Instituto Tecnológico y de Estudios Superiores de Occidente

Reconocimiento de validez oficial de estudios de nivel superior según acuerdo secretarial 15018, publicado en el Diario Oficial de la Federación del 29 de noviembre de 1976.

Departamento de Matemáticas y Física MAESTRÍA EN CIENCIA DE DATOS

Solución de predicción de temperaturas usando datos de un simulador térmico

TESIS que para obtener el GRADO de MAESTRO EN CIENCIA DE DATOS

Presenta: YARED ISMAEL FLORES JIMÉNEZ

Director Dr. FERNANDO IGNACIO BECERRA LÓPEZ

Tlaquepaque, Jalisco. Noviembre de 2023.

ACKNOWLEDGMENTS

It is not a simple task to recall all of those that have supported you in every new venture because it happens more often than not, they are so many.

In the first place, I would like to express my gratitude to Edna for her understanding throughout all these two years. I deeply appreciate her patience and support every time I asked for help, that meant a lot to me.

Also, to the academic body of the Data Science master program. The endeavor to start my practice in the field of Data Science would have never been possible without their kindness at moments when I was not precisely the smartest person in the classroom.

To my family and friends that always have believed in me. I would not have been able to accomplish anything in my life without their support.

AGRADECIMIENTOS

No es una tarea sencilla recordar a todos aquellos que te han apoyado en cada nuevo emprendimiento porque sucede la mayoría de las veces, son muchísimos.

En primer lugar, quisiera expresar mi agradecimiento a Edna por su comprensión a lo largo de estos dos años. Agradezco profundamente su paciencia y apoyo cada vez que pedí ayuda, eso significó mucho para mí.

Asimismo, al cuerpo académico de la maestría en Ciencia de Datos. El empeño de iniciar mi práctica en el campo de la Ciencia de Datos nunca hubiera sido posible sin su amabilidad en momentos en los que no era precisamente la persona más inteligente del aula.

A mi familia y amigos que siempre han creído en mí. No habría podido lograr nada en mi vida sin su apoyo.

DEDICATIONS

To my family, Edna, my professors and the privilege to be part of this time now ...

DEDICATORIA

A mi familia, Edna, mis profesores y la oportunidad de ser parte de este tiempo ahora ...

ABSTRACT

The industry of integrated circuits is experiencing a moment of fierce change. As is, the methods used in all stages implied in its design process. The present work presents a method to predict temperatures for System on Chip (SoC) *chiplet* part with quite simple power map and a single thermal interface material using Machine Learning (ML) and its offspring Deep Learning (DL).

The SoC part is represented as a response surface of a 2D model geometry surface used for a set of experiments to determine the relevant factors for the temperature prediction. In addition to the experiment design, a deployment strategy to implement a continuous integration and deployment process to be used for the target organization is also proposed.

The idea is to achieve the principle of productive ML that states that models should be constantly learning by automating new data ingestion into the training process to enhance model performance in each of the cycle updates.

The project proposes a method to strengthen the established thermal processes of the target organization by using ML tools and provide an alternative to speed up thermal model analysis using new available techniques derived from ML and Deep Learning.

RESUMEN

La industria de los circuitos integrados vive un momento de fuerte cambio, de igual manera, los métodos utilizados en todas las etapas implicadas en su proceso de diseño. El presente trabajo tiene la intención de presentar un método para lograr la predicción de temperatura de un chiplet parte de un *System-on-Chip* (SoC) con un mapa de potencia bastante simple y un material de interfaz térmica haciendo uso de *Machine Learning* (ML) y su descendencia *Deep Learning*.

La parte chiplet del SoC se representa como geometrías de un modelo 2D y es la superficie de respuesta utilizada en un conjunto de experimentos que permiten identificar los factores relevantes en la predicción de su temperatura. Además del diseño de experimentos, también se propone una estrategia de implementación del proceso de Integración Continua de ML por usarse en la organización destino (también conocido como MLOps).

La idea es lograr que el principio de ML que establece que los modelos deben aprender constantemente al automatizar la ingesta de nuevos datos, el proceso de entrenamiento que incentiven la mejora del rendimiento del modelo en cada una de las actualizaciones del ciclo del proceso.

El proyecto es, en esencia, un esfuerzo por proponer un método para fortalecer los procesos térmicos establecidos de la organización objetivo mediante el uso de herramientas ML y proporcionar una alternativa para acelerar el análisis del modelo térmico utilizando las nuevas técnicas disponibles, como ML y Deep Learning.

TABLE OF CONTENTS

ACKI	NOWLED	OGMENTS	2
AGR	ADECIM	IENTOS	3
DED	ICATION	S	4
DED	ICATORI	Α	5
ABS	FRACT		6
RESU	JMEN		7
TABI	LE OF CO	NTENTS	8
LIST	OF FIGU	RES	11
LIST	OF TABL	ES	12
ACH	RONYMS	S AND ABBREVIATIONS	13
1	INTRO	DUCTION	14
1.	.1. J	USTIFICATION	15
1.	2. P	ROBLEM DESCRIPTION	16
1.	.3. ⊦	IYPOTHESIS	19
1.	.4. A	SSUMPTIONS AND RELEVANT ASPECTS OF THIS WORK	20
1.	.5. C)BJECTIVES	21
	1.5.1	L. General Objective:	21
	1.5.2	2. Specific Objectives:	21
2	STATE	OF THE ART	22
2.	1 Масни	NE LEARNING ON THERMAL PREDICTION	22
2. 2.	1 Масніі 2 Отн	NE LEARNING ON THERMAL PREDICTION	22
2. 2.	1 <i>Масніі</i> 2 Отн	ne Learning on thermal prediction er methods	22 24
2. 2. 3	1 Масни 2 Отн LITERA	NE LEARNING ON THERMAL PREDICTION ER METHODS TURE REVIEW	22 24 26
2. 2. 3 3.	1 Machin 2 Oth LITERA	NE LEARNING ON THERMAL PREDICTION ER METHODS TURE REVIEW GRATED CIRCUITS (IC)	22 24 26 26
2. 2. 3 3.	1 Machii 2 Oth LITERA 1 Inte 3.1.1	NE LEARNING ON THERMAL PREDICTION ER METHODS TURE REVIEW GRATED CIRCUITS (IC) Integrated Circuit Design	22 24 26 26 26
2. 2. 3 3.	1 Маснії 2 Отн LITERA 1 Ілте 3.1.1 3.1.2	NE LEARNING ON THERMAL PREDICTION ER METHODS TURE REVIEW GRATED CIRCUITS (IC) Integrated Circuit Design What is an Integrated Circuit (IC)	22 24 26 26 26 26
2. 2. 3 3.	1 Machii 2 Oth LITERA 1 INTE 3.1.1 3.1.2 3.1.3	NE LEARNING ON THERMAL PREDICTION ER METHODS TURE REVIEW GRATED CIRCUITS (IC) Integrated Circuit Design What is an Integrated Circuit (IC) Microprocessor	22 24 26 26 26 26 26
2. 2. 3 3.	1 Machil 2 Oth LITERA 1 INTE 3.1.1 3.1.2 3.1.3 3.1.4	NE LEARNING ON THERMAL PREDICTION ER METHODS TURE REVIEW GRATED CIRCUITS (IC) Integrated Circuit Design What is an Integrated Circuit (IC) Microprocessor Die	22 24 26 26 26 26 26 26
2. 2. 3 3.	1 Machil 2 Oth LITERA 1 INTE 3.1.1 3.1.2 3.1.3 3.1.4 3.1.5	NE LEARNING ON THERMAL PREDICTION ER METHODS TURE REVIEW GRATED CIRCUITS (IC) Integrated Circuit Design What is an Integrated Circuit (IC) Microprocessor Die System on chip (SoC)	22 24 26 26 26 26 26 26 26
2. 2. 3 3.	1 Machil 2 Oth LITERA 1 INTE 3.1.1 3.1.2 3.1.3 3.1.4 3.1.5 3.1.6	NE LEARNING ON THERMAL PREDICTION ER METHODS TURE REVIEW GRATED CIRCUITS (IC) Integrated Circuit Design What is an Integrated Circuit (IC) Microprocessor Die System on chip (SoC) Chiplets	22 24 26 26 26 26 26 26 26 27
2. 2. 3 3.	1 Machii 2 Oth LITERA 1 INTE 3.1.1 3.1.2 3.1.3 3.1.4 3.1.5 3.1.6 2 THEF	NE LEARNING ON THERMAL PREDICTION ER METHODS TURE REVIEW GRATED CIRCUITS (IC) Integrated Circuit Design What is an Integrated Circuit (IC) Microprocessor Die System on chip (SoC) Chiplets RMAL THEORY.	22 24 26 26 26 26 26 26 27 27
2. 2. 3 3.	1 Machii 2 Oth LITERA 1 INTE 3.1.1 3.1.2 3.1.3 3.1.4 3.1.5 3.1.6 2 THEF 3.2.1	NE LEARNING ON THERMAL PREDICTION ER METHODS TURE REVIEW	22 24 26 26 26 26 26 26 27 27 27
2. 2. 3 3.	1 MACHII 2 OTH LITERA 1 INTE 3.1.1 3.1.2 3.1.3 3.1.4 3.1.5 3.1.6 2 THEF 3.2.1 3.2.2	NE LEARNING ON THERMAL PREDICTION. ER METHODS. TURE REVIEW	22 24 26 26 26 26 26 26 27 27 27 28
2. 2. 3 3.	1 MACHII 2 OTH LITERA 1 INTE 3.1.1 3.1.2 3.1.3 3.1.4 3.1.5 3.1.6 2 THEF 3.2.1 3.2.2 3.2.3	NE LEARNING ON THERMAL PREDICTION. ER METHODS. TURE REVIEW	22 24 26 26 26 26 26 26 27 27 27 27 28
2. 2. 3 3.	1 MACHII 2 OTH LITERA 1 INTE 3.1.1 3.1.2 3.1.3 3.1.4 3.1.5 3.1.6 2 THEF 3.2.1 3.2.2 3.2.3 3.2.4	NE LEARNING ON THERMAL PREDICTION ER METHODS TURE REVIEW	22 24 26 26 26 26 26 26 26 27 27 27 27 28 28 28
2. 2. 3 3.	1 MACHII 2 OTH LITERA 1 INTE 3.1.1 3.1.2 3.1.3 3.1.4 3.1.5 3.1.6 2 THEF 3.2.1 3.2.2 3.2.3 3.2.4 3.2.4	NE LEARNING ON THERMAL PREDICTION ER METHODS TURE REVIEW GRATED CIRCUITS (IC) Integrated Circuit Design What is an Integrated Circuit (IC) Microprocessor Die System on chip (SoC) Chiplets RMAL THEORY Thermal Design Energy Transfer and Heat Transfer Equation State Thermal Analysis of Integrated Circuits Analytical Methods	22 24 26 26 26 26 26 26 26 27 27 27 27 28 28 28 28 29
2. 2. 3 3.	1 Machil 2 OTH LITERA 1 INTE 3.1.1 3.1.2 3.1.3 3.1.4 3.1.5 3.1.6 2 THEF 3.2.1 3.2.2 3.2.3 3.2.4 3.2.4 3.2.4 3.2.4	NE LEARNING ON THERMAL PREDICTION ER METHODS	22 24 26 26 26 26 26 26 26 26 27 27 27 27 27 27 27 28 28 28 28 29
2. 2. 3 3.	1 MACHII 2 OTH LITERA 1 INTE 3.1.1 3.1.2 3.1.3 3.1.4 3.1.5 3.1.6 2 THEF 3.2.1 3.2.2 3.2.3 3.2.4 3.2.4 3.2.4 3.2.4 3.2.4 3.2.4 3.2.4 3.2.4 3.2.4 3.2.4 3.2.4 3.2.5	VE LEARNING ON THERMAL PREDICTION ER METHODS TURE REVIEW GRATED CIRCUITS (IC) Integrated Circuit Design What is an Integrated Circuit (IC) Microprocessor Die System on chip (SoC) Chiplets SMAL THEORY. Thermal Design Energy Transfer and Heat Transfer Equation State Thermal Analysis of Integrated Circuits 1.1 Analytical Methods. 1.2 Numerical Methods. Heat Transfer and Its Relation to the Thermodynamics	22 24 26 26 26 26 26 26 26 26 27 27 27 27 27 27 28 28 28 29 29 30
2. 2. 3 3.	1 MACHII 2 OTH LITERA 1 INTE 3.1.1 3.1.2 3.1.3 3.1.4 3.1.5 3.1.6 2 THEF 3.2.1 3.2.2 3.2.3 3.2.4 3.2.4 3.2.4 3.2.4 3.2.4 3.2.4 3.2.5 3.2.5 3.2.5	NE LEARNING ON THERMAL PREDICTION ER METHODS	22 24 26 26 26 26 26 26 26 26 27 27 27 27 27 27 28 28 29 29 30 30 30
2. 2. 3 3.	1 MACHII 2 OTH LITERA 1 INTE 3.1.1 3.1.2 3.1.3 3.1.4 3.1.5 3.1.6 2 THEF 3.2.1 3.2.2 3.2.3 3.2.4 3.2.4 3.2.4 3.2.2 3.2.5 3.2.5 3.2.5 3.2.5	NE LEARNING ON THERMAL PREDICTION ER METHODS TURE REVIEW GRATED CIRCUITS (IC) Integrated Circuit Design What is an Integrated Circuit (IC) Microprocessor Die System on chip (SoC) Chiplets SWAL THEORY Thermal Design Energy Transfer and Heat Transfer Equation State Thermal Analysis of Integrated Circuits 1.1 Analytical Methods. 1.2 Numerical Methods. Heat Transfer and Its Relation to the Thermodynamics 5.2 First Law of Thermodynamics	22 24 26 26 26 26 26 26 26 26 27 27 27 27 27 27 27 28 28 28 29 30 30 30 30 30 30
2. 2. 3 3.	1 MACHII 2 OTH LITERA 1 INTE 3.1.1 3.1.2 3.1.3 3.1.4 3.1.5 3.1.6 2 THEF 3.2.1 3.2.2 3.2.4 3.2.4 3.2.4 3.2.4 3.2.4 3.2.4 3.2.4 3.2.4 3.2.4 3.2.5 3.2.5 3.2.5 3.2.5 3.2.5 3.2.5	NE LEARNING ON THERMAL PREDICTION ER METHODS TURE REVIEW GRATED CIRCUITS (IC) Integrated Circuit Design What is an Integrated Circuit (IC) Microprocessor Die System on chip (SoC) Chiplets RMAL THEORY Thermal Design Energy Transfer and Heat Transfer Equation State Thermal Analysis of Integrated Circuits 1.1 Analytical Methods 4.2 Numerical Methods 4.3 Numerical Methods 4.4 Transfer and Its Relation to the Thermodynamics 5.4 Thermodynamics 5.3 The Second Law of Thermodynamics	22 24 26 26 26 26 26 26 26 27 27 27 27 27 27 27 28 28 28 29 29 30
2. 2. 3 3.	1 MACHII 2 OTH LITERA 1 INTE 3.1.1 3.1.2 3.1.3 3.1.4 3.1.5 3.1.6 2 THEF 3.2.1 3.2.2 3.2.3 3.2.4 3.2.4 3.2.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3	NE LEARNING ON THERMAL PREDICTION ER METHODS TURE REVIEW GRATED CIRCUITS (IC) Integrated Circuit Design What is an Integrated Circuit (IC) Microprocessor Die System on chip (SoC) Chiplets RMAL THEORY Thermal Design Energy Transfer and Heat Transfer Equation State Thermal Analysis of Integrated Circuits 1.1 Analytical Methods 4.2 Numerical Methods 4.1 Thermodynamics 5.1 Thermodynamics 5.2 First Law of Thermodynamics 5.3 The Second Law of Thermodynamics	22 24 26 26 26 26 26 26 26 27 27 27 27 27 27 28 29 30 30 30 31 31
2. 2. 3 3.	1 MACHII 2 OTH LITERA 1 INTE 3.1.1 3.1.2 3.1.3 3.1.4 3.1.5 3.1.6 2 THEF 3.2.1 3.2.2 3.2.3 3.2.4 3.2.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3	NE LEARNING ON THERMAL PREDICTION ER METHODS	22 24 26 26 26 26 26 26 26 27 27 27 27 27 27 27 27 28 28 29 20 30 30 30 31 31 32

