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ABSTRACT 

The industry of integrated circuits is experiencing a moment of fierce change. As is, the 
methods used in all stages implied in its design process. The present work presents a method 
to predict temperatures for System on Chip (SoC) chiplet part with quite simple power map 
and a single thermal interface material using Machine Learning (ML) and its offspring Deep 
Learning (DL).  
 
The SoC part is represented as a response surface of a 2D model geometry surface used for 
a set of experiments to determine the relevant factors for the temperature prediction. In 
addition to the experiment design, a deployment strategy to implement a continuous 
integration and deployment process to be used for the target organization is also proposed. 
 
The idea is to achieve the principle of productive ML that states that models should be 
constantly learning by automating new data ingestion into the training process to enhance 
model performance in each of the cycle updates. 
 
The project proposes a method to strengthen the established thermal processes of the target 
organization by using ML tools and provide an alternative to speed up thermal model analysis 
using new available techniques derived from ML and Deep Learning. 
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RESUMEN 

La industria de los circuitos integrados vive un momento de fuerte cambio, de igual manera, 
los métodos utilizados en todas las etapas implicadas en su proceso de diseño. El presente 
trabajo tiene la intención de presentar un método para lograr la predicción de temperatura 
de un chiplet parte de un System-on-Chip (SoC) con un mapa de potencia bastante simple y 
un material de interfaz térmica haciendo uso de Machine Learning (ML) y su descendencia 
Deep Learning. 
 
La parte chiplet del SoC se representa como geometrías de un modelo 2D y es la superficie 
de respuesta utilizada en un conjunto de experimentos que permiten identificar los factores 
relevantes en la predicción de su temperatura. Además del diseño de experimentos, también 
se propone una estrategia de implementación del proceso de Integración Continua de ML 
por usarse en la organización destino (también conocido como MLOps). 
 
La idea es lograr que el principio de ML que establece que los modelos deben aprender 
constantemente al automatizar la ingesta de nuevos datos, el proceso de entrenamiento que 
incentiven la mejora del rendimiento del modelo en cada una de las actualizaciones del ciclo 
del proceso. 
 
El proyecto es, en esencia, un esfuerzo por proponer un método para fortalecer los procesos 
térmicos establecidos de la organización objetivo mediante el uso de herramientas ML y 
proporcionar una alternativa para acelerar el análisis del modelo térmico utilizando las 
nuevas técnicas disponibles, como ML y Deep Learning. 
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1 INTRODUCTION 

With the accelerated evolution of the design of integrated circuits (IC) from Small-Scale 
Integration (SSI) to the point of Very Large-Scale Integration (VLSI) the addition of 
requirements connected to optimization science during the design stages of the product are 
resolutely changing the process of how the companies next products are meant to beat the 
same from their competitors. The prevalent technologies used in the design of integrated 
circuits are suffering liabilities on product performance in part due to the increment in circuits 
failures associated to thermal issues.  
 
Part of the reason, relies on the fact that modern consumers and market demands faster, 
and more function-capable devices. This represents big challenges as the increase of 
transistor’s density and more sophisticated IC packaging methods which have impacted 
power and temperature upsurge. Therefore, areas like thermal management are becoming 
increasingly critical. Some of the challenges for this field now and in the close future will 
consist mainly of reducing the cost for thermal model analysis by producing more efficient 
solutions faster and “make room” for new design and innovation and spend less time fixing 
defects and issues.  
 
Inputs from other knowledge’s fields are becoming more relevant in order to enhance 
thermal management processes. The integration of Machine Learning and Deep Learning can 
help in high regard for the purpose. These technologies could enable thermal designers to 
better analyze their systems and identify areas of opportunity to optimize their designs for 
future projects. 
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1.1. Justification 
 
Thermal issues are a key factor for performance and reliability in chips [1].  Hence, accurate 
prediction of the maximum temperature on chips become important for the performance 
and consistency of chip-packaging systems [2]. 
 
Efforts to improve the simulation and temperature predictions with methods like Machine 
Learning (ML), Numerical, Finite Element Method (FEM) and Finite Volume Method (FVM) 
and Analytical are currently some of the most common choices. 
 
However, while FEM and Analytical methods have proved their value, they still are not 
enough to satisfy the level demand and complexity of modern electronic thermal design. ML 
could be of great value to expand the existing toolkit of options to construct solutions for 
problems with certain kind of difficulty.  
 
Therefore, it is the conviction of this work to be of significance to show how techniques 
associated to Data Science and ML can support thermal design process to fulfill its goal to 
produce thermal efficient devices. 
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1.2. Problem description 
 
As current methods for thermal analysis of ICs are computational expensive, this represents 
an opportunity to innovate in the field, for instance like in the case of temperature prediction 
of System of Chip (SoC) parts.  
 
Although, the company from where the project is originated, owns a good-enough software 
thermal simulator tool, the internal management-leadership voices pushing for accelerating 
an optimizing the thermal analysis of new upcoming products has made company’s thermal 
teams to consider data science and machine learning to extend their current toolset of 
options.  
 
The idea is to reinforce the thermal analysis process of the company with a machine learning 
solution capable to learn from data produced by the simulation tool to enhance the current 
thermal design-analysis process (Figure 1 Thermal Design Analysis Process) 
 

Thermal Designer
Proprietary Model Layout 
(CAD file)

Create new 
product design

Check for 
changes in 

models

Thermal Simulation
Engineer

1. Materials 
Properties
2. Thermal 
Power Map

Run Model 
Simualtion

Any changes??

Adjust model 
settings in 
simulator

Yes

NO

Thermal Analysis
 Engineer

Results

 
 

Figure 1 Thermal Design Analysis Process 
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For this project’s scope, it was decided that in order to prove the utility of applying ML in the 
thermal process, the focus would be on constructing a prediction model based on a specific 
SoC chiplet. This chiplet referred from now on as the experiment part or response surface of 
the experiment will be the foundational stone that will help to build a prediction model using 
temperature grids (Figure 3 Temperature Grid extracted from SoC chiplet (simulated)) as 
input (Figure 2 Alternative Thermal Design-Analysis Process.) 
 
