
Introduction 
Approximately 8%-12% of children worldwide have 
attention deficit hyperactivity disorder (ADHD).1 Three 
key characteristics of ADHD are inattention, hyperactivity, 
and impulsivity. 2 Autism spectrum disorder, learning 
disorders, bipolar disorder, externalizing problems, 
and sleep difficulties are often comorbid with ADHD. 
Furthermore, the disorder may contribute to mental 
health issues such as anxiety, depression, low self-esteem, 
suicide, substance abuse, and difficulties with sensory 
processing.2 The early detection and treatment of ADHD 
are critical to effectively manage the condition and could 
improve academic, social, and emotional outcomes.3

The interaction and influence of various brain regions 
are referred to as brain connectivity. The difference 
between individuals with ADHD and others can be 
attributed to differences in brain function and connectivity.4 
Researchers have found that ADHD is associated with 

altered levels of neurofunctional dependency across the 
cortex as well as altered connectivity across the whole 
brain and reduced structure-function coupling in feeder 
connections between hubs and peripheral regions.4-7 
It has been discovered that ADHD individuals exhibit 
weaker positive functional connectivity in fronto-striatal 
reward pathways, as well as stronger negative functional 
connectivity within prefrontal and visual reward 
pathways.4 Various methods are available to study brain 
connectivity, such as structural and functional magnetic 
resonance imaging, electroencephalography (EEG), and 
multimodal imaging markers. Among them, EEG is an 
inexpensive, scalable, and portable technology that can be 
used to screen for disease even in areas without access to 
tertiary care facilities. In recent years, several studies have 
been conducted using EEG signals to investigate brain 
connectivity in ADHD, which suggests the effectiveness 
of this approach in providing a better understanding of 
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ADHD and its effects on EEG analysis.
Kiiski and colleagues8 investigated the relationship 

between functional EEG connectivity and ADHD 
symptoms. Using the weighted phase-lag index (WPLI) 
as a potential biomarker for ADHD diagnosis, they 
discovered that EEG connectivity in delta (δ), beta (β), 
and gamma (γ) bands effectively predicted hyperactive 
symptoms in the eyes-open resting state. Chen et al9 
examined ADHD and healthy control (HC) brain 
networks during the oddball P3 task by using EEG. 
They found that dysfunctional attention associated with 
ADHD occurred during the early stages of the task, 
as compared to HC. Furthermore, they suggested that 
this shortage could be caused by unusual information 
processing. Unlike ADHD, HCs exhibited significantly 
higher brain activity in the temporal and frontal regions 
during cortical activity analysis.

Ekhlasi et al10 examined the unique information 
pathways of brain networks in ADHD compared to HC 
during an EEG-based attentional visual task. The effective 
connectivity between all scalp channels was determined 
using directed phase transfer entropy (dPTE) for all 
frequency bands. They revealed patterns of information 
transmission in the theta (θ) band, flowing from posterior 
to anterior regions in HC. Conversely, a disrupted 
pattern of information flow was observed in ADHD, 
characterized by an opposite flow direction. In another 
study, Ekhlasi et al11 studied dPTE to measure effective 
connectivity between all scalp channels in ADHD and 
HC. Utilizing a multilayer artificial neural network 
(ANN) and genetic algorithm (GA) for feature selection, 
they could accurately differentiate between the θ bands in 
the two groups with an accuracy of 89.7%.

Abbas and colleagues12 used multichannel EEG 
recordings to examine effective connectivity within brain 
networks of ADHD and HC by using transfer entropy 
focusing on pair-wise directed information transfer 
between EEG electrodes across all frequency bands. 
Notably, the graph measures obtained from the estimated 
brain networks in the β band demonstrated the most 
significant differences between ADHD and HC.

