in 
removing nutrients, such as nitrogen and phosphorus, from 
various types of wastewaters, including agricultural, munici-
pal, and industrial effluents, thereby preventing the pollution 
of natural water bodies. Furthermore, microalgae possess the 
unique capability to absorb heavy metals and toxic organic 
compounds, contributing to the remediation of contaminated 
water sources. This dual capacity for nutrient removal and 
pollutant mitigation makes microalgae-based systems highly 
effective in sustainable wastewater management. Addition-
ally, the resulting biomass from microalgae cultivation in 
wastewater can be harnessed for energy production, particu-
larly through processes like pyrolysis, where heavy metals 
are transformed into stable forms, minimizing secondary 
pollution risks. Thus, microalgae offer a promising and 
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holistic solution for wastewater treatment, environmental 
protection, and bioenergy production.

Nutrients and pollutants removal from wastewater

The primary purpose of using microalgae-based wastewater 
treatment systems is to remove nutrients and convert them 
into biomass. Additionally, certain pollutants such as heavy 
metals found in wastewater can directly affect the growth of 
microalgae. Therefore, it is crucial to understand the poten-
tial mechanisms by which microalgae can remove/metabo-
lize the nutrients and pollutants from wastewater (Abdelfat-
tah et al. 2023).

Microalgae can utilize two sources of carbon: inorganic 
carbon (such as CO2 and HCO3

−) and organic carbon (such 
as sugars, alcohols, and acids). Autotrophic microalgae can 
fix CO2 from the atmosphere and industrial exhaust gases 
through photosynthesis. On the other hand, some micro-
algae exhibit heterotrophic behavior and can use organic 
forms of carbon for growth. Certain microalgae even dis-
play both autotrophic and heterotrophic characteristics (Cai 
et al. 2013; Liu and Hong 2021). In heterotrophic mode, 
microalgae metabolize organic carbon compounds present 
in wastewater (such as glucose, galactose, glycerol, ethanol, 
and acetate) for growth. These organic carbon sources enter 
the microalgae cells either through the plasma membrane or 
phagocytosis (Perez-Garcia et al. 2011).

Microalgae can use various forms of nitrogen, including 
ammonium (NH4

+), nitrate (NO3
−), nitrite (NO2

−), urea, and 
amino acids present in wastewater to synthesize proteins, 
nucleic acids and phospholipids (Raven & Giordano 2016; 
Sniffen et al. 2018). Ammonium nitrogen is the preferred 
form because it does not require a redox reaction and con-
sumes less energy (Morais et al. 2022). However, nitrate, 
being more oxidized and thermodynamically stable, is also 
an important source of nitrogen for microalgae, as it can 
induce reductase nitrate activity. In wastewaters with high 
concentrations of ammonium, it can be efficiently used for 
the rapid growth of microalgae (Cai et al. 2013; Barsanti and 
Gualtieri 2014) although high concentrations may be toxic 
(Ayre et al. 2017).

Inorganic phosphate (such as PO4
3−, HPO4

2−, and 
H2PO4

−) is the preferred form of phosphorus assimilated 
by microalgae, playing a significant role in their growth and 
metabolism (Su 2021). While microalgae primarily utilize 
inorganic forms of phosphorus, some species are capable of 
using organic esters as a source of phosphorus for growth. 
Although orthophosphate is generally considered a limit-
ing nutrient in freshwater systems, excess phosphorus from 
wastewater drainage can contribute to eutrophication. Phos-
phorus removal from wastewater occurs not only through 
absorption by the cell, but also by precipitation. Since 
phosphorus does not exist in a gaseous state, elevated pH 

and dissolved oxygen concentration can prompt phosphate 
precipitation (Cai et al. 2013).

Some heavy metals, such as boron, copper, iron, zinc, 
cobalt, and molybdenum, are essential trace elements for the 
growth of microalgae, promoting enzymatic reactions and 
cellular metabolism (Durai and Rajasimman 2010). Heavy 
metals are commonly found in wastewater as pollutants, and 
microalgae have the ability to absorb them (Mehta and Gaur 
2005; Bucková et al 2022). Biosorption is considered the 
main mechanism for the removal of heavy metals by micro-
algae (Liu and Hong 2021), so proper reuse/valorization of 
microalgal biomass is crucial to avoid secondary pollution 
caused by metal contamination in the generated biomass.

Microalgae have the ability to also remove antibiotics 
from wastewater (Villar-Navarro et al. 2018). The mecha-
nisms involved in the removal of antibiotics by microalgae 
include biosorption, bioaccumulation, biodegradation, pho-
todegradation and hydrolysis (Liu and Hong 2021). Antibi-
otics found in urban sewage originate from various sources, 
such as hospitals, households, and pharmaceutical industries 
(Szekeres et al. 2017). They are also used in the prevention 
and treatment of diseases in livestock and poultry, resulting 
in their presence in animal manure effluents (Zhang et al. 
2018). The removal of antibiotics using microalgae has been 
studied but the mechanisms involved in the simultaneous 
removal of multiple antibiotics and the toxicity of interme-
diate products in the degradation process require further 
investigation (Liu and Hong 2021).

Consequences of microalgae composition 
and contamination in biomass valorisation

Heavy metals, drugs, xenobiotics, and other contaminants 
present in wastewater tend to accumulate in microalgal bio-
mass cultivated in such media (Lage et al. 2018). Thus, the 
resulting biomass cannot be used for food and feed produc-
tion, and in some cases, the algal biomass cannot even be 
used as a fertilizer. Typically, biomass obtained from waste-
water cultivation is intended for energy production, such 
as the generation of heat, electricity, or fuel (Morais et al. 
2021). Indeed, extensive research has been conducted on 
the production of biofuels from microalgae treating waste-
water (Uggetti et al. 2017), following biological, chemical 
or thermal processes.

In the pyrolysis process, the fate of heavy metals present 
in the raw material depends on the characteristics of these 
metals. Metals with lower thermal stability, such as mercury, 
cadmium, arsenic and lead, are volatilized, while thermally 
stable metals, such as chromium, manganese and nickel, 
are enriched in the waste (Chanaka Udayanga et al. 2018). 
The enrichment in heavy metals is not problematic during 
pyrolysis, as the temperatures used (usually between 400 and 
900 °C) result in minimal distribution of heavy metals in the 
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gaseous and oil phases, and most of these compounds are 
concentrated in the biochar (Chanaka Udayanga et al. 2018). 
Moreover, biochar does not generate secondary pollution, as 
there is low leaching of heavy metals due to their conversion 
to stable forms during the process (Devi and Saroha 2014).