 

Thermal Designer
Proprietary Model Layout 
(CAD file)

Create new 
product design

Thermal Simulation
Engineer

1. Materials Properties
2. Thermal Power Map

Thermal Analysis
 Engineer

Results

ML Model # 1 ML Model # 2 ML Model # 3

Feature database

 
Figure 2 Alternative Thermal Design-Analysis Process 
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Temperature Distribution Grid 

SoC chiplet 

 
Figure 3 Temperature Grid extracted from SoC chiplet (simulated) 
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1.3. Hypothesis 
Prove the worth of Machine Learning in the field of thermal design by predicting 
temperatures on SoC surface areas that can help engineers and designers to eventually 
become more efficient for future designs execution by learning from generated data from 
on-going projects execution.
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1.4. Assumptions and relevant aspects of this work 
This work is fundamentally an effort to demonstrate the way machine learning can contribute 
in the thermal design process for integrated circuits.  
The idea is not to replace the simulation software used by engineers and designers in the 
target organization, but to service from the generated data of these tools to learn more from 
the temperature profiles of diverse chips combination of materials, dimensions and other 
associated variables.  
Since the thermal simulator encapsulates the complexities of physics calculation for the 
temperature grids, the intention is to analyze these grids to find the right ML model that 
approximates it by using the most viable set of variables. Once the right model is identified, 
plugging it into already existing data analysis pipelines would be a straightforward task. 
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1.5. Objectives 
 
 

1.5.1. General Objective: 

• Build a solid Machine Learning (ML) prediction model capable to help thermal engineering staff 

to accelerate thermal analysis for upcoming company’s products s 

 

1.5.2. Specific Objectives: 

• Construct a viable database for the SoC chiplet temperature prediction model 

• Determine the factors (features) that are more relevant for a temperature prediction for a 

specific SoC chiplet 

• Construct a machine learning prediction model capable to predict temperatures for the project’s 

selected chiplet   
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2 STATE OF THE ART 

2.1 Machine Learning on thermal prediction 
 
As it was earlier stated, the incursion of Machine Learning in the process of Thermal Design 
has already made its own progress throughout the most recent years.  
Well documented efforts to replace existing simulation and temperature predictions 
strategies using ML have been running with the idea to accelerate the existing process. This 
section briefly describes such efforts. 
 
The article A Thermal Machine Learning Solver for Chip Simulation [2]  explains very well, a 
new strategy to create a solver for thermal simulations by bringing a new version of an 
existing algorithm inspired by the Composable Autoencoder Machine Learning Simulator 
(CoAEMLSim) to make it capable to handle global system parameters:   
 
In the case of the proposed Thermal ML Solver some of these system parameters are: 
 

1. Heat Transfer Coefficients (HTCs) 

2. Power maps distributions and  

3. Die thickness 

Other consider parameters kept as constants are: 
 

1. Inter connection Layer Thickness 

2. Insulation Layer Thickness 

3. Si Substrate thermal conductivity 

4. Interconnection layer conductivity 

In the paper is proposed a way to model high dimensional power maps and HTCs. It happens 
that managing multiple system parameters with varying distributions for simulating physical 
systems under ML represented a roadblock that data and engineers have been facing to make 
feasible the use of ML into this domain of thermal analysis.  
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Figure 4 Example of a Power Maps Distribution taken from [2] 

 
 

 
An important component in the solution is the autoencoder used in the Convolutional Neural 
Network (CNN) which is key element, simply because the mapping between the power map 
(Figure 4) with the other system parameters with the final temperature distribution is 
resolved by them. 
 
In summary, the paper, provides a good indication of how CNNs are used in implementation 
of a thermal simulator (Figure 5  Partial view of solution ). 
 

 
Figure 5  Partial view of solution taken from [2] 

 
Another example is the effort documented in the article: Approximating the Steady-State 
Temperature of 3D Electronic Systems with Convolutional Neural Networks [3]. Similarly, to 
what [2]  the purpose was to find an alternative method to run simulations for thermal design 
but with slightly differences. In this method, the idea is to randomly generate electronic 
circuits with finite element solutions, the steady state temperature is estimated a fully 
convolutional neural network. The underlying idea of this thermal strategy is the simulation 
of a thermal design by combining physics and Neural Networks. 
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In both articles the goal is to increase computation speed by: 
 

1. Reducing the number of required design iterations 

2. Accelerate the evaluation of individuals designs 

 
Methods used in this solution are: 
 

1. Fully convolutional neural networks FCNN to approximate the 3d electronic systems. 

2. Large datasets required for supervised learning  

3. Random system generation to create the virtual electronic circuits. 

4. Generation of FEM solutions to obtain the temperature solutions 

5. Voxelization. For postprocessing the systems and the FEM solutions were converted to 3d 

images per system as input for the NN. 

 

 

 
Figure 6  Flow of solution taken from [4] 

 
 

 

2.2 Other methods 
 

Although, the interest is to denote the influence of Machine Learning (ML) on thermal 
analysis and temperature estimation on integrated circuits (IC), it is pertinent to mention 
other tried non-ML methodologies. Before ML, solutions were envisioned by bearing in 
mind numerical and analytical methods tactics. For the former, Finite Element Method 
(FEM) and Finite Volume Method (FVM) being the most common options.  
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The challenge with these methods is the ability to manage various features or parameters 
sizes for electronic packages, turning at times into a burdensome option for parametric 
analysis with varying geometries as well  [4].  
 
An alternative way, that allows the use of a broader set of system parameters and power 
map distributions, has come in the flavor of analytical models. A worth-to-mention effort 
is the one by Sikka and Muzychka. In their work a superimposed source spreading 
resistance was defined to predict the junction temperature distribution in a chip package 
with a non-uniform power map using a Fourier series to create a coefficient method. 
Another effort is the one achieved by Bagnal based on Muzychka’s work using a two-
layered Fourier series solution for multilayer system, beating numerical methods like 
FEM. 
 
After citing these previous contributions, it is imperative to understand that thermal 
analysis is still innovating from other disciplines to conceptualize new ways to analyze 
thermal conditions for integrated circuits that guarantee less resource consume and 
optimal performance for the end-solution. 
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3 LITERATURE REVIEW 

3.1 Integrated Circuits (IC) 
 

3.1.1 Integrated Circuit Design 
 
Integrated circuit design, or IC design, is a part of a larger body of knowledge known as 
electronics engineering. In the discipline of electronics engineering, there is a process known 
as circuit design. The goal of circuit design is to assemble a collection of interconnected circuit 
elements that perform a specific function. The ability to add or multiply numbers is a simple 
example. The development of a microprocessor that executes computer instructions to 
perform complex tasks is another example [5] . 
 

3.1.2 What is an Integrated Circuit (IC) 
 
A monolithic integrated circuit (IC) is a complete circuit or group of circuits manufactured in 
a single piece of silicon, a typical physical size being 1.25 mm square. Such a circuit may 
contain fifty or more components such as transistors or resistors [6]. 
 

3.1.3 Microprocessor 
 
Computers and microprocessors are general-purpose programmable systems which perform 
sequential processing operations. Classically, they are constructed using general-purpose 
functional units such as a central processing unit or CPU, a memory unit, and an input/output 
subsystem [7] . 
 