Ekhlasi et al13 investigated the impairments of brain 
connectivity in ADHD by using graph theory (GT) and 
directional information transfer. PTE was applied to 
calculate the weighted directed graphs, which were built 
from EEG signals of ADHD and HC. The local graph 
features from the θ and δ bands of HC and ADHD 
effectively differentiated the two groups using naïve 
Bayesian (NB), resulting in 91.2% and 90% accuracy, 
respectively. Moqadam et al14 investigated the differences 
in connectivity patterns between ADHD and HC using 
EEG signals. The Katz fractal dimension of EEG was then 
used to extract the brain’s connectivity networks (i.e., 
functionally connected regions) using the graph coloring 
algorithm. Their result revealed some disconnection 

between the frontal and occipital lobes in ADHD, 
confirming that their anterior lobes are defective.

Coelli et al15 compared the functional connectivity of 
ADHD and HC during Conners’ “not-X” continuous 
performance test using the imaginary part of the 
coherence as a connectivity measure and GT analysis. 
Their findings supported the function of θ and β rhythms 
in attention and concentration while indicating a less 
efficient network integration in ADHD. Talebi and Motie 
Nasrabadi16 reported the EEG-based effective connectivity 
of ADHD compared to HC. They employed non-linear 
causal relationship estimation by ANN (nCREANN) and 
the direct Directed Transfer Function (dDTF) to examine 
the connection patterns. The dDTF analysis revealed 
that no unique frequency band could differentiate 
between the two groups, and various effective connection 
patterns were observed across all frequency bands. 
However, combining linear and non-linear connection 
measurements obtained from nCREANN enabled them 
to distinguish between the two groups with 99.07% 
accuracy.

Moghaddari et al17 designed a 13-layer convolutional 
neural network (CNN) that utilized RGB color images 
derived from frequency sub-bands of EEG signals. Their 
approach achieved an accuracy of 98.48% in effectively 
distinguishing between ADHD and HC. Bakhtyari and 
Mirzaei18 developed a convolutional long short-term 
memory (LSTM) model for ADHD detection. Their 
approach incorporated dynamic connectivity tensors 
from various frequency bands, where they achieved an 
accuracy of 99.7% in identifying ADHD.

The objective of this research is to investigate the distinct 
brain connectivity patterns exhibited by individuals with 
ADHD in comparison to those without the condition. 
This will be done by analyzing the causal interactions 
between brain regions using granger causality (GC).19 
A precise and efficient method will also be developed to 
detect ADHD accurately.

Materials and Methods
The main framework of this study encompasses four key 
steps, as outlined below and depicted in Figure 1.
•	 Pre-processing: The collected data undergoes pre-

processing to enhance its quality and remove any 
unwanted artifacts or noise.

•	 Construction of directed GC Index (GCI) and 
directed regional GCI (rGCI): The aforementioned 
indexes are computed using the pre-processed data 
to investigate the causal relationships among the 
variables of interest.

•	 Construction of color-coded GCI and rGCI images.
•	 Construction of a novel CNN: A specialized CNN 

architecture was developed to classify GCI and rGCI 
images accurately. It underwent successful training 
and evaluation.
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Database
In this research, we employed an openly accessible 
dataset from,20 encompassing EEG recordings obtained 
from a cohort of 61 ADHD children and an additional 
60 HC children, devoid of any documented psychological 
disorders. Throughout the visual attention task, EEG 
signals were recorded using 19 electrodes, adhering to 
the 10-20 standard international system, and sampled 
at a rate of 128 Hz. Two electrodes positioned in the 
earlobes were used to establish the reference points. The 
data recording process occurred within a soundproof 
environment, wherein the children were instructed to 
minimize any physical movements while the data was 
being captured. The children were presented with 20 
images featuring visually appealing characters and were 
asked to count the number of characters in each image. 
Once the child responded to each image, the following 
image was displayed without delay. The duration 
of the EEG recording was determined by the child’s 
performance, meaning that the recording continued 
until the completion of the task or the predetermined 
endpoint. Notably, the correctness or incorrectness of the 
child’s answers was not considered during the recording 
process. A detailed description of the EEG signal and data 
acquisition protocol can be found in Motie Nasrabadi and 
colleagues’ study.20