	2	28	Convection Heat Transfer	32
	3	29	Radiation Heat Transfer	32
	3	2 10	Thermal Interface Material (TIM)	33
	2 2	DESIG	N OF EXPERIMENTS	33
	3.4	FXPER	IMENTATION STRATEGIES	34
	3	<u> </u>	Rest-auess annroach	34
	3	42	OFAT (One-factor-at-a-time)	34
	3	43	Factorial Experiment	34
	3	.ч.5 ДД	Guidelines for Designing Experiments [14]	35
	3	45	Fractional Factorial	35
	3	46	Analysis of Variance ($\Delta N O V \Delta$)	35
	35	. <i>4.0</i> Της Δ		36
	3.5 2	5 1	What is Machine Learning Operations (MLOns)	36
	3	52	Pinelines	37
		.5.2		57
4	N	IETHO	DOLOGY	.38
	4	.1.1	Run of DOE	39
		4.1.1.1	1 Setup of DOE Experiments	. 41
		4.1.1.2	2 SoC/Die/Chiplet View (Sections)	. 42
		4.1.1.3	3 Steps of the DOE Program Flow	. 42
		4.1.1.4	Factors used in the DOE set of experiments.	. 44
		4.1.1.	5 DOE Analysis (Analysis of Variance)	. 45
	4	.1.2	Dataset Generation Program Flow	45
		4.1.2.1	1 Init Extractor	. 45
		4.1.2.2	2 Set Sample Size	. 45
		4.1.2.	Assign factor-variables value	. 45
		4.1.2.4	4 Sel Model Layoul	. 45
		4.1.2.	5 Joad Power Map	. 46
		4.1.2.	7 Call Simulation Engine	. 46
		4.1.2.8	3 Write Results	. 46
		4.1.2.9	9 Process Tabulate Results	. 46
	4	.1.3	Data analysis and ML model generation	47
		4.1.3.3	Design and execution of MLOps pipelines to automate ML Process Lifecyle	. 47
5	R	ESULTS		49
-				
	5.1	RESUL	TS	49
	5	.1.1	DOE results	49
	5	.1.2	Data Generation results	51
		5.1.2.	I rim each of the temperature grid to seize the portion of temperatures more meaningful for the	Г 4
		predic	tive model	. 54
	5	1 2	MI Model Training and Results	56
	5	.1.5 1 A	Hypernarameters Tunning	57
	5	514 ⁻	1 Ax Hyperparameter Tunning Experiment results	58
	5	1 5	MI Training Experiments Results	58
		5.1.5.	1 Best Experiment	. 58
	5	.1.6	MLOps implementation	59
~	-			
6	С	ONCLU	SIONS	61
	6.1	Conci	USIONS	61
	6.2	Futur	e Work	61
7	~			67
/	В	IBLIUG	кагпт	62

LIST OF FIGURES

Figure 1 Thermal Design Analysis Process	16
FIGURE 2 ALTERNATIVE THERMAL DESIGN-ANALYSIS PROCESS	17
FIGURE 3 TEMPERATURE GRID EXTRACTED FROM SOC CHIPLET (SIMULATED)	18
FIGURE 4 EXAMPLE OF A POWER MAPS DISTRIBUTION TAKEN FROM [2]	23
FIGURE 5 PARTIAL VIEW OF SOLUTION TAKEN FROM [2]	23
FIGURE 6 FLOW OF SOLUTION TAKEN FROM [4]	24
Figure 7 Thermal Process taken from [12]	27
FIGURE 8 FIRST LAW OF THERMODYNAMICS TAKEN FROM [11]	30
Figure 9 First Law of Thermodynamics (2) taken from [11]	31
FIGURE 10 MLOPS PROCESS TAKEN FROM [16]	37
FIGURE 11 EXAMPLE OF A TRAINING PIPELINE TAKEN FROM [17]	37
FIGURE 12 METHODOLOGY FLOW	39
FIGURE 13 RUN EXPERIMENT FLOW	40
FIGURE 14 SOC EXPERIMENT PART/RESPONSE SURFACE - DEFINED STIMULI POINTS	42
FIGURE 15 DOE RUNNER PROGRAM FLOW	44
Figure 16 Sample Data Program Flow	47
FIGURE 17 MLOPS PIPELINE WORKFLOW REFERENCE FROM [16]	48
FIGURE 18 CODE OF DATA GENERATION PROGRAM	52
FIGURE 19 DATA GENERATION SECTION – PERMUTATIONS	53
Figure 20 Example of a Grid of Temperatures	53
Figure 21 Temperature quartiles	54
Figure 22 Dataset final version	56
Figure 23 MLFLOW MODEL EXPERIMENT RESULT	56
FIGURE 24 PLOT MSE VS EPOCHS	57
Figure 25 Neural Network Architecture	57
FIGURE 26 PORTION OF THE CODE FOR HYPERPARAMETER TUNNING	57
FIGURE 27 NEURAL NETWORK ARCHITECTURE	58
FIGURE 28 ML TRAINING EXPERIMENT R^2	59
FIGURE 29 THERMAL MLOPS IMPLEMENTATION	60

LIST OF TABLES

TABLE 1 SETUP OF THE DOE EXPERIMENTS	41
TABLE 2 - ANOVA RESULTS FOR DOE EXPERIMENTS	50
TABLE 3 TEMPERATURE DATA STANDARD DEVIATION VS QUARTILES	54
TABLE 4 EXAMPLE OF THE OPTIMIZED HYPERPARAMETERS BY AX	58
TABLE 5 TUNED HYPERPARAMETERS	58

ACHRONYMS AND ABBREVIATIONS

IC	Integrated Circuit
ML	Machine Learning
SoC	System of Chip
NN	Neural Network
PINNs	Physics-Informed Neural Networks
FEM	Finite Element Method
FVM	Finite Volume Method
TIM	Thermal Interface Material
CFD	Computation Fluid Dynamics
CMOS	Complementary metal-oxide-semiconductor
MLOps	Machine Learning Operations

1 INTRODUCTION

With the accelerated evolution of the design of integrated circuits (IC) from Small-Scale Integration (SSI) to the point of Very Large-Scale Integration (VLSI) the addition of requirements connected to optimization science during the design stages of the product are resolutely changing the process of how the companies next products are meant to beat the same from their competitors. The prevalent technologies used in the design of integrated circuits are suffering liabilities on product performance in part due to the increment in circuits failures associated to thermal issues.

