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“All models are wrong, but some are useful .” (George Box)



Abstract

Uncertainty is an inevitable and essential aspect of the world we live in and a fundamental

aspect of human decision-making. It is no different in the realm of machine learning. Just

as humans seek out additional information and perspectives when faced with uncertainty,

machine learning models must also be able to account for and quantify the uncertainty

in their predictions. However, the uncertainty quantification in machine learning models

is often neglected. By acknowledging and incorporating uncertainty quantification into

machine learning models, we can build more reliable and trustworthy systems that are

better equipped to handle the complexity of the world and support clinical decision-

making.

This thesis addresses the broad issue of uncertainty quantification in machine learn-

ing, covering the development and adaptation of uncertainty quantification methods,

their integration in the machine learning development pipeline, and their practical appli-

cation in clinical decision-making.

Original contributions include the development of methods to support practitioners

in developing more robust and interpretable models, which account for different sources

of uncertainty across the core components of the machine learning pipeline, encompass-

ing data, the machine learning model, and its outputs. Moreover, these machine learning

models are designed with abstaining capabilities, enabling them to accept or reject predic-

tions based on the level of uncertainty present. This emphasizes the importance of using

classification with rejection option in clinical decision support systems. The effectiveness

of the proposed methods was evaluated across databases with physiological signals from

medical diagnosis and human activity recognition. The results support that uncertainty

quantification was important for more reliable and robust model predictions.

By addressing these topics, this thesis aims to improve the reliability and trustwor-

thiness of machine learning models and contribute to fostering the adoption of machine-

assisted clinical decision-making. The ultimate goal is to enhance the trust and accuracy

of models’ predictions and increase transparency and interpretability, ultimately leading

to better decision-making across a range of applications.
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Resumo

A incerteza é um aspeto inevitável e essencial do mundo em que vivemos e um aspeto

fundamental na tomada de decisão humana. Não é diferente no âmbito da aprendizagem

automática. Assim como os seres humanos, quando confrontados com um determinado

nível de incerteza exploram novas abordagens ou procuram recolher mais informação,

também os modelos de aprendizagem automática devem ter a capacidade de ter em conta

e quantificar o grau de incerteza nas suas previsões. No entanto, a quantificação da in-

certeza nos modelos de aprendizagem automática é frequentemente negligenciada. O

reconhecimento e incorporação da quantificação de incerteza nos modelos de aprendi-

zagem automática, irá permitir construir sistemas mais fiáveis, melhor preparados para

apoiar a tomada de decisão clinica em situações complexas e com maior nível de confi-

ança.

Esta tese aborda a ampla questão da quantificação de incerteza na aprendizagem

automática, incluindo o desenvolvimento e adaptação de métodos de quantificação de

incerteza, a sua integração no pipeline de desenvolvimento de modelos de aprendizagem

automática e a sua aplicação prática na tomada de decisão clínica.

Nos contributos originais, inclui-se o desenvolvimento de métodos para apoiar os

profissionais de desenvolvimento na criação de modelos mais robustos e interpretáveis,

que tenham em consideração as diferentes fontes de incerteza nos diversos componentes-

chave do pipeline de aprendizagem automática: os dados, o modelo de aprendizagem

automática e os seus resultados. Adicionalmente, os modelos de aprendizagem automá-

tica são construídos com a capacidade de se abster, o que permite aceitar ou rejeitar uma

previsão com base no nível de incerteza presente, o que realça a importância da utiliza-

ção de modelos de classificação com a opção de rejeição em sistemas de apoio à decisão

clínica. A eficácia dos métodos propostos foi avaliada em bases de dados contendo sinais

fisiológicos provenientes de diagnósticos médicos e reconhecimento de atividades huma-

nas. As conclusões sustentam a importância da quantificação da incerteza nos modelos

de aprendizagem automática para obter previsões mais fiáveis e robustas.

Desenvolvendo estes tópicos, esta tese pretende aumentar a fiabilidade e credibilidade

dos modelos de aprendizagem automática, promovendo a utilização e desenvolvimento
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dos sistemas de apoio à decisão clínica. O objetivo final é aumentar o grau de confiança e a

fiabilidade das previsões dos modelos, bem como, aumentar a transparência e interpreta-

bilidade, proporcionando uma melhor tomada de decisão numa variedade de aplicações.

Palavras-chave: Aprendizagem automática; Quantificação de incerteza; Classificação com

opção de rejeição; Interpretabilidade; Tomada de decisão clinica.
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1

Introduction

1.1 Motivation

Machine learning algorithms hold the potential to revolutionize the way humans ap-

proach critical decision-making, particularly in the field of medicine. As we stand at the

cusp of a new era, harnessing the power of these algorithms has the potential to unlock

unprecedented advancements in diagnostics, prognosis, and patient care. However, the

very essence of learning from data is intertwined with the concept of uncertainty, and

thus, it is crucial to address this inherent aspect of machine learning to build robust,

reliable, and trustworthy models.

The ability to quantify uncertainty in machine learning predictions is paramount, as

it enables models to abstain from providing decisions when faced with high levels of

uncertainty. In doing so, we can effectively integrate human expertise, aligning with the

instinctual practice of physicians seeking second opinions or additional input to reduce

uncertainty and make more accurate decisions in unusual clinical cases [1].

In recent years, numerous studies have demonstrated that diagnostic, prognostic, and

predictive models developed using machine learning can achieve comparable accuracy

to gold-standard methods [2–4]. Consequently, there is growing interest in harnessing

Artificial Intelligence (AI) systems to enhance clinical practice by improving workflow

efficiency and providing physicians with decision-support tools. As machine learning

continues to make significant advancements in these domains, particularly in the field of

medicine, it becomes increasingly important to ensure the robustness and trustworthiness

of AI models by addressing the inherent uncertainty present in the machine learning

process [5].

In addition to its importance in cost-sensitive decision-making domains, UQ is also a

key concept within the machine learning methodology itself. By quantifying uncertainty,

practitioners can identify and understand the flaws in their models, which can help

in the development of new or improved models. UQ is also critical for building more

interpretable models.

Therefore, the development of a systematic and formal discipline for UQ in AI-based
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approaches is essential not only for decision support in safety-critical domains but also

for practitioners’ decision-making in general. Embracing uncertainty in machine learning

can unlock the full potential of AI in biomedical applications, leading to safer and more

reliable solutions that truly transform the field of medicine.

1.2 Applications of uncertainty

One of the primary applications of uncertainty in AI is its role in the field of AI safety

[6, 7]. This area of research concentrates on developing technical solutions that ensure

AI systems function safely and reliably. To achieve reliability, a machine learning sys-

tem must operate effectively under a diverse range of conditions. By incorporating the

ability to quantify uncertainty in its predictions, the system can reduce the likelihood

of failure when encountering situations it is ill-equipped to handle. As machine learn-

ing continues to advance, AI systems are increasingly deployed in real-world scenarios

where safety requirements must be taken into account. For instance, in medical applica-

tions such as automated decision-making or recommendation systems, the potential for

life-threatening consequences increases if AI models are not reliable [1, 7].

In healthcare applications, AI models should be able to report their own uncertainty in

predicting a given sample, so that healthcare workers know when the model is (or is not)

confident in its decision. In addition to relying on models’ uncertainty in their predictions,

the ability to abstain from predicting a sample is also an important application of UQ

in AI. This can be useful in situations where the model is faced with unknown classes1

or adversarial examples2, as it is likely that the model will make unreasonable decisions

(essentially guessing at random) that could introduce biases and affect the judgment of

experts. It is important to note that our knowledge will be always incomplete and it is

likely that unknown data is submitted to the model after it has been deployed. In such

cases, it is important to have safety mechanisms in place that can handle uncertainty,

which is where UQ becomes particularly valuable.

In this context, after a machine learning model has been deployed in the real-world

setting, UQ has also an important role in detecting dataset shifts [8]. It is important

to understand if any dataset shift has occurred, as the conditions in which the model is

used may differ from the conditions in which it was created. For example, a dataset shift

may occur when a model that was trained on data from one hospital is validated in data

from a different hospital due to differences in the patient population, the devices used, or

the time frame of the data collection [9]. Understanding and addressing dataset shift is

therefore an important aspect of applying machine learning models in the medical field.

In addition to the direct applications of AI safety, it is important to consider the need

for continuous training after deploying an AI model [6]. This is due to the continuously

1Unknown classes refers to classes that were not previously seen in training data.
2Adversarial examples are inputs to machine learning models that an attacker has intentionally designed

to cause the model to make a mistake.
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changing environment in which AI models operate, where concept drifts and the appear-

ance of unknown medical conditions may occur. For model retraining, it is necessary to

label data that requires expert knowledge. Obtaining large amounts of labeled data can

be unfeasible during clinical practice. One approach to reducing this effort is to use active

learning to select the most informative unlabeled data for the model and ask an expert

annotator to label only these selected samples. In this scenario, the ability to separately

quantify uncertainty can be a useful criterion for selection within the active learning

concept [10, 11].

1.3 Research paths and contributions

The field of uncertainty quantification is vast, and our primary research path is to con-

tribute to the development of more trustworthy and robust models for use in the medical

domain. Through exploring the use of uncertainty quantification in this context, our

research project’s primary goal is to advance the field of uncertainty quantification and

promote the safe deployment of machine learning models in various applications.

Our research project contributes to three distinct research paths, which, although con-

nected, can be divided into three main areas: 1) Uncertainty quantification; 2) Uncertainty
for model design; and 3) Uncertainty for clinical decision-making.

1. Uncertainty quantification: There is currently no standard approach for uncertainty

estimation, nor is there a commonly agreed-upon taxonomy for different types of

uncertainty. The main goal of our research on this topic is to explore the most

notable state-of-the-art methods for uncertainty quantification and identify gaps in

their ability to estimate and separate different sources of uncertainty.

Contributions. Introduced a knowledge uncertainty estimation measure; Extensive

evaluation and adaptation of uncertainty quantification methods tailored to multi-

label classification setting.

2. Uncertainty for model design: Previous research in the field of uncertainty quantifi-

cation has largely focused on the development of methods for characterizing and

quantifying uncertainty to build reliable and robust AI models. However, less atten-

tion has been given to leveraging uncertainty to improve model performance and

interpretability. This research path aims to explore the use of uncertainty estimation

methods during the machine learning development process to support practitioners

in making more informed decisions and developing models more transparent and

reliable. For instance, this includes using uncertainty to select the most suitable

model for a given classification task by assessing the quality of model fit and evalu-

ating the need for additional training samples, as well as combining models using

uncertainty estimations to build more robust and interpretable models.
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Contributions. Comprehensive study of uncertainty-based rejection for enhanc-

ing the machine learning development process and interpretability; Proposed a

novel approach to lower the complexity of feature-based explanations through an

uncertainty-weighted model combination approach.

3. Uncertainty for clinical decision making: Rather than focusing solely on developing

better models or improving their accuracy in a given classification task, this research

path seeks to identify the practical usefulness of uncertainty estimation methods

throughout the entire lifecycle of a deployed machine learning model. This includes

exploring how uncertainty can be used to address a range of topics, such as classifi-

cation with a rejection option, dataset shift, active learning, data quality assessment,

model calibration, and adaptability to other classification settings, like the multi-

label setting. By investigating the practical applications of uncertainty estimation

methods in these areas, we aim to develop a better understanding of how to deploy

machine learning models in a responsible and trustworthy manner.

Contributions. Conducted an in-depth study of uncertainty estimation techniques,

exploring their application from the initial stage of the machine learning pipeline

to their integration in clinical decision-making.

1.4 Thesis structure

This thesis is divided into six chapters, as summarized in Figure 1.1. Elements of our

research have been published in journal articles and have been adapted into chapters,

sections, or combined with other texts in this manuscript. In particular, the following

works are noteworthy, and their connections to specific chapters are represented in Figure

1.1:

1. C. Pires†, M. Barandas†, L. Fernandes, D. Folgado, Hugo Gamboa. "Towards

Knowledge Uncertainty Estimation for Open Set Recognition." Machine Learning
and Knowledge Extraction 2(4): 505-532, 2020.

2. M. Barandas, D. Folgado, R. Santos, R. Simão, H. Gamboa. "Uncertainty-Based

Rejection in Machine Learning: Implications for Model Development and Inter-

pretability." Electronics 11(3): 396, 2022.

3. D. Folgado†, M. Barandas†, L. Famiglini, R. Santos, F. Cabitza, H. Gamboa. "Uncer-

tainty Quantification Meets Explainability: Insights from Model Combination on

Multimodal Time Series." Information Fusion 100: 101955, 2023.

†These authors contributed equally to this work.
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4. M. Barandas, L. Famiglini, A. Campagner, D. Folgado, R. Simao, F. Cabitza, H.