Pre-processing
All pre-processing was performed using the EEGLAB 
toolbox21 and MATLAB software. The initial step involved 
the application of a zero-phase band-pass finite impulse 
response (FIR) filter, ranging from 0.5 to 48 Hz, on the 
raw continuous EEG signals to effectively eradicate any 
interference caused by line noise. Next, the Clean Rawdata 
plugin22 was employed to automatically eliminate any 
noticeable artifacts caused by electrode displacement in 
the data. The re-referencing procedure was followed, 

utilizing a common average reference value across all 
channels. Subsequently, the EEG signals were subjected 
to independent component analysis to eliminate ocular, 
muscular, cardiac, and other artifacts. These components 
were then identified and excluded using the automatic 
ICLabel plugin.23 After cleaning, the EEG signals were 
further filtered into conventional EEG bands of δ (1–4 
Hz), θ (4–8 Hz), Alpha (α) (8–13 Hz), β (13–30 Hz), and 
γ (30–45 Hz), using five FIR filters based on the Kaiser 
window technique. Prior to segmenting the EEG data, 
this methodology was employed, which involved using 
a custom-made function. Subsequently, the time series 
was divided into epochs of 768 samples (equivalent to 6 
seconds) for each subject. Since the recording durations 
differed across subjects, the total number of segments 
varied accordingly.

Granger Causality
GC is a statistical concept that quantifies the predictive 
capacity of a particular time series on another.19 It is 
a potent technique for identifying directed functional 
interactions from time-series data in neuroscience and 
neuroimaging, especially for characterizing functional 
circuits in the brain.24 A viable approach for quantifying 
GCIs involves employing multivariate autoregressive 
(MVAR) models, wherein GCI can be computed 
based on the model’s prediction errors. GCI effectively 
measures the causal relationship between variables by 
assessing the extent to which one variable’s past values 
can predict another variable’s values.25 Mathematically, 
GCI is expressed as follows:

In this study, there is a 19-channel EEG data, let’s 
denote it as ( ) ( ) ( )1 2 19,  ,  ...,  X t X t X t , where t represents 
the time index. Our objective is to examine the causal 
relationship among these channels. To achieve this, we 
utilized an MVAR model that postulates each channel 
as a linear composition of its preceding values and the 

Figure 1. The Proposed Framework for ADHD Detection Using Regional and Universal GC With a Custom-Built CNN Architecture
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preceding values of other channels. The MVAR model 
with order p can be mathematically represented as:

1 1 2 2 ,t t t p t p tX A X A X A X ε− − −= + +…+ +

where Xt is a column vector containing the 19 channels 
at time t , ,  ,  ..., pA A A₁ ₂  are coefficient matrices to be 
estimated, and ϵt represents the residual errors at time 
t. Subsequently, the parameters of the MVAR model 
need to be estimated using the provided EEG data. 
This process entails fitting the model for various orders 
(p) and determining the optimal order that achieves a 
favorable trade-off between model complexity and data 
fit. The Akaike information criterion (AIC) is a prevalent 
criterion employed for model order selection, and it is 
defined as follows:

( ) ( )( ) 2  2 ,AIC p ln L p p=− +

where L(p) denotes the likelihood of the data given the 
model order p, while p signifies the number of parameters 
within the MVAR model. The AIC imposes penalties on 
models with greater complexity, thereby promoting the 
selection of more streamlined models that effectively 
capture the fundamental dynamics of the data. Upon 
identifying the optimal model order through AIC, 
the subsequent stage involves calculating GC between 
the channel pairs. This measurement quantifies the 
supplementary information contributed by the potential 
causal channel. GCI between channel Xi and channel Xj 
can be calculated using the following equation:

( )
( )

0

1

|
  ,

|
t

i j
t

Var H
GC log

Var H
ε
ε

=

where Var(ϵt│H0) represents the variance of the 
residuals when both channels Xi and Xj are included in 
the model, and Var(ϵt│H1) represents the variance of the 
residuals when only channel Xi is included. The logarithm 
is applied to provide a symmetric measure of causality, 
and a positive value indicates a causal influence from Xj 
to Xi.