3.1.4 Die 
 
A die in the context of integrated circuits is a small block of semiconducting material, on 
which a given functional circuit is fabricated. Typically, integrated circuits are produced in 
large batches on a single wafer of Electronic Grade Silicon (EGS) or other semiconductor, 
through processes such as photolithography. The wafer is cut (“diced”) into many pieces, 
each containing one copy of the circuit. Each of these pieces is called a die [8]. 
 

3.1.5 System on chip (SoC) 
 
At their core, SoCs are microchips that contain all the necessary electronic circuits for a fully 
functional system on a single integrated circuit. In other words, the CPU, internal memory, 
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I/O ports, analog inputs and output, as well as additional application-specific circuit blocks, 
are all designed to be integrated on the same chip. SoCs differentiate themselves from 
traditional devices and PC architectures, where a separate chip is used for the CPU, GPU, 
RAM, and other essential functional components [9].  Various SoCs are developed depending 
on their intended device. For example, SoCs on smartphones or other IoT devices may also 
incorporate Wi-Fi and cellular network modems. In the traditional approach, SoCs use shorter 
wiring between circuit blocks to reduce power expenditure and increase efficiencies 
 

3.1.6 Chiplets  
 
Chiplets are small, modular chips that can be combined to form a complete system-on-chip 
(SoC). They are designed to be used in a chiplet-based architecture, in which multiple 
chiplets are connected together to create a single, complex integrated circuit. [10] 
 

3.2 Thermal Theory 
 

3.2.1 Thermal Design 
 
The use of appropriate heat transfer techniques, possibly along with some mechanical and 
electrical design modifications, to sufficiently cool an electronic device or equipment is called 
thermal design. [11] 
 

However, it is important to recognize that thermal design is not a one-shot design task in 
which the thermal engineer proposes a thermal design once and forever. Instead, similar to 
other design disciplines such as mechanical, electrical, power, industrial, and so forth, 
thermal design is a process that goes through multiple phases and levels of details as the 
design of the product evolves. 
Thermal engineers need to be involved during the whole product design cycle to propose 
thermally acceptable mechanical and electrical layouts; to check whether proposed 
mechanical, electrical, or other design changes can be accommodated while the product can 
be cooled appropriately; or to provide recommendations to achieve a thermally feasible 
product after implementing those proposed changes [11]. 
 

 
Figure 7 Thermal Process taken from [12] 
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3.2.2 Energy Transfer and Heat Transfer 
 
The energy transfer that takes place between two objects or systems, because of 
temperature difference between them, is called energy transfer as heat or simply heat 
transfer and is denoted by Q.  It is seen that heat transfer is nothing other than a form of 
energy transfer as a consequence of temperature difference between two systems [11]. 
 
Energy transfer per unit time is called power and is denoted by P. Two common units of 
power are watt (W) and horsepower (hp). 
 

• One watt is equal to 1 Joule of energy transfer in one second  
• and one horsepower is equal to 746 W. 

 

Sometimes we are interested in learning how fast heat is transferred between two objects.  
The relationship between heat transfer rate and heat transfer is given by the following 
integral. 
 

𝑄 = ∫ 𝑄 𝑥 𝑑𝑡

𝑡2 

𝑡1

 

 
In some cases, we are interested in heat transfer rate per unit area. This is called heat flux 
and is denoted by q. 
 

3.2.3 Equation State 
 
The state of a system or its condition is described by values of its properties such as mass, 
volume, pressure, temperature, internal energy, kinetic or potential energy, polarization, 
magnetization, and so forth [11]. 
 
It has been shown that not all the properties of a system are independent from each other. 
Consider a simple compressible substance That is a substance free from any magnetic or 
electric force. The state of such a substance is specified by the values of two of its 
independently variable properties. For example, internal energy per unit mass and pressure 
of such a simple compressible. Substance can be determined once its temperature and 

density 𝑚𝑎𝑠𝑠 𝑝𝑒𝑟 𝑢𝑛𝑖𝑡 𝑣𝑜𝑙𝑢𝑚𝑒;  𝜌 =
𝑚

𝑉
  are known [11]. 

 
𝑢 = 𝑢(𝑇, 𝜌) 
𝑃 = 𝑃(𝑇, 𝜌) 

 
These equations are called equations of state. 
 

3.2.4 Thermal Analysis of Integrated Circuits 
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There are two different approaches for performance of thermal analysis of IC's: analytical 
methods and numerical methods. 
 
The goal of analytical methods is to obtain a mathematical expression that writes the 
temperature inside the analyzed region as a function of all the variables that may affect it: 
power dissipated by the heat sources, its location, thermal properties of the materials, 
boundary conditions, etc. 
 
The great advantage of this technique is that it facilitates performance of parametric analysis, 
that is, analysis of temperature behavior as a function of one of the variables present in the 
obtained expression. Its main drawback is that it can only be used when the geometry of the 
region under analysis can be easily described in one of the three coordinate systems 
(rectangular, cylindrical or spherical), and when the number of heat sources is small and the 
dissipated power is either a constant, a step function or a periodic function [12]. 
 
Numerical methods discretize the region under analysis into a mesh of nodes and generate a 
set of linear equations in which the unknown quantities are the temperatures of the different 
nodes. The main advantage of this method is that it limits neither the geometry description 
of the region under analysis, the number of heat sources nor the time description of its power  
dissipation. An additional advantage of these methods is that they allow the coupling of 
simulations from different domains: thermal, optical, mechanical, etc. The restrictions of this 
technique are imposed by the computational resources available to solve the linear equation 
system [12]. 
 

3.2.4.1 Analytical Methods 

 
Generally, analytic solutions of the heat conduction equation are classified into three main 
categories [12]: 
 

• Closed form solutions. 

• Fourier series summation (separation of variables). 

• Approximated solutions. 

 

3.2.4.2 Numerical Methods 

Numerical methods discretize the region under analysis into a mesh of nodes and generate a 
set of linear equations in which the unknown quantities are the temperatures of the different 
nodes.  
There are three different approaches to obtain this set of linear equations: the Finite Element 
Method (FEM), the Finite Difference Method (FDM) and the Boundary Element Method 
(BEM). In this text, we will introduce the Finite Difference Method [12]. 
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3.2.5 Heat Transfer and Its Relation to the Thermodynamics  
 
Prior to the 19th century, heat was envisioned as a liquid that flowed from hotter to colder 
objects. This imagined substanceless and weightless fluid was called caloric, and no 
distinction was made between heat and temperature until the writings of Joseph Black (1728-
1799). It was not until J. P. Joule published a definitive paper in 1847 that the idea of caloric 
was abandoned. Joule showed that heat is a form of energy. Moreover, after the 
experimental results of Rumford, Helmholtz, Joule and others, it was demonstrated that any 
of the various forms of energy can be transformed into another [12]. 
 