Gamboa. "Evaluation of uncertainty quantification methods in multi-label classi-

fication: a case study with automatic diagnosis of electrocardiogram." Information
Fusion 101: 101978, 2024.

1. Introduction

Basis

3. Uncertainty 

Quantification in 

Machine Learning

4. Uncertainty for 

Model Design

6. Conclusions 

and Future Work

ConclusionsMethods Applications

2. The Language 

of Uncertainty

5. Uncertainty for 

Clinical Decision 

Making
[1,4] [4]

[2,3]

Figure 1.1: Overview of the thesis structure, illustrating the primary research works that
were adapted into sections or combined with other texts within the respective chapters.

The present chapter (Chapter 1) introduces the problem, providing insights into the

importance of uncertainty quantification in machine learning. This concept is particularly

useful in decision-critical domains and within the machine learning methodology. The

main research paths of this thesis are also presented.

Chapter 2 focuses on the theoretical formalization of our problem as a supervised

classification problem with a rejection option. It discusses the definition of uncertainty, as

well as the primary sources of uncertainty, aleatoric uncertainty and epistemic uncertainty
in machine learning. Additionally, various perspectives on representing uncertainty are

introduced, depending on the AI area.

Chapter 3 outlines the primary methods for estimating uncertainty, categorizing them

into two main groups based on how uncertainty is modeled: Single methods and Bayesian
methods. The chapter discusses specific uncertainty measures derived from each esti-

mation method, as well as our proposed measure for estimating knowledge uncertainty
[12]. Additionally, we introduce uncertainty evaluation measures to assess the quality

and impact of uncertainty estimates and explain calibration methods, which are crucial

for ensuring the reliability of probability-based uncertainty measures. The chapter con-

cludes with an experimental analysis using our proposed measure to estimate knowledge

uncertainty, providing a comparison with state-of-the-art methods.

Chapter 4 and Chapter 5 cover the primary applications of uncertainty quantification

addressed in this thesis. Chapter 4 discusses uncertainty applications for model design,

aiming to help practitioners develop more robust and reliable models. This chapter

emphasizes the importance of uncertainty-based rejection and the use of uncertainty
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quantification measures for combining different models. Chapter 5 presents an in-depth

study of the different applications of uncertainty quantification within the workflow of

a clinical decision support system, using an ECG classification problem as a domain

example.

Chapter 6 brings the thesis to a close by offering a comprehensive overview of the key

conclusions and the significance of our research. Additionally, it highlights the contribu-

tions made throughout the work and provides a summary of potential future research

directions.

Included in the appendices are further details regarding the analysis of experimental

results presented in Chapters 3, 4, and 5.
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2

The Language of Uncertainty

To formally address the topic of uncertainty quantification in machine learning, this

chapter starts with a definition of uncertainty followed by a brief introduction of recent

literature in the field. The representation of uncertainty in machine learning models’

predictions is also discussed within different areas of AI. Then, we introduce the two

main sources of uncertainty in predictions: aleatoric uncertainty and epistemic uncertainty,

in the context of classification tasks. This chapter concludes with the formulation of the

research problem as a supervised machine learning classification setting with a rejection

option where uncertainty quantification is modeled along the machine learning pipeline.

To provide a foundation for our discussion in this chapter, we begin by presenting

Figure 2.1, which illustrates the main idea of our research. The figure depicts the dif-

ferent sources of uncertainty that can arise at various stages of the machine learning

pipeline. Furthermore, machine learning models are designed with abstaining capabili-

ties, which allow them to either accept or reject predictions based on the degree of uncer-

tainty present. We will provide a more detailed explanation of these concepts throughout

this chapter.

2.1 Definition of uncertainty

Uncertainty is ubiquitous and occurs in every single event we encounter in the real world.

In general terms, uncertainty can be defined as the lack of sureness about something or
someone, ranging from just short of complete sureness to an almost complete lack of conviction
about an outcome [13].

Uncertainty is a concept that has its roots in various fields and has been present since

the early days of the scientific method. The idea of measurement uncertainty started to

gain prominence when people realized that measurements are always subject to some

degree of error or imprecision. The development of methods to deal with measurement

uncertainty has been an ongoing process over the centuries, with numerous mathemati-

cians, scientists, and statisticians contributing to this area. For example, Laplace’s work
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Uncertainty

Data

Accept

DecisionModel Prediction

Reject

𝑦𝑓𝑥

Model

Knowledge

Aleatoric

Figure 2.1: Schematic supporting the main idea of this research work. Uncertainty is
represented in all ML core components and the decision can be either accepting the
ML prediction or abstaining from giving the prediction due to the presence of high
uncertainty.

on probability theory and normal distribution helped lay the groundwork for under-

standing and quantifying measurement errors and uncertainty. The concept of standard

deviation, although not initially referred to by that name, can be traced back to the work

of mathematicians and statisticians in the 18th and 19th centuries who introduced the

idea of quantifying the dispersion or variability of data in numerous research works.

However, the term uncertainty became more prominent in the context of physics

with the development of quantum mechanics in the early 20th century. The Heisenberg

Uncertainty Principle, formulated by Werner Heisenberg in 1927, is one of the most

well-known examples of uncertainty in physics.

Uncertainty also has connections to philosophy, where the term is associated with the

limits of human knowledge and the challenges of making decisions or judgments based

on incomplete or imperfect information.

Machine learning is an interdisciplinary field that borrows concepts and techniques

from various domains and is heavily based on statistical concepts and methods. Uncer-

tainty in statistics often arises from randomness, noise, or sampling variability, which are

also present in the data used to train machine learning models. In addition, in the context

of machine learning, uncertainty also arises due to the limitations of learning algorithms

and the imperfect nature of the models used to represent complex real-world phenomena.

Machine learning, as a field that aims to develop algorithms that can learn from data,

grapples with issues of uncertainty similar to the philosophical aspects of uncertainty,

as models attempt to generalize from limited training data to make predictions in new,

unseen situations.

In summary, machine learning models are built to learn from data and make predic-

tions or decisions based on the patterns and relationships they capture from that data.

However, the data used for training these models are imperfect and limited, which results
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in uncertainty in the model’s predictions.

Uncertainty is a fundamental concept that permeates various fields of study. While

specific definitions and interpretations of uncertainty may vary across these disciplines,

the core idea revolves around the notion of incomplete knowledge, variability, or am-

biguity in understanding, predicting, or estimating a particular situation, outcome, or

event.

2.2 Sources of uncertainty

In order to understand the problem of uncertainty quantification in ML it is first necessary

to understand the sources of uncertainty, as different types of uncertainty require different

modeling approaches.

The uncertainty is classified in different ways by different communities. However,

conceptually there are two fundamental sources of uncertainty categorized into aleatoric
uncertainty and epistemic uncertainty. Aleatoric uncertainty refers to the notion of random-

ness arising from the data complexity, multi-modality, and noise. Aleatoric uncertainty,

also known as data uncertainty, cannot be reduced because it is a property of the underly-

ing distribution that generated the data, rather than a property of the model. On the other

hand, epistemic uncertainty represents the uncertainty caused by a lack of knowledge of

the underlying process being modeled, either due to the uncertainty associated with the

model or the lack of data. In principle, this uncertainty can be reduced by providing

more knowledge, i.e extending the training data, better modeling, or better data analysis.

Figure 2.2 provides an example of an ECG diagnosis classification problem and illus-

trates the potential sources of uncertainty in the machine learning model process, from

the acquisition of raw information to the final machine learning prediction. Following

the example, the process begins with the data acquisition of a set of users, which will

serve as the training data for a machine learning model. However, the model is limited

to learning patterns from the training set and may be impacted by factors such as the

population type, medical devices used, or environmental conditions during acquisition.

Nevertheless, since most environments are constantly changing, factors like the intro-

duction of new medical devices or changes in the test population can affect the machine

learning model and lead to a significant decrease in performance. This variability of

real-world situations can lead to the propagation of (epistemic) uncertainty through the

model affecting its final prediction.

The second block in Figure 2.2 pertains to the measurements used for training the

models, which constitutes a source of aleatoric uncertainty. The measured data can be

imprecise due to noise from the sensors or movement during acquisition. Additionally,

limited information for directly mapping data to targets (e.g., ECG features to diagnosis)

is also a source of aleatoric uncertainty in the process. For instance, similar pathologies

can lead to high aleatoric uncertainty as a result of the overlap between classes.

9
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Figure 2.2: Illustration of the potential sources of uncertainty in a machine learning
pipeline for an ECG diagnosis classification problem with three classes (NSR: Normal,
AF: Atrial fibrillation, LBBB: Left bundle branch block). The sources of uncertainty are
depicted in dashed boxes. Variations in real-world factors, such as the use of different
medical devices or patient populations, can impact the testing data since machine learn-
ing models are only trained on limited information. The measured data is prone to errors
and noise introduced by the measurement systems, while labels may be impacted by
inter-rater variability. The assumptions made by the chosen machine learning model and
its final approximation also contribute to the overall predictive uncertainty. Examples of
testing data with uncertainty include noisy data, shifts in data distribution, and unseen
data (out-of-distribution).

Furthermore, the labels used for mapping data to targets can also be a source of

uncertainty when false labeling occurs. In the medical field, it has been observed that

variability among raters can directly impact the model’s uncertainty, as the same data

may have different ground truth annotations depending on the rater [14]. This source

of uncertainty is referenced as label noise or label uncertainty and reduces the model’s

confidence in the true class prediction during training.

Machine learning extracts models from data through the process of induction, which

is inherently linked to uncertainty [5]. Incorrect model assumptions are therefore an-

other source of uncertainty in the machine learning pipeline. We refer to this type of

uncertainty as model uncertainty, which is a part of epistemic uncertainty. The inference

process results in an approximation that combines the various sources of uncertainty,
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Figure 2.3: Artificial dataset used to illustrate the different sources of uncertainty in a
binary classification task.

contributing to the final predictive uncertainty.

In the testing phase, various sources of uncertainty can arise. We will describe the

three test scenarios depicted in Figure 2.2. An uncertainty-aware model designed to

detect cardiac pathologies using ECG data should exhibit high uncertainty in all these

scenarios. For instance, in the noisy data scenario, the test sample comes from the same

distribution as the training data, but the measurement system generates a noisy ECG

signal due to factors such as improper electrode placement or movement during the ex-

amination. In this case, the model should indicate high aleatoric uncertainty. The second

example presents a test sample from a different distribution than the training data, such

as a shift in the testing distribution caused by the introduction of a new electrocardio-

graph, resulting in high epistemic uncertainty. Similarly, high epistemic uncertainty is

evident in the third example when the model is tasked with predicting out-of-distribution

test data. For instance, an unseen pathology not used during model training would lie

outside the data distribution on which the model was trained.

2.2.1 Classification example

To illustrate the concept of aleatoric uncertainty and epistemic uncertainty more con-

cretely, consider an illustrative example using an artificial binary classification dataset,

shown in Figure 2.3.

This artificial dataset consists of a two-dimensional dataset with two classes, where

features from Class 1 were modeled with an unimodal Gaussian distribution, and features

from Class 2 were modeled as a bimodal distribution with a mixture of two Gaussian

distributions with highly unequal mass. The minor mode is approximately 5.5% of the

probability mass of the major mode.

Observing Figure 2.3, an intuitive conclusion is that no matter the learning algorithm

11
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used and its performance capabilities, in the overlap class regions it is not possible to

decide between the two classes without having a high uncertainty in that decision. More-

over, the regions in space where there are few or no data should also represent a high

uncertainty if a model is sought to predict in these regions. In Figure 2.4 a representation

of the mentioned regions is illustrated in gray, where aleatoric uncertainty is represented

by the two regions in space where there is an overlap between both classes and epistemic

uncertainty by the regions in space where it is little or no evidence of any class regardless

of being far/near from the decision boundary. In this example, the epistemic uncertainty

is only represented by the lack of data, however, the epistemic uncertainty also occurs

due to uncertainties associated with the learning algorithm used to model a given task.

In this work, we refer to knowledge uncertainty as the uncertainty related to the lack of

data, and we use the term model uncertainty to refer to the uncertainty related to the

model itself, i.e. the quality of the model fit on known data or uncertainty about the

model parameters. Thus, in Figure 2.4(b), only knowledge uncertainty is represented.

(a) Aleatoric uncertainty (b) Knowledge uncertainty

Figure 2.4: Illustration of aleatoric and knowledge uncertainty regions (in gray) for the
artificial dataset.

The representation of model uncertainty is not trivial and it depends on the learning

algorithm used to model the task. For illustration purposes, let us assume that a given

model produces a decision boundary for different bootstrap samples1. The differences

between decision boundaries of the same sample size, i.e. the maximum and minimum

decision boundary values, are represented by the dashed lines in Figure 2.5. The gray

region between the dashed lines can be seen as a representation of model uncertainty.