By evaluating GCI for every pair of channels, one 
can analyze the causal relationships inherent within 
the EEG data and determine which channels influence 
one another. This process allows for identifying and 
characterizing the directional interactions between the 
channels.26 The GC value was computed for all possible 
pairwise combinations of channels, constructing a GC 
matrix for each segment within every frequency band, 
encompassing all subjects in the study. Additionally, in 
light of previous findings10,27 indicating distinct anatomical 
and functional patterns of information flow within the 
brain hemispheres and regions, we have considered this 
by calculating rGCIs. To achieve this, the brain has been 

divided into four regions: posterior, anterior, left, and 
right hemispheres. The division of these regions can be 
visualized in Figure 2, and further details are provided 
in Table 1. Subsequently, we transformed GCI and rGCI 
into color-coded images, where hotter colors represent 
stronger connectivity between pairs of nodes. This visual 
representation technique has been widely adopted to 
depict initial brain connectivity patterns. 

The Designed Convolutional Neural Network
Over the last decade, deep learning models have gained 
popularity due to their ability to accurately solve a wide 
range of problems. These models are a type of ANN that 
can analyze vast amounts of data and improve over time. 
A CNN can be designed to learn and extract meaningful 
patterns and relationships between the matrix elements 
in classifying GCI images. The rationales above prompted 
us to devise a deep neural network to categorize color-
coded GCI images, eliminating the need for additional 
feature extraction in the GT analysis task. Our emphasis 
on creating a lightweight model allowed for efficient 
computation and resource management while maintaining 
sufficient complexity for accurate classification. We 
developed a lightweight CNN, comprising 11 layers and 
165 100 learnable parameters. The proposed architecture 
(Figure 3) involved a combination of convolutional, 
pooling, normalization, and fully-connected (FC) layers. 
These layers enable the model to learn and effectively 
capture intricate dependencies within the data and 
facilitate extracting meaningful features and contributing 
to accurate classification outcomes.

Figure 2. Division of Brain Regions for Calculating rGCI

Table 1. The Specific Channels Encompassed Within Each Brain Region for 
Calculating rGCI

Region Channels

Anterior Fp1, Fp2, F7, F3, Fz, F4, F8

Posterior P7, P3, Pz, P4, P8, O1, O2

Right Fp2, F4, F8, C4, T8, P8, P4, O2

Left Fp1, F3, F7, C3, T7, P7, P3, O1

http://journals.sbmu.ac.ir/Neuroscience
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Our proposed CNN comprises multiple layers, with the 
ImageInputLayer serving as the initial layer. This layer is 
designed to process 100 × 100 RGB color-coded images. 
Following that, a convolutional layer is utilized, which plays 
a crucial role in identifying local patterns and capturing 
spatial relationships within connectivity matrices. 
Convolutional layers employ sliding convolutional 
filters to detect specific connectivity patterns, such as the 
strength or direction of connections between individual 
elements. This mechanism enables our custom-built 
CNN to analyze and interpret the matrix data effectively. 
Subsequently, a batch normalization layer, which aids 
in normalizing activations and diminishing internal 
covariate shifts, was utilized. The Rectified Linear Unit 
(ReLU) activation function is employed to introduce 
non-linearity and bolster the model’s representational 
capabilities. Next, a max pooling layer with a 2 × 2 pooling 
size and a stride of 2 is inserted to downsample the spatial 
dimensions and reduce the model’s computational 
complexity. Pooling layers are employed to downsample 
the feature maps generated by the convolutional layers. 
This downsampling process helps reduce the spatial 
dimensions of the feature maps while retaining essential 
information. We used common pooling techniques 
of max pooling of 2 × 2 size and a stride of 2, enabling 
CNN to select the maximum value within each pooling 
window.