Part of the reason, relies on the fact that modern consumers and market demands faster, and more function-capable devices. This represents big challenges as the increase of transistor's density and more sophisticated IC packaging methods which have impacted power and temperature upsurge. Therefore, areas like thermal management are becoming increasingly critical. Some of the challenges for this field now and in the close future will consist mainly of reducing the cost for thermal model analysis by producing more efficient solutions faster and "make room" for new design and innovation and spend less time fixing defects and issues.

Inputs from other knowledge's fields are becoming more relevant in order to enhance thermal management processes. The integration of Machine Learning and Deep Learning can help in high regard for the purpose. These technologies could enable thermal designers to better analyze their systems and identify areas of opportunity to optimize their designs for future projects.

1.1. Justification

Thermal issues are a key factor for performance and reliability in chips [1]. Hence, accurate prediction of the maximum temperature on chips become important for the performance and consistency of chip-packaging systems [2].

Efforts to improve the simulation and temperature predictions with methods like Machine Learning (ML), Numerical, Finite Element Method (FEM) and Finite Volume Method (FVM) and Analytical are currently some of the most common choices.

However, while FEM and Analytical methods have proved their value, they still are not enough to satisfy the level demand and complexity of modern electronic thermal design. ML could be of great value to expand the existing toolkit of options to construct solutions for problems with certain kind of difficulty.

Therefore, it is the conviction of this work to be of significance to show how techniques associated to Data Science and ML can support thermal design process to fulfill its goal to produce thermal efficient devices.

1.2. Problem description

As current methods for thermal analysis of ICs are computational expensive, this represents an opportunity to innovate in the field, for instance like in the case of temperature prediction of System of Chip (SoC) parts.

Although, the company from where the project is originated, owns a good-enough software thermal simulator tool, the internal management-leadership voices pushing for accelerating an optimizing the thermal analysis of new upcoming products has made company's thermal teams to consider data science and machine learning to extend their current toolset of options.

The idea is to reinforce the thermal analysis process of the company with a machine learning solution capable to learn from data produced by the simulation tool to enhance the current thermal design-analysis process (Figure 1 Thermal Design Analysis Process)

Figure 1 Thermal Design Analysis Process

For this project's scope, it was decided that in order to prove the utility of applying ML in the thermal process, the focus would be on constructing a prediction model based on a specific SoC chiplet. This chiplet referred from now on as the *experiment part or response surface* of the experiment will be the foundational stone that will help to build a prediction model using temperature grids (Figure 3 Temperature Grid extracted from SoC chiplet (simulated)) as input (Figure 2 Alternative Thermal Design-Analysis Process.)

Figure 2 Alternative Thermal Design-Analysis Process

Figure 3 Temperature Grid extracted from SoC chiplet (simulated)

1.3. Hypothesis

Prove the worth of Machine Learning in the field of thermal design by predicting temperatures on SoC surface areas that can help engineers and designers to eventually become more efficient for future designs execution by learning from generated data from on-going projects execution.

1.4. Assumptions and relevant aspects of this work

This work is fundamentally an effort to demonstrate the way machine learning can contribute in the thermal design process for integrated circuits.

The idea is not to replace the simulation software used by engineers and designers in the target organization, but to service from the generated data of these tools to learn more from the temperature profiles of diverse chips combination of materials, dimensions and other associated variables.

Since the thermal simulator encapsulates the complexities of physics calculation for the temperature grids, the intention is to analyze these grids to find the right ML model that approximates it by using the most viable set of variables. Once the right model is identified, plugging it into already existing data analysis pipelines would be a straightforward task.

1.5. Objectives

1.5.1. General Objective:

• Build a solid Machine Learning (ML) prediction model capable to help thermal engineering staff to accelerate thermal analysis for upcoming company's products s

1.5.2.Specific Objectives:

- Construct a viable database for the SoC chiplet temperature prediction model
- Determine the factors (features) that are more relevant for a temperature prediction for a specific SoC chiplet
- Construct a machine learning prediction model capable to predict temperatures for the project's selected chiplet

2 STATE OF THE ART

2.1 Machine Learning on thermal prediction

As it was earlier stated, the incursion of Machine Learning in the process of Thermal Design has already made its own progress throughout the most recent years. Well documented efforts to replace existing simulation and temperature predictions

strategies using ML have been running with the idea to accelerate the existing process. This section briefly describes such efforts.

The article A Thermal Machine Learning Solver for Chip Simulation [2] explains very well, a new strategy to create a solver for thermal simulations by bringing a new version of an existing algorithm inspired by the Composable Autoencoder Machine Learning Simulator (CoAEMLSim) to make it capable to handle global system parameters:

In the case of the proposed Thermal ML Solver some of these system parameters are:

- 1. Heat Transfer Coefficients (HTCs)
- 2. Power maps distributions and
- 3. Die thickness

Other consider parameters kept as constants are:

- 1. Inter connection Layer Thickness
- 2. Insulation Layer Thickness
- 3. Si Substrate thermal conductivity
- 4. Interconnection layer conductivity

In the paper is proposed a way to model high dimensional power maps and HTCs. It happens that managing multiple system parameters with varying distributions for simulating physical systems under ML represented a roadblock that data and engineers have been facing to make feasible the use of ML into this domain of thermal analysis.

Figure 4 Example of a Power Maps Distribution taken from [2]

An important component in the solution is the **autoencoder** used in the Convolutional Neural Network (CNN) which is key element, simply because the mapping between the power map (Figure 4) with the other system parameters with the final temperature distribution is resolved by them.

In summary, the paper, provides a good indication of how CNNs are used in implementation of a thermal simulator (Figure 5 Partial view of solution).

Figure 5 Partial view of solution taken from [2]

Another example is the effort documented in the article: *Approximating the Steady-State Temperature of 3D Electronic Systems with Convolutional Neural Networks* [3]. Similarly, to what [2] the purpose was to find an alternative method to run simulations for thermal design but with slightly differences. In this method, the idea is to randomly generate electronic circuits with finite element solutions, the steady state temperature is estimated a fully convolutional neural network. The underlying idea of this thermal strategy is the simulation of a thermal design by combining physics and Neural Networks.

In both articles the goal is to increase computation speed by:

- 1. Reducing the number of required design iterations
- 2. Accelerate the evaluation of individuals designs

Methods used in this solution are:

- 1. Fully convolutional neural networks FCNN to approximate the 3d electronic systems.
- 2. Large datasets required for supervised learning
- 3. Random system generation to create the virtual electronic circuits.
- 4. Generation of FEM solutions to obtain the temperature solutions
- 5. Voxelization. For postprocessing the systems and the FEM solutions were converted to 3d images per system as input for the NN.

Figure 6 Flow of solution taken from [4]

2.2 Other methods

Although, the interest is to denote the influence of Machine Learning (ML) on thermal analysis and temperature estimation on integrated circuits (IC), it is pertinent to mention other tried non-ML methodologies. Before ML, solutions were envisioned by bearing in mind numerical and analytical methods tactics. For the former, Finite Element Method (FEM) and Finite Volume Method (FVM) being the most common options.

The challenge with these methods is the ability to manage various features or parameters sizes for electronic packages, turning at times into a burdensome option for parametric analysis with varying geometries as well [4].

An alternative way, that allows the use of a broader set of system parameters and power map distributions, has come in the flavor of analytical models. A worth-to-mention effort is the one by Sikka and *Muzychka*. In their work a superimposed source spreading resistance was defined to predict the junction temperature distribution in a chip package with a non-uniform power map using a Fourier series to create a coefficient method. Another effort is the one achieved by *Bagnal* based on *Muzychka's* work using a two-layered Fourier series solution for multilayer system, beating numerical methods like FEM.

After citing these previous contributions, it is imperative to understand that thermal analysis is still innovating from other disciplines to conceptualize new ways to analyze thermal conditions for integrated circuits that guarantee less resource consume and optimal performance for the end-solution.

3 LITERATURE REVIEW

3.1 Integrated Circuits (IC)

3.1.1 Integrated Circuit Design

Integrated circuit design, or IC design, is a part of a larger body of knowledge known as electronics engineering. In the discipline of electronics engineering, there is a process known as circuit design. The goal of circuit design is to assemble a collection of interconnected circuit elements that perform a specific function. The ability to add or multiply numbers is a simple example. The development of a microprocessor that executes computer instructions to perform complex tasks is another example [5].

3.1.2 What is an Integrated Circuit (IC)

A monolithic integrated circuit (IC) is a complete circuit or group of circuits manufactured in a single piece of silicon, a typical physical size being 1.25 mm square. Such a circuit may contain fifty or more components such as transistors or resistors [6].

3.1.3 Microprocessor

Computers and microprocessors are general-purpose programmable systems which perform sequential processing operations. Classically, they are constructed using general-purpose functional units such as a central processing unit or CPU, a memory unit, and an input/output subsystem [7].

3.1.4 Die

A die in the context of integrated circuits is a small block of semiconducting material, on which a given functional circuit is fabricated. Typically, integrated circuits are produced in large batches on a single wafer of Electronic Grade Silicon (EGS) or other semiconductor, through processes such as photolithography. The wafer is cut ("diced") into many pieces, each containing one copy of the circuit. Each of these pieces is called a die [8].