Pyrolysis as a downstream process 
in biomass biorefinery

Pyrolysis is a thermochemical decomposition process that 
involves the heating of organic materials (Chen and Lin 
2016) in the absence of oxygen to produce useful products 
such as biochar, bio-oil, and pyrolytic gas and their distri-
bution depends on the operating parameters of the reaction 
(Bridgwater 2012). The specific products obtained depend 
on factors such as temperature, residence time, pressure and 
the nature of the biomass, as well as other reactor conditions 
(Kesari et al. 2021; Sekar et al. 2021). Figure 1 shows the 
pyrolysis types and the most comon reactors used for each.

Microalgal biomass is a promising feedstock for pyrolysis 
due the high growth rate, high lipid, and low lignin contents 
of algae, which result in higher yields of bio-oil and pyrolitic 
gas compared to woody biomass (Maliutina et al. 2017). 
Microalgal biomass has a high nutrient content, making 
the resulting biochar an excellent soil amendment (Ağbulut 
et al. 2023). The application of pyrolysis to microalgal bio-
mass produced in wastewater can provide a sustainable and 
renewable source of energy and reduce the environmental 
impact of waste disposal (Morais et al. 2021). The pyrolysis 
application on microalgal biomass can be: 1) direct pyrolysis 
of microalgae biomass, when this is too contaminated for 
valuable products extraction, and 2) a two-stage process, 
where high-value compounds are first extracted and the 

left-over biomass is then pyrolyzed. Li et al. (2022b) con-
ducted direct pyrolysis on the biomass and Li et al. (2022a) 
a two-stage process involving lipid extraction from the bio-
mass followed by pyrolysis of the residual biomass from 
the first stage. In both studies, Desmodesmus sp. EJ 8–10 
was cultivated in anaerobic digestion effluent sourced from 
a pig farming facility, adjusted with small quantities of rea-
gents to achieve adequate Fe, P, and Mg concentration, as 
these nutrients were identified as insufficient for microalgae 
cultivation in the effluent. Both studies produced increased 
value pyrolysis products (aliphatic hydrocarbons and fatty 
acids) and low amounts of toxic compounds (nitrogen-con-
taining compounds and polycyclic aromatic hydrocarbons). 
These approaches also significantly contributed to reduce 
environmental impacts, as indicated by Life Cycle Assess-
ment (LCA). Thus, this can be an outstanding key for the 
biorefinery process through microalgal biomass produced in 
wastewater and circular economy.

The main difference between slow, fast, and flash pyroly-
sis is the heating rate and the residence time of the biomass 
in the reactor. Slow pyrolysis takes place at low heating 
rates (0.1 to 10 °C min−1) and long residence times (30 min 
to several hours), producing high-quality biochar with low 
yields of bio-oil and pyrolitic gas. Fast pyrolysis, on the 
other hand, involves high heating rates (100–1000 °C s−1) 
and short residence times (seconds to minutes), resulting in 
higher yields of bio-oil and pyrolitic gas but lower-quality 
biochar. However fast pyrolysis is still the recommended 
technique for obtaining biochar from microalgal biomass, 
as it is easier to operate and allows for the vapour to remain 
inside the reactor for up to 60 min, resulting in a higher 
yield of solids (Sekar et al. 2021). Flash pyrolysis occurs at 
higher heating rate (HHV) and with much shorter annealing 
time than conventional pyrolysis, thus favoring the yield of 

Fig. 1   Pyrolysis classification, 
reactors, and the main products 
produced from microalgae 
biomass
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bio-oil and gases over biochar. For the flash pyrolysis to 
be effective, temperature, heating rate and residence time 
should be within the range of 450–600 °C, 103 − 104 °C s−1, 
and < 1 s, respectively (Ighalo et al. 2022). Pyrolysis can be 
carried out in various types of reactors, including fixed-bed, 
fluidized-bed, and vacuum reactors (Ağbulut et al. 2023).

Catalyst pyrolysis is generally conducted at temperatures 
between 300 and 600 ºC, and could reduce the entire pyroly-
sis temperature and duration, and enhance the effectiveness 
and performance of the procedure (Sun et al. 2022). Cata-
lytic biomass pyrolysis is categorized into three main groups 
of catalytic reactions: non-metallic catalysis (e.g., zeolite 
and activated carbon), monometallic catalysis, and bimetal-
lic catalysis (Lee et al. 2022). The catalysts play a role on the 
deoxygenating and denitrification, converting O-containing 
compounds into aromatic compounds and N-containing 
compounds into ammonia, being used mainly for bio-oil 
production (Sun et al. 2022). Bio-oil generated from con-
ventional pyrolysis processes typically exhibits drawbacks 
such as high oxygen and biomass moisture contents, along 
with low higher heating value (HHV), high viscosity, and 
elevated total acidity number (Park et al. 2021). Catalytic 
pyrolysis effectively overcomes these issues and reduces the 
activation energy during pyrolysis (Wang et al. 2021). Thus, 
catalytic pyrolysis is the most suitable process to address 
these deficiencies. However, it is necessary to select the ideal 
catalyst to achieve the desired product characteristics. This 
ideal catalyst might vary, given the utilization of different 
biomasses and pyrolysis process configurations (Seo et al. 
2022). Catalytic pyrolysis of cow manure over HZSM-5 zeo-
lite exhibited high potential for the production of valuable 
biofuels such as benzene, toluene, ethylbenzene, xylene, and 
naphthalene (BTEXN), as well as greater capacity to sup-
press harmful products compared to other zeolites (HBeta 
and HY) (Valizadeh et al. 2022). Meanwhile, in the catalytic 
pyrolysis of a commercial wood-plastic composite (HBeta) 
produced a larger quantity of aromatics compared to the 
other zeolite catalysts (HZSM-5 and HY) (Park et al. 2019).

Microwave and catalyst pyrolysis are considered 
advanced methods of pyrolysis that, compared to the con-
ventional slow and fast pyrolysis, have less energy and 
lower temperature requirements as well as the possibility to 
eliminate contaminants from bio-oil like solid residues and 
decrease its oxygen, sulfur, nitrogen and phosphorus content. 
These methods can improve product selection by altering the 
pyrolysis reaction pathways (Ağbulut et al. 2023).