Then, an additional convolutional layer characterized 
by a 3 × 3 filter size and 32 filters are employed. Like the 
preceding convolutional layer, this layer is accompanied 
by a batch normalization layer and a ReLU activation 
function, which synergistically contribute to augmenting 
the model’s performance. The output of this layer 
is flattened and then passed into an FC layer, which 
functions as a classifier. FC layers integrate the learned 

features from the preceding layers and make predictions 
based on the relationships between these features. In 
classifying GCI images, the FC layers can effectively 
capture global patterns and make decisions based on the 
overall connectivity structure. The FC layers contribute to 
the network’s ability to comprehend and classify complex 
connectivity patterns by leveraging the insights gained 
from the convolutional and pooling layers. In this case, 
we used an FC layer of 2 neurons to represent the ADHD 
and HC groups. To derive class probabilities, the SoftMax 
activation function is employed. A classification layer 
is then used to complete the classification task, which 
calculates the loss function and facilitates the overall 
classification by utilizing the predicted probabilities 
obtained from the previous layers. Table 2 summarizes 
the designed network architecture in detail.

The adaptive moment (Adam) estimation as a solver, 
an initial learning rate of 0.01, a maximum of 3 epochs, 
and 16 mini batches were set as the training options of 
this model. These parameters were selected during a trial-
and-error procedure. We implemented a data shuffling 
technique at the beginning of each epoch to mitigate any 
potential bias in the training process. The default values 
for the remaining hyperparameters were used as specified 
by MATLAB.

Six evaluation metrics, including accuracy, sensitivity, 
specificity, F1 score, and area under curve (AUC), are 
calculated through a five-fold cross-validation (CV) 
technique to assess the model’s performance and 
generalizability.

In this procedure, the GCI images associated with the 
segments and frequency band of ADHD and HC were 
divided into five subsets. During each iteration, one 
subset was designated for validation, while the remaining 
four subsets were utilized for training. This process was 

Figure 3. The Proposed 11-layer CNN Architecture, Including Convolutional, Normalization, Activation, Pooling, and FC Layers
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repeated five times, with different subsets assigned for 
validation each time, and the evaluation metrics were 
calculated. Finally, the model’s performance on new and 
unseen data was evaluated comprehensively by averaging 
the results across the five iterations. This approach could 
also prevent overfitting and reasonably assess the model’s 
ability to generalize beyond the training data.

Results
In this study, EEG recordings obtained from a cohort of 
sixty-one ADHD children and an additional sixty HC 
children, both right-handed groups, with an average age 
of 9.73 ± 1.76, were analyzed. The AIC model order for 
ADHD and HC is summarized in Table 3 for different 
brain regions and frequency bands. The model order is 
selected as 4 in several frequency bands and regions, but 
in some areas and bands, the model order is determined 
to be 5 or 6. The group averages of GCI and rGCI, which 
were transformed into color-coded images, are illustrated 
in Figures 4 and 5, respectively. The hotter colors 
represent stronger connectivity between pairs of nodes, 
whereas the colder colors represent weak connectivity.

Table 4 provides a comprehensive summary of the 
classification results for each GCI and rGCI frequency 
band, presented as the mean and standard deviations 

obtained from five-fold CV. In the classification of 
the entire brain, the γ band exhibited remarkably high 
accuracy, reaching 99.8%. This accuracy was accompanied 
by 100% sensitivity, 99.6% specificity, 99.6% precision, 
0.99 F1, and an AUC of 1. Figure 6 shows confusion 
matrices for the performance of this frequency band 
and region, obtained through a five-fold CV technique. 
In the regional brain connectivity classification, the θ 
band of the right hemisphere demonstrated the second-
highest accuracy, achieving an impressive rate of 98.50%. 
Additionally, the results were further supported by a 
sensitivity of 99%, specificity of 98.80%, precision of 
98.10%, an F1 score of 0.98, and an AUC of 0.99. The 
confusion matrices of this region and frequency obtained 
through a five-fold CV technique are illustrated in 
Figure 7.