3.1.5 System on chip (SoC)

At their core, SoCs are microchips that contain all the necessary electronic circuits for a fully functional system on a single integrated circuit. In other words, the CPU, internal memory,

I/O ports, analog inputs and output, as well as additional application-specific circuit blocks, are all designed to be integrated on the same chip. SoCs differentiate themselves from traditional devices and PC architectures, where a separate chip is used for the CPU, GPU, RAM, and other essential functional components [9]. Various SoCs are developed depending on their intended device. For example, SoCs on smartphones or other IoT devices may also incorporate Wi-Fi and cellular network modems. In the traditional approach, SoCs use shorter wiring between circuit blocks to reduce power expenditure and increase efficiencies

3.1.6 Chiplets

Chiplets are small, modular chips that can be combined to form a complete system-on-chip (SoC). They are designed to be used in a chiplet-based architecture, in which multiple chiplets are connected together to create a single, complex integrated circuit. [10]

3.2 Thermal Theory

3.2.1 Thermal Design

The use of appropriate heat transfer techniques, possibly along with some mechanical and electrical design modifications, to sufficiently cool an electronic device or equipment is called thermal design. [11]

However, it is important to recognize that thermal design is not a one-shot design task in which the thermal engineer proposes a thermal design once and forever. Instead, similar to other design disciplines such as mechanical, electrical, power, industrial, and so forth, thermal design is a process that goes through multiple phases and levels of details as the design of the product evolves.

Thermal engineers need to be involved during the whole product design cycle to propose thermally acceptable mechanical and electrical layouts; to check whether proposed mechanical, electrical, or other design changes can be accommodated while the product can be cooled appropriately; or to provide recommendations to achieve a thermally feasible product after implementing those proposed changes [11].

Figure 7 Thermal Process taken from [12]

3.2.2 Energy Transfer and Heat Transfer

The energy transfer that takes place between two objects or systems, because of temperature difference between them, is called energy transfer as heat or simply heat transfer and is denoted by Q. It is seen that heat transfer is nothing other than a form of energy transfer as a consequence of temperature difference between two systems [11].

Energy transfer per unit time is called power and is denoted by P. Two common units of power are watt (W) and horsepower (hp).

- One watt is equal to 1 Joule of energy transfer in one second
- and one horsepower is equal to 746 W.

Sometimes we are interested in learning how fast heat is transferred between two objects. The relationship between heat transfer rate and heat transfer is given by the following integral.

$$Q = \int_{t_1}^{t_2} Q x \, dt$$

In some cases, we are interested in heat transfer rate per unit area. This is called heat flux and is denoted by q.

3.2.3 Equation State

The state of a system or its condition is described by values of its properties such as mass, volume, pressure, temperature, internal energy, kinetic or potential energy, polarization, magnetization, and so forth [11].

It has been shown that not all the properties of a system are independent from each other. Consider a simple compressible substance That is a substance free from any magnetic or electric force. The state of such a substance is specified by the values of two of its independently variable properties. For example, internal energy per unit mass and pressure of such a simple compressible. Substance can be determined once its temperature and density mass per unit volume; $\rho = \frac{m}{v}$ are known [11].

$$u = u(T, \rho)$$
$$P = P(T, \rho)$$

These equations are called equations of state.

3.2.4 Thermal Analysis of Integrated Circuits

There are two different approaches for performance of thermal analysis of IC's: analytical methods and numerical methods.

The goal of analytical methods is to obtain a mathematical expression that writes the temperature inside the analyzed region as a function of all the variables that may affect it: power dissipated by the heat sources, its location, thermal properties of the materials, boundary conditions, etc.

The great advantage of this technique is that it facilitates performance of parametric analysis, that is, analysis of temperature behavior as a function of one of the variables present in the obtained expression. Its main drawback is that it can only be used when the geometry of the region under analysis can be easily described in one of the three coordinate systems (rectangular, cylindrical or spherical), and when the number of heat sources is small and the dissipated power is either a constant, a step function or a periodic function [12].

Numerical methods discretize the region under analysis into a mesh of nodes and generate a set of linear equations in which the unknown quantities are the temperatures of the different nodes. The main advantage of this method is that it limits neither the geometry description of the region under analysis, the number of heat sources nor the time description of its power dissipation. An additional advantage of these methods is that they allow the coupling of simulations from different domains: thermal, optical, mechanical, etc. The restrictions of this technique are imposed by the computational resources available to solve the linear equation system [12].

3.2.4.1 Analytical Methods

Generally, analytic solutions of the heat conduction equation are classified into three main categories [12]:

- Closed form solutions.
- Fourier series summation (separation of variables).
- Approximated solutions.

3.2.4.2 Numerical Methods

Numerical methods discretize the region under analysis into a mesh of nodes and generate a set of linear equations in which the unknown quantities are the temperatures of the different nodes.

There are three different approaches to obtain this set of linear equations: the Finite Element Method (FEM), the Finite Difference Method (FDM) and the Boundary Element Method (BEM). In this text, we will introduce the Finite Difference Method [12].

3.2.5 Heat Transfer and Its Relation to the Thermodynamics

Prior to the 19th century, heat was envisioned as a liquid that flowed from hotter to colder objects. This imagined substanceless and weightless fluid was called caloric, and no distinction was made between heat and temperature until the writings of Joseph Black (1728-1799). It was not until J. P. Joule published a definitive paper in 1847 that the idea of caloric was abandoned. Joule showed that heat is a form of energy. Moreover, after the experimental results of Rumford, Helmholtz, Joule and others, it was demonstrated that any of the various forms of energy can be transformed into another [12].

3.2.5.1 Thermodynamics

Thermodynamics is the field of science that studies the connection between heat and work and the conversion of one into the other. There are two major laws concerning thermodynamics. The First Law of Thermodynamics is the law of the conservation of energy. When heat is transformed into any other form of energy, or when other forms of energy are transformed into heat, the total amount of energy (taking into account all the forms) in the system is constant [11].

3.2.5.2 First Law of Thermodynamics

The first law of thermodynamics states that energy is not generated or destroyed; it only changes from one form to another or transfers from one system to another [11].

$$E_n - E_{out} = E_f - E_i$$

The difference between final and initial energies of a system is called change of energy of that system or energy accumulation in that system [11].

$$\Delta E_{system} = E_f - E_i$$

This is a simple yet powerful equation that is the basis of all the energy and heat transfer analysis, it is also known as energy balance equation [11].

Figure 8 First Law of Thermodynamics taken from [11]

Figure 9 First Law of Thermodynamics (2) taken from [11]

If the energy of a system does not change with time, it is called a steady-state system. In this case:

$$E_{in} = E_{out}$$

Engineering systems can be classified into two groups. Some systems do not allow any mass flow in or out of the system. Such system is called closed system, fixed mass system or control mass. Note that energy may enter or exit a control mass. Many engineering systems, on the other hand, involve some form of mass flow in and out. Such a system is called control volume [11].

3.2.5.3 The Second Law of Thermodynamics

It states that some heat is lost when heat is converted into mechanical energy in a thermal converting machine it is mandatory that part of the heat energy is used just to heat (increase of temperature) the engine. The percentage of heat dedicated to work is called the thermal efficiency of the engine. It was Sadi Carnot (1796-1832) who conducted theoretical studies of the efficiency of heat engines, to model the most efficient heat engine possible [12].

3.2.5.4 Heat Coefficient

A specific heat coefficient can be defined for each material. It is the amount of heat (energy) required to raise the temperature of 1 gram of substance 1 degree Celsius (1°C), (see Table 1 for a list of specific heat coefficients for different elements). Note that this concept is parallel to the capacitance per unit of volume in an electrical conductor [12].

3.2.5.5 Mechanism of Heat Transfer

Heat transfers between bodies or regions of a body of different temperature. The heat flow always takes the direction from the body or region of higher temperature to that of lower temperature (this is another conclusion of the Second Law of Thermodynamics). The basic mechanisms or modes that model or explain heat transference are conduction, convection, and radiation [12]

3.2.6 Heat Transfer Mechanisms

The mechanism by which heat transfer occurs depends on whether there is any material medium between the two objects and if that medium is moving or not. Three different mechanisms or modes of heat transfer are conduction, convection, and radiation [11].

3.2.7 Conduction Heat transfer

Heat transfer between two objects, or across a single object, which happens through a material medium and does not involve any fluid motion is called conduction heat transfer. Conduction heat transfer is the energy transfer from more energetic particles of a substance to the adjacent less energetic ones as a result of interaction between these particles. The physical mechanism in which this energy transfer happens is different in different materials [11].

In metals conduction heat transfer is due to the energy transfer between free electrons. Fourier's law of heat conduction

$$Q_{\rm cond} = -kA \frac{dT}{dx}$$

the k in the equation is called thermal conductivity of material and its unit in SI system of units is W/m°C. As its role in this equation shows, it is a measure of how good a material conducts heat.

Thermal conductivity of a material, in general, is not a constant value. Metals are good electrical and thermal conductors while polymers are poor electrical and thermal conductors.

3.2.8 Convection Heat Transfer

Heat transfer between an object and the adjacent moving fluid (liquid or gas) is called convection heat transfer.

There are two ways that convection heat transfer is created around an object. If the fluid motion is generated by a fan or a pump or wind, it will be called forced convection.

On the other hand, if the fluid motion is generated by a density difference due to a temperature difference in it, the convection is called natural or free convection.

Natural convection is the heat transfer mechanism responsible for heating the whole air inside a room by a heater located at one corner of that room.

Convection flows may be laminar or turbulent. Laminar flows are slow, orderly, and streamlined flows while turbulent flows are faster, disordered, and fluctuating flows in which bulks of fluids move from one region to another and mix with each other in a random manner [11].

Convection heat transfer rate is proportional to the surface area of the object, which is exposed to the moving fluid, A, and the temperature difference between the object and fluid, $T_s - T_\infty$

$$Q_{conv} = hA(T_s - T_\infty)$$

This equation is known as Newton's law of cooling. The h is called convection heat transfer coefficient and its unit in the SI system of units is $W/m^{\circ}C$. Unlike thermal conductivity, convection heat transfer coefficient is not a material property. Convection heat transfer coefficient depends on fluid properties, flow velocity, temperature difference between the surface and the fluid, acceleration of gravity, flow geometry, surface geometry, and type of the flow [11].

3.2.9 Radiation Heat Transfer

There are situations in which there is no medium between two objects that are at different temperatures and are somehow facing each other. In these situations, heat transfer happens through the exchange of electromagnetic wave of photons and is known as radiation heat transfer [11].

It must be mentioned that radiation heat transfer happens between every two objects with different temperatures, along with other modes of heat transfer, as long as the medium between the two objects is not opaque [11].

3.2.10 Thermal Interface Material (TIM)

Thermal Interface Material (TIM) refers to a thermally conductive material inserted between components to efficiently dissipate the heat generated inside electronic devices. It is generally inserted between a heat-generating element such as an integrated circuit (IC) and a heat-dissipating component such as a heat spreader or heat sink [13].

3.3 Design of Experiments

Observing a system or process while it is in operation is an important part of the learning process and is an integral part of understanding and learning about how systems and processes work [14].

In general, experiments are used to study the performance of processes and systems figuring out:

1. which variables are most influential on the response y

2. where to set the influential \mathbf{x} 's so that \mathbf{y} is almost always near the desired nominal value

3. where to set the influential x's so that variability in y is small

4. where to set the influential x's so that the effects of the uncontrollable variables z_1, z_2, \ldots, z_q are minimized.