3.2.5.1 Thermodynamics 

 
Thermodynamics is the field of science that studies the connection between heat and work 
and the conversion of one into the other. There are two major laws concerning 
thermodynamics. The First Law of Thermodynamics is the law of the conservation of energy. 
When heat is transformed into any other form of energy, or when other forms of energy are 
transformed into heat, the total amount of energy (taking into account all the forms) in the 
system is constant [11]. 
 
 

3.2.5.2 First Law of Thermodynamics 

The first law of thermodynamics states that energy is not generated or destroyed; it only 
changes from one form to another or transfers from one system to another [11].  

 

𝐸𝑛 − 𝐸𝑜𝑢𝑡 = 𝐸𝑓 − 𝐸𝑖 

 
The difference between final and initial energies of a system is called change of energy of 
that system or energy accumulation in that system [11]. 
  

Δ𝐸𝑠𝑦𝑠𝑡𝑒𝑚 = 𝐸𝑓 − 𝐸𝑖 

 
 
This is a simple yet powerful equation that is the basis of all the energy and heat transfer 
analysis, it is also known as energy balance equation [11]. 
 

 
Figure 8 First Law of Thermodynamics taken from [11] 
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Figure 9 First Law of Thermodynamics (2) taken from [11] 

 
 

If the energy of a system does not change with time, it is called a steady-state system. In this 
case: 
  

𝐸𝑖𝑛 = 𝐸𝑜𝑢𝑡 
 
Engineering systems can be classified into two groups. Some systems do not allow any mass 
flow in or out of the system. Such system is called closed system, fixed mass system or control 
mass. Note that energy may enter or exit a control mass. Many engineering systems, on the 
other hand, involve some form of mass flow in and out. Such a system is called control volume 
[11]. 
 
 

3.2.5.3 The Second Law of Thermodynamics  

 
It states that some heat is lost when heat is converted into mechanical energy in a thermal 
converting machine it is mandatory that part of the heat energy is used just to heat (increase 
of temperature) the engine. The percentage of heat dedicated to work is called the thermal 
efficiency of the engine. It was Sadi Carnot (1796-1832) who conducted theoretical studies 
of the efficiency of heat engines, to model the most efficient heat engine possible [12]. 
 

3.2.5.4 Heat Coefficient 

 
A specific heat coefficient can be defined for each material. It is the amount of heat (energy) 
required to raise the temperature of 1 gram of substance 1 degree Celsius (1°C), (see Table 1 
for a list of specific heat coefficients for different elements). Note that this concept is parallel 
to the capacitance per unit of volume in an electrical conductor [12]. 
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3.2.5.5 Mechanism of Heat Transfer 

Heat transfers between bodies or regions of a body of different temperature. The heat flow 
always takes the direction from the body or region of higher temperature to that of lower 
temperature (this is another conclusion of the Second Law of Thermodynamics). 
The basic mechanisms or modes that model or explain heat transference are conduction, 
convection, and radiation [12] 
 

3.2.6 Heat Transfer Mechanisms 
 
The mechanism by which heat transfer occurs depends on whether there is any material 
medium between the two objects and if that medium is moving or not. Three different 
mechanisms or modes of heat transfer are conduction, convection, and radiation [11]. 
 

3.2.7 Conduction Heat transfer 
 
Heat transfer between two objects, or across a single object, which happens through a 
material medium and does not involve any fluid motion is called conduction heat transfer. 
Conduction heat transfer is the energy transfer from more energetic particles of a substance 
to the adjacent less energetic ones as a result of interaction between these particles. The 
physical mechanism in which this energy transfer happens is different in different materials 
[11].  
 
In metals conduction heat transfer is due to the energy transfer between free electrons. 
Fourier’s law of heat conduction 
 

𝒬cond = −kA
𝑑𝑇

𝑑𝑥
 

 
the k in the equation is called thermal conductivity of material and its unit in SI system of 
units is W/m°C. As its role in this equation shows, it is a measure of how good a material 
conducts heat.  
  
Thermal conductivity of a material, in general, is not a constant value. Metals are good 
electrical and thermal conductors while polymers are poor electrical and thermal conductors. 
 

3.2.8 Convection Heat Transfer 
 
Heat transfer between an object and the adjacent moving fluid (liquid or gas) is called 
convection heat transfer.  
 
There are two ways that convection heat transfer is created around an object. If the fluid 
motion is generated by a fan or a pump or wind, it will be called forced convection.  
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On the other hand, if the fluid motion is generated by a density difference due to a 
temperature difference in it, the convection is called natural or free convection.  
Natural convection is the heat transfer mechanism responsible for heating the whole air 
inside a room by a heater located at one corner of that room. 
Convection flows may be laminar or turbulent. Laminar flows are slow, orderly, and 
streamlined flows while turbulent flows are faster, disordered, and fluctuating flows in which 
bulks of fluids move from one region to another and mix with each other in a random manner 
[11]. 
  
Convection heat transfer rate is proportional to the surface area of the object, which is 
exposed to the moving fluid, A, and the temperature difference between the object and fluid, 
𝑇𝑠 − 𝑇∞ 
 

𝑄𝑐𝑜𝑛𝑣 = h𝐴(𝑇𝑠 − 𝑇∞) 
 

This equation is known as Newton's law of cooling. The h is called convection heat transfer 
coefficient and its unit in the SI system of units is W/m°C. Unlike thermal conductivity, 
convection heat transfer coefficient is not a material property. Convection heat transfer 
coefficient depends on fluid properties, flow velocity, temperature difference between the 
surface and the fluid, acceleration of gravity, flow geometry, surface geometry, and type of 
the flow [11]. 
 

3.2.9 Radiation Heat Transfer 
 
There are   situations in which there is no medium between two objects that are at different 
temperatures and are somehow facing each other. In these situations, heat transfer happens 
through the exchange of electromagnetic wave of photons and is known as radiation heat 
transfer [11].  
 
It must be mentioned that radiation heat transfer happens between every two objects with 
different temperatures, along with other modes of heat transfer, as long as the medium 
between the two objects is not opaque [11]. 
 

3.2.10 Thermal Interface Material (TIM) 
 
Thermal Interface Material (TIM) refers to a thermally conductive material inserted between 
components to efficiently dissipate the heat generated inside electronic devices. It is 
generally inserted between a heat-generating element such as an integrated circuit (IC) and 
a heat-dissipating component such as a heat spreader or heat sink [13]. 
 

3.3 Design of Experiments 
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Observing a system or process while it is in operation is an important part of the learning 
process and is an integral part of understanding and learning about how systems and 
processes work [14]. 
 