Table 2. The Specifications Corresponding to the Developed CNN Layers

Layers Specification

Image input 100 × 100 × 3

2D convolution
NumFilter = 16, Size = 3 × 3, 
Padding = Same

Batch normalization Mean Decay = 0.1, Variance Decay = 0.1

ReLU -

MaxPooling2D Pool size = 2 × 2, Stride = 2 × 2

2D convolution
NumFilter = 32, Size = 3 × 3, 
Padding = Same

Batch normalization Mean Decay = 0.1, Variance Decay = 0.1

ReLU -

Flatten -

Dense 2 Neurons (ADHD or HC)

Output Loss function = Cross-entropy

 

 

 

 

 
Table 3. The AIC Model Order of ADHD and HC for Different Brain Regions 
and Frequency Bands 

Region

Model Order

HC ADHD

δ θ α β γ δ θ α β γ

Entire brain 4 4 4 4 6 4 4 4 4 5

Posterior 4 4 4 5 4 4 4 4 4 5

Anterior 4 4 4 5 6 4 4 4 4 5

Right 4 4 4 4 6 4 4 4 4 6

Left 4 4 4 5 5 4 4 4 4 5

Note: The model order is utilized for calculating GCI.

Figure 4. Color-Coded GCI Images Pertaining to Different Frequency 
Bands of ADHD and HC. The intensity of the color denotes a stronger 
connection between the nodes
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Figure 5. Color-Coded rGCI Images Pertaining to Different Frequency Bands of ADHD and HC in (a) Anterior, (b) Posterior, (c) Right, and (d) Left hemispheres

Table 4. The Classification Result of the ENTIRE BRAIN and Regional Parts in Each Frequency Band

Region Band Accuracy (%) Sensitivity (%) Specificity (%) Precision (%) F1 score AUC