Experiments often involve several factors. Usually, an objective of the experimenter is to decide the influence that these factors have on the output response of the system. The general approach to planning and conducting the experiment is called the strategy of experimentation. An experimenter can use several strategies [14].

3.4 Experimentation Strategies

3.4.1 Best-guess approach

It is the approach that consists of selecting an arbitrary combination of these factors, test them, and see what happens.

3.4.2 OFAT (One-factor-at-a-time)

The OFAT method consists of selecting a starting point, or baseline set of levels, for each factor, and then successively varying each factor over its range with the other factors held constant at the baseline level. After all tests are performed, a series of graphs are usually constructed showing how the response variable is affected by varying each factor with all other factors held constant [14]. The major disadvantage of the OFAT strategy is that it fails to consider any possible interaction between the factors. Interactions between factors are quite common, and if they occur, the one-factor-at-a-time strategy will usually produce poor results [4].

3.4.3 Factorial Experiment

The correct approach to dealing with several factors is to conduct a factorial experiment. This is experimental strategy in which factors are varied together, instead of one at a time.

One especially important feature of the factorial experiment is clear from this simple example; namely, factorials make the most efficient use of the experimental data. No other strategy of experimentation makes such an efficient use of the data. This is an important and useful feature of factorials [14]

3.4.4 Guidelines for Designing Experiments [14]

- 1. Recognition of and statement of the problem
- 2. Pre-experimental Planning
- 3. Choice of factors, levels, and ranges
- 4. Choice of experimental design
- 5. Performing the experiment
- 6. Statistical analysis of the data
- 7. Conclusions and recommendations

3.4.5 Fractional Factorial

A Fractional Factorial Experiment (FFE) uses subset of combinations from a Full Factorial experiment. They are applicable when there are too many inputs to screen practically or cost or time would be excessive.

This type of Design of Experiments (DOE) involves less time than One-Factor at a Time (OFAT) and a Full Fractional Factorial, but this choice will result in less data and some interactions will be confounded (or aliased). This means that the effect of the factor cannot be mathematically distinguished from the effect of another factor.

Most processes are driven by main effects and lower order interactions so choose the higher order interactions for confounding. Lower confounding is found with higher resolution.

If a half FFE is determined to be most practical and economical where there are two levels and five factors, then there will be a combination of 16 runs analyzed. Usually, higher order interactions are omitted to focus on the main effects.

3.4.6 Analysis of Variance (ANOVA)

ANOVA is used to decompose the variation of the response to show the effect from each factor, interactions, and experimental error (or unexplained residual).

The DOE will quantify the factor interactions and offer a prediction equation. ANOVA will help show which factors and combinations are statistically significant and which are not thus giving direction to the priority of improvements [15].

DOE Assumptions since ANOVA is used to analyze the data:

1. The residuals are independent.

- 2. The residuals have equal variance.
- 3. The residuals are normally distributed.
- 4. All inputs (factors) are independent of one another.

Most prediction equations will be linear and reliable when using only two levels. This saves time and money while obtaining a prediction equation. Prediction equations are useful to analyze what-if scenarios. Many times, data cannot be collected at all levels and factors so a prediction equation can be used to estimate the output [15].

3.5 The Automation of ML Lifecycle

3.5.1 What is Machine Learning Operations (MLOps)

MLOps can be thought of as the intersection between machine learning and Development Operations (DevOps) practices. Devops, refers to a set of practices that combines the work processes of software developers with those of operational teams to create a common set of practices that functions as a hybrid of the two roles [16].

Similarly, MLOps adopts DevOps principles and applies them to machine learning models in place of software, uniting the development cycles followed by data scientists and machine learning engineers with that of operational teams to help ensure continuous delivery of high-performance machine learning models [16].

This is why MLOps is so crucial. It makes it significantly easier to deploy and maintain your machine learning solutions by automating most of the hard parts for you, massively expediting the development and maintenance processes. With a fully automated setup, teams can keep up with the latest in machine learning technology and deploy new models quickly. "Services can maintain their high level of performance and perhaps even improve on this front as teams can deploy newer, more promising model architectures" [16].

Figure 10 MLOps Process taken from [16]

3.5.2 Pipelines

One way to think about a pipeline is that it is a specific, often sequential procedure that dictates the flow of information as it passes through [16].

The concept of a software pipeline is intuitive enough. If you have a series of steps chained together in your code, so that the next step consumes or uses the output of the previous step or steps, then you have a pipeline [17].

Figure 11 Example of a Training Pipeline taken from [17]

4 METHODOLOGY

This work proposes a methodology that was split into four big steps or phases as shown in Figure 12.

- 1. Run of Design of Experiments (DOE) that will support the decision for which factors-levels are relevant to use for a ML temperature prediction model of the selected SoC chiplet (Experiment Part).
- 2. Dataset Generation for analysis and ML experiments (sample dataset). Once factors and levels were defined, the same, will be used to launch the project data process generation.
- 3. Data analysis and ML model generation
- 4. Design and execution of MLOps pipelines to automate ML Process Lifecyle

Figure 12 Methodology Flow.

4.1.1 Run of DOE.

As it was briefly explained during the section 1, the first major challenge to deal with was the selection of the most fitting variables or predictors for the sample data generation.

Since no pre-existing data for the analysis inhabited any of the repositories of the target organization, the selection of a methodology to justify the data selection was of high importance. DOE fit perfectly for the purpose, due to data extractions execution were essentially experiments to choose those features that could best explain the temperature on the component specific surface area.

In order to run the designed set of DOE experiments, connecting with the proprietary software simulator was essential. Fortunately for the project, the software simulator came

packaged with an Application Programming Interface (API) and Command Line Interface (CLI) programs that facilitated the implementation of the automation for the DOE experiments using Python programming language (Figure 13).

In summary, the Python Data Extractor program is responsible for:

- 1. Compute the combinations for the DOE Fractional Factorial (Runs)
- 2. Setup of the DOE experiments Runs (Please see Table 1 Setup of the DOE Experiments)
 - a. Load the SoC Model Layout (proprietary CAD file of the SoC Model)
 - b. Load the Power Map (Power map distribution file)
- 3. Connect to the Thermal Simulator Engine via the CLI and the API
- 4. Tweak SoC Model and Power Maps according to the factor and level of the experiment setup for the experiment run.
 - a. Adjust settings of the Model and make them match to the experiment factor-levels of the experiment.
 - b. Update the power map file with the power stimuli point of the *experiment part* from response surface.
- 5. Compile the temperature result data (a grid of temperature saved as csv file)
- 6. Tabulate the temperature's grid for later use in the data analysis stages.

For this to work the SoC die chiplet part (*experiment part*) was split into five different sections for power stimuli points¹ that were applied. What this means is that the Power Map distribution file will only hold one entry power for the experiment part, having the option to

¹ Power stimuli point is the point on the response surface where the power will be applied during thermal simulation

be applied to five different zones of the response surface for each of the experiment runs (Figure 14).

ID	Run				Fac	tors				Response			
		Levels											
		part	part_size ind_var ₂ ind_var _n										
		min	max	min	тах	min	тах	min	тах				
	Top-Point	3550	4200										
	Section												
1													
n	•••												
	Down-												
	Point												
	Section												
1													
n													
	Left-Point												
	Section												
1													
n													
	Right-												
	Point												
	Section												
1													
n													
				Table 1 Set	tup of the D	OE Experi	ments						

4.1.1.1 Setup of DOE Experiments

A more detailed flow of the process is provided in the next section. Please check, Figure 15 DOE Runner Program Flow , for further details.

4.1.1.2 SoC/Die/Chiplet View (Sections)

Figure 14 SoC Experiment Part/Response Surface - Defined Stimuli points

4.1.1.3 Steps of the DOE Program Flow

4.1.1.3.1 Init DOE experiment

Figure 15 show the *inputs* required for the full process are set. Inputs for this process are:

- 1. SoC Model Layout (cad file)
 - a. The xml file that defines the outline of the SoC design
- 2. Factors and Levels
 - a. The selected factors and levels specified for the ongoing experiment.
- 3. Power Map
 - a. The power distribution file for the Target Path required for the simulation engine.

4.1.1.3.2 Setup DOE Factors

In this phase, the fractional factorial is computed using the picked factors.

4.1.1.3.3 Load of Model Layout

To run the simulation a cad file containing the outline geometry-based model of the SoC is taken in.

4.1.1.3.4 Setup Target Part

It is during this step, that is explicitly decided which SoC-Die-chiplet part the experiment is targeting. An SoC is comprised by several components, it is a key part of the present experiment to indicate which model's part, the power map will be centered during the simulation phase.

4.1.1.3.5 Load Factor Levels

The factor's levels of every run represent the model's settings to switch during the experiment, e.g., the next factor-level combination:

Factor: part_size_x
level: .3550

will modify the experiment-part size-x value to 0.3550

4.1.1.3.6 Load Power Map

The power map is the file of powers (in watts) that will be used by the simulator engine to calculate the final temperatures after the simulation is accomplished.

4.1.1.3.7 Call Simulator Engine

This is the phase in which the Simulator engine is triggered, once all the settings: experiment factor-levels, power map values and model layout are specified.

4.1.1.3.8 Write Experiments Results

The process is the step when the csv result is written. The file is a grid of temperature distribution.

4.1.1.3.9 Tabulate Results

In the Tabulate step process the grid is tabulated by embedding the factor-levels employed in the run.

Figure 15 DOE Runner Program Flow

4.1.1.4 Factors used in the DOE set of experiments.

Factor Name	Levels	Description
part_size_x	x-axis value for	This represents the "width" value of the part in the
	the part	given space
part_size_y	y-axis value for	This represents the "height" value of the part in the
	the part	given space
part_size_z	z-depth value	This represents the "depth" value of the part in the
	for the part	given space
part_material	The TIM for the	The thermal interface material of the Target Part
	target part	
part_kx	Conductivity of	Conductivity of the TIM in the x-axis
	part's TIM in	
	the x-axis	
part_ky	Conductivity of	Conductivity of the TIM in the y-axis
	part's TIM in	
	the y-axis	
part_kz	Conductivity of	Conductivity of the TIM in the z-axis
	part's TIM in	
	the z-axis	
part_k	Conductivity of	Conductivity of the part's TIM
· _	part's TIM	
part rho	Density of	Density of the part's TIM
	part's TIM	
part_cp	Specific Heat of	Specific Heat part's TIM
	part's TIM	

4.1.1.5 DOE Analysis (Analysis of Variance)

As far as the result for each experiment has been collected, the next step is to run the analysis of variance to verify if any of the selected factors made some sense to explain the response variable (temperature).

Dataset Generation for analysis and ML experiments

Once the DOE step was considered complete, and the factors and level that better explained the response variable are determined, the next step was the dataset generation for the data analysis and ML experiments.