In general, experiments are used to study the performance of processes and systems figuring 
out: 
 1. which variables are most influential on the response y  
 2. where to set the influential x’s so that y is almost always near the desired nominal 
value 
 3. where to set the influential x’s so that variability in y is small 
 4. where to set the influential x’s so that the effects of the uncontrollable variables 
z1, z2, . . . , zq  are minimized. 

  

Experiments often involve several factors. Usually, an objective of the experimenter is to 
decide the influence that these factors have on the output response of the system. The 
general approach to planning and conducting the experiment is called the strategy of 
experimentation. An experimenter can use several strategies [14]. 

 

3.4 Experimentation Strategies 
 

3.4.1 Best-guess approach 
 
It is the approach that consists of selecting an arbitrary combination of these factors, test 
them, and see what happens. 

 

3.4.2 OFAT (One-factor-at-a-time) 
 
The OFAT method consists of selecting a starting point, or baseline set of levels, for each 
factor, and then successively varying each factor over its range with the other factors held 
constant at the baseline level. After all tests are performed, a series of graphs are usually 
constructed showing how the response variable is affected by varying each factor with all 
other factors held constant [14]. The major disadvantage of the OFAT strategy is that it fails 
to consider any possible interaction between the factors. Interactions between factors are 
quite common, and if they occur, the one-factor-at-a-time strategy will usually produce poor 
results [4]. 

 

3.4.3 Factorial Experiment  
 
The correct approach to dealing with several factors is to conduct a factorial experiment. This 
is experimental strategy in which factors are varied together, instead of one at a time.  
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One especially important feature of the factorial experiment is clear from this simple 
example; namely, factorials make the most efficient use of the experimental data. No other 
strategy of experimentation makes such an efficient use of the data. This is an important and 
useful feature of factorials [14] 

 

3.4.4 Guidelines for Designing Experiments [14] 
 

1. Recognition of and statement of the problem  

2. Pre-experimental Planning 

3. Choice of factors, levels, and ranges 

4. Choice of experimental design 

5. Performing the experiment 

6. Statistical analysis of the data 

7. Conclusions and recommendations 

3.4.5 Fractional Factorial 
 
A Fractional Factorial Experiment (FFE) uses subset of combinations from a Full Factorial 
experiment. They are applicable when there are too many inputs to screen practically or cost 
or time would be excessive.  
 
This type of Design of Experiments (DOE) involves less time than One-Factor at a Time (OFAT) 
and a Full Fractional Factorial, but this choice will result in less data and some interactions 
will be confounded (or aliased). This means that the effect of the factor cannot be 
mathematically distinguished from the effect of another factor.  
 
Most processes are driven by main effects and lower order interactions so choose the higher 
order interactions for confounding. Lower confounding is found with higher resolution. 
 
If a half FFE is determined to be most practical and economical where there are two levels 
and five factors, then there will be a combination of 16 runs analyzed. Usually, higher order 
interactions are omitted to focus on the main effects. 
 

3.4.6 Analysis of Variance (ANOVA) 
 
ANOVA is used to decompose the variation of the response to show the effect from each 
factor, interactions, and experimental error (or unexplained residual). 
The DOE will quantify the factor interactions and offer a prediction equation. ANOVA will help 
show which factors and combinations are statistically significant and which are not thus 
giving direction to the priority of improvements [15]. 
 
DOE Assumptions since ANOVA is used to analyze the data: 
 

1. The residuals are independent. 
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2. The residuals have equal variance. 

3. The residuals are normally distributed. 

4. All inputs (factors) are independent of one another. 

Most prediction equations will be linear and reliable when using only two levels. This saves 
time and money while obtaining a prediction equation. Prediction equations are useful to 
analyze what-if scenarios. Many times, data cannot be collected at all levels and factors so a 
prediction equation can be used to estimate the output [15]. 
 

3.5 The Automation of ML Lifecycle 
3.5.1 What is Machine Learning Operations (MLOps) 

 

MLOps can be thought of as the intersection between machine learning and Development 
Operations (DevOps) practices. Devops, refers to a set of practices that combines the work 
processes of software developers with those of operational teams to create a common set of 
practices that functions as a hybrid of the two roles  [16]. 
 
Similarly, MLOps adopts DevOps principles and applies them to machine learning models in 
place of software, uniting the development cycles followed by data scientists and machine 
learning engineers with that of operational teams to help ensure continuous delivery of high-
performance machine learning models [16].  
 
This is why MLOps is so crucial. It makes it significantly easier to deploy and maintain your 
machine learning solutions by automating most of the hard parts for you, massively 
expediting the development and maintenance processes. With a fully automated setup, 
teams can keep up with the latest in machine learning technology and deploy new models 
quickly. “Services can maintain their high level of performance and perhaps even improve on 
this front as teams can deploy newer, more promising model architectures” [16]. 
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Figure 10 MLOps Process taken from [16]  

 
 

3.5.2 Pipelines 
 
One way to think about a pipeline is that it is a specific, often sequential procedure that 
dictates the flow of information as it passes through [16]. 
 
The concept of a software pipeline is intuitive enough. If you have a series of steps chained 
together in your code, so that the next step consumes or uses the output of the previous step 
or steps, then you have a pipeline [17].  
 
 

 
Figure 11 Example of a Training Pipeline taken from [17]  
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4 METHODOLOGY 

 
This work proposes a methodology that was split into four big steps or phases as shown in 
Figure 12. 
  

1. Run of Design of Experiments (DOE) that will support the decision for which factors-levels are 

relevant to use for a ML temperature prediction model of the selected SoC chiplet (Experiment 

Part). 

2. Dataset Generation for analysis and ML experiments (sample dataset). Once factors and levels 

were defined, the same, will be used to launch the project data process generation.  

3. Data analysis and ML model generation 

4. Design and execution of MLOps pipelines to automate ML Process Lifecyle 
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Figure 12 Methodology Flow. 

 

4.1.1 Run of DOE. 
 
As it was briefly explained during the section 1, the first major challenge to deal with was the 
selection of the most fitting variables or predictors for the sample data generation. 
Since no pre-existing data for the analysis inhabited any of the repositories of the target 
organization, the selection of a methodology to justify the data selection was of high 
importance.  DOE fit perfectly for the purpose, due to data extractions execution were 
essentially experiments to choose those features that could best explain the temperature on 
the component specific surface area. 
In order to run the designed set of DOE experiments, connecting with the proprietary 
software simulator was essential. Fortunately for the project, the software simulator came 
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packaged with an Application Programming Interface (API) and Command Line Interface (CLI) 
programs that facilitated the implementation of the automation for the DOE experiments 
using Python programming language (Figure 13). 
 