Microwave-assisted pyrolysis creates heat from the 
center of the biomass towards the outside and has as 
advantages the short process time and selective and uni-
form internal heating being therefore indicated for high 
moisture content raw materials (Chen et al. 2021). This 
technique uses radiofrequency waves in the range of 0.3 to 
300 GHz (Sekar et al. 2021) and thus could be unfavorable 

for producing bio-oil as the chemical bonds of molecules of 
macronutrients could be easily broken under the directly-
transferred energy of microwaves resulting in rapidly deg-
radability of this compounds in the process reducing bio-
oil yield (Ağbulut et al. 2023).

In summary, the downstream process in microalgae bio-
mass biorefinery, specifically pyrolysis, plays a crucial role 
in transforming microalgae biomass into valuable products. 
Pyrolysis can be tailored to suit different scenarios, either 
as a direct process for contaminated biomass or as a two-
stage approach with lipid extraction preceding pyrolysis. 
Bio-oil derived from microalgae can serve as a source of 
green transportation fuels or valuable chemicals, although 
it may require further upgrading to match the properties of 
fossil fuels. Pyrolytic gas generated in the process is a cost-
effective and sustainable source of energy, with potential 
applications in thermal and electrical energy generation and 
hydrocarbon synthesis. Biochar, another valuable product of 
pyrolysis, has diverse applications, including carbon seques-
tration, soil improvement, wastewater treatment, and even as 
a precursor for manufacturing nanoparticles. These down-
stream processes demonstrate the versatility and potential 
of microalgae biomass generated in wastewater treatment 
systems can contribute to a circular economy and sustainable 
biorefinery processes.

Bio‑oil

Bio-oil derived from microalgal biomass pyrolysis is typi-
cally a dark brown liquid with a smoky odor, composed 
of a complex mixture of several hundreds of organic com-
pounds, primarily aliphatic and aromatic hydrocarbons, 
oxygen-containing compounds, and nitrogen-containing 
compounds (Saber et al. 2016). The chemical composition 
highly depends on the type of biomass, pyrolysis process and 
operating conditions, resulting in different physical proper-
ties of bio-oils (Table 1). Generally, bio-oil has been con-
sidered a sustainable source of green transportation fuels or 
feedstock for valuable chemicals. However, bio-oil has some 
drawbacks, such as higher density, higher water content, 
higher viscosity, and lower heating value when compared 
to fossil fuels (Zhang et al. 2007). Nevertheless, bio-oils 
produced from microalgae typically exhibit HHV ranging 
from 25 to 41 MJ kg−1 (Table 1), lower oxygen content and a 
desirable pH, showing their tremendous potential as biofuel 
products compared to conventionally used lignocellulosic 
biomass, where HHV range between 16 and 19 MJ kg−1 
(Isahak et al. 2012).

To further enhance both the yield and quality of bio-oil, 
fast pyrolysis has been utilized for the biomass of Chlorella 
protothecoides and Microcystis aeruginosa, with higher 
HHV resulting in lower viscosity compared to those pro-
duced by slow pyrolysis (Miao et al. 2004). Additionally, 
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controlling the growth conditions of microalgae can alter the 
biomass composition, thereby changing the properties of the 
bio-oil produced by pyrolysis. For instance, fast pyrolysis of 
heterotrophically grown C. protothecoides led to 3.4 times 
more bio-oil than those grown autotrophically, resulting in 
bio-oil with lower viscosity and a HHV of 41 MJ kg−1 (Miao 
and Wu 2004). In another study, fast pyrolysis of nitrogen-
starved C. vulgaris resulted in a bio-oil yield of 42%, with an 

increased HHV of 28.9 MJ kg−1 and a lower nitrogen content 
than when microalgae were grown under nutrient repletion 
(Belotti et al. 2014).

Residual microalgae biomass, such as residues after 
the extraction of lipids or high-value compounds, can 
also be processed by pyrolysis in a biorefinery approach. 
For instance, the fast pyrolysis of C. vulgaris remnants 
resulted in a 53% bio-oil yield, with a high heating value of 

Table 1   Pyrolysis conditions and bio-oil yields for different microalgae species and treatments

Microalgae Pyrolysis type Bio-oil
(%)

C H N O Water
(% mass)

HVV
(MJ kg−1)

Reference
(% dry mass)

Chlorella pro-
tothecoides

fast, 500 °C 17.5 62.07 8.76 9.74 19.43 - 30 Miao and Wu 
(2004)

Chlorella pro-
tothecoides 
(heterotroph)

fast, 500 °C 57.9 76.22 11.61 0.93 11.24 41

Chlorella 
vulgaris

fast, 400 °C 42 59.5 7.6 8.0 24.9 29 27.9 ± 0.5 Belotti et al. 
(2014)

C. vulgaris 
N-starved

fast 400 °C - 61.0 8.2 6.0 24.8 30 28.9 ± 0.8

C. vulgaris 
remnants

fast 500 °C 53 51.4 8.34 12.8 27.46 15.89 24.57 Wang et al. 
(2013)

Chlorella sp. fast, 500 °C 35.5 54.52 9.06 11.51 25.69 - 25.5 Campanella and 
Harold (2012)

Chlorella sp. catalytic 
(zeolites 
crystallites), 
500 °C

28.9–34.6 58.54–63.64 8.44–8.99 9.18–10.96 19.41–23.58 - 26.8–29.1

Chlorella sp. microwave-
assisted

65.4 7.84 10.28 16.48 - 30.7 Du et al. (2013)

Chlorella sp. batch, 450 °C 34 54.4 9.6 7.3 28.2 17.9 29.8 Rizzo et al. 
(2013)

C. vulgaris catalytic (Ni 
loaded zeo-
lites), 500 °C

10 47 - 30 10 Zainan et al. 
(2018)

Chlorella sp. catalytic, 
450 °C

40 - - - - 32 32.2 Babich et al. 
(2011)

Microcystis 
aeruginosa

fast 500 °C 23.7 60.99 8.23 9.83 20.95 - 29 Miao et al. 
(2004)

Nannochlo-
ropsis sp. 
residue

slow, 400 °C 31.1 56.13 7.63 5.34 30.09 24.4 Pan et al. (2010)