Note that with the increased number of samples, the uncertainty region representing

model uncertainty decreases and tends to near zero. Since decision boundaries are highly

dependent on the available data, slight differences in the bootstrap samples have a high

1Bootstrap samples are new datasets created by sampling with replacement from the original dataset.
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impact on model fit, especially in regions with little evidence. Although, increasing the

sample size results in a well-defined decision boundary.

N = 500 N = 1500 N = 2000

Figure 2.5: Illustration of model uncertainty region (in gray) with the increased sample
size for the artificial dataset. The dashed lines represent the maximum and minimum
decision boundaries obtained using a bootstrap approach. N in the lower right corner
indicates the dataset size.

2.3 Representing uncertainty

In recent years, researchers have shown an increased interest in estimating uncertainty

in machine learning. The most common method for estimating the uncertainty of a ma-

chine learning prediction, known as predictive uncertainty, involves separately modeling

the uncertainty caused by data, referred to as aleatoric uncertainty, and the uncertainty

caused by the model or knowledge, referred to as epistemic uncertainty. The methods for

separating these uncertainties will be discussed in Chapter 3.

Although different types of uncertainty should be measured differently, this distinc-

tion in ML has only received attention recently [5]. In particular, in the medical domain,

Senge et al. [15] proposed a method for quantifying the aleatoric and epistemic uncer-

tainty showing the usefulness and reasonableness of their approach. Also, in the literature

on deep learning, this distinction has been studied due to the limited awareness of neural

networks of their own confidence. The focus has been more on epistemic uncertainty

quantification since deep learning models are known as being overconfident with out-of-

distribution examples or even adversarial examples [16, 17]. Motivated by such scenarios,

several works have been developed for uncertainty quantification showing the usefulness

of distinguishing both types of uncertainty in the context of AI safety [15, 18–20]. Like-

wise, the ability to separately quantify uncertainty has been used in active learning as

a selection criterion for uncertainty sampling, where the selection of samples with high

epistemic uncertainty will provide more knowledge to the model, which should improve

the quality of the model and its capacity to generalize. Contrarily, the selection of sam-

ples with high aleatoric uncertainty is pointless, as aleatoric uncertainty is inherently
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irreducible. In this context, Nguyen et al. [10] compared the performance of both sources

of uncertainty using binary classification datasets and their results showed that epistemic

uncertainty outperforms aleatoric uncertainty as a selection criterion for active learning.

Gal et al. [21] and Sadafi et al. [11] obtained similar conclusions when using uncertainty

measures for active learning purposes.

To bridge the gap between the discussions on different types of uncertainty and their

applications in various fields of AI, we highlight the different representations of uncer-

tainty in a prediction between the different areas of AI. While each field is concerned

with a specific uncertainty source, none offers a complete view of all uncertainties present

in a typical ML problem. Structuring the methods in one common view is not possible

and there are various possibilities for providing a coherent division. In this section, we

adopted the broad division provided by Shafaei et al. [22] to briefly introduce these

closely related domains.

2.3.1 Uncertainty view

Currently, in dealing with uncertainty, probability theory is at a dominant position [13].

Probability theory provides a consistent framework for the quantification and manipu-

lation of uncertainty and forms one of the central foundations for pattern recognition

[23]. Based on probability theory, methods such as Monte Carlo, Bayesian, and Dempster-

Shafer evidence theory were developed.

Probability theory can deal with different sources of uncertainty in different ways.

While aleatoric uncertainty is measured in terms of the variability in the outcome of

an experiment due to inherently random effects, epistemic uncertainty is commonly

measured in terms of disagreement between potentially viable hypotheses.

Classical statistics and probability estimation are well-established in machine learn-

ing to represent uncertainty in a prediction. Methods trained for inducing one single hy-

pothesis or following basic frequentist techniques are mostly concerned with the aleatoric

part of the overall uncertainty. Naive Bayes or nearest neighbor classifiers are examples of

such methods. In these kinds of methods, it is important to apply calibration techniques

to turn their scores into well-calibrated probabilities [5]. Otherwise, Logistic regression,

Bayesian networks, or Gaussian processes are examples of well-known methods that out-

put probability estimates from a hypothesis space instead of point predictors. Therefore,

these methods provide information about both aleatoric and epistemic uncertainty [5].

A more detailed explanation of different methods under this uncertainty view will be

described in Chapter 3.

2.3.2 Anomaly view

An intuitive idea to measure knowledge uncertainty is to use methods that focus on

anomaly, outlier, and/or novelty detection. Anomaly or outlier detection is the process

of identifying samples that deviates from the training dataset.
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Density estimation is commonly used by these approaches to reject test inputs located

in low-density regions. These low-density regions, where no training inputs have been

encountered so far, represent a high knowledge uncertainty. Traditional methods, such as

KDE, can be used to estimate densities, and often threshold-based methods are applied

on top of the density where a classifier can abstain from predicting a test input in that

region [24]. Distance-based methods are also well established in the anomaly and outlier

detection field. These methods rely on a distance measure within the train data to define

a threshold for what is considered an anomaly or outlier. Examples of popular approaches

within anomaly detection include Local Outlier Factor, Isolation Forest, and one-class

SVM algorithms.

The research field of anomaly and outlier detection is large and numerous methods are

continuously being proposed in literature [25]. Although important, we will not describe

such methods in detail, but highlight this research field due to its tight connection with

knowledge uncertainty. In particular, in the area of deep learning, the problem of outlier

detection is usually referred to as OOD detection. This topic is particularly important

in deep neural networks and has been recognized by several studies showing that deep

neural networks usually predict OOD inputs with high confidence [26, 27].

2.3.3 Novelty view

Novelty detection tries to identify novel or unusual data from a dataset. This particular

task is often referred to as the Open Set Recognition (OSR) scenario. The OSR approach

is similar to OOD detection and can be viewed as tackling both the classification and

novelty detection problem at the same time. Contrary to the OOD detection, the novel

classes that are not observed during training are often made up of the remaining classes

in the same dataset. This task is probably harder because the statistics of a class are often

very similar to the statistics of other classes in the dataset [28]. In each case, the goal is

to correctly classify inputs that belong to the same distribution as the training set and to

reject inputs that are outside this distribution.

A number of approaches have been proposed in the literature for OSR problem [29,

30]. A popular approach is the one-class classification since it focuses on the known

class and ignores any additional class. Binary classification with the one-vs-all approach

can also be applied to the open-set recognition [31]. In this scenario, when there is no

in-distribution classification from the binary classifiers, the test sample is classified as

unknown. Different adaptions of one-class classification and variations of the SVM have

been applied aiming at minimizing the risk of the unknown classification [32–34].

Distance-based approaches are considered more suitable to open-world scenarios

since the addition of new classes to existing classes can be made at near-zero cost [35].

Distance-based classifiers with a rejection option are easily applied to OSR because the

classifiers can create a bounded known space in the feature space, rejecting test inputs

that are far away from training data. For instance, the Nearest Class Mean classifier is a
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distance-based classifier that represents classes by the mean feature vector of their ele-

ments [35]. The problem for most of the methods dealing with rejection by thresholding

the similarity score is the difficulty of determining such a threshold that defines whether

a test input is an outlier or not. In this context, Júnior et al. [36] extended the traditional

close-set nearest neighbor classifier by applying a threshold on the ratio of similarity

scores of the two most similar classes and called it Open Set Nearest Neighbors.

2.3.4 Abstention view

The process of abstaining from producing an answer or discarding a prediction when the

system is not confident enough is more than 60 years old and was introduced by Chow

[37]. The purpose of abstention is to incur a lower cost than the cost of misclassification

and it is primarily associated with the uncertainty view where a change of the learning

problem gives models the choice of abstaining from prediction at the cost of a penalty.

Chow’s theory suggests that objects are rejected for which the maximum posterior prob-

ability is below a threshold. If the classifier is not sufficiently accurate for the task at

hand, then one can take the approach not to classify all examples, but only those whose

posterior probability is sufficiently high. Chow’s theory is suitable when a sufficiently

large training sample is available for all classes and when the training sample is not con-

taminated by outliers [38]. Fumera et al. [39] showed that Chow’s rule does not perform

well if a significant error in the probability estimation is present. In that case, a different

rejection threshold per class has to be used. In classifiers with a rejection option, the key

parameters are the thresholds that define the rejection area, which may be hard to define

and may vary significantly in value, especially when classes have a large spread.

Using these methods, the rejection is mostly applied to samples with high aleatoric

uncertainty, since it has been argued that probability distributions are less suitable for

representing ignorance in the sense of a lack of knowledge [5]. Alternatively, more re-

cent works [40–42], included the classification with rejection with a distinction between

aleatoric and epistemic uncertainty using ensemble techniques and/or deep learning ap-

proaches. For the classification with rejection, a confidence threshold value needs to be

defined indicating the rejection point. Different cost-based rejection methods have been

proposed to minimize the classification risk [43, 44]. In probabilistic classifiers, risk can

derive from the observation of the output probabilities employing different metrics, such

as the least confidence, margin of confidence, variation ratios, and predictive entropy

[6]. Thus, although the abstention view is directly applied to the uncertainty view, both

anomaly and novelty views can be easily applied under the concepts of abstaining where

a rejection function is learned to reject unknown inputs.
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2.4 Final remarks

This chapter discussed the main concepts of uncertainty quantification in machine learn-

ing and their intrinsic relationship with classification with rejection option. We formulate

the problem of this research as a supervised machine learning classification setting with

a rejection option where uncertainty quantification is modeled along the ML pipeline. Be-

sides the typical division between aleatoric and epistemic uncertainty, we further divided

the epistemic uncertainty into two additional categories, namely knowledge uncertainty

and model uncertainty. Although these terms are commonly used to refer to the broad

view of epistemic uncertainty, we refer to knowledge uncertainty as the uncertainty re-

lated to the lack of data, i.e. to the regions in space where there is little or no evidence of

any class regardless of being far/near from the decision boundary. On the other hand, we

refer to model uncertainty as the uncertainty related to the model itself, i.e. the quality

of the model fit on known data or uncertainty about the model parameters.

Figure 2.1 summarizes the main idea of our research work, where uncertainties are

present in all components of ML systems under different sources. More specifically,

Data (x) used to feed ML models are limited in their accuracy and potentially affected

by various kinds of quality issues, which limits the models from being applied under

optimal conditions [45, 46]. For example, the uncertainty caused due to errors in the

measurement might affect the performance of a given classification task. Although the

aleatoric uncertainty is supposed to be irreducible for a specific dataset, incorporating

additional features or improving the quality of the existing features can assist in its

reduction [47]; For a given classification task, several machine learning Models (f) can be

applied and developed. The choice of a model is arguably important and is often based

on the degree of error in the model’s outcomes. However, besides the models’ accuracy,

the use of uncertainty quantification methods during model development can provide

important elements to choosing the right model for the problem at hand. Moreover,

understanding the model’s uncertainty during training can give us insights into the

specific limitations of each model and help in developing more robust models; After

the model’s training, estimating and quantifying uncertainty in a transductive way, in

the sense of tailoring it to individual instances, is arguably relevant, all the more in

safety-critical applications. For instance, in the context of computer-aided diagnosis

systems, a Prediction (y) with high uncertainty shall justify either disregarding its output

or conducting further medical examinations of the patient. In the latter, the goal is

to retrieve additional evidence that supports or contradicts a given hypothesis. In the

former, it is the case of classification with rejection, where a Decision can be either the

acceptance of the ML prediction or its rejection, since the presence and cost of errors can

be detrimental to the performance of automated classification systems [48].
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3

Uncertainty Quantification in

Machine Learning

In the previous chapter, we formulate our problem as a supervised machine learning

classification task with a rejection option through an uncertainty quantification approach.

This chapter will provide an overview of various methods for estimating uncertainty in

machine learning, followed by the relevant uncertainty measures for assessing the quality

and impact of uncertainty estimates. Throughout this section, we will reference notable

works in the field of uncertainty estimation.

For a comprehensive analysis of uncertainty estimation methods, we propose a dis-

tinction between two main groups of uncertainty learning methods: Single Methods and

Bayesian Methods. Single methods, encompasses uncertainty techniques that rely solely on

a single model for the prediction task and can be either deterministic or generative. These

methods can be further categorized into internal and external approaches depending if

an additional component is used for uncertainty estimation (see Figure 5.3). Under the

category of external approaches, we will present our proposed method for estimating

knowledge uncertainty. Bayesian Methods describes uncertainty techniques that adopt a

Bayesian perspective, including various approximation techniques. These methods are

further divided into stochastic and ensemble approaches. The former covers all kinds of

stochastic models, where each forward pass of the same input generally produces differ-

ent results, while the latter encompasses ensemble methods that combine the predictions

of multiple ensemble members to produce a final prediction and uncertainty estimation.