Entire brain

δ 99.10 ± 1.02 99.80 ± 0.44 98.40 ± 2.19 98.46 ± 2.10 0.99 ± 0.01 0.99 ± 0.00

θ 98.90 ± 1.94 97.80 ± 3.89 100 100 0.98 ± 0.02 0.99 ± 0.00

α 99.30 ± 0.97 99.00 ± 1.41 99.60 ± 0.89 99.60 ± 0.89 0.99 ± 0.00 0.99 ± 0.00

β 99.10 ± 0.65 99.40 ± 1.34 99.80 ± 1.30 98.82 ± 1.26 0.99 ± 0.00 0.99 ± 0.00

γ 99.80 ± 0.40 100 99.60 ± 0.80 99.60 ± 0.78 0.99 ± 0.00 1

Posterior

δ 97.20 ± 2.25 98.60 ± 3.13 95.80 ± 5.01 96.15 ± 4.54 0.97 ± 0.02 0.99 ± 0.00

θ 92.10 ± 6.57 95.80 ± 4.91 88.40 ± 15.82 90.79 ± 11.14 0.92 ± 0.05 0.98 ± 0.01

α 96.40 ± 1.29 96.40 ± 5.12 96.40 ± 3.57 96.61 ± 3.33 0.96 ± 0.01 0.99 ± 0.00

β 94.40 ± 3.02 94.60 ± 3.04 94.20 ± 7.52 94.72 ± 6.75 0.94 ± 0.02 0.98 ± 0.01

γ 97.70 ± 3.34 95.80 ± 6.94 99.60 ± 0.89 99.60 ± 0.87 0.97 ± 0.03 0.99 ± 0.01

Anterior

δ 94.00 ± 8.48 97.20 ± 2.68 90.80 ± 18.41 93.29 ± 12.89 0.94 ± 0.06 0.99 ± 0.00

θ 93.40 ± 4.14 95.40 ± 2.88 91.40 ± 7.36 92.05 ± 6.28 0.93 ± 0.03 0.97 ± 0.01

α 95.60 ± 3.57 93.00 ± 7.34 98.20 ± 2.16 98.15 ± 2.15 0.95 ± 0.03 0.97 ± 0.02

β 98.20 ± 1.39 97.40 ± 2.50 99.00 ± 0.70 98.98 ± 0.72 0.98 ± 0.01 0.99 ± 0.00

γ 96.90 ± 1.98 95.80 ± 4.60 98.00 ± 1.58 98.00 ± 1.55 0.96 ± 0.02 0.99 ± 0.01

Right

δ 98.10 ± 1.08 97.60 ± 2.07 98.60 ± 2.19 98.63 ± 2.09 0.98 ± 0.01 0.99 ± 0.00

θ 98.50 ± 1.50 99.00 ± 1.73 98.00 ± 3.08 98.10 ± 2.89 0.98 ± 0.01 0.99 ± 0.00

α 98.50 ± 1.87 100 97.00 ± 3.74 97.18 ± 3.43 0.98 ± 0.01 0.99 ± 0.01

β 96.60 ± 2.50 98.20 ± 2.68 95.00 ± 4.89 95.33 ± 4.29 0.96 ± 0.02 0.99 ± 0.01

γ 97.50 ± 2.03 100 95.00 ± 4.06 95.35 ± 3.70 0.97 ± 0.01 0.99 ± 0.00

Left

δ 96.30 ± 2.25 98.40 ± 3.57 94.20 ± 5.54 94.72 ± 4.93 0.96 ± 0.02 0.99 ± 0.01

θ 96.70 ± 3.89 99.20 ± 1.09 94.20 ± 7.75 94.86 ± 6.62 0.96 ± 0.03 0.99 ± 0.00

α 92.90 ± 4.65 89.60 ± 11.01 96.20 ± 5.54 96.41 ± 4.99 0.92 ± 0.05 0.95 ± 0.05

β 96.60 ± 3.02 98.80 ± 2.16 94.40 ± 6.42 94.94 ± 5.66 0.96 ± 0.02 0.99 ± 0.00

γ 95.40 ± 5.97 99.60 ± 0.89 91.20 ± 12.07 92.69 ± 9.08 0.95 ± 0.05 0.99 ± 0.00

Note: The result is reported as mean ± standard deviation of five-fold CV. The highest accuracy in the entire brain and regional part is highlighted in bold.
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Figure 8 illustrates the normalized extracted features 
obtained from color-coded GCI images of ADHD 
individuals and HC, achieving the highest classification 
accuracy in GCI and rGCI. These features are derived 

from the latest convolutional layer before the FC layer.
Discussion
This study utilized color-coded images of brain 
connectivity to develop an innovative model distinguishing 

Figure 6. The confusion matrices of the γ band of the entire brain, during the five-fold CV technique, resulted in the best accuracy of 99.8 on average in the 
classification of the entire brain GCI

Figure 7. The confusion matrices of the θ band of the right hemisphere, during the five-fold CV technique, resulted in the best accuracy of 98.5 on average 
in the classification of rGCI
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between HC and ADHD. These color-coded images were 
created using GC measures, representing the effective 
connectivity of brain regions. In light of previous studies 
highlighting distinct connectivity patterns between brain 
regions in the two groups, our study conducted GCI 
analyses on the entire brain and specific regional parts. 
Subsequently, the GCI matrices were transformed into 
color-coded images, which were prepared as input for 
the custom-designed 11-layer CNN. This transformation 
facilitated the integration of visual information into the 
CNN framework for further analysis and classification.