Nannochlo-
ropsis sp. 
residue

catalytic, slow, 
400 °C

19.7 65.21 9.83 5.43 19.5 32.7

Pavlova sp. 500 °C 18.68 68.31 8.84 8.75 14.10 33.32 Aysu et al. 
(2017)

Pavlova sp. catalytic (tita-
nia-based)

20.04–22.55 72.27–75.20 9.02–9.47 6.12–6.58 9.47–12.48 35.21–37.07

Scenedesmus 
sp.

fast, 480 °C 55 51.9 9.0 8.6 27.6 18.4 Harman-Ware 
et al. (2013)

Spirulina 
platensis

500 °C 28.5 74.66 10.57 7.13 6.81 33.62 Jena and Das 
(2011)

Spirulina spp. slow, 550 °C 45 46.05 7.97 9.7 36.28 32.42 21.68 Chaiwong et al. 
(2013)
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24.6 MJ kg−1 (Wang et al. 2013). In a different approach, the 
residual biomass of Haematococcus pluvialis after astaxan-
thin extraction was subjected to pyrolysis at 600 °C, result-
ing in a bio-oil yield of 26.58% (Gong et al. 2020).

Bio-oil obtained from microalgae pyrolysis has some 
drawbacks such as high contents of oxygen and nitrogen 
compounds, which may limit its application as trans-
portation fuel (Babich et al. 2011). Oxygenates such as 
aldehydes, ketones, acids and phenols reduce the energy 
content and stability of bio-oil as compared to conven-
tional fuels, and an increased acidity can cause corrosion 
problems. Furthermore, pyrolysis of protein-rich micro-
algae biomass leads to nitrogen-containing compounds 
such as amines, amides, pyridines, pyrroles, pyrazoles, 
pyrazines, polyheteroaromatics, nitriles, imidazoles and 
indoles (Andrade et al. 2018), which are undesirable in 
biofuels due to their potential to release atmospheric pol-
lutants such as NOx gases during combustion processes 
(Zainan et al. 2015).

Catalytic pyrolysis has great potential to reduce oxygen 
and nitrogen containing compounds, leading to an increase 
in the hydrocarbon ratio and the HVV of the produced 
bio-oil. An extensive review of different catalysts applied 
to microalgal biomass by Lee et al. (2020) and Li et al. 
(2019a) has been provided. Metal-loaded zeolites, par-
ticularly with nickel and palladium, have been identified 
as the most efficient catalysts for upgrading microalgal 
bio-oil by decreasing the nitrogen and oxygen contents and 
producing significant petrochemicals such as aromatics 
and olefins. For example, protein-rich Arthrospira spp. has 
been shown to produce bio-oil with a lower oxygen con-
tent compared to lignocellulosic biomass after catalytic 
pyrolysis over H-ZSM5 (23) (Chagas et al. 2016). Besides, 
C. vulgaris catalytic pyrolysis using nitrogen supported 
zeolites (Si/Al = 30) produced bio-oil with high hydrocar-
bon content and fewer oxygenated and acidic compounds 
compared to non-catalytic pyrolysis (Zainan et al. 2018). 
Meanwhile, Nannochloropsis sp. catalytic pyrolysis using 
zeolite (HY) resulted in low nitrogen content (1.25 wt%) 
and high monocyclic aromatic yield, although the bio-oil 
yield (38.3%) was lower than that without catalyst (58.1%) 
(Tang et al. 2021).

However, the fuel properties of bio-oil are still inferior to 
those of fossil fuels, which limits their direct use. Therefore, 
upgrading processes are necessary. Various techniques can 
be employed for this purpose, including chemical processes 
such as catalytic esterification, hydrothermal liquefaction, 
hydrodeoxygenation and catalytic hydroprocessing, as 
well as physical processes like hot vapor filtration, solvent 
addition and emulsion formation (Xiu and Shahbazi 2012; 
Saber et al. 2016; Sharifzadeh et al. 2019). While upgrading 
can render bio-oil suitable for use as biofuel, the process 

involves additional steps, chemicals, and equipment, which 
incurs additional costs (Sorunmu et al. 2020).

Bio-oil has potential applications beyond biofuels, such 
as the extraction of valuable green chemicals. For instance, 
liquid–liquid extraction can be used to extract phenols that 
can serve as raw materials for developing bio-based anti-
oxidants, resins, and additives (Shah et al. 2017). Further-
more, chemicals derived from bio-oil can be used in various 
industries, including surfactants, biodegradable polymers, 
preservatives, liquid smoke, resin precursors, adhesives, 
fertilizer additives, pharmaceuticals and flavoring agents 
in food (Xiu and Shahbazi 2012). However, the commer-
cialization of these products from bio-oil requires further 
investigation into the economic aspects of separation and 
refining techniques.

Pyrolytic gas

There are differences between pyrolytic gas and anaerobic 
biogas in terms of their production process and composi-
tion. Pyrolytic gas is produced by the thermal decomposi-
tion of biomass and consists mainly of hydrogen and carbon 
monoxide (Chen et al. 2017). Conversely, anaerobic biogas 
is generated by bacterial decomposition of organic matter 
under anaerobic conditions, primarily composed of methane 
and carbon dioxide (Costa et al. 2022). In addition, obtain-
ing gas through the pyrolysis process is considered a more 
cost-effective and sustainable approach of producing energy 
compared to biochemical methods (Hämäläinen et al. 2022). 
Pyrolysis decomposes all biomass through the application of 
heat, which is not possible in anaerobic digestion due to the 
presence of recalcitrant materials. Moreover, pyrolysis gen-
erates high calorific biofuels, while stabilizing heavy metals, 
reducing organic contaminants, and eliminating pathogenic 
microorganisms (Yuan et al. 2013).

Flash pyrolysis is a process that generates higher gas 
yields compared to other processes. This method uses 
elevated temperatures (≥ 1000 °C s−1) and short residence 
times of pyrolytic vapors (< 2 s) (Lee et al. 2020). Fluidized 
bed or entrained flow reactors are the most commonly used 
for pyrolytic gas production, and small particle size biomass 
(< 0.1 mm) is recommended to achieve rapid heating rates 
and complete biomass (Yu et al. 2018a). During microalgae 
pyrolysis, the main gases produced are CO2 (50–65%), H2 
(10–9%), CO (10–19%), and light hydrocarbons, predomi-
nantly CH4 (10%) (Du et al. 2011; Bach and Chen 2017; 
Chen et al. 2017; Maliutina et al. 2017; Azizi et al. 2020). 
The formation of these gases results from the cracking of 
carbonyl and carboxyl groups in carbohydrates and proteins, 
which produce CO2, ether bonds and carbonyl groups gener-
ating CO, polycondensation and demethoxylation reactions 
that form H2 and CH4, respectively. Scission and cyclization 
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reactions of long-chain fatty acids also produce other gases 
(Chen et al. 2017).