Simulator API

Data Extractor
 Program

Temperature
 dataThermal s imulator 

engineCLI Program

SoC Model Layout

Power map

 
Figure 13 Run Experiment Flow 

 
 
In summary, the Python Data Extractor program is responsible for: 
 

1. Compute the combinations for the DOE Fractional Factorial (Runs) 

2. Setup of the DOE experiments Runs (Please see Table 1 Setup of the DOE Experiments) 

a. Load the SoC Model Layout (proprietary CAD file of the SoC Model) 

b. Load the Power Map (Power map distribution file) 

3. Connect to the Thermal Simulator Engine via the CLI and the API  

4. Tweak SoC Model and Power Maps according to the factor and level of the experiment setup for 

the experiment run. 

a. Adjust settings of the Model and make them match to the experiment factor-levels of the 

experiment. 

b. Update the power map file with the power stimuli point of the experiment part from 

response surface. 

5. Compile the temperature result data (a grid of temperature saved as csv file) 

6. Tabulate the temperature’s grid for later use in the data analysis stages. 

 
For this to work the SoC die chiplet part (experiment part) was split into five different sections 
for power stimuli points1 that were applied. What this means is that the Power Map 
distribution file will only hold one entry power for the experiment part, having the option to 

 
1 Power stimuli point is the point on the response surface where the power will be applied during thermal 
simulation 
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be applied to five different zones of the response surface for each of the experiment runs 
(Figure 14).  
 
 

4.1.1.1 Setup of DOE Experiments  

 

ID Run Factors Response 

  Levels  

  𝑝𝑎𝑟𝑡_𝑠𝑖𝑧𝑒 𝑖𝑛𝑑_𝑣𝑎𝑟2 … 𝑖𝑛𝑑_𝑣𝑎𝑟𝑛  

min max min max min max min max  

 Top-Point 
Section 

3550 4200 … … …  …  … 

1 … … … … … …  …  … 

n … … … … … …  …  … 

 Down-
Point 
Section 

… … … … …  …  … 

1 … … … … … …  …  … 

n … … … … … …  …   

 Left-Point 
Section 

… … … … …  …  … 

1 … … … … … …  …  … 

n … … … … … …  …  … 

 Right-
Point 
Section 

… … … … …  …  … 

1 … … … … … …  …  … 

n … … … … … …  …  … 
Table 1 Setup of the DOE Experiments 

 
A more detailed flow of the process is provided in the next section. Please check, Figure 15  
DOE Runner Program Flow , for further details. 
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4.1.1.2 SoC/Die/Chiplet View (Sections) 

Top point

Down point

Left point Right point
Middle point

 
Figure 14 SoC Experiment Part/Response Surface - Defined Stimuli points 

 

4.1.1.3 Steps of the DOE Program Flow 

4.1.1.3.1 Init DOE experiment 
 
Figure 15 show the inputs required for the full process are set. Inputs for this process are: 
 

1. SoC Model Layout (cad file) 

a. The xml file that defines the outline of the SoC design 

2. Factors and Levels  

a. The selected factors and levels specified for the ongoing experiment. 

3. Power Map 

a. The power distribution file for the Target Path required for the simulation engine. 

 

4.1.1.3.2 Setup DOE Factors 
 
In this phase, the fractional factorial is computed using the picked factors. 
 

4.1.1.3.3 Load of Model Layout 
 
To run the simulation a cad file containing the outline geometry-based model of the SoC is 
taken in.  
 

4.1.1.3.4 Setup Target Part 
 
It is during this step, that is explicitly decided which SoC-Die-chiplet part the experiment is 
targeting. An SoC is comprised by several components, it is a key part of the present 
experiment to indicate which model’s part, the power map will be centered during the 
simulation phase. 
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4.1.1.3.5 Load Factor Levels 
 
The factor’s levels of every run represent the model’s settings to switch during the 
experiment, e.g., the next factor-level combination: 
 
 Factor: part_size_x 

level: .3550 
 

will modify the experiment-part size-x value to 0.3550  
 

4.1.1.3.6 Load Power Map 
 
The power map is the file of powers (in watts) that will be used by the simulator engine to 
calculate the final temperatures after the simulation is accomplished. 
  

4.1.1.3.7 Call Simulator Engine 
 
This is the phase in which the Simulator engine is triggered, once all the settings: experiment 
factor-levels, power map values and model layout are specified. 
 

4.1.1.3.8 Write Experiments Results 
 
The process is the step when the csv result is written. The file is a grid of temperature 
distribution. 
 

4.1.1.3.9 Tabulate Results 
 
In the Tabulate step process the grid is tabulated by embedding the factor-levels employed 
in the run.  
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Figure 15  DOE Runner Program Flow 

4.1.1.4 Factors used in the DOE set of experiments. 

Factor Name Levels Description 

part_size_x x-axis value for 
the part 

This represents the “width” value of the part in the 
given space 

part_size_y y-axis value for 
the part 

This represents the “height” value of the part in the 
given space 

part_size_z z-depth value 
for the part 

This represents the “depth” value of the part in the 
given space 

part_material The TIM for the 
target part 

The thermal interface material of the Target Part 

part_kx Conductivity of 
part’s TIM in 
the x-axis 

Conductivity of the TIM in the x-axis 

part_ky Conductivity of 
part’s TIM in 
the y-axis 

Conductivity of the TIM in the y-axis 

part_kz Conductivity of 
part’s TIM in 
the z-axis 

Conductivity of the TIM in the z-axis 

part_k Conductivity of 
part’s TIM 

Conductivity of the part’s TIM  

part_rho Density of 
part’s TIM 

Density of the part’s TIM 

part_cp Specific Heat of 
part’s TIM 

Specific Heat part’s TIM 
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4.1.1.5 DOE Analysis (Analysis of Variance) 

As far as the result for each experiment has been collected, the next step is to run the analysis 
of variance to verify if any of the selected factors made some sense to explain the response 
variable (temperature). 
 
Dataset Generation for analysis and ML experiments  
 
Once the DOE step was considered complete, and the factors and level that better 
explained the response variable are determined, the next step was the dataset generation 
for the data analysis and ML experiments. 
 

4.1.2 Dataset Generation Program Flow 

4.1.2.1 Init Extractor 

 
In this phase the input of the Sample Data Generation Program is setup: 
 

1. Sample Size 

2. SoC Model Layout 

3. Power Map 

4. Factor/Variables range of values.  

4.1.2.2 Set Sample Size 

 
An important part of the data generation process is to specify the size of the sample dataset 
to use in the model construction stage. 
 

4.1.2.3 Assign factor-variables value 

 
This is the step when the selected variables or factors are assigned with a value according to 
what was obtained during the DOE phase. For instance, if it was decided that factor part_k 
with levels min: .025 and max .05 has a relevant effect over the response, then the variable 
part_k will get randomly assigned values between .025 and .05. 
 