Figure 5.3 summarizes these two primary methods of uncertainty estimation, which are

further divided into two categories with illustrations of the underlying reasoning behind

each uncertainty technique. It should be noted that while a neural network is used for

visualization, the methods described in this chapter are not specific to neural networks or

deep learning, and can be applied in a more general context to both traditional machine

learning and deep learning.

After uncertainty estimation methods, we will introduce performance metrics to as-

sess the quality of uncertainty estimates, and we will cover calibration techniques that
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Figure 3.1: Overview of uncertainty estimation methods. Single methods are categorized
into Internal and External approaches, with the latter using an additional component
for uncertainty estimation. Bayesian methods are further divided into stochastic and
ensemble approximations.

are important for ensuring that models are well-calibrated and that uncertainty measures

based on probabilities can be used reliably. The chapter will conclude with an experimen-

tal analysis comparing our proposed uncertainty estimation method with other state-of-

the-art methods for two experimental classification tasks: 1) Classification with rejection

option based on a combination of different uncertainty measures; 2) Effectiveness of

uncertainty estimation measures in distinguishing in- and out-distribution inputs.

3.0.1 Notation

As standard notation to introduce uncertainty estimation methods throughout this chap-

ter, let us consider a standard setting of supervised learning with a finite training dataset,

D = {(xi , yi)}Ni ⊂X×Y, with N samples, composed of pairs of input instances x and out-

comes y, where X is an instance space and Y the set of outcomes that can be associated
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with an instance. For the purpose of visualization, we will use the Iris flower dataset

which is commonly employed as a benchmark dataset for classification tasks. The dataset

consists of four features and three different Iris species. To simplify the visualization

process, we will only use two features: the sepal length and the petal length. Regarding

the classification learning algorithms1, we will use a Naïve Bayes using a Gaussian distri-

bution, a Random Forest (maximum depth of 3), a KNN where k was set to 7 neighbors

and SVM with the RBF kernel.

3.1 Uncertainty estimation: Single methods

We define single methods as methods that, for the same input, always give the same pre-

diction and are based on a single hypothesis. Following the taxonomy proposed in the

context of neural networks by Gawlikowski et al. [49] we also divide these methods into

two categories: Internal and External. External methods are based on additional com-

ponents that evaluate the uncertainty separate from the prediction task, while internal

methods depend directly on the hypothesis of the underlying predictor.

3.1.1 Internal approaches

For the internal methods, the most straightforward way of quantifying uncertainty is by

using the output of the classification task that represents the class probabilities. There-

fore, in a classification task, a simple uncertainty measure given by the confidence in

a prediction x can be obtained by the probability of the predicted class, or maximum

probability, by the following equation

p(ŷ|x) = max
y∈Y

p(y|x) (3.1)

Additionally, the entropy of the predictive posterior modeled by the (Shannon) en-

tropy, is the most well-known measure of uncertainty of a single probability distribution.

For discrete class labels is given by Equation 3.2:

H[p(y|x)] = −
∑
y∈Y

p(y|x) log2p(y|x) (3.2)

Both maximum probability and entropy of the predictive posterior distribution can

be seen as measures of the total uncertainty in predictions [19]. These measures of

uncertainty for probability distributions primarily capture the shape of the distribution

and, hence, are mostly concerned with the aleatoric part of the overall uncertainty and

their reliability depends on the probabilistic predictor used. For instance, methods that

follow basic frequentist techniques, such as Naïve Bayes or nearest neighbor, return scores

1The non-mentioned algorithms’ hyperparameters were set to the default values of the python module
for machine learning scikit-learn (version 1.2.1).
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that must be calibrated to represent well-calibrated probabilities [5]. Neural networks

are also known for their overconfident predictions due to poorly calibrated outputs [49].

Figure 3.2 displays the uncertainty values obtained for both maximum probability

and predictive entropy using the Iris dataset and four different classification algorithms.

Each model provides different uncertainty regions due to different decision boundaries.

Regardless of the algorithm used, regions where there is an overlap between classes

always produce high uncertainty values. In areas with low density, the behavior varies de-

pending on the algorithm used. However, all algorithms have low uncertainty in regions

without data, demonstrating the limitation of using only these uncertainty measures.

Comparing maximum probability (upper plots) and predictive entropy (lower plots), the

obtained uncertainty values are similar with slight differences in the uncertainty value

ranges. Both colorbars are set to the minimum and maximum theoretical values of each

uncertainty measure.
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Figure 3.2: Uncertainty values for different classification algorithms using the maximum
probability (upper plots) and predictive entropy (lower plots) as uncertainty measures.
The sepal length and petal length features of the Iris dataset are used. The colorbars are
set to the minimum and maximum theoretical values of each uncertainty measure.

Within the area of deep learning, there are several approaches where neural networks

are explicitly modeled and trained to quantify both aleatoric and epistemic uncertainties

[19, 20]. In these approaches, along with the uncertainty quantification, the training pro-

cedure and network’s predictions are affected. More in the realm of anomaly or outlier

detection, different approaches tailored for neural networks have been proposed to detect

OOD inputs without changing the underlying predictor model and taking advantage

of its logits values (the unnormalized predictions of the model), or embeddings repre-

sentations (low-dimensional representations of discrete data as continuous vectors). We

highlight a few representative works in the context of deep learning, such as the Max-

imum Logit score [50], Mahalanobis distance-based confidence score [51] and energy
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[52] or joint energy for multilabel setting [53]. Although these approaches are not de-

veloped to explicitly quantify uncertainty, they can be seen as a measure of knowledge

uncertainty.

3.1.2 External approaches

External methods are trained directly to quantify uncertainty and therefore are indepen-

dent of the prediction task. There are some studies that argue that uncertainty quantifi-

cation and prediction tasks should be two separate tasks for uncertainty quantification

to be unbiased [54]. In this context, anomaly, outlier, or novelty methods can be used as

a measure of knowledge uncertainty. Generative models that typically rely on densities

are an intuitive idea to access knowledge uncertainty. In traditional machine learning,

popular approaches are based on the one-class classification and its variations with SVM

classifier. Additionally, some more popular approaches in this area include isolation

forests [55], auto-encoders [56], and local outlier factor [57].

Alternative approaches to uncertainty quantification have been proposed in the lit-

erature, such as conformal prediction [58, 59]. Conformal predictions is a classical fre-

quentist technique centered around hypothesis testing that provides error bounds on a

per-instance basis without requiring prior probabilities. For classification problems, con-

formal predictions transform single-class predictions into set predictions. This transition

from point estimation to set estimation inherently involves a sense of uncertainty. For ex-

ample, a sample with multiple classes prediction indicates that the classifier is uncertain

about the correct class, while a prediction with a single class implies confidence in the

prediction. In this context, two common metrics for uncertainty quantification applied to

conformal predictions are credibility, which measures the likelihood that a sample comes

from the training set, and confidence, which estimates the level of certainty the model

has that the prediction is a singleton.

3.1.2.1 Knowledge Uncertainty Estimation

During the course of this project, we introduced an agnostic measure named Knowledge

Uncertainty Estimation (KUE) [12] in the context of external approaches.1

To introduce KUE, let us assume an OSR problem, where a model is trained only over

in-distribution data, denoted by the distribution Qin, and tested on a mixture distribution

with in- and out-distribution inputs, drawn from Qin and Qout where the latter represents

the out-distribution data. Thus, a model is trained to correctly identify the class label

from Qin and to reject unknown classes not seen in training from Qout. KUE measure acts

in combination with every ML model, measuring the uncertainty associated with each

prediction to reject samples with high uncertainty. In Figure 3.3 an overview of the main

steps of KUE is presented.

1KUE measure reflects a joint work with Catarina Pires as part of her Master’s project, and it has already
been published in the Machine Learning and Knowledge Extraction Journal.
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Figure 3.3: Overview of the main steps of the proposed knowledge uncertainty measure
(KUE).

KUE is a distance-based measure derived from a normalization of the training fea-

tures density distributions. During the training phase, the input feature distributions

are learned and used for uncertainty estimation during testing. More specifically, uncer-

tainty is modeled through a combination of a normalized density estimation over input

feature space for each known class. Assuming an input xi represented by P -dimensional

feature vectors, where fj ∈ {f1, . . . , fP } is the feature vector in a bounded area of the feature

space, an independent density estimation of the P features conditional by the class label

is estimated and normalized by its maximum density, in order to set all values in the

interval [0,1]. Thus, each feature density is transformed on an uncertainty distance, dunc,

assuming values in [0,1], where 1 represents the maximum density seen in training, and

near-zero values represent low-density regions where no training inputs were observed

during training. The combination between each feature distance is computed by the

product rule over whole features. Thus, given a test input xi from class yk its associated

uncertainty, KUE(xi |yk), is calculated by Equation 3.3:

KUE(xi |yk) = 1−

 P∏
j=1

dunc(fj |yk ,xi)


1
P

(3.3)

Figure 3.4 shows the uncertainty values obtained from the Iris dataset using the KUE

measure. While KUE is an external method that does not affect the prediction task, its

results depend on the predictive performance of the classification algorithm. The slight

variations in the obtained uncertainty values using different learning algorithms are due

to differences in the predicted class for the same input. However, high uncertainty values

are consistently observed in low-density regions.
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Figure 3.4: Uncertainty values for Iris dataset using KUE measure and four classification
algorithms: Naïve Bayes, Random Forest, KNN and SVM. High uncertainty is consistently
observed in low-density regions.

The decision to reject a sample is done by an uncertainty threshold. A common ap-

proach to defining a threshold for OOD samples is to use a certain amount of OOD data

as a validation set. However, this approach is unrealistic due to the proper definition of

OOD samples that come from an unknown distribution, leading to a compromised perfor-

mance in real-world applications, as Shafei et al. [60] showed in their study. Therefore, we

argue that a more realistic approach is to learn a threshold only from in-distribution data.

Due to the differences between data from different datasets, learning a global threshold

for all datasets is not a reliable approach. Therefore, our hypothesis is that if we learn the

training uncertainty distribution for each class within a dataset, there is a specific thresh-

old for each distribution that will bound our uncertainty space, so that input samples that

fall outside the upper bound threshold are rejected. In our work, the upper bound thresh-

old is defined based on a predefined percentile from the training uncertainty distribution.

The percentile choice is defined according to different application scenarios, whether

the end-user is willing to reject more or less in-distribution samples. As train and test

in-distribution data come from the same distribution it is expected that the percentage of

reject samples from test data will represent approximately 10% if the chosen percentile

is set to 90%. From this 10% we can also argue that a certain percentage can represent

classification errors or, if rejected samples were correctly classified, the classification was

done under limited evidence so that a high uncertainty is associated with that decision.

Thus, the rejection rule for input sample xi for in- and out-distribution is given by g(xi |yk)

in Equation (3.4), where Pr [U (yk)] represents the uncertainty value for the r-th percentile

of the train uncertainty data distribution associated with class yk . The output values −1

and 1 mean that the input sample xi is rejected or accepted, respectively:

g(xi |yk) =

−1 if KUE(xi |yk) > Pr [KUE(yk)]

1 otherwise
(3.4)
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3.2 Uncertainty estimation: Bayesian methods

Bayesian inference can be seen as the main representative of probabilistic methods and

provides a coherent framework for statistical reasoning that is well-established in ma-

chine learning [5]. The Bayesian interpretation of probability views probability as ex-

pressing a degree of belief or information (knowledge) about an event.

For a detailed description, suppose a hypothesis space Hof probabilistic predictors,

where a hypothesis h maps instances x to probability distributions on outcomes y, each

hypothesis can be considered as an explanation of how the world works. Samples from

the posterior distribution should yield explanations consistent with the observations of

the world contained within the training data, D [61].

From a Bayesian perspective, each hypothesis is equipped with a prior distribution

p(h), and the posterior distribution, p(h|D), can be computed via the Bayes rule,

p(h|D) =
p(D |h)p(h)

p(D)
(3.5)

where p(D |h) is the probability of the data given h.

The representation of uncertainty about a prediction is given by the posterior distribu-

tion, where the belief about the outcome y is represented by a second-order probability:

a probability distribution of probability distributions [42]. In this type of Bayesian infer-

ence, a given prediction is obtained through model averaging, i.e., different hypotheses h

provide predictions, which are aggregated in terms of a weighted average. The predictive

posterior distribution is given by:

p(y|x) =
∫

p(y|x,h)dP (h|D) (3.6)

Therefore, the predicted probability of an outcome y is the expected probability p(y|x,h),

where the expectation over the hypotheses is taken with respect to the posterior distri-

bution, P (h|D). However, since model averaging is often difficult and computationally

costly, in machine learning, it is common to use the highest posterior probability to make

predictions that consider a single hypothesis [5] or to apply approximation techniques

such as the Monte Carlo methods or ensemble methods.