The primary application for gas produced via pyrolysis 
is thermal and electrical energy generation. Additionally, 
H2 and CO can serve as raw materials for the synthesis of 
hydrocarbons through thermochemical pathways, such as 
the Fischer–Tropsch process (Chen et al. 2017), and are the 
primary components of pyrolytic gas/syngas (Hong et al. 
2017) (Fig. 2). Factors such as biomass composition, type of 
pyrolysis process used, temperature, pressure, residence time 
of pyrolytic gases, heating rate, and reactor type all impact 
the yield and composition of pyrolysis products — biochar, 
bio-oil and pyrolytic gas (Table 2).

Temperature is one of the most impacting parameters in 
the yield of pyrolysis products. Pyrolytic gas production 
increases at higher temperatures. For instance, in the pyrol-
ysis of Nannochloropsis the gas yield was approximately 
47, 49 and 57% at temperatures of 400, 500 and 600 °C, 
respectively (Aysu and Sanna 2015). Similarly, non-catalytic 
pyrolysis of S. platensis in a fixed bed reactor had the high-
est gas yield at a temperature of 700 °C (29.67%); while 
at lower temperatures (400 and 500 °C), higher yields of 
biochar (40%) and bio-oil (34.49%), were obtained (Jafarian 
and Tavasoli 2018).

The composition of pyrolytic gas is also affected by the 
process temperature. At lower temperatures (400–500 °C), 
CO2 is the primary product. This is due to the cracking 
and reformation of carbonyl (C = O) and carboxyl (COO−) 
containing molecules from microalgae biomass, which 
are mainly carbohydrates and proteins (Jie et al. 2008). 
However, as the temperature increases (600–800 °C), CO2 
production decreases while H2, CH4, and CO production 
increases. H2 production has been attributed to intermedi-
ate dehydrogenation reactions and secondary cracking of 
carbohydrates, proteins and lipids contained in the biomass 
(Sanchez-Silva et al. 2012; Yuan et al. 2015). CH4 release 
is mainly provided by the final chain fission reactions of 
long-chain aliphatic acids and long-chain N-containing com-
pounds in lipids and proteins (Vinu and Broadbelt 2012; 
Chen et al. 2016). CO is mainly formed by the cracking of 
the ether bond (C–O–C) and the C = O groups (Yang et al. 
2007). The temperature increase also causes scission and 
cyclization reactions of long-chain fatty acids, generating 
small hydrocarbons such as C2 (Vinu and Broadbelt 2012; 
Chen et al. 2016).

The compounds present in microalgae biomass 
have a significant impact on pyrolytic gas composi-
tion. For instance, S. platensis (50—70% protein) and 

Fig. 2   Applications of gas produced by pyrolysis
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Nannochloropsis (20- 40% protein) produce large amounts 
of H2 and CH4 through dehydrocyclization and demeth-
oxylation, respectively, of protein molecules. Nannochlo-
ropsis sp. also resulted in higher production of C2 due 
to its high content of long-chain fatty acids. In contrast, 
Enteromorpha prolifera, which has C–O–C and C = O 
groups primarily in carbohydrates (51.4%), produced 
greater amounts of CO than the other mentioned microal-
gae (Chen et al. 2017).

Microalgae can have high nitrogen contents (more than 
10%) (Huang et al. 2017) compared to other lignocellulosic 
materials (approximately 1%) (Cavalaglio et al. 2020). Thus, 
microalgae are suitable for producing nitrogen-containing 
compounds (NCCs) via pyrolysis. Primary and secondary 
pyrolysis reactions can generate products such as indole, 
pyridine, quinolines, amides, and nitriles, which have 
diverse biochemical and biomedical applications (Yu et al. 
2018a). The operating pressure can influence the distribution 
of nitrogen in the pyrolysis products as high pressures favor 
the accumulation of NCCs in the pyrolytic gas. For instance, 
the pyrolysis of C. vulgaris at pressures greater than 2.0 MPa 
promoted the transfer of nitrogen-containing compounds, 
mainly NH3 and HCN, to the gas phase. However, lower 
pressures (0.1 and 1.0 MPa) led to nitrogen retention in bio-
oil and biochar, respectively (Maliutina et al. 2018b).

Catalytic pyrolysis uses catalysts to promote or prevent 
reactions as deoxygenation, deamination and denitrogena-
tion. This makes it possible to control the nitrogen content, 
concentration, and selectivity of NCCs. For instance, Wang 
et al. (2021) found that combining lanthanum ferrite per-
ovskite (LaFeO3) and a hydrogen atmosphere (H2) during 
S. platensis pyrolysis led to the transfer of fuel nitrogen to 
the gas phase. This modified atmosphere was created using 
catalytic pyrolysis, and the resulting gaseous product showed 
a nitrogen fuel content of 51%. In contrast, when the same 
pyrolysis was conducted without a catalyst or in a normal 
atmosphere, NH3 production led to only approximately 
33.5% nitrogen accumulation in the fuel.

By adjusting the process parameters, it is possible to 
induce pyrolysis and generate a higher yield of pyrolytic 
gas. Using auxiliary technologies can also help upgrading 
hydrogen and gaseous fuel production. Selecting the right 
microalgae is essential in this process, as biomass with a 
higher carbohydrate content facilitates the generation of 
pyrolytic gas (Hong et al. 2017).

Advanced types of pyrolysis, such as catalytic, micro-
wave, vacuum, solar, carbon dioxide, and co-pyrolysis, are 
being researched and improved to increase the yield of pyro-
lytic gas, reduce the reaction temperature, and increase the 
concentration of H2 in the product (Foong et al. 2021). How-
ever, raising the levels of H2 in the pyrolytic gas can also be 
achieved through simpler techniques, such as controlling the 
process pressure. For instance, in C. vulgaris entrained flow N
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pressurized pyrolysis, the H2 concentration reached 88% in 
syngas at 900 °C and 4 MPa (Maliutina et al. 2018a).