4.1.2.4 Set Model Layout 

 
The Model Layout, as mentioned, represent the SoC model CAD file the Experiment chiplet 
part belongs to.  
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4.1.2.5 Setup Experiment Part 

 
For the Data Generation Program to work well, it is important to specify the Experiment part 
the simulation will be centered. 
 

4.1.2.6 Load Power Map 

 
The Power map is a csv file containing the power distribution zoner or points for each of the 
components of the thermal model. 
 

4.1.2.7 Call Simulation Engine 

 
If everything goes fine after experiment tweaks and adjustments to the model the simulation 
will be initiated by the Simulation Engine 
 

4.1.2.8 Write Results 

 
For every flow execution of the sample data generation process, the step that follows is to 
write the temperature distribution grid. 
 

4.1.2.9 Process Tabulate Results 

 
Once all the executions for the data generation process flow were completed, the step that 
follows is the tabulation of the results for their subsequent analysis. 
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Figure 16 Sample Data Program Flow. 

4.1.3 Data analysis and ML model generation 
This is the phase where data science/machine learning stuff takes place, after the sample 
dataset was generated, next tasks were performed on data: 
 

1. Statistics 

a. Descriptive Statistics 

b. Inferential Statistics 

2. Processing 

a. Feature Engineering 

i. Scaling, normalization and 

ii. Data transformation 

3. Training 

4. Test and Validation 

 

4.1.3.1 Design and execution of MLOps pipelines to automate ML Process 

Lifecyle 

It was desired for the present work to include a proof of concept about the way the ML 
process could be automated. A basic proposal is presented following the framework 
recommended by [16] Please Figure 17 MLOps pipeline workflow reference from . 
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Figure 17 MLOps pipeline workflow reference from [16] 
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5 RESULTS 

5.1 Results 
 

5.1.1 DOE results 
 
After DOE experiments ended, ANOVA analysis was used to determine variables that better 
explains the response variable. ANOVA analysis result is captured in Table 2 - ANOVA results 
for DOE experiments. 
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ANOVA Results for each of the DOE experiments (Stimuli points) 

 ANOVA Stimuli point at the Top Section 

 
 

 
 

ANOVA Stimuli point at the Left Section 

 
 

ANOVA Stimuli point at the Middle Section 

 

ANOVA Stimuli point at the Right Section 

 
 

 ANOVA Stimuli point at the Down Section 

 

 

Table 2 - ANOVA results for DOE experiments 
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Based on Table 2 - ANOVA results for DOE experiments, the variables that more influenced 
the response were:  
  
 

Factors 

part_cp  

part_k 

part_material_applied_power 

 
 
This is demonstrated after performing the ANOVA Hypothesis testing, which states: 
 

𝐻0: 𝜇1 =  𝜇2 =  𝜇3 … =  𝜇_𝑛 
𝐻1: Means are not all equal 

 
This Hypothesis testing can also be understood for our interest in the following way: 
 

𝐻0: 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒𝑠 𝑎𝑟𝑒 𝑒𝑞𝑢𝑎𝑙 
𝐻1: 𝑎𝑡 𝑙𝑒𝑎𝑠𝑡 𝑜𝑛𝑒 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑖𝑠 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡 

 
 
Which means at least one variable from the selected for the experiment has an inference 
over the response variable. 
 
Since three of the four variables for the experiment produced a F value lower than 5% null 
hypothesis is rejected. 
 

5.1.2 Data Generation results 
 
To arrive to this part, it was important to determine the factors or predictors to use for the 
data generation. Since this has been solved, the generation process is the next task. 
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Figure 18 Code of Data Generation Program 

1. A size of 200 runs against the simulator were run 

2. During the experiment, the values of levels for the experiment were produced by applying 

TIM 2(in this case Silicon) properties: 

a. Conductivity (part_k) --> 120E0 

b. Specific heat (part_cp) --> 700E0 

c. Power (part_power_applied) --> 0.439587 

 

5.1.2.1.1 Values calculation for sample generation 
 
A calculation to get the Min, Max boundary values, which for the data generation were: 

 
𝑝𝑎𝑟𝑡_𝑘𝑙𝑜𝑤𝑒𝑟  = 48𝐸0 
 𝑝𝑎𝑟𝑡_𝑘𝑢𝑝𝑝𝑒𝑟  = 192𝐸0 

 

 
2 Thermal Interface Material 



53 | P a g e  
 

𝑝𝑎𝑟𝑡_𝑐𝑝𝑙𝑜𝑤𝑒𝑟  = 280𝐸0 
 𝑝𝑎𝑟𝑡_𝑐𝑝𝑢𝑝𝑝𝑒𝑟  = 1120𝐸0 

 
and for the power applied on part: 

 
𝑝𝑎𝑟𝑡_𝑝𝑜𝑤𝑒𝑟_𝑎𝑝𝑝𝑙𝑖𝑒𝑑𝑙𝑜𝑤𝑒𝑟  = 0.1758348 
𝑝𝑎𝑟𝑡_𝑝𝑜𝑤𝑒𝑟_𝑎𝑝𝑝𝑙𝑖𝑒𝑑𝑢𝑝𝑝𝑒𝑟  = 0.7033392 

 
 

 

3. The factor/levels different combinations for the sample size of 200 temperature grids were 

calculated using the python’s function random.uniform function using the lower(min) and 

upper (max) levels  

 

 

Figure 19 Data Generation section – permutations 

 
The output of this process, produced 200 different temperature grids like the one in Figure 
20 Example of a Grid of Temperatures: 
 

 
Figure 20 Example of a Grid of Temperatures 

 

To produce the dataset for the ML experiments two decision were taken: 
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1. To trim each of the temperature grid to seize the portion of temperatures more meaningful for 

the predictive model 

2. After the grids were trimmed, tabulate and merge them to obtain the final dataset 

5.1.2.2 Trim each of the temperature grid to seize the portion of 

temperatures more meaningful for the predictive model 

 
It happens, due the settings of the current problem, the grid of temperature produced had a 
large area of data points that barely varied between them. This was originated because of 
the type of power map applied to the simulation (with only one point of power to a single 
part from the model).  
 
For this reason, the idea to check data variability using quantiles to get rid of those data points 
with less variability to achieve a model easier to get trained was the main focus. Please check 
Figure 21 Temperature quartiles and Table 3 Temperature data Standard deviation vs 
quartiles. 
 