The proposed CNN architecture is meticulously 
designed to suit the classification of GCI color-coded 
images. Its layers are deliberately chosen to extract 
discernible features that hold significant utility in 
identifying Attention ADHD. The outcomes exhibit great 
promise, thereby furnishing a potent instrument for the 
automated categorization of ADHD and HC subjects. 
A collection of features that yielded optimal accuracy 
outcomes are visualized in Figure 8 to comprehend the 
mechanism and efficacy of feature extraction facilitated 
by this CNN. These features were particularly prominent 
within the γ band encompassing the entirety of the brain 
and within the θ band localized to the right hemisphere. 
As illustrated in this figure, the proposed CNN effectively 
extracts features from color-coded images, resulting in 
distinct and well-separated clusters. This demonstrates 
CNN’s significant potential for classifying ADHD and 
HC, consistently achieving more than 92% accuracy in all 
the regional parts, the entire brain, and their respective 
sub-bands.

The average accuracy rates across all frequency bands 
of various brain regions were impressive: 95.56% for the 
posterior region, 95.62% for the anterior region, 97.84% for 
the right hemisphere, and 95.58% for the left hemisphere. 
These results underscore the robustness and efficacy of 
the proposed framework, with the right hemisphere 
emerging as particularly adept at distinguishing between 
ADHD and HC.

Table 5 comprehensively summarizes recent studies 
conducted on the same dataset. Our proposed framework 
outperformed these models despite their significant 
effort in methodology development. Notably, these 
studies exclusively examined and concentrated on the 
entire brain. In contrast, our investigation encompassed 
four distinct regional parts of the brain. The rationale 
behind this approach was to mitigate patient discomfort 
by minimizing the employed number of electrodes. 
To achieve this, the electrode count was substantially 
decreased from 19 to 7 electrodes in the anterior and 
posterior sections, and to 8 electrodes within the right 
and left hemispheres.

By incorporating regional components, two advantages 
are achieved: a decrease in computational expenses and 
the mitigation of discomfort stemming from employing 
large EEG electrodes. This, in turn, improves the overall 
viability of the real-time assessment method. Moreover, 
the findings indicate that even with the utilization of high-
density EEG, relying on a limited quantity of electrodes for 
detecting ADHD remains reliable and economical. This 
reduction in electrode count, while upholding accuracy, 
presents a promising avenue in terms of practicality, cost-
effectiveness, and implementation convenience.

Conclusion
This study examined differences in how the brain 

Figure 8. The Extracted Features Obtained From the Color-Coded GCI Images on the X-Y Plane, Using the Best Models for Distinguishing Between Two 
Groups: (a) γ in the Entire Brain and (b) θ in the Right Hemisphere

Table 5. The Summary of the Current Studies Within the Field With the Same 
ADHD Dataset

Ref Year Method
Accuracy 

(%)

17 2020 13-layer CNN and color images of EEG 98.48

11 2021 dPTE, GA, and ANN 89.2

16 2022 nCREANN and dDTF 99.09

13 2022 PTE, GT, and NB classifier 91.2

18 2022 Convolutional LSTM 99.7

Proposed Method Color-coded GCI and rGCI images, and CNN 99.8
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works and connects in people with ADHD, focusing on 
specific frequency bands. The study’s results were quite 
impressive, with a 99.8% accuracy in the γ band across the 
entire brain. Notably, the right hemisphere, particularly 
in the θ band, showed significant differences between 
ADHD and HC, resulting in 98.5% accuracy.

These findings suggest that the right hemisphere plays 
a crucial role in ADHD symptoms.

Future research directions could involve scaling this 
methodology to larger datasets and incorporating diverse 
cognitive tasks, potentially uncovering deeper insights 
into brain interactions. The success of this approach, 
combining streamlined architecture with color-coded 
connectivity images, holds promise for real-world 
applications and cost-effective diagnostic tools.
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