Additionally, the pyrolysis process is sustainable, flex-
ible, and can yield multiple products. The pyrolytic gas/
syngas produced through pyrolysis can be used directly as 
a raw material for boilers, engines, and turbines without 
any upgrading process. However, pyrolytic gas production 
is often overlooked. Although there are many microalgae 
pyrolysis studies, most of them focus on bio-oil or biochar 
production, likely because microalgae are generally rich in 
proteins, which results in a low yield of the gaseous fraction.

Biochar

Biochar is a carbon-rich solid produced by a reductive ther-
mal processing, or pyrolysis, of various biomasses (Ahmad 
et al. 2014). Slow pyrolysis is the primary method used to 
produce biochar, while other forms of pyrolysis may gener-
ate it as a byproduct (Fakayode et al. 2020; Lee et al. 2020). 
Biochar is a stable carbonaceous material with a high car-
bon content and a long half-life, which means that it slows 
down the release of CO2 into the atmosphere. Instead, CO2 
is gradually returned to the environment through processes 
such as decomposition, combustion, and consumption 
(Fakayode et al. 2020; Lee et al. 2020). The properties of 
biochar, such as mineral content, organic carbon, surface 
functional groups and pore structure, are influenced by the 
type of biomass used and the operational conditions during 
pyrolysis (Fakayode et al. 2020).

Microalgae are considered potential candidates for bio-
char production due to their sustainable and renewable 
nature. Table 3 shows the production conditions, yield and 
composition of biochar produced by different microalgae 
in different conditions. Azizi et al. (2020), used 3 different 
microalgae species for fast pyrolysis in a conical spouted 
bed reactor, and obtained a higher volatile content with 
Isochrysis galbana biomass, which also resulted in a lower 
biochar yield compared to that obtained for Nanochloropsis 
and Tetraselmis. However, the produced biochar composi-
tion was similar for all microalgae. The lower the applied 
temperatures the highest biochar yields were obtained. Jafar-
ian and Tavasoli (2018) studied the pyrolysis of S. plantensis 
in temperatures varying from 400 to 700 °C and obtained 
the highest yield at 400 °C with a residence time of 30 min 
and a heating rate of 10 °C min−1 (40%).

Microalgae can sequester carbon, thereby reducing atmos-
pheric CO2 levels in the presence of sunlight during biomass 
production (Cheah et al. 2015; Suganya et al. 2016). The 
conversion of microalgal biomass into biochar with high 
carbon content can be seen as a strategy for capturing and 
storing carbon, representing a sustainable long-term solution 
for reducing greenhouse gas accumulation in the atmosphere 
(Heilmann et al. 2010). Yu et al. (2018b) demonstrated that 

the production of C. vulgaris FSP-E and production of bio-
char from its biomass through slow pyrolysis could be a sus-
tainable technology for carbon sequestration and microalgal 
biorefinery. The biomass cultured in 2.5% CO2 produced a 
biochar yield of 27% and showed potential for application 
as an alternative coal for energy production due to a HHV of 
23.4 MJ kg−1, which is similar to the calorific value of coal. 
As a fuel, biochar has potential usage in direct combustion 
since it emits lower quantities of CO2 and presents similar or 
higher energy content to fossil fuels (Lee et al. 2020).

The usage of biochar is diverse due to its availability of 
functional groups, inert nature, as well as its capability of 
sequestering liquid or gas molecules (Lee et al. 2020). Bio-
char can be used as a fertilizer or soil agent due to its high 
nitrogen and mineral contents (phosphorus, iron, calcium, 
magnesium), and can also be used to retain water resources 
in plantations (Lee et al. 2020). Due to the material's high 
porosity, it can also be used as an absorbent material (Bor-
doloi et al. 2016; Moon et al 2023). Moreover, biochar has 
been attracting attention for wastewater treatment due to its 
properties such as pore structure, elevated specific surface 
area, and hydrophobicity (Sekar et al. 2021).

Microalgal biomass can be used for the production of bio-
char after the extraction of products like lipids, making this 
application even more sustainable under a biorefinery pro-
cess. Amin and Chetpattananondh (2019) studied the slow 
pyrolysis of Chlorella sp. BC-450 residue after extraction 
with methanol/hexane of a fraction rich in lipids and pig-
ments in a fixed bed reactor and obtained a high surface area 
biochar (266 m3 g−1) rich in ash and O-functional groups 
indicating its suitability for heavy metal adsorption. Wang 
et al. (2013) produced biochar from C. vulgaris remnants 
after lipids extraction through fast pyrolysis and obtained a 
product rich in inorganic compounds (potassium, phospho-
rous, and nitrogen), suggesting that it may be suitable to be 
used as a fertilizer (Table 3).

Water and wastewater treatment is an emerging appli-
cation of biochar due to its exceptional sorption capacity 
for both inorganic and organic compounds. This sorption 
capacity is attributed to biochar's properties such as high 
surface area and pore volume, organic carbon content, 
mineral components, and diverse functional groups. These 
characteristics make biochar an efficient tool for removing 
organic contaminants such as dyes, phenols, polycyclic aro-
matic hydrocarbons, pesticides, and antibiotics, as well as 
inorganic contaminants, including heavy metals and nitrates, 
from wastewater (Xiang et al. 2020).

The removal of heavy metals from wastewater by bio-
char is attributed to various mechanisms such as electro-
static attraction between heavy metals and the biochar's 
surface; ionic exchange between heavy metals and alka-
line or alkaline earth metals or protons on the biochar's 
surface; complexation with a domain rich in π electrons 
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or surface functional groups; and co-precipitation to form 
insoluble compounds (Tan et al. 2015; Moon et al 2023). 
Organic compounds can also be removed using microalgal 
biochar through sorption mechanisms such as pore filling, 
hydrophobic effect, electrostatic interaction, and hydrogen 
bonding.

Although biochar exhibits properties similar to acti-
vated carbon, its heterogeneity makes sorption more 
complex, particularly in situations involving ionic force, 
pH, or the presence of organic matter. Therefore, param-
eters and operation conditions for large-scale installation 
are still limited (Wang et al. 2020). Activated carbon can 
be modified to improve its adsorption capabilities for 
wastewater treatment (Azam et al. 2022). Following a 
similar approach, iron-impregnated biochar demonstrated 
greater efficiency for the treatment of wastewater con-
taminated with glyphosate compared to unmodified bio-
char (Zaparoli et al. 2023).