4.1.2 Dataset Generation Program Flow

4.1.2.1 Init Extractor

In this phase the input of the Sample Data Generation Program is setup:

- 1. Sample Size
- 2. SoC Model Layout
- 3. Power Map
- 4. Factor/Variables range of values.

4.1.2.2 Set Sample Size

An important part of the data generation process is to specify the size of the sample dataset to use in the model construction stage.

4.1.2.3 Assign factor-variables value

This is the step when the selected variables or factors are assigned with a value according to what was obtained during the DOE phase. For instance, if it was decided that factor *part_k* with levels min: .025 and max .05 has a relevant effect over the response, then the variable *part_k* will get randomly assigned values between .025 and .05.

4.1.2.4 Set Model Layout

The Model Layout, as mentioned, represent the SoC model CAD file the Experiment chiplet part belongs to.

4.1.2.5 Setup Experiment Part

For the Data Generation Program to work well, it is important to specify the Experiment part the simulation will be centered.

4.1.2.6 Load Power Map

The Power map is a csv file containing the power distribution *zoner or points* for each of the components of the thermal model.

4.1.2.7 Call Simulation Engine

If everything goes fine after experiment tweaks and adjustments to the model the simulation will be initiated by the Simulation Engine

4.1.2.8 Write Results

For every flow execution of the sample data generation process, the step that follows is to write the temperature distribution grid.

4.1.2.9 Process Tabulate Results

Once all the executions for the data generation process flow were completed, the step that follows is the tabulation of the results for their subsequent analysis.

Figure 16 Sample Data Program Flow.

4.1.3 Data analysis and ML model generation

This is the phase where data science/machine learning stuff takes place, after the sample dataset was generated, next tasks were performed on data:

- 1. Statistics
 - a. Descriptive Statistics
 - b. Inferential Statistics
- 2. Processing
 - a. Feature Engineering
 - i. Scaling, normalization and
 - ii. Data transformation
- 3. Training
- 4. Test and Validation

4.1.3.1 Design and execution of MLOps pipelines to automate ML Process

Lifecyle

It was desired for the present work to include a proof of concept about the way the ML process could be automated. A basic proposal is presented following the framework recommended by [16] Please Figure 17 MLOps pipeline workflow reference from .

Figure 17 MLOps pipeline workflow reference from [16]

5 RESULTS

5.1 Results

5.1.1 DOE results

After DOE experiments ended, ANOVA analysis was used to determine variables that better explains the response variable. ANOVA analysis result is captured in Table 2 - ANOVA results for DOE experiments.

ANOVA Re	esults for each of the DOE experiments (Stimuli	points)
	ANOVA Stimuli point at the Top Section Df Sum Sq Mean Sq F value Pr(>F) part_cp 1 77.4 11.69 0.04185 * part_k 1 587.0 88.73 0.00254 ** part_rho 1 6.6 6.6 1.00 0.39101 part_material_applied_power 1 225.6 34.10 0.01001 * residuals 3 19.8 6.6 Signif. codes: 0 '***' 0.01 '*' 0.05 '.' 0.1 ' ' 1	
ANOVA Stimuli point at the Left Section Df Sum Sq Mean Sq F value Pr(>F) part_cp 1 95.9 95.9 13.13 0.03615 * part_k 1 676.3 676.3 92.62 0.00238 ** part_rho 1 7.3 7.3 1.00 0.39101 part_material_applied_power 1 285.0 285.0 39.04 0.00827 ** Residuals 3 21.9 7.3 Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1	ANOVA Stimuli point at the Middle Section Df Sum Sq Mean Sq F value Pr(>F) part_cp 1 123.2 123.2 14.71 0.03123 * part_k 1 809.9 809.9 9674 0.00223 ** part_rho 1 8.4 8.4 1.00 0.39102 part_material_applied_power 1 372.7 372.7 44.52 0.00687 ** Residuals 3 25.1 8.4 Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' 1	ANOVA Stimuli point at the Right Section Df Sum Sq Mean Sq F value Pr(>F) part_cp 1 54.4 9.116 0.05680 . part_cp 1 485.3 485.3 81.346 0.00288 ** part_rho 1 6.0 6.0 1.000 0.39100 part_material_applied_power 1 151.4 151.4 25.385 0.01507 * Residuals 3 17.9 6.0 Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
	ANOVA Stimuli point at the Down Section Df Sum Sq Mean Sq F value Pr(>F) part_cp 1 70.3 70.3 10.59 0.04731 * part_k 1 568.4 568.4 85.65 0.00267 ** part_rho 1 6.6 6.6 1.00 0.39099 part_material_applied_power 1 201.4 201.4 30.36 0.01177 * Residuals 3 19.9 6.6 Signif. codes: 0 '***' 0.01 '**' 0.05 '.' 0.1 '<'	

Table 2 - ANOVA results for DOE experiments

Based on Table 2 - ANOVA results for DOE experiments, the variables that more influenced the response were:

Factors
part_cp
part_k
part_material_applied_power

This is demonstrated after performing the ANOVA Hypothesis testing, which states:

 $H_0: \mu_1 = \mu_2 = \mu_3 \dots = \mu_n n$ $H_1:$ Means are not all equal

This Hypothesis testing can also be understood for our interest in the following way:

H₀: variances are equal H₁: at least one variance is different

Which means at least one variable from the selected for the experiment has an inference over the response variable.

Since three of the four variables for the experiment produced a F value lower than 5% null hypothesis is rejected.

5.1.2 Data Generation results

To arrive to this part, it was important to determine the factors or predictors to use for the data generation. Since this has been solved, the generation process is the next task.

```
from random import uniform
2
     import pandas as pd
     import json
З
4
    import os
5
6
    sample_size_n=200
7
     part_power_applied=0.439587
8
9
    list_of_permutations = []
10
11
     class Material:
        def __init__(self,name, cp, rho, k):
12
13
            self.name = name
             self.cp = cp
14
             self.rho = rho
15
16
             self.k = k
17
    #Material (Silicon) default attribute values
18
19
    silicon = Material(name = "Silicon", cp = 700E0, rho = 2.33E3, k = 120E0 )
20
    cp_lower = silicon.cp - (silicon.cp * .60)
21
    cp_upper = silicon.cp + (silicon.cp * .60)
22
23
    k_lower = silicon.k - (silicon.k * .60)
24
    k_upper = silicon.k + (silicon.k *.60)
25
26
    power_lower = part_power_applied - (part_power_applied * .60)
27
     power_upper = part_power_applied + (part_power_applied * .60)
28
29
     for n in range(sample size n):
        list_of_permutations.append({ "part_cp" : uniform(cp_lower,cp_upper),
30
31
                                         "part_k" : uniform(k_lower,k_upper),
32
                                         "part_material_applied_power": uniform(power_lower, power_upper)})
33
34
    data = pd.DataFrame.from_dict(list_of_permutations)
35
     print(data)
36
     factorials_file_path = os.path.join(os.path.dirname(os.path.abspath(__file__)),"factorials.json")
37
     with open(factorials_file_path, "+w") as f:
38
         str_json = json.dumps(list_of_permutations)
39
         f.write(str json)
```

Figure 18 Code of Data Generation Program

- 1. A size of 200 runs against the simulator were run
- During the experiment, the values of levels for the experiment were produced by applying TIM ²(in this case Silicon) properties:
 - a. Conductivity (part_k) --> 120E0
 - b. Specific heat (part_cp) --> 700E0
 - c. Power (part_power_applied) --> 0.439587

5.1.2.1.1 Values calculation for sample generation

A calculation to get the Min, Max boundary values, which for the data generation were:

$$part_k_{lower} = 48E0$$

 $part_k_{upper} = 192E0$

² Thermal Interface Material

 $part_c p_{lower} = 280E0$ $part_c p_{upper} = 1120E0$

and for the power applied on part:

part_power_applied_lower = 0.1758348
part_power_applied_upper = 0.7033392

3. The factor/levels different combinations for the sample size of 200 temperature grids were calculated using the python's function random.*uniform* function using the lower(min) and upper (max) levels

Figure 19 Data Generation section – permutations

The output of this process, produced 200 different temperature grids like the one in Figure 20 Example of a Grid of Temperatures:

28.73618	28.77403	28.81175	28.84927	28.88649	28.92333	28.95968	28.99544	29.03048	29.0647	29.09796	29.13014	29.16111	29.19073	29.21892	29.24541	29.27012	29.29296	29.31383	29.3326	29.34918	29.36349	29.37546	29.38505	29.39218	29.3969	29.39927	29.39949	29.39818
28.78123	28.82087	28.86043	28.89984	28.93899	28.97778	29.01612	29.05387	29.09093	29.12716	29.16242	29.19658	29.22948	29.26099	29.29099	29.31922	29.34557	29.36994	29.3922	29.41223	29.42991	29.44516	29.4579	29.46807	29.4756	29.48055	29.48299	29.48312	29.48161
28.82716	28.86869	28.91021	28.95162	28.99282	29.03371	29.07417	29.11408	29.1533	29.1917	29.22913	29.26543	29.30046	29.33402	29.36603	29.39616	29.42432	29.45037	29.47418	29.4956	29.51451	29.5308	29.5444	29.55523	29.5632	29.56842	29.57093	29.57098	29.56924
28.8739	28.91744	28.96102	29.00455	29.04794	29.09105	29.13379	29.176	29.21756	29.2583	29.29808	29.33671	29.37403	29.40985	29.44403	29.47626	29.5064	29.53432	29.55983	29.5828	29.60307	29.62053	29.63507	29.64664	29.65513	29.66064	29.66325	29.66321	29.66122
28.92153	28.9672	29.01298	29.05878	29.1045	29.15002	29.1952	29.23991	29.284	29.3273	29.36963	29.41082	29.45066	29.48896	29.52557	29.56013	29.59248	29.62247	29.6499	29.6746	29.69641	29.71518	29.73081	29.74322	29.75229	29.75815	29.76087	29.76074	29.75848
28.96991	29.01781	29.06591	29.11412	29.16232	29.21039	29.25819	29.30558	29.35239	29.39844	29.44355	29.48751	29.53011	29.57113	29.61038	29.6475	29.68229	29.71458	29.74414	29.77077	29.79429	29.81454	29.83138	29.84474	29.85448	29.86073	29.86358	29.86337	29.8608
29.01901	29.06927	29.11983	29.17058	29.22142	29.27222	29.32283	29.3731	29.42285	29.47188	29.52001	29.56699	29.61261	29.65661	29.69879	29.73874	29.77625	29.81109	29.84304	29.87183	29.89728	29.91918	29.9374	29.95183	29.96233	29.96904	29.97206	29.97175	29.96886
29.06877	29.12152	29.17467	29.22813	29.28178	29.33549	29.38911	29.44247	29.49539	29.54766	29.59906	29.64936	29.69828	29.74557	29.79098	29.83407	29.87459	29.9123	29.9469	29.97814	30.00575	30.02954	30.04932	30.06497	30.07634	30.08358	30.08681	30.0864	30.08315
29.11913	29.17449	29.23038	29.2867	29.34333	29.40015	29.45699	29.51368	29.57002	29.6258	29.68077	29.73468	29.78723	29.83814	29.88713	29.93371	29.97759	30.0185	30.0561	30.09008	30.12015	30.14607	30.16762	30.18468	30.19705	30.2049	30.20838	30.20788	30.20424
29.17001	29.2281	29.28687	29.34622	29.40602	29.46615	29.52643	29.58669	29.64673	29.70631	29.76517	29.82302	29.87956	29.93446	29.98741	30.03787	30.08552	30.13002	30.17099	30.20808	30.24094	30.26928	30.29287	30.31153	30.32507	30.33364	30.33741	30.33683	30.33274
29.22129	29.28225	29.34405	29.40659	29.46975	29.5334	29.59737	29.66147	29.72549	29.78918	29.85227	29.91445	29.97537	30.03467	30.09202	30.14682	30.19868	30.24722	30.292	30.33261	30.36865	30.39977	30.4257	30.44621	30.46107	30.47049	30.47462	30.47396	30.46938
29.27287	29.33684	29.40182	29.46773	29.53445	29.60184	29.66975	29.73797	29.80629	29.87445	29.94215	30.00907	30.07482	30.13902	30.20126	30.26091	30.31752	30.37064	30.41976	30.46439	30.50408	30.5384	30.56701	30.58968	30.60611	30.6165	30.62107	30.62033	30.6152
29.32461	29.39171	29.46002	29.52947	29.59995	29.67132	29.74342	29.81605	29.88901	29.962	30.03472	30.10681	30.17789	30.2475	30.31519	30.38028	30.44224	30.50054	30.55459	30.60382	30.64769	30.6857	30.71743	30.74259	30.76085	30.77241	30.77748	30.77669	30.77094
29.37637	29.44672	29.51851	29.59167	29.66609	29.74166	29.81822	29.89558	29.97351	30.05173	30.12991	30.20768	30.2846	30.3602	30.43398	30.50517	30.57316	30.63734	30.69703	30.75154	30.80023	30.8425	30.87786	30.90593	30.92631	30.93924	30.94494	30.94409	30.93764
29.42797	29.50169	29.57709	29.65413	29.7327	29.81271	29.894	29.97639	30.05965	30.1435	30.22761	30.31158	30.39496	30.4772	30.55776	30.6358	30.71062	30.78151	30.84765	30.90825	30.96252	31.00975	31.04933	31.0808	31.1037	31.11823	31.12468	31.12378	31.11654
29.47923	29.55643	29.63557	29.71664	29.79955	29.88422	29.97051	30.05825	30.14723	30.23715	30.32769	30.41843	30.50889	30.5985	30.68662	30.77238	30.85494	30.93349	31.00705	31.0747	31.13547	31.1885	31.23304	31.26853	31.29436	31.3108	31.31813	31.31717	31.30902
29.52995	29.61071	29.69372	29.77896	29.86639	29.95594	30.0475	30.14091	30.23597	30.33242	30.42991	30.52803	30.62628	30.72404	30.82063	30.91508	31.00646	31.09377	31.17592	31.25175	31.32014	31.37999	31.43038	31.47059	31.49991	31.51859	31.52696	31.52596	31.51672
29.57991	29.6643	29.75127	29.84082	29.93293	30.02757	30.12465	30.22404	30.32557	30.429	30.53399	30.64014	30.74693	30.85372	30.95976	31.06402	31.16544	31.26285	31.35495	31.44037	31.51771	31.58564	31.64298	31.68881	31.72226	31.74358	31.75314	31.75205	31.74153
29.62885	29.71693	29.80794	29.9019	29.99884	30.09875	30.20158	30.30726	30.41563	30.52649	30.63955	30.7544	30.87054	30.98731	31.10389	31.21923	31.33212	31.44117	31.54488	31.64157	31.72954	31.80709	31.87276	31.9253	31.96367	31.98808	31.999	31.99774	31.98565
29.67651	29.76832	29.86341	29.96187	30.06374	30.16908	30.27788	30.39011	30.50568	30.62442	30.7461	30.87034	30.99667	31.12444	31.25278	31.38063	31.5066	31.62915	31.74646	31.85651	31.95719	32.04636	32.12204	32.18269	32.22689	32.2549	32.2673	32.26571	32.25167
29.72262	29.81815	29.91735	30.02034	30.12723	30.23812	30.35305	30.47207	30.59515	30.72219	30.85302	30.98735	31.12473	31.26458	31.40599	31.54795	31.68892	31.82712	31.96044	32.08645	32.20248	32.30576	32.39371	32.46418	32.51536	32.54749	32.56141	32.55915	32.5426
29.76688	29.8661	29.96939	30.07692	30.18886	30.30536	30.42654	30.55253	30.68338	30.81909	30.95957	31.10464	31.25396	31.40699	31.56288	31.7207	31.87882	32.03523	32.18752	32.33272	32.46749	32.5882	32.69132	32.77388	32.83339	32.87016	32.88535	32.88179	32.8619
29.80899	29.91183	30.01915	30.13117	30.24813	30.37026	30.49776	30.63083	30.76964	30.9143	31.06486	31.22127	31.38333	31.55065	31.72247	31.89805	32.07574	32.25335	32.42817	32.59667	32.75462	32.89718	33.01945	33.1171	33.18663	33.2283	33.24406	33.23801	33.21356
29.84864	29.95498	30.06622	30.18265	30.30455	30.43224	30.56602	30.7062	30.85307	31.00687	31.16783	31.33606	31.51159	31.69425	31.88341	32.07875	32.27864	32.48092	32.68261	32.8796	33.0666	33.23714	33.38417	33.50113	33.58267	33.62909	33.64366	33.63284	33.60186
29.88551	29.9952	30.11021	30.23088	30.35758	30.4907	30.63065	30.77785	30.93274	31.09574	31.26726	31.44766	31.63722	31.83609	32.04392	32.26096	32.48587	32.71665	32.95034	33.18242	33.40639	33.61359	33.79367	33.93615	34.03225	34.08207	34.09164	34.0718	34.03113
29.91932	30.03216	30.15071	30.2754	30.40667	30.54499	30.6909	30.84492	31.00768	31.17976	31.36181	31.55448	31.75839	31.97408	32.20164	32.44213	32.6948	32.95818	33.22981	33.50517	33.77675	34.03327	34.25933	34.43736	34.55138	34.60072	34.59722	34.56037	34.50483
29.94975	30.06549	30.18733	30.31576	30.4513	30.59451	30.74603	30.90656	31.07684	31.25769	31.45002	31.65479	31.87301	32.10575	32.35365	32.61889	32.90164	33.2016	33.51754	33.84598	34.17943	34.50408	34.7975	35.02904	35.16608	35.20501	35.1715	35.10257	35.02372
29.97656	30.09491	30.21972	30.35153	30.49095	30.63865	30.79535	30.96189	31.1392	31.32831	31.53038	31.74673	31.97882	32.22831	32.49651	32.78698	33.10127	33.44091	33.80716	34.19941	34.6128	35.03359	35.43198	35.75425	35.9241	35.9269	35.82697	35.6981	35.58218
29.99952	30.12014	30.24754	30.38234	30.5252	30.67686	30.83819	31.01013	31.19378	31.39039	31.60139	31.82843	32.07347	32.33876	32.62636	32.94139	33.28715	33.66764	34.08809	34.55367	35.0674	35.62452	36.19825	36.70639	36.93499	36.82504	36.57489	36.33572	36.1622
30.01844	30.14096	30.27056	30.40788	30.55365	30.70871	30.874	31.05059	31.23974	31.44289	31.66171	31.89819	32.15472	32.43415	32.73927	33.07673	33.45167	33.871	34.34496	34.88745	35.51766	36.26123	37.14905	38.16663	38.55208	38.0365	37.41654	36.98134	36.72453
30.03321	30.15725	30.28859	30.42793	30.57605	30.73385	30.90236	31.08275	31.27641	31.48493	31.71023	31.95456	32.22066	32.51191	32.8317	33.18795	33.58733	34.03927	34.55861	35.16868	35.91062	36.87325	38.32131	41.3774	42.42561	39.99809	38.30146	37.55748	37.20196
30.04378	30.16892	30.30154	30.44238	30.59224	30.75208	30.923	31.10625	31.30333	31.51594	31.74617	31.99649	32.26989	32.57013	32.901	33.27119	33.6882	34.16264	34.71133	35.36143	36.16416	37.24264	39.01674	43.49638	45.01326	41.22986	38.83047	37.91707	37.50952
30.05025	30.1761	30.30954	30.45133	30.60232	30.76351	30.93602	31.12117	31.32051	31.53586	31.76939	32.02372	32.30201	32.60817	32.9462	33.32507	33.75226	34.23788	34.79715	35.45245	36.24086	37.23795	38.65948	41.38287	42.32629	40.2515	38.71558	37.98367	37.61043
30.05285	30.17901	30.31283	30.45507	30.60661	30.76844	30.94173	31.12782	31.32831	31.54505	31.78026	32.03662	32.31736	32.62646	32.96784	33.35043	33.78114	34.26872	34.82487	35.46349	36.19983	37.04787	38.01217	39.03642	39.4333	38.9694	38.34874	37.86722	37.54815
30.05216	30.17828	30.31206	30.45427	30.60579	30,76762	30,94092	31.12705	31.32759	31.54442	31.77975	32.03624	32.31711	32.62629	32.96759	33.34966	33,77883	34.26266	34,8102	35,42962	36.12375	36.87978	37.64869	38.30623	38.59232	38,43995	38.08027	37.70539	37.3452

Figure 20 Example of a Grid of Temperatures

To produce the dataset for the ML experiments two decision were taken:

- 1. To trim each of the temperature grid to seize the portion of temperatures more meaningful for the predictive model
- 2. After the grids were trimmed, tabulate and merge them to obtain the final dataset

5.1.2.2 Trim each of the temperature grid to seize the portion of temperatures more meaningful for the predictive model

It happens, due the settings of the current problem, the grid of temperature produced had a large area of data points that barely varied between them. This was originated because of the type of power map applied to the simulation (with only one point of power to a single part from the model).

For this reason, the idea to check data variability using quantiles to get rid of those data points with less variability to achieve a model easier to get trained was the main focus. Please check Figure 21 Temperature quartiles and Table 3 Temperature data Standard deviation vs quartiles.

count 7	7031.000000
mean	26.665534
std	0.917899
min	25.900187
25%	26.173960
50%	26.390068
75%	26.787751
max	38.455223
Name: temp	perature, dtype: float64

Figure 21 Temperature quartiles

	Group	Group	Group	Group
	Quartile 1	Quartile 2	Quartile 3	Quartile 4
Standard deviation	0.06991	0.06279	0.11281	1.27935

Table 3 Temperature data Standard deviation vs quartiles

It can be observed from Table 3 Temperature data Standard deviation vs quartiles from Group Quartile 4 is one with larger standard deviation with means more variability. This pattern was repeated for the 200 files. The final remaining task after the size reduction of the data grids was to merge all the files into one.