In order to assess the quality of these approximations, uncertainty measures have

to be applied to the derived uncertainty estimation methods to quantify the different

predicted types of uncertainty.

Assuming a single hypothesis, i.e a single probability distribution, the maximum class

probability (Equation 3.1) and Shannon entropy (Equation 3.2) measures can be applied

to obtain a measure of aleatoric uncertainty.

However, taking advantage of approximation techniques, where predictive posterior

distribution is approximated by a finite set of Monte Carlo samples or by the individual

ensemble members’ predictions, the predictive variance of the M predictions is a measure

of epistemic uncertainty given by:
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σ [p(y|x)]2 =
1
M

M∑
i=1

(p(y|hi ,x)− p̄)2 (3.7)

where p̄ is defined as p̄ = 1
M

∑M
i=1p(y|hi ,x)

Additionally, instead of considering the probability variance, one can consider the

variation ratios that measure the variability of predictions by computing the fraction of

samples with the correct output. This heuristic is a measure of the dispersion of the

predictions around its mode [40]. For a given instance x, with M output predictions, the

variation ratios is calculated as follows,

vr(x) = 1−
∑M

i=1⟦ŷi = ŷ⟧

M
(3.8)

where ŷ corresponds to the sampled majority class obtained and ⟦ŷi = ŷ⟧ is an indicator

function that takes the value 1 if the expression is true, and to 0 otherwise.

In Figure 3.5, we present the obtained uncertainty values for the Iris dataset using

both probability variance and variation ratios. Since only Random Forest is an ensemble

method, we used a bootstrap approach to obtain a set of 20 Monte Carlo samples for Naïve

Bayes, KNN, and SVM. Comparing both measures, although they are similar, the varia-

tion ratio has a greater impact on the uncertainty values than the probability variance.

Changes in the predicted label have a significant impact on the variation ratio measure,

whereas the impact on the probability variance measure is lower. In variation ratios,

we are merely counting changes in the predictions, whereas, in probability variance, we

are averaging the differences in the prediction probabilities. For instance, in the KNN
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Figure 3.5: Uncertainty values for different classification algorithms using the probability
variance (upper plots) and variation ratios (lower plots) as uncertainty measures. The
sepal length and petal length features of the Iris dataset are used. The colorbars are set
to the minimum and maximum theoretical values of each uncertainty measure.
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and SVM classifier, the differences between probability variation and variation ratios are

quite evident. We note that both measures have their colorbars fixed to the minimum

and maximum theoretical values. Moreover, although these measures are referred to as

epistemic uncertainty measures, they are both measuring the uncertainty related to the

model, which we refer to as model uncertainty.

Furthermore, an explicit attempt at measuring and separating aleatoric and epistemic

uncertainty was made by Depeweg et al. [62] who proposed an approach to quantify and

separate uncertainties with classical information-theoretic measures of entropy. Although

the approach was proposed in the context of neural networks for regression, the authors’

idea was more general and can also be applied to other settings, such as in the work

of Shaker et al. [41], where measures of entropy were applied using a random forest

classifier, or the work of Malinin et al. [61], who adopted these measures in the context

of gradient boosting models. In more detail, the total uncertainty is measured in terms

of the entropy of the predictive posterior distribution approximated by:

ut(x) := −
∑
y∈Y

 1
M

M∑
i=1

p(y|hi ,x)

 log2

 1
M

M∑
i=1

p(y|hi ,x)

 (3.9)

The aleatoric uncertainty is measured considering the average entropy of each indi-

vidual prediction in terms of the expectation over the entropies of distributions. The

idea is that by fixing a hypothesis h, the epistemic uncertainty is essentially removed. Its

approximation is given by Equation 3.10:

ua(x) := − 1
M

M∑
i=1

∑
y∈Y

p(y|hi ,x) log2p(y|hi ,x) (3.10)

Then, epistemic uncertainty is measured in terms of mutual information between

hypotheses and outcomes and can be expressed as the difference between the total un-

certainty, captured by the entropy of expected distribution, and the expected data uncer-

tainty, captured by the expected entropy of each individual prediction [19],

ue(x) := ut(x)−ua(x) (3.11)

Thus, epistemic uncertainty is high if the distribution p(y|h) varies a lot for different

hypotheses h with high probability but leading to quite different predictions.

Figure 3.6 shows the decomposition of uncertainty using the classic information-

theoretic measures of entropy. Although the range of uncertainty values varies depend-

ing on the uncertainty measure used, the conclusions are similar to those drawn from

the previous visualizations. Moreover, the epistemic uncertainty obtained from this de-

composition is also a measure of model uncertainty and exhibits similar behavior to that

observed in Figure 3.5.

Note that in the context of neural networks, epistemic uncertainty is commonly as-

sociated with uncertainty about the model parameters, normally referred to as weights
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Figure 3.6: Uncertainty values for different classification algorithms using the decomposi-
tion of entropy measures. From top to down total uncertainty, aleatoric uncertainty, and
epistemic uncertainty.

w. In a classical neural network, the weights are a point estimate. However, a Bayesian

extension of deep neural networks was proposed [63, 64], known as Bayesian Neural

Network (BNN), where a probability distribution is assigned to each weight, instead of

a real number. In this setting, the mathematical formulation of the posterior predictive

distribution is as follows:

p(y|x,D) =
∫

p(y|x,w)p(w|D)dw (3.12)

In the previous equations, we use the notation of hypothesis to make the interpreta-

tion more general. Nonetheless, in the case of neural networks, a hypothesis h can be

interpreted by a weight vector w.

3.2.1 Stochastic methods

Most Bayesian inference involves the approximation of integrals that are analytically

intractable. This is particularly relevant for Bayesian models that involve the evaluation

of complex, high-dimensional integrals. With the advancements in computing technology,

a variety of methods have emerged for performing Bayesian inference using different

types of approximations. These include analytical approximations such as the Laplace
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3.2. UNCERTAINTY ESTIMATION: BAYESIAN METHODS

approximation and variational methods, as well as Monte Carlo methods, which are now

widely used in Bayesian machine learning.

In Variational inference [65], the goal is to approximate a distribution that is close

to the posterior distribution obtained by the model, using a predefined parameterized

family of distributions, called the variational distribution. Variational inference transforms

the problem of finding the posterior into an optimization problem. This optimization

is performed by minimizing the Kullback-Leibler divergence between the variational

distribution and the true posterior.

Peterson and Anderson [66] is arguably the first variational procedure for a particular

model, a neural network [65]. Later, Hinton and Van Camp [67] proposed a variational

algorithm for a similar neural network model, where the authors derived a diagonal

Gaussian approximation to the posterior distribution of neural networks. Several modern

approaches can be viewed as extensions of these early works [49].

Another important example in variational methods is Monte Carlo Dropout (MC

Dropout) [68], which approximates the posterior with a product of Bernoulli distributions.

The method consists of training a neural network with dropout layers, i.e. in each iteration

a randomly selected subset of weights is set to zero, and then at the testing time, the

predictive uncertainty can be obtained by keeping the dropout active. This work lies

at the intersection of variational inference and sampling methods as it reformulates the

inherent stochastic elements in neural networks as a form of variational inference.

Monte Carlo methods (also known as sampling approaches), represent uncertainty with-

out a parametric model, using a set of samples drawn from the distribution [69]. This

kind of approximation has the advantage of not being restricted by the type of distribu-

tion. Examples of Monte Carlo methods include Markov Chain Monte Carlo, importance

sampling, rejection sampling, and particle filtering [49]. In the context of BNN, Neal [70]

introduced the Hybrid Monte Carlo method as a way to perform Bayesian inference in

neural networks. The Hybrid Monte Carlo method combines gradient-based optimization

with Markov Chain Monte Carlo sampling to overcome the difficulties associated with

high-dimensional posterior distributions in deep learning models. This work is consid-

ered one of the earliest contributions to Bayesian deep learning and has since inspired

many follow-up studies and extensions.

Finally, the Laplace approximation approximates the posterior distribution of model

parameters using a multivariate Gaussian distribution. The idea behind Laplace ap-

proximation is to find the mode of the posterior distribution and then fit a Gaussian

distribution to the posterior distribution in the neighborhood of the mode. This approx-

imation is based on the assumption that the posterior distribution is locally Gaussian

near its mode, which is often a reasonable assumption in practice. The Laplace approxi-

mation is fast and easy to implement, and it is often used as a computationally efficient

alternative to more complex approximation methods. It is applied as a post-hoc method,

meaning that it can be used after a model has been trained to provide an estimate of the

posterior distribution. Mackay [63] and Denker et al. [71] have pioneered the Laplace
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approximation for neural networks, and several modern methods provide an extension

to deep neural networks [49].

3.2.2 Ensemble methods

Ensemble methods have long been recognized as very effective in improving the perfor-

mance of machine learning and deep learning models with better generalization capabil-

ities due to the use of synergy effects among different models, arguing that a group of

decision-makers tends to make better decisions that a single decision-maker [49].

Ensemble methods were originally not introduced to explicitly handle and quantify

uncertainties. Although using ensembles as an approximation of Bayesian methods is

a concept that has been applied in several machine learning and statistical models [72].

The motivation behind using ensembles as a Bayesian approximation is that they can

provide a way to incorporate model uncertainty into the predictions. By aggregating

the predictions of multiple models, an ensemble can provide a robust estimate of the

posterior distribution, capturing different sources of uncertainty that might be present in

individual models.

Instead of directly approximating the posterior p(h|D), as performed with Bayesian

methods, the aim of ensembles is to obtain multiple modes of the posterior, where the

set of hypotheses can be used as the posterior samples obtained with Bayesian techniques

[73]. Therefore, within a Bayesian framework, the variance of the predictions generated

by an ensemble is inversely related to the “peakedness” of a posterior distribution. As a

result, an ensemble can be viewed as an approximation of the second-order distribution

in a Bayesian setting [5].

Thus, the output of an ensemble is given by the mean of the predictions, while the

variance corresponds to the epistemic uncertainty. The intuition behind ensemble uncer-

tainty is simple. Assuming that the predictive posterior distribution is approximated by

a finite ensemble of M hypotheses, different hypotheses will tend to output similar values

when the inputs are similar to the observed training data. However, as inputs become

less similar to the training data, the outputs of each hypothesis tend to be more affected

by the specificities of the sub-optimal solution reached, thus the higher variance [74].

Different approaches can be applied to create an ensemble. In the context of deep

learning, one popular approach was introduced by Lakshminarayanan et al. [72] where

the same network is trained M independently times using different parameter initializa-

tion on the whole dataset. On the contrary, Bootstrapping, also known as Bagging, is

another popular technique that instead of training a model on the whole dataset, varies

the distribution of the used training set by sampling new sets of training samples from the

original set. Each bootstrap sample is obtained by sampling from the training data uni-

formly and with replacement [75]. In order to maximize the variety among the members

of an ensemble, the combination of different algorithms (or different network architec-

tures) is also commonly applied [76].
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Ensemble methods can be computationally expensive, as they require training multi-

ple models, but they can provide a powerful approximation of Bayesian methods in cases

where the posterior distribution is complex or high-dimensional.

3.3 Uncertainty evaluation measures

The empirical evaluation of methods for quantifying uncertainty is a non-trivial problem

due to the lack of ground truth uncertainty information. A common approach for indi-

rectly evaluating the predicted uncertainty measures is by accessing their usefulness to

improve classification performance. In this sense, ranking-based methods can be used to

evaluate the uncertainty measures’ capability of ordering predictions based on their own

uncertainty estimation. The idea is to evaluate how the classification performance varies

as a function of the percentage of rejections. If a measure is able to quantify its own uncer-

tainty well, the classification performance should improve with an increasing percentage

of rejections. As an example, accuracy-rejection curves, which depict the accuracy of a

predictor as a function of the percentage of rejections are commonly used in literature

[77, 78]. However, this approach can only be directly applied to compare different un-

certainty measures using the same predictive model since the classification performance

curves depend not only on the uncertainty ordering but also on the predictive model

performance.

Therefore, for a fair comparison between uncertainty measures obtained from differ-

ent predictive models, the Area Under the Confidence-Oracle (AUCO) error introduced

by Scalia et al. [74] is more suitable. AUCO computes the area between the theoreti-

cally perfect ordering (obtained from the oracle confidence curve) and the ordering made

by each uncertainty measure. The oracle confidence curve represents the best possible
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Figure 3.7: Representation of a confidence curve derived from an uncertainty measure
depicted by a solid line, the oracle confidence curve depicted by a dashed line, and the
Area Under the Confidence-Oracle (AUCO) depicted in grey.
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ordering of predictions by their confidence, with the true error imposing the ordering.