Other application of biochar could be the manufactur-
ing of nanoparticles with sensor properties. Pena et al. 
(2023) produced biochar from C. sorokiniana through 
slow pyrolysis, aiming to apply the product to sinter 
carbon dots, nanoparticles with relevant electronic and 
optical properties that have gained attention in recent 
years due to numerous application areas, such as cataly-
sis, diagnosis, and drug sensing, bioimaging and toxic 
metal sensors (Pb2+, Cu2+, Cd2+, and Ni2+) for detection 
in aqueous medium (Table 3).

Compared to cellulosic biomass of higher plants, 
microalgal biochar has a lower carbon content, surface 
area and cation exchange capacity. However, its pH, 
ash content, nitrogen and inorganic nutrient content are 
alkaline which make it an effective soil pH corrector for 
increasing agricultural crop productivity (Yang et al. 
2019). The addition of biochar can also improve the qual-
ity of compost as an agricultural fertilizer. Biochar-added 

Table 3   Pyrolysis conditions and biochar yields for different microalgae species

Biomass Pyrolysis type Reactor T (°C) Heating rate Residence Time Yield (%) Biochar 
composition

Reference

Chlorella 
  sorokiniana

Slow pyrolysis Fixed bed 500 5 °C min−1 - 31.2 - Pena et al. (2023)

Tetraselmis Fast pyrolysis Conical 
spouted bed

500 15 °C min−1 - 30.0 C (71.8%); H 
(3.6%); N 
(10.5%); O 
(14,0%); Ash 
(62.5%)

Azizi et al. (2020)

Isochrysis 
  galbana

21.0 C (72.4%); H 
(3.4%); N 
(11.2%); O 
(13.0%); Ash 
(68.8%)

Nannochloropisis 30.0 C (72.4%); H 
(4.5%); N 
(11.5%); O 
(11.7%); Ash 
(75.0%)

Chlorella sp. 
BC-450 residue

Slow pyrolysis Tube furnance 450 10 °C min−1 60 min 45.0 C (17.2%); H 
(5.8%); N 
(3.2%); O 
(29.7%); Ash 
(43.0%)

Amin and  
Chetpattananondh 
(2019)

Spirulina 
   platensis

Slow pyrolysis Dual- bed 400 100 °C min−1 30 min 40.0 - Jafarian and  
Tavasoli (2018)

Chlorella 
   vulgaris FSP-E

Slow pyrolysis Fixed-bed 500 10 °C min−1 30 min 27.0 C (61.3%)
H (3.5%)
N (9.8%)
O (11.9%)
Ash (13.4%)

Yu et al. (2018b)

Chlorella 
   vulgaris residue

Fast pyrolysis Fluidized-bed 500 - - 31.0 C (61.9%)
H (3.9%)
N (9.4%)
O (4.9%)
Ash (19.9%)

Wang et al. (2013)
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compost offers advantages by improving the phys-
icochemical properties of the compost, reducing toxic 
compounds and gas emissions. These improvements are 
achieved through abiotic interaction (Sun et al. 2020) and 
microbial activities (Kammann et al. 2015; Godlewska 
et al. 2017). Indeed, biochar can fill the space between 
the solid compost materials and reduce heat losses, while 
creating a proper habitat for microbial activity, result-
ing in faster heat generation and degradation of organic 
compounds (Czekała et  al. 2016). Moreover, higher 
temperatures during composting can be more efficient 
at eliminating pathogens (Casini et al. 2021). Biochar 
can also affect the compost's pH in various ways. Dur-
ing the thermophilic phase, biochar addition can lower 
the pH due to the production of acids from the decom-
position of organic matter, induced by higher microbial 
activity. During the mesophilic and maturation phases, 
however, the pH can be higher, possibly because of the 
absorption of accumulated ammonia by the biochar (Sun 
et al. 2020). Furthermore, the alkaline and alkaline earth 
compounds in biochar can generate a buffer effect that 
minimizes acidification during the thermophilic phase, 
resulting in higher pH values for the biochar-added com-
post (Sánchez-Monedero et al. 2019; Sun et al. 2020).

The use of biochar in agricultural crops is also asso-
ciated with changes in the physico-chemical proper-
ties of compost, resulting in intensive abiotic oxidation 
and microbial activities (Godlewska et al. 2017). These 
changes include an increase in acid functional groups and 
alterations in the profile of minerals and metals. Micro-
bial metabolism is responsible for the decomposition of 
organic matter, and the addition of biochar in the com-
post can improve this process by modifying the porous 
structure and apparent density of the compost, thus pro-
viding oxygen for aerobic microorganisms (Sánchez-
Monedero et al. 2019). Additionally, the decomposition 
of organic matter can generate inhibitory molecules, such 
as NH3, H2S, NH4

+, and SO4
2−, which can be absorbed 

by the biochar, making the compost more efficient (Van-
decasteele et al. 2016; Sun et al. 2020).

Biochar can reduce the mobility and availability of 
heavy metals and aromatic polycyclic hydrocarbons for 
agricultural crops (Ignatowicz 2017) through physical 
absorption, precipitation, electrostatic interaction, and ion 
exchange (Sun et al. 2020). Furthermore, biochar can be 
considered a reservoir of macronutrients (sodium, potas-
sium, calcium, magnesium, sulfur, phosphorus) and micro-
nutrients (iron, zinc, manganese, copper). Thus, due to a 
high capacity of absorption, the use of biochar in com-
post can increase the total amount of macronutrients and 
micronutrients liberated in the final product, with water, 
or after the neutralization by organic and inorganic acids, 

improving the nutritional value of the final product as an 
organic fertilizer (Sun et al. 2019, 2020).

Future prospects, economics and challenges

Waste effluents treatment is a costly process, with millions of 
dollars spent annually, and the demand for sustainable alter-
natives such as microalgae wastewater treatment is increas-
ing (Morais et  al. 2021). Conventional treatments have 
negative impacts, particularly in relation to the emission of 
greenhouse gases. In contrast, microalgal systems are advan-
tageous due to their low emission of greenhouse gases and 
their ability to produce a biomass rich in compounds that can 
be used to obtain biofuels and other products (Arashiro et al. 
2018, 2020). Pyrolysis, a process that is not as well-known 
or studied as other microalgal biomass processing methods 
for biofuel production, is a promising alternative for down-
stream processing in microalgal biorefinery processes. In 
just one step, three commercially valuable bioproducts can 
be obtained: bio-oil, biochar, and pyrolytic gas. Even if a 
preliminary treatment of the biomass for the initial extrac-
tion of other compounds is required, the remaining biomass 
can still be pyrolyzed for further use. Products from pyroly-
sis processing can also be used to maintain the system itself 
within a circular bioeconomy concept.