5.1.2.3 Data Pre-processing and Feature Engineering

5.1.2.3.1 The calculation of the thermal gradient

So far, three predictors were defined (*part_k*, *part_cp*, *power_applied_part*) and the response (temperature) to form part of the candidate dataset for the machine learning experiments. From Literature Section It was researched the concept the thermal gradient. Reminding the definition of the concept would be of significant help:

"... thermal gradient is defined as the ratio of the temperature difference and the distance between two points (equivalently, it's the change in temperature over a given length). Thermal gradients can be calculated by knowing the temperature at two points and the distance between the two points."

$$TG = (TB - TA)/DX$$

Where: TG: Thermal Gradient

TB: Temperature of point BTA: Temperature of point ADX: Distance between the two points

Due to the grid of temperature files is in fact a collection of temperature points that maps the response surface, it made total sense to us to include the thermal gradient for each of the points of the grid with respect of the stimuli point (the point where the power was applied on the part).

5.1.2.3.2 Scaling the Features

Either *part_cp* or *part_k* variables were scaled using sklearn³ MinMaxScaler. Decision was taken greatly in part because of the way these two predictors were generated during the Data Generation results step. The *power_part_applied* variable remained untouched.

5.1.2.3.3 Final view of the dataset for the ML experiments

Please check the final version of the dataset in: Figure 22 Dataset final version.

³ Sklearn is a Python library used to implement machine learning model and statistical modeling

	part_cp	part_k	part_material_applied_power	thermal_gradient	temperature
5406	0.889257	0.944323	0.571621	0.209585	27.001633
3982	0.233200	0.077872	0.366923	0.347619	28.568987
4627	0.728660	0.542651	0.433338	0.603663	31.437918
6379	0.467730	0.395452	0.655082	0.678873	30.066177
3736	0.009903	0.142318	0.389456	0.577396	31.590117
4074	0.967895	0.657583	0.483506	0.513538	30.887196
3812	0.377950	0.000000	0.578890	0.576209	29.643425
6025	0.073550	0.993336	0.334578	0.471254	29.349747
6818	0.694469	0.984456	0.360673	0.574836	30.744915
5674	0.655537	0.382916	0.191516	0.855266	31.540007
6025 6818 5674	0.073550 0.694469 0.655537	0.993336 0.984456 0.382916	0.334578 0.360673 0.191516	0.471254 0.574836 0.855266	29.349747 30.744915 31.540007

Figure 22 Dataset final version

5.1.3 ML Model Training and Results

For the executions of the ML experiments, all the ML models were encapsulated as pipelines and run via docker containers. Their results stored in the MLflow platform local storage. The advantage of doing it this way was that every metric and plots produced by the ML model experiment is stored and save for future consult.

keras_neural_network_thermal_02 > loud-vole-694 loud-vole-694			
Run ID: 8e227cf3f0be4625b452280b19b7983e	Date: 2023-06-30 11:45:18	Source: 💷 process_train_2.py	
Git Commit: 7b584dc5829ccfbc5338edb24184d601f9922ac9	User: root	Duration: 1.8h	
Status: FINISHED	Lifecycle Stage: active		
> Description Edit			
> Parameters (29)			
> Metrics (10)			
> Tags			
> Artifacts			

Figure 23 MLflow model experiment result

Figure 24 Plot MSE vs epochs

Layer (type)	Output Shape	Param #
dense (Dense)	(None, 10)	50
dense_1 (Dense)	(None, 50)	550
dense_2 (Dense)	(None, 50)	2550
dense_3 (Dense)	(None, 1)	51
otal params: 3,201		

Figure 25 Neural Network Architecture

5.1.4 Hyperparameters Tunning

For the Hyperparameter Tunning a new library maintained by Facebook was used: Ax. Figure 26 shows the code for the hyperparameter tunning.

Figure 26 Portion of the code for hyperparameter tunning

5.1.4.1 Ax Hyperparameter Tunning Experiment results

Experiment 1 (epochs = 1)			
learning rate	0.0022606556526699		
dropout_rate	0.0800264815585484		
num_hidden_layers	2		
neurons_per_layer	64		
batch_size'	7		
activation	tanh		
optimizer	adam		

Experiment 2 (epochs = 5)		
learning rate	0.002574266670049544	
dropout_rate	0.0905928978022987	
num_hidden_layers	1	
neurons_per_layer	277	
batch_size'	64	
activation	tanh	
optimizer	sgd	

Table 4 Example of the optimized hyperparameters by Ax.

5.1.5 ML Training Experiments Results

5.1.5.1 Best Experiment

In the initial training execution, applying a similar network architecture than hyperparameter Tunning Experiment # 1 but considerably larger epochs and batch sizes as shown in Table 5 and Figure 27:

learning rate	0.09
dropout_rate	0.0800264815
num_hidden_layers	4
neurons_per_layer	[10,50,50]
batch_size'	500
activation	Tanh
'optimizer'	Adam

Table 5 Tuned Hyperparameters

Model: "sequential_4"		
Layer (type)	Output Shape	Param #
dense_29 (Dense)	(None, 10)	50
dense_30 (Dense)	(None, 50)	550
dense_31 (Dense)	(None, 50)	2550
dense_32 (Dense)	(None, 1)	51

Total params: 3,201 Trainable params: 3,201 Non-trainable params: 0

Figure 27 Neural Network Architecture

Currently the best score of R^2 hit for any of our trained models is shown in Figure 28 with a value of 0.8396. The model is yest being tuned up to level up the metrics.

5.1.6 MLOps implementation

The implementation of MLOps consists in setting up the MLflow ⁴ as the MLOps platform. There are six modes MLflow can be setup to run and store artifacts:

- 1. Scenario 1: MLflow on localhost
- 2. Scenario 2: MLflow on localhost with SQLite
- 3. Scenario 3: MLflow on localhost with Tracking Server
- 4. Scenario 4: MLflow with remote Tracking Server, backend, and artifact stores
- 5. Scenario 5: MLflow Tracking Server enabled with proxied artifact storage access
- 6. Scenario 6: MLflow Tracking Server used exclusively as proxied access host for artifact storage Access

For this project Scenario 4 was selected.

Docker containers and Docker Compose were employed to setup local next services:

- 1. A Tracking DB service deployed as docker container using PostgreSQL
- 2. An sFTP service via docker container was built for the storage artifact role of MLflow
- 3. The MLflow server listening to port 5000 for any requests coming from the MLflow pipeline container
- 4. A git repository containing the code of models' pipelines (processing, training pipelines)

Please see Figure 29 Thermal MLOps Implementation for further details

⁴ MLflow is a versatile, expandable, open-source platform for managing workflows and artifacts across the machine learning lifecycle. **More information at:** https://mlflow.org/docs/latest/what-is-mlflow.html

Figure 29 Thermal MLOps Implementation

6 CONCLUSIONS

6.1 Conclusions

The results presented in this work are step ahead for the thermal engineering teams in the target organization to expand their analysis tools options for their thermal models due to the following reasons:

- With the Data Generation software tool, the data extraction has been automated and is possible to generate sample data for data analysis and machine learning experiments
- The initial version of the Neural Network has shown that is possible to create deep learning models with the data extracted from the thermal simulated tool.

6.2 Future Work

Incorporating machine learning for analyzing temperature distributions and infer from the neural network model is a big step for the purpose to orient more decisions considering the data analysis world. Though, there are more things ahead to work to reach out the envisioned level of sophistication. It is considered, the next steps this effort should move on are:

- 1. The ML analysis must be extended to make it capable to support a more complex thermal model setting, this means more chiplets or SoC parts involved in the analysis with the idea to infer the temperature of the entire SoC
- 2. The inclusion of more complex power maps and surface dimensions

7 BIBLIOGRAPHY

- [1] R. Chandra, "A thermal-aware IC design methodology," 13 06 2005. [Online]. Available: https://www.eetimes.com/a-thermal-aware-ic-design-methodology/.
- [2] R. Ranade, H. He, J. Pathak, N. Chang, K. Akhilesh and J. Wen, "A Thermal Machine Learning Solver For Chip Simulation," *IEEE*, p. 7, 2022.
- [3] M. Stipsitz and H. Sanchis-Alepuz, "Approximating the Steady-State Temperature of 3D ElectronicSystems with Convolutional Neural Networks," *Mathematical and Computational Applications,* p. 7, 2022.
- [4] T. Liu, M. Iyengar, C. Malone and G. Kenneth, "Analytical Modeling for Prediction of Chip Package-level Thermal Performance," *IEEE Explore*, p. 8, 2016.
- [5] Synopsys, "What is IC Design?," [Online]. Available: https://www.synopsys.com/glossary/what-is-ic-design.html.
- [6] N. M. Morris, Semiconductor Devices, MacMillan, 1976.
- [7] M. A. Laughton and D. Warne, Electrical Engineer's Reference Book, Newnes, 2002.
- [8] J. . E. Ayers, Digital Integrated Circuits, Taylor & Francis, 2003, 2003.
- [9] S. Panchapakesan, "Why System-On-Chip is the Next Generation of Computing," [Online]. Available: https://www.synopsys.com/cloud/insights/system-on-chip.html.
- [10] "The Ultimate Guide to Chiplets," [Online]. Available: https://anysilicon.com/the-ultimate-guide-tochiplets/#:~:text=Chiplets%20are%20small%2C%20modular%20chips,a%20single%2C%20complex%20i ntegrated%20circuit..
- [11] Y. Shabany, Heat Transfer, Thermal Management of Electronics, CRC Press, 2010.
- [12] J. Altet and A. Rubio, Thermal Testing of Integrated Circuits, Springer, 2002.
- [13] Dexerials, "Heat Dissipation Principle of TIM (Thermal Interface Material)," 10 03 2010. [Online]. Available: https://techtimes.dexerials.jp/en/electronics/heat-dissipation-principle-of-tim-thermalinterface-material/.
- [14] D. C. Montgomery, Design and Analysis of Experiments, Wiley, 2017.
- [15] six-sigma-material.com, "Design of Experiments (DOE)," [Online]. Available: https://www.six-sigma-material.com/Design-of-Experiments.html.
- [16] S. Alla and S. Kalyan Adari, Beginning MLOps with MLFlow, Apress, 2021.
- [17] A. McMahon, Machine Learning Enngineering with Python, Birmingham, UK: Packt, 2021.
- [18] M. Stipitz and H. Sanchis-Alepuz, "Approximating the Steady-State Temperature of 3D Electronic," *Mathemtical and Computational Applications*, p. 15, 2022.
- [19] "Interposer," [Online]. Available: https://anysilicon.com/semipedia/interposer/.