The AUCO value is calculated as the area under the curve representing the difference be-

tween the given uncertainty estimation and the oracle confidence curve. Smaller values

of AUCO indicate that the given uncertainty estimation is closer to the oracle confidence

curve and therefore is a better predictor of uncertainty. In Figure 5.10 an example of an

oracle confidence curve conf o, a confidence curve derived from an uncertainty measure

conf u and the corresponding AUCO is shown. The formula of AUCO is as follows:

AUCO =
∫ 1

0
(conf u

r − conf o
r )dr (3.13)

where conf u is the confidence curve for a given uncertainty estimation, conf o is the oracle

confidence curve and r is the fraction of rejections. Thus, the integration is performed

over the range of confidence values.

Additionally, in recent studies, the two most common measures to evaluate uncer-

tainty methods in the task of distinguishing in-distribution and out-of-distribution sam-

ples are the ROC curve and the PR curve. Both methods generate curves based on different

thresholds of the underlying measure. The ROC curve depicts the relationship between

the True Positives Rate (TPR) and False Positives Rate (FPR), while the PR curve plots the

precision against the recall. These curves give a visual idea of how well the underlying

measures are suited to distinguishing in-distribution and out-of-distribution samples,

but for a quantitative evaluation, the AUROC and AUPR metrics are commonly applied.

Both metrics have the advantage of being threshold-independent performance metrics. A
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Figure 3.8: Uncertainty evaluation measures for distinguishing in-distribution and out-of-
distribution samples. On the left, the ROC curve is depicted by a solid line, the random
predictor is depicted by a dashed line, and the AUROC is shown in grey. On the right, the
PR curve is depicted by a solid line, the random predictor is depicted by a dashed line,
and the AUPR is shown in grey.
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representation of ROC and PR curves, as well as the corresponding AUROC and AUPR

metrics, can be seen in Figure 3.8. AUROC can be interpreted as the probability that a

positive example is assigned a higher detection score than a negative example. Conse-

quently, a random positive example detector corresponds to a 50% AUROC, and a perfect

detector corresponds to an AUROC score of 100% [79].

For the interpretation of AUPR, the baseline detector has an AUPR approximately

equal to the precision [80], and a perfect detector has an AUPR of 100%. Consequently,

the base rate of the positive class greatly influences the AUPR, so the AUPR-In and AUPR-

Out are commonly used, where in-distribution and out-distribution inputs are specified

as negatives and positives, respectively. The AUPR is sometimes deemed as more informa-

tive than AUROC because the AUROC is not ideal when the positive class and negative

class have greatly differing base rates.

As threshold-dependent measures, recent studies in the literature are evaluating un-

certainty estimations based on the concept of binary confusion matrix [81, 82]. In this

context, predictions are classified as correct or incorrect, and, depending on a threshold,

predictions are also classified as certain or uncertain. As a result, four combinations

are identified: (i) True Certainty (TC): correct and certain; (ii) True Uncertainty (TU):

incorrect and uncertain; (iii) False Uncertainty (FU): correct and uncertain; and (iv) False

Certainty (FC): incorrect and certain. Based on these combinations, the following met-

rics can be calculated: Uncertainty Accuracy (UAcc), Uncertainty Sensitivity (USens),

Uncertainty Specificity (USpec), and Uncertainty Precision (UPrec).

UAcc =
TU + TC

TU + TC +FU +FC
(3.14)

USen =
TU

TU +FC
(3.15)

USpec =
TC

TC +FU
(3.16)

UP rec =
TU

TU +FU
(3.17)

3.4 Calibration

The previously introduced uncertainty evaluation measures are an important measure to

compare different uncertainty estimations, however, they do not take into consideration

the actual values expressed by uncertainty. Therefore, calibration methods are important

to ensure that the models are well-calibrated and uncertainty measures based on proba-

bilities can be used reliably. If the predicted confidence level accurately reflects the true

probability of being correct, i.e. if observed empirical frequencies are consistent with

outputting probability distributions, the predictor is considered well-calibrated [83].
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Figure 3.9: Reliability diagram showing an underconfident model (accuracy is larger than
the corresponding confidence), overconfident model (accuracy is smaller than the corre-
sponding confidence), and a perfect calibrated model (accuracy is equal to confidence).

To assess if a model is under-confident or over-confident, a reliability diagram (or

calibration plot) can be used as a visualization method. Reliability diagrams depict

accuracy on the y-axis and average confidence on the x-axis. A perfectly calibrated model

outputs probabilities that match up with the accuracy, yielding a diagonal line, where

confidence is equal to accuracy. In Figure 3.9 an example of a reliability diagram showing

an underconfident, an overconfident, and a well-calibrated model is shown.

For quantitative evaluation of models’ calibration, several calibration measures can

be considered. A widely used measure, based on binning, is called Expected Calibration

Error (ECE) [84]. ECE is calculated as the weighted average of the bin-wise calibration

errors given by the following equation:

ECE =
K∑
i=1

p(i) · ∥acc(bi)− conf (bi)∥ (3.18)

where K is the number of bins, bi is the ith bin, and p(i) is the fraction of the predictions

that fall into the bin. acc and conf are the average bin accuracy and the average bin

confidence, respectively.

In recent years, the evaluation of calibration in neural networks has received attention

because it has been demonstrated that as the accuracy of neural networks increases, they

become less calibrated [83]. Calibration errors are generally caused by factors related

to model uncertainty. There are different calibration methods that intend to improve

calibration without compromising accuracy. Indeed, some of the previously introduced

uncertainty estimation methods, such as Bayesian or ensemble methods, improve the

model’s calibration by reducing the model uncertainty [72, 85]. Calibration methods

can be divided into three main groups: Regularization methods, post-processing meth-

ods, and uncertainty estimation approaches [49]. Regularization methods are applied
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during the training phase with the objective of obtaining well-calibrated models by mod-

ifying the objective function or augmenting the training data. Popular regularization

approaches within the uncertainty quantification field are the label smoothing or the

direct exposure of models to OOD examples. Post-processing methods are applied after

the training procedure and require an independent calibration set to adjust the predic-

tion scores. Examples include histogram binning [86], isotonic regression [87], bayesian

binning into quantiles [84], ensemble of near isotonic regression [88] and temperature

scaling [83].

Finally, uncertainty estimation approaches can also be applied as calibration methods,

since there are some approaches (e.g. Bayesian and ensembling) that while reducing

model uncertainty, also lead to better-calibrated models.

3.5 Experimental analysis

In this section, we present the results of experimental analysis to validate our proposed

uncertainty measure, KUE, against state-of-the-art methods discussed earlier in the chap-

ter. These results were previously published in the Machine Learning and Knowledge Ex-
traction Journal [12]. The two main objectives of the experiment were: (1) to evaluate the

performance of our proposed KUE method combined with classical information-theoretic

measures of entropy in a classification with rejection option setting, and (2) to assess the

effectiveness of KUE in distinguishing between in-distribution and out-of-distribution

samples.

3.5.1 Datasets

We designed experiments on different data modalities to evaluate our method and com-

pare it with state-of-the-art methods. As the datasets do not explicitly contain out-of-

distribution samples, we adopted a common approach seen in literature to simulate a

OSR problem, by re-labeling some of the known classes as unknown [38]. The datasets,

instances, attributes, classes, and OOD combinations are summarized in Table 3.1. In the

following, a brief description of each dataset is given:

• Bacteria1: This dataset includes bacterial Raman spectra of 30 common bacterial

pathogens treated by eight antibiotics. For the feature extraction, we split each Ra-

man spectra into 125 equal-sized windows corresponding to different wavenumber

ranges. For each range we extracted minimum, maximum, and mean features and

applied a feed-forward feature selection algorithm, obtaining a set of 50 features.

Due to the high number of possible combinations for known and unknown classes,

we grouped the 30 classes by empiric antibiotic treatment, resulting in eight OOD

combinations that vary in the number of known and unknown classes. Details of

the different combinations are available in Appendix A.1.

1https://github.com/csho33/bacteria-ID (accessed on June 2020)
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• HAR1: This dataset contains six different human activities (walking, walking up-

stairs, walking downstairs, sitting, standing and laying) recorded with accelerom-

eter and gyroscope smartphone sensors. This dataset has a set of 561 features

available for which we applied a feed-forward feature selection algorithm. For the

known and unknown classes split, we defined nine OOD combinations, considering

each of the six individual classes as unknown and three additional combinations

of classes defined as stairs (walking upstairs and walking downstairs), dynamic

(walking, walking upstairs and walking downstairs), and static (sitting, standing,

and laying).

• Digits2: This dataset is composed of 10 handwritten digits (from 0 to 9) and 64

attributes. We used each class as unknown resulting in a total of 10 OOD combina-

tions.

• Cardio3: This dataset contains measurements of fetal heart rate and uterine con-

traction on cardiotocograms. The dataset has 10 classes and additional labeling

as (Normal, Suspicious, and Pathologic). Thus, we trained the model using only

classes labeled as Normal and considered the unknown classes from the labeling

Suspicious and Pathologic.

Table 3.1: Datasets used and their characteristics.

Dataset # Instances # Attributes # Classes # OOD Combinations

Bacteria 3000 50 30 8
HAR 1800 9 6 9
Digits 5620 64 10 10
Cardio 2126 23 10 2

3.5.2 Classification with rejection option

3.5.2.1 Baseline methods

The methods used for the classification with rejection option through uncertainty mea-

sures are the following:

1. Knowledge uncertainty measured by our proposed KUE (Equation 3.3) using KDE

for the probability density function of each feature and Scott’s rule [89] for the

kernel bandwidth;

1https://archive.ics.uci.edu/ml/datasets/human+activity+recognition+using+smartphones (accessed
on February 2020)

2https://archive.ics.uci.edu/ml/datasets/Optical+Recognition+of+Handwritten+Digits (accessed on
July 2020)

3https://archive.ics.uci.edu/ml/datasets/Cardiotocography (accessed on July 2020)
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2. Total uncertainty approximated by the entropy of the predictive posterior using

Equation 3.9;

3. Aleatoric uncertainty measured with the average entropy of each model in an

ensemble using Equation 3.10;

4. Epistemic uncertainty expressed as the difference between the total uncertainty

and aleatoric uncertainty given by Equation 3.11.

Although KUE can be applied to any ML model with feature-level representation,

the measures of total, aleatoric, and epistemic uncertainty are approximated using an

ensemble approach. Therefore, a Random Forest classifier with 50 trees and a bootstrap

approach to create diversity between the trees of the forest was used for this experiment.

3.5.2.2 Experimental results

As previously introduced, to use KUE in a classification with a rejection option, a thresh-

old must be established to serve as the classification rule. This threshold is determined

based on a pre-selected percentile of the uncertainty values in the training data, and the

specific percentile chosen may vary depending on the specific application.

As we hypothesized that the percentage of the reject in-distribution data depends on

the chosen percentile, we computed the TPR and FPR for a range of train percentiles,

as shown in Figure 3.10, considering the positive samples being the samples classified

as out-distribution and the negative samples the ones classified as in-distribution. Ad-

ditionally, as in- and out-distribution detection does not consider the prediction error,

we also computed an adjusted FPR where the classification errors were removed from

FPR, i.e., the in-distribution inputs that have an uncertainty value higher than the chosen

percentile and were misclassified by the model were removed from the FPR. This ad-

justed FPR is represented in Figure 3.10 by FPR*. This metric has an important meaning

for our method since our method depends on the classification performance, where the

uncertainty of the misclassified inputs is computed using the probability densities of a

different class. Therefore, it is expected that the uncertainty value is high for both OOD

and for misclassified inputs.

In Figure 3.10, the variation of TPR, FPR and FPR* according to the train percentile

(which defines the uncertainty threshold) for each of the four datasets is presented. Each

graph comprises the average and the standard deviation of all OOD combinations for

each dataset. As expected, the increase of the train percentile represented almost a linear

decrease in FPR, since the distributions of the train data were similar to the distributions

of the in-distribution test data. We can see that the FPR* was also linear in all datasets,

and both FPR and FPR* converged to 0. This means that depending on the application

and on the risk associated with decisions, we can define the train percentile based on

how many in-distribution test samples we are willing to reject. On the other hand, TPR

followed a different behavior, where a high percentile could reject most of the OOD
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samples and a few in-distribution test samples or reject a minor percentage of both in-

and out-distribution inputs.

Figure 3.10: Relation between TPR, FPR, FPR* and train percentiles. FPR* stands for an
adjusted FPR, where misclassified inputs were removed from the FPR.

Since our proposed approach only deals with knowledge uncertainty, we also quan-

tified the uncertainty in terms of total, aleatoric, and epistemic uncertainty by means

of ensemble techniques. Although epistemic uncertainty is a combination of model and

knowledge uncertainty, its quantification is limited to the use of ensemble approaches.