There are several ways to reduce costs in the microal-
gal biorefinery process, such as developing new reactors 
and implementing pre-treatment of microalgal biomass. To 
improve the sustainability of the process and further reduce 
costs, it is also necessary to optimize the cultivation condi-
tions, refine techniques for extracting bioproducts, and explore 
the reuse of co-products. Microalgae cultivation costs cur-
rently account for around 65% of the total cost of biofuel pro-
duction, but this figure can be significantly reduced through 
the integration of effluent treatment and carbon capture. 
Although cost-effective microalgal biofuels are still in devel-
opment, research into the processing of biomass as a feedstock 
for biofuels is crucial for overcoming the current economic 
constraints of the process (Aliyu et al. 2021).

The efficiency of conversion of microalgal biomass into 
biodiesel through transesterification can reach up to 92%, 
depending on the quality and quantity of the lipids in the 
biomass. The estimated production costs range from 0.96 to 
3.69 US$ L−1 (Table 4). In comparison, fuel derived from 
petroleum ranges from 0.43 to 0.44 US$ L−1 (Aliyu et al. 
2021). The lowest production cost for biodiesel was achieved 
through a process that involved lipid extraction, fermenta-
tion, distillation, hydrodeoxygenation, and the use of CO2 
from anaerobic digestion (Dutta et al. 2016). The highest 
production cost was US$3.46 for the oil extraction stage 
alone, with the biodiesel produced from it having a value of 
US$3.69. This system used hydroprocessing to extract the 
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solvent used for lipid extraction and incorporated recircula-
tion of dehydrated cells for the cultivation of microalgae in 
bioreactors (Batan et al. 2016).

In terms of biocrude production, it has been observed 
that integrating microalgae production with effluent treat-
ment and using digestate from anaerobic digestion while 
obtaining the fuel via hydrothermal liquefaction can result 
in lower estimated production costs (US$0.95) (Rangana-
than and Savithri 2019). Conversely, cultivations without 
nutrient reuse had production costs ranging from US$16.92 
to US$23.96 (Richardson et al. 2014).

The biofuel with the lowest estimated production cost was 
bio-oil, which is the main product of pyrolysis (Table 4). 
When microalgae cultivation is integrated with effluent and 
flue gas treatment, the estimated production cost is US$0.61 
(Orfield et al. 2014). By using microwave-assisted pyroly-
sis and defatted microalgal biomass, the estimated cost is 
reduced to US$0.49 (Xin et al. 2016) and by using the whole 
microalgae, the cost further decreases to US$0.41 (Xin et al. 
2018).

Co-products derived from the pyrolysis of bio-oil and 
biochar can increase revenue. Studies conducted within 
an integrated biorefinery framework have shown that the 
multifaceted use of biochar as a solid fuel, adsorbent, cata-
lyst, and fertilizer can significantly enhance the economic 
performance of the process. The application of biochar as 
a solid fuel with a selling price of US$50 per tonne contrib-
utes approximately 2.8% of the total revenue generated from 
the process (Winjobi et al. 2016). By converting biochar 
to activated carbon, its selling price can be increased to 
US$1188 per tonne, increasing its contribution to 51.11% 
of total revenue (Kuppens et al. 2015).

One of the significant advantages of microalgae cultiva-
tion is its versatility in applications. The cultivation process 
is well-suited for various forms of microorganisms, media, 
and cultivation methods, making it a versatile research field. 
To further improve the economic and environmental sus-
tainability of microalgal production, research should explore 
new ways to leverage this versatility. Biorefinery processes 
offer a promising solution as they are cost-effective, cycli-
cal, and generate little to no waste, while producing multiple 
compounds in a single process. Therefore, identifying how 

different methods can be linked and how each process can 
facilitate the next step is crucial to fully utilize the potential 
of microalgae in sustainable biorefinery applications.

Microalgae-based biofuel production presents both 
economic challenges and opportunities. Traditional waste 
effluent treatment processes incur significant annual 
costs, motivating the search for sustainable alternatives 
like microalgae wastewater treatment. This method not 
only reduces greenhouse gas emissions but also yields 
valuable biomass. Of particular interest is pyrolysis and 
to enhance its economic viability, strategies involve 
optimizing cultivation conditions, refining bioproduct 
extraction methods, and exploring co-product reuse. 
Developing cost-effective microalgal biofuels remains 
essential for overcoming economic constraints.

Conclusion

This study investigated the potential of pyrolysis for val-
orizing microalgae biomass produced from wastewater 
treatment. The review showed that pyrolysis can be used 
to produce a variety of valuable products, including bio-
char, bio-oil, and pyrolytic gas (syngas). The composition 
of the products is influenced by the type of microalgae 
used, the operating conditions of the pyrolysis process, 
and the presence of contaminants in the biomass. How-
ever, the following challenges need to be addressed before 
pyrolysis can be widely adopted for the valorization of 
microalgae biomass: (i) high energy requirements, (ii) 
process optimization, and (iii) potential to produce harm-
ful emissions. Despite this, pyrolysis appears a promising 
technology with potential to make a significant contri-
bution to the sustainable development of bioeconomy. 
Future research should address these challenges and study 
the effect of different microalgae species and strains, 
operating conditions, contaminants, economic feasibility, 
and develop new pyrolysis technologies. In this manner, 
the pyrolysis process could be optimized, and the yield 
and quality of products improved, thereby promoting the 
valorization of microalgal biomass via pyrolysis.

Table 4   Comparison of estimated production costs for three different biofuels produced from microalgal biomass

Microalgae Fuel Production method Conversion efficiency 
(MJfuel MJfeedstock

−1, dry)
Estimated costs 
(US$ L−1)

Reference

Biodiesel Transesterification 92% 0.96—3.69 Aliyu et al. (2021)
Biocrude Hydrothermal liquefation 32% 0.95—23.96 Ranganathan and Savithri (2019) 

Richardson et al. (2014)
Bio-oil Pyrolysis 50% 0.41—0.61 Orfield et al. (2014), Xin et al. (2018)
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