 
Figure 21 Temperature quartiles 

 
 

 Group 
Quartile 1 

Group 
Quartile 2 

Group 
Quartile 3 

Group 
Quartile 4 

Standard 
deviation 

0.06991 0.06279 0.11281 1.27935 

Table 3 Temperature data Standard deviation vs quartiles 

 
It can be observed from Table 3 Temperature data Standard deviation vs quartiles from 
Group Quartile 4 is one with larger standard deviation with means more variability. This 
pattern was repeated for the 200 files. The final remaining task after the size reduction of the 
data grids was to merge all the files into one. 
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5.1.2.3 Data Pre-processing and Feature Engineering 

5.1.2.3.1 The calculation of the thermal gradient  
 
So far, three predictors were defined (part_k, part_cp, power_applied_part) and the 
response (temperature) to form part of the candidate dataset for the machine learning 
experiments. From Literature Section It was researched the concept the thermal gradient. 
Reminding the definition of the concept would be of significant help: 
 
“… thermal gradient is defined as the ratio of the temperature difference and the distance 
between two points (equivalently, it's the change in temperature over a given length). 
Thermal gradients can be calculated by knowing the temperature at two points and the 
distance between the two points.”  
 

𝑇𝐺 =  (𝑇𝐵 − 𝑇𝐴)/𝐷𝑋 
 
Where: 
TG: Thermal Gradient 
TB:  Temperature of point B 
TA:  Temperature of point A 
DX: Distance between the two points 
 
Due to the grid of temperature files is in fact a collection of temperature points that maps 
the response surface, it made total sense to us to include the thermal gradient for each of 
the points of the grid with respect of the stimuli point (the point where the power was applied 
on the part). 
 

5.1.2.3.2 Scaling the Features 
 
Either part_cp or part_k variables were scaled using sklearn3 MinMaxScaler. Decision was 
taken greatly in part because of the way these two predictors were generated during the 
Data Generation results step. The power_part_applied variable remained untouched. 
 

5.1.2.3.3 Final view of the dataset for the ML experiments 
 
Please check the final version of the dataset in: Figure 22 Dataset final version. 

 
3 Sklearn is a Python library used to implement machine learning model and statistical modeling 
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Figure 22 Dataset final version 

 

5.1.3 ML Model Training and Results 
 
For the executions of the ML experiments, all the ML models were encapsulated as pipelines 
and run via docker containers. Their results stored in the MLflow platform local storage. The 
advantage of doing it this way was that every metric and plots produced by the ML model 
experiment is stored and save for future consult.  
 

 
Figure 23 MLflow model experiment result 
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Figure 24 Plot MSE vs epochs 

 
Figure 25  Neural Network Architecture 

 
 

 

5.1.4 Hyperparameters Tunning 
 
For the Hyperparameter Tunning a new library maintained by Facebook was used: Ax. Figure 
26  shows the code for the hyperparameter tunning. 
 

 
Figure 26 Portion of the code for hyperparameter tunning 
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5.1.4.1 Ax Hyperparameter Tunning Experiment results 

 
Experiment 1 (epochs = 1) 

learning rate  0.0022606556526699 

dropout_rate 0.0800264815585484 

num_hidden_layers 2 

neurons_per_layer 64 

batch_size' 7 

activation tanh 

optimizer adam 

 
Experiment 2 (epochs = 5) 

learning rate  0.002574266670049544 

dropout_rate 0.0905928978022987 

num_hidden_layers 1 

neurons_per_layer 277 

batch_size' 64 

activation tanh 

optimizer sgd 
 

Table 4 Example of the optimized hyperparameters by Ax. 

 
 

5.1.5 ML Training Experiments Results 
 

5.1.5.1 Best Experiment  

 
In the initial training execution, applying a similar network architecture than hyperparameter 
Tunning Experiment # 1 but considerably larger epochs and batch sizes as shown in Table 5 
and Figure 27: 
 
 

 

 

 

 

 

 

Table 5 Tuned Hyperparameters 

 

learning rate  0.09 
dropout_rate 0.0800264815 
num_hidden_layers 4  
neurons_per_layer [10,50,50] 
batch_size' 500 
activation Tanh 
'optimizer' Adam 

 
Figure 27 Neural Network Architecture 
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Figure 28 ML Training Experiment R^2 

 
Currently the best score of 𝑅2 hit for any of our trained models is shown in Figure 28 with a 
value of 0.8396. The model is yest being tuned up to level up the metrics. 
 

5.1.6 MLOps implementation 
 
The implementation of MLOps consists in setting up the MLflow 4 as the MLOps platform. 
There are six modes MLflow can be setup to run and store artifacts: 
 

1. Scenario 1: MLflow on localhost 

2. Scenario 2: MLflow on localhost with SQLite 

3. Scenario 3: MLflow on localhost with Tracking Server 

4. Scenario 4: MLflow with remote Tracking Server, backend, and artifact stores 

5. Scenario 5: MLflow Tracking Server enabled with proxied artifact storage access 

6. Scenario 6: MLflow Tracking Server used exclusively as proxied access host for artifact storage 

Access  

For this project Scenario 4 was selected. 
Docker containers and Docker Compose were employed to setup local next services: 
 

1. A Tracking DB service deployed as docker container using PostgreSQL  

2. An sFTP service via docker container was built for the storage artifact role of MLflow 

3. The MLflow server listening to port 5000 for any requests coming from the MLflow pipeline 

container 

4. A git repository containing the code of models’ pipelines (processing, training pipelines) 

Please see Figure 29 Thermal MLOps Implementation for further details 
 
 

 
4 MLflow is a versatile, expandable, open-source platform for managing workflows and artifacts across the 
machine learning lifecycle. More information at: https://mlflow.org/docs/latest/what-is-mlflow.html 
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 PosgresSQL Container
(MLFlow Tracking DB)

sFTP Service
(MLFlow Artifact Storage)

MLFlow Server

Pipeline  container
MLFLow client

Git Repository
Pipelines storage

 
Figure 29 Thermal MLOps Implementation 
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6 CONCLUSIONS 

6.1 Conclusions 
The results presented in this work are step ahead for the thermal engineering teams in the 
target organization to expand their analysis tools options for their thermal models due to 
the following reasons: 
- With the Data Generation software tool, the data extraction has been automated and is possible to 

generate sample data for data analysis and machine learning experiments 

- The initial version of the Neural Network has shown that is possible to create deep learning models 

with the data extracted from the thermal simulated tool. 

 

6.2 Future Work 
Incorporating machine learning for analyzing temperature distributions and infer from the 
neural network model is a big step for the purpose to orient more decisions considering the 
data analysis world. Though, there are more things ahead to work to reach out the envisioned 
level of sophistication. It is considered, the next steps this effort should move on are: 

 
1. The ML analysis must be extended to make it capable to support a more complex thermal model 

setting, this means more chiplets or SoC parts involved in the analysis with the idea to infer the 

temperature of the entire SoC 

2. The inclusion of more complex power maps and surface dimensions 
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