Moreover, specialized OOD detection methods would probably perform better for the

knowledge uncertainty quantification. As our approach is only specialized in OOD de-

tection, and total uncertainty encapsulates the uncertainty of the entire distribution, a

combination between them should ideally perform better for the overall classification

accuracy. Thus, we combined uncertainties by first rejecting input samples based on our

method until the chosen percentile and then rejecting samples based on total uncertainty.

For evaluation, we used accuracy-rejection curves where the prediction uncertainty

can be assessed indirectly by the improved prediction as a function of the percentage of

the rejection. If we have a reliable measure of uncertainty involved in the classification

of test inputs, then uncertainty estimation should correlate with the probability of mak-

ing a correct decision so that the accuracy should be improved with increasing rejection

percentage, and accuracy-rejection curves should be monotone increasing. The compar-

ison between different methods using accuracy-rejection curves should be based on the

required accuracy level and/or the appropriate rejection rate [90]. Since we are compar-

ing methods derived from the same classifier, the accuracy-rejection curves always had

the same starting accuracy for all methods. Consequently, the relevant variable for the

empirical evaluation is the rejection rate. Thus, we moved vertically over the graph to see

which method had a higher accuracy for a certain rejection rate. The accuracy-rejection

curves were obtained by varying the rejection threshold, where samples with the highest

uncertainty values were rejected first.

In Figure 3.11, the average rejection rate against the average accuracy for KUE, to-

tal, aleatoric, and epistemic uncertainty is presented. The proposed combination is also

shown in black, and the optimal rejection is represented by the dashed line. The optimal
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accuracy-rejection curve was computed by rejecting all OOD samples as well as misclassi-

fied samples in a row. In order to obtain the accuracy-rejection curves we ran 10 random

repetitions using 15% of OOD inputs and using an uncertainty train percentile for our

proposed combination of 95%. As we can see in Figure 3.11, almost every curve over

the different OOD combinations increased the accuracy with the increase of the rejection

rate percentage. It is also interesting to note that even with only 15% of OOD inputs, our

method always presented the monotone dependency between reject rate and classification

accuracy, which means that our method also behaved quite well over the misclassified

inputs. Regarding the proposed combination, the accuracy-rejection curve was always

better or similar to the total uncertainty. Besides that, we observe that the tendency of the

accuracy-rejection curve for the KUE method did not vary much between different OOD

combinations, contrary to the aleatoric and epistemic uncertainty. The accuracy-rejection

curves for the other datasets can be found in Appendix A.4.

Figure 3.11: Accuracy-rejection curves for aleatoric, epistemic, and total uncertainty for
the Bacteria dataset. The curve for perfect rejection is included as a baseline. The name
in each plot represents the antibiotic name used for each OOD inputs combination.

3.5.3 Out-of-distribution detection

3.5.3.1 Baseline methods

For comparison purposes, besides the two variations (KDE and Gauss) of our proposed

measures, we selected common approaches to measure uncertainty (2-5) and detect

anomalies and/or outliers detection (6-11).

1. KUEKDE : Our proposed method for knowledge uncertainty estimation using KDE

as the probability density function and Scott’s rule [89] for the kernel bandwidth;

2. KUEGauss: Our proposed method for knowledge uncertainty estimation using Gaus-

sian distribution as a probability density function;
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3. p(ŷ|x): Maximum class probability. Although standard probability estimation is

more akin to the aleatoric part of the overall uncertainty, OOD data tend to have

lower scores than in-distribution data [79].

4. H[p(y|x)]: Total uncertainty modeled by the (Shannon) entropy of the predictive

posterior distribution. High entropy of the predictive posterior distribution, and

therefore a high predictive uncertainty, suggests that the test input may be OOD

[5].

5. I[y,h]: Epistemic uncertainty measured in terms of the mutual information be-

tween hypotheses and outcomes. High epistemic uncertainty means that p(y|x,h)

varies a lot for different hypotheses h with high probability. The existence of differ-

ent hypotheses, all considered probable but leading to quite different predictions,

can indeed be seen as a sign of OOD input [5].

6. OCSVM: One-Class SVM introduced by Schölkopf et al. [91] using a radial basis

function kernel to allow a non-linear decision boundary. OCSVM learns a decision

boundary in feature space to separate in-distribution data from outlier data.

7. SVMovo: Multiclass SVM with one-vs-one approach and calibration across classes

using a variation of Platt’s extended by [92].

8. SVMova: One-vs-all multiclass strategy fitting one SVM per class.

9. NCM: Nearest Class Mean classifier using a probabilistic model based on multiclass

logistic regression to obtain class conditional probabilities [93].

10. OSNN: Open Set Nearest Neighbors introduced by Júnior et al. [36] using a distance

ratio based on the Euclidean distance of two most similar classes.

11. IF: Isolation Forest introduced by Liu et al. [55] for anomaly detection using an

implementation based on an ensemble of an extremely randomized tree regressor.

Note that epistemic uncertainty is approximated by means of ensemble techniques,

which is the representation of the posterior distribution by a finite ensemble of hypotheses.

For this reason, to make the comparison fair between baseline methods 1–5, we chose

a Random Forest classifier for the analysis of the experiments. Nevertheless, and since

different classifiers have different accuracies for the classification of the very same data,

a comparison study was carried out on a set of classical algorithms, namely Random

Forest, KNN, NB, SVM and Logist Regression. The obtained results can be consulted in

Appendix A.2.

3.5.3.2 Experimental results

The training process was done using only in-distribution inputs, ignoring the OOD in-

puts during training. For the final evaluation, we randomly selected the same number
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of in-distribution and out-distribution inputs from the test set. Therefore, the main per-

formance measure used for the evaluation of OOD samples was the AUROC, since it is

a threshold-independent performance metric applied by most of the recent studies [94].

Table 3.2 compares KUE using two variants of the feature modeling (KDE and Gaussian)

with the 9 methods previously mentioned. The OOD names shown in Table 3.2 indicate

the assumed unknown classes for each dataset. Regarding the Bacteria dataset, the names

are the antibiotic treatments used to group the unknown classes, which are detailed in

Appendix A.1. The AUROC represents the average results over 10 random repetitions

for a total of 29 OOD combinations over 4 different datasets. Additional details about

AUPR-In and AUPR-Out can be found in Appendix A.3.

From a detailed analysis of Table 3.2 we notice that, in the majority of the OOD

combinations, our method obtained better or comparable AUROC with other methods.

Moreover, the proposed method performed more consistently for different OOD combi-

nations, unlike the other methods that showed unstable behaviors, where the standard

deviation was very large over all combinations considered. For instance, the OCSVM

presented the highest performance on the Digits and Cardio datasets. However, in the

other datasets its performance varied a lot depending on the assumed unknown classes,

with poor performance on several OOD combinations. As an example in Figure 3.12, we

show the ROC curves for the Caspofungin and Ciprofloxacin OOD combinations of the

Bacteria dataset, representing the best and the worst performance of our method in the

Bacteria dataset, respectively. It is interesting to note that, after our method, OCSVM pre-

sented the highest performance for Caspofungin. However, for Ciprofloxacin the OCSVM

performance was lower than random. A similar behavior happened with the maximum

class probability, p(y|x), and the total uncertainty, H[p(y|x)], which are the best methods

to detect OOD samples on Ciprofloxacin combination and the worse in the case of an-

tibiotic Caspofungin. Both methods had the same behavior over all combinations due

to their intrinsic dependency. Maximum class probability can also be seen as a measure

of the total uncertainty in predictions. Regarding epistemic uncertainty, although it ob-

tained a few poor performances, it seemed to have more consistent behavior than the

other methods. Additionally, it can be seen that all methods obtained high AUROC and

comparable performance for all combinations of the Digits dataset. Comparing our two

feature modeling strategies (KDE and Gaussian), we observed that results were similar,

probably due to the fact that the feature modeling using the KDE in our datasets was

approximated to a Gaussian distribution.

Additionally, a more qualitative interpretation of AUROC values presented by Hendrycks

and Gimpel [79] was also used to ease the process of comparison. Hendrycks and Gimpel

defined the intervals for evaluation as follows: excellent: 90–100%, good: 80–90%, fair:

70–80%, poor: 60–70%, fail: 50–60%. The results are presented in Table 3.3, where the

values represent the number of occurrences in each AUROC interval over all datasets.

From this table, we can easily conclude that the KUE method was at least more robust

to changes in OOD combinations/datasets than compared to state-of-the-art methods.
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Table 3.2: AUROC for detecting OOD test inputs using two variants of KUE (KDE and
Gaussian) and other baseline methods on 4 datasets. The Mean and Standard Deviation
(SD) over OOD combinations are presented after each dataset. All values are averages
over 10 consecutive repetitions.

AUROC

OOD KUEKDE KUEG p(ŷ|x) H[p(y|x)] I[y,h] OCSVM SVMovo SVMova NCM OSNN IF

B
ac

te
ri

a

Daptomycin 0.91 0.90 0.67 0.68 0.88 0.57 0.89 0.79 0.60 0.59 0.66
Caspofungin 0.98 0.98 0.37 0.31 0.87 0.98 0.56 0.62 0.32 0.44 0.93
Ceftriaxone 0.82 0.81 0.82 0.85 0.85 0.50 0.91 0.83 0.82 0.77 0.35
Vancomycin 0.87 0.87 0.67 0.66 0.80 0.73 0.82 0.73 0.64 0.61 0.74
Ciprofloxacin 0.74 0.74 0.86 0.91 0.71 0.35 0.88 0.80 0.81 0.75 0.22
TZP 0.88 0.88 0.76 0.75 0.89 0.65 0.89 0.80 0.84 0.80 0.51
Meropenem 0.77 0.77 0.87 0.87 0.78 0.48 0.87 0.84 0.83 0.78 0.43
Penicillin 0.77 0.77 0.73 0.74 0.67 0.60 0.81 0.83 0.70 0.69 0.65

Mean 0.84 0.84 0.72 0.72 0.81 0.61 0.83 0.78 0.70 0.68 0.56
SD 0.08 0.08 0.15 0.18 0.08 0.18 0.11 0.07 0.17 0.12 0.21

H
A

R

Walking 0.69 0.67 0.77 0.78 0.80 0.21 0.73 0.70 0.74 0.73 0.23
Upstairs 0.86 0.86 0.79 0.82 0.85 0.42 0.71 0.67 0.80 0.72 0.44
Downstairs 0.84 0.84 0.72 0.70 0.72 0.88 0.55 0.73 0.45 0.70 0.89
Sitting 0.73 0.75 0.52 0.52 0.66 0.69 0.50 0.43 0.51 0.46 0.66
Standing 0.54 0.50 0.62 0.67 0.82 0.58 0.54 0.70 0.55 0.44 0.58
Laying 0.99 0.99 0.25 0.26 0.39 0.99 0.14 0.20 0.79 0.51 1.00
Stairs 0.90 0.89 0.54 0.58 0.73 0.78 0.25 0.39 0.49 0.43 0.80
Dynamic 1.00 1.00 0.72 0.76 0.75 0.82 0.57 0.58 0.87 0.92 0.86
Static 1.00 0.98 0.70 0.69 0.75 0.99 0.29 0.58 0.50 0.81 0.99

Mean 0.84 0.83 0.63 0.64 0.72 0.71 0.48 0.55 0.63 0.64 0.72
SD 0.15 0.16 0.16 0.16 0.13 0.25 0.19 0.17 0.15 0.17 0.25

D
ig

it
s

0 0.93 0.95 0.90 0.90 0.97 1.00 0.95 0.90 0.90 0.98 0.80
1 0.68 0.81 0.88 0.89 0.84 0.95 0.78 0.87 0.85 0.91 0.63
2 0.90 0.92 0.90 0.89 0.87 0.99 0.90 0.90 0.90 0.95 0.84
3 0.75 0.81 0.90 0.87 0.82 0.97 0.86 0.82 0.86 0.95 0.64
4 0.94 0.95 0.88 0.89 0.96 0.99 0.85 0.92 0.84 0.93 0.94
5 0.87 0.88 0.90 0.89 0.89 0.98 0.84 0.85 0.88 0.96 0.67
6 0.92 0.93 0.88 0.88 0.97 0.99 0.95 0.85 0.93 0.97 0.81
7 0.91 0.92 0.94 0.95 0.91 0.99 0.89 0.87 0.93 0.96 0.86
8 0.90 0.87 0.97 0.98 0.94 0.97 0.96 0.95 0.92 0.96 0.45
9 0.88 0.89 0.89 0.87 0.84 0.94 0.90 0.87 0.86 0.96 0.61

Mean 0.87 0.89 0.90 0.90 0.90 0.98 0.89 0.88 0.89 0.95 0.73
SD 0.08 0.05 0.03 0.03 0.05 0.02 0.05 0.04 0.03 0.02 0.14

C
ar

d
io

Suspect 0.67 0.65 0.33 0.31 0.45 0.75 0.48 0.50 0.31 0.67 0.71
Pathologic 0.83 0.85 0.36 0.31 0.51 0.98 0.23 0.75 0.30 0.66 0.94

Mean 0.75 0.75 0.34 0.31 0.48 0.86 0.36 0.62 0.30 0.66 0.82
SD 0.08 0.10 0.01 0.00 0.03 0.12 0.12 0.12 0.01 0.01 0.11

Mean 0.84 0.85 0.73 0.73 0.79 0.78 0.71 0.73 0.72 0.76 0.68
SD 0.11 0.11 0.20 0.20 0.14 0.23 0.24 0.17 0.20 0.18 0.21
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Figure 3.12: ROC curves for OOD detection using our KUE method and baseline methods
on Caspofungin and Ciprofloxacin OOD combinations of the Bacteria dataset. Caspofun-
gin and Ciprogloxacin represent the best and the worst performances of KUE method,
respectively.

Unlike the other methods, our method did not obtain any OOD worse than random. We

can also see that OCSVM had more occurrences of an excellent qualitative evaluation,

but also one of which had more fail and random classifications.

Table 3.3: Qualitative AUROC evaluation over all OOD combinations. Excellent: 90–100%,
Good: 80–90%, Fair: 70–80%, Poor: 60–70%, Fail: 50–60%, ↓ Random: < 50%

KUEKDE KUEG p(ŷ|x) H[p(y|x)] I[y,h] OCSVM SVMovo SVMova NCM OSNN IF

Excellent 9 10 5 4 5 14 4 3 5 11 5
Good 11 12 8 10 12 2 12 11 11 2 7
Fair 5 4 6 5 7 3 3 7 2 5 2
Poor 3 2 4 4 2 2 0 2 2 5 7
Fail 1 1 2 2 1 4 5 3 4 2 2
↓ Random 0 0 4 4 2 4 5 3 5 4 6

Since our proposed approach for OOD detection is based on a density estimation

technique, and density estimation typically requires a large sample size, we performed

an ablation study to evaluate how the AUROC’s results change with the number of train

samples used for modeling. In Figure 3.13, we present the results of the ablation study

for the four datasets used, where we rejected gradually 5% of the original number of train

samples in each iteration, making a total of 20 iterations for each OOD combination. We

can see that the AUROC values did not change significantly with the number of train
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samples. This means that the number of training samples caused small changes in feature

modeling, resulting in minor variations in the performance of our method.

Figure 3.13: Ablation study of KUE method using KDE, for the four datasets. The legend
represents each OOD inputs combination, and the title of each plot represents the dataset
used.

3.5.4 Discussion

In this experiment analysis, our goal was to demonstrate the performance of the proposed

knowledge uncertainty estimation method, KUE, for both classification with rejection

option and the detection of out-of-distribution samples.

The proposed KUE method is based on a feature level density estimation of in dis-

tribution train data, and it does not rely on out-distribution inputs for hyperparameters

tuning nor for threshold selection. In literature the idea of using densities to detect out-of-

distribution examples is prominent [95, 96], however, the available methods are usually

developed to do both the predictive task and the uncertainty estimation. Following the

reasoning of Raghu et al. [54] which states that uncertainty quantification and prediction

tasks should be two separate tasks for uncertainty quantification to be unbiased and since

different classifiers have different accuracies for the classification of the very same data,

we proposed a method that, although dependent on the classification accuracy, can be

easily applied to any feature-level model without changing the underlying classification

methodology. Another property of KUE is the independence between classes. This means

that the training and uncertainty prediction do not depend on the other classes, allowing

for the addition and removal of classes without the need to repeat the feature density

estimation for all classes. This property also allows the definition of the rth percentile per

class if required for the task.

Moreover, as a parametric model for the data is often difficult to determine, we pro-

posed the use of a KDE method for feature density estimation. However, due to the

computational cost of KDE with the increase in training size, we also compared the pro-

posed method using a Gaussian distribution assumption. For the four different datasets

used for evaluation, Gaussian estimation showed similar results with KDE, which can

significantly reduce the computational cost on large datasets. Nevertheless, if possible,

the train data distribution can be calculated to choose the best parametric model to be

applied.
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One potential limitation of our proposed KUE measure is the naïve assumption of

independence between features. In real-world scenarios, features often interact with each

other, and ignoring these dependencies can lead to suboptimal performance and inac-

curate uncertainty estimates. However, in some cases, assuming independence between

features can simplify the modeling process and still yield good results, as demonstrated

in our experimental analysis. Future work could explore efficient methods to incorporate

feature dependencies into our measure and test it on large-scale datasets. Addressing this

limitation may also require the development of more complex models that can capture

feature interactions while still being computationally feasible.

Regarding the task of distinguishing in- and out-distribution inputs, our KUE method

showed competitive performance results comparable to state-of-the-art methods using

the AUROC as a performance evaluation measure. Furthermore, we also defined a thresh-

old for OOD input rejection that is chosen based on the percentage of in-distribution

test samples that we are willing to reject. We showed its dependency on FPR and also

demonstrated that misclassified inputs tend to have high uncertainty values. Although

the proposed threshold selection strategy effectively controlled the FPR, the TPR had a

high variability between different datasets, and it was not possible to estimate its behavior

for unknown inputs. For future research, this limitation should be addressed by com-

bining KUE with different methods adopting a hybrid generative discriminative model

perspective.

The aleatoric, epistemic, and total uncertainty produced by measures of entropy

showed a monotone dependency between reject rate and classification accuracy, which

confirmed that these measures of uncertainty are a reliable indicator of the uncertainty

involved in a classification decision. Moreover, the proposed uncertainty measures com-

bination between the proposed KUE method and total uncertainty outperformed the

individual entropy measures of uncertainty for the classification with a rejection option.

Future research includes the study of different combination strategies of uncertainty

measures for classification with a rejection option. In addition, expanding the testing

scenarios with more datasets should provide more indications about the robustness of

the measures used. If more specialized OOD detection methods are able to properly

quantify their own uncertainty, different combinations between existing methods and

other sources of uncertainty should also be explored.

3.6 Final remarks

The field of uncertainty quantification in machine learning has gained significant atten-

tion in recent years. However, despite the growing number of approaches, there is still

no standard method for uncertainty estimation, and there is no consensus for a common

taxonomy. In this chapter, we proposed a classification scheme that divides uncertainty

quantification methods into two main groups, namely Single Methods and Bayesian Meth-

ods, which are further subdivided into additional categories.
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While the available methods for uncertainty quantification have been shown to be

valuable for separating and quantifying aleatoric and epistemic uncertainty, they still

present some limitations, particularly in the estimation of knowledge uncertainty. In the

context of knowledge uncertainty, there are several methods dedicated to anomaly, outlier,

or novelty detection. However, these methods can be too complex or do not generalize

well for different settings. Furthermore, many of these methods are often tailored to

specific types of data and may not be easily adaptable to different applications.

To address these challenges and since different classifiers have different accuracies for

the classification of the very same data, we proposed an agnostic method for knowledge

uncertainty estimation that, although dependent on the classification performance, can be

easily applied to any feature-level model without changing the underlying classification

methodology.

46



4

Uncertainty for Model Design

Although UQ plays an important role in safety-critical domains, such as medicine [97],

it is also an important concept within the machine learning methodology itself. UQ is

important across several stakeholders of the ML lifecycle. It helps developers debug their

models, in understanding their flaws so they can be used for model improvement. For

the users of AI systems, UQ increases interpretability and trust in model predictions,

answering the question: Can I trust this model? For regulators and certification bodies, it

contributes to algorithm auditing and quality control as a path towards the effective and

reliable application of ML systems [98].

Previous research has been focused on the development of techniques to character-

ize and quantify uncertainty. In this context, recent uncertainty frameworks have been

proposed that provide different capabilities to quantify and evaluate uncertainty in the

AI development lifecycle [99, 100]. However, few studies addressed a comprehensive

analysis of how UQ can be used to improve model performance and its interpretability.

Interpretability is a crucial aspect of machine learning systems, as it enables the provision

of not only predictions but also explanations of their outputs. By facilitating an enhanced

understanding of the rationale behind the prediction, interpretable machine learning sys-

tems play a vital role in fostering trust and safety. This is achieved by providing insights

into the reasonableness of the prediction, thereby enabling users to identify any areas of

concern or potential risks. Additionally, designing a model for a new and unexplored

research domain can be challenging, where being able to understand how the model is

working can assist in the development process.

This chapter focused on leveraging the outcome from uncertainty quantification to

improve the model development process. We applied the UQ concept in practice, giving

insights into why it can be an effective procedure to improve model development and its

interpretability.

This chapter aims to address three main research questions in which access to UQ

measures can aid in model selection, model combination, and model interpretability

tasks. We formulate the research questions as follows:
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1. How can UQ contribute to choosing the most suitable model for a given classifica-

tion task?

2. Can UQ be used to combine different models in a principled manner?

3. Can UQ be employed to enhance models’ interpretability?

This chapter is organized into two main research works that, along with the validation

of experimental results, provide insights into the practical usefulness of UQ in addressing

the aforementioned research questions. In the first section, we demonstrate the impor-

tance of uncertainty-based rejection for model selection, model combination, and the

interpretability of classifiers with a rejection option. In this section, we validate our ex-

periments using a synthetic dataset and a HAR dataset. The results presented in this

section were already published in [101]. Subsequently, in the second section, we build

upon the preliminary results of the first section by using a multimodal dataset, focusing

specifically on model combination and interpretability1. We propose a novel measure to

assess explanation complexity and present evidence that an uncertainty-weighted model

combination can reduce feature-based explanation complexity. The chapter concludes

with final remarks on the obtained results.

4.1 Uncertainty-based rejection

In conventional classification tasks, classifiers are typically forced to predict a label. How-

ever, for difficult samples, this might result in misclassification, which can pose challenges

in risk-sensitive applications. In such situations, it may be more appropriate to refrain

from making decisions on difficult cases, thereby anticipating a lower error rate on the

examples for which a classification decision is made [1]. Classification with a rejection

option allows models to abstain from making predictions when uncertain, leading to

improved performance and robustness in practical applications.

In this section, we introduce the utility of uncertainty-based rejection during the

development process of machine learning models. The preliminaries section begins by

presenting the basic concepts related to uncertainty-based rejection and providing details

on the experimental setup. Subsequently, the following three sections discuss the exper-

imental results concerning model selection, model combination, and interpretability of

rejection.

4.1.1 Preliminaries

4.1.1.1 Baseline methods

To address the research questions previously introduced, different uncertainty measures

can be used to model the different types of uncertainty. However, in the current chapter

1The results presented in this section were submitted for an open-access journal and are part of a collab-
oration with a Ph.D. candidate in the area of explainable AI.
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our main objective is not to compare different uncertainty measures, but instead show

how different sources of uncertainty can be used, in general, to help practitioners in the

development of more robust models.

Thus, aleatoric, model, and knowledge uncertainties will be modeled using the fol-

lowing measures throughout this chapter:

• Aleatoric uncertainty: The (Shannon) entropy is the most notable measure of un-

certainty for probability distributions. Although it can be seen as a measure of the

total uncertainty in predictions [19], this measure is primarily capturing the shape

of the distribution and, hence, is mostly concerned with the aleatoric part of the

overall uncertainty [5]. Thus, we will measure aleatoric uncertainty using Equation

3.2;

• Model uncertainty: Variation ratios defined by Equation 3.8 was selected as a pri-

mary uncertainty quantification method, to estimate model uncertainty. As we are

interested in evaluating the quality of the model fit, changes in the predicted label

have a significant impact on the variation ratio measure. Contrarily, measures based

on entropies, which are commonly used, can also be used, but the impact on the

measure is lower, since in variation ratios, we are merely counting changes in the

predictions, and in entropy measures, we are averaging the prediction probabili-

ties [40];

• Knowledge uncertainty: Although the majority of works addressed the quantifi-

cation of knowledge uncertainty with measures such as the mutual information

(see Equation 3.11), we argue that these kinds of measures are more akin to model

uncertainty. The uncertainty related to the lack of data might be poorly modeled

by these measures. In this perspective, we considered density estimation methods,

commonly used for outlier or novelty detection, as more prone to model knowledge

uncertainty. Thus, our proposed KUE measure defined in Equation 3.3 was used to

model knowledge uncertainty.

To measure model uncertainty, ensemble techniques will be used as an approximation

approach. For cases where the learning algorithm is not an ensemble model, we will use

the bootstrap method [102] to approximate the sampling distribution and compute un-

certainty measures. The bootstrap method uses Monte Carlo simulation to approximate

the sampling distribution by repeatedly simulating bootstrap samples, which are new

datasets created by sampling with replacement from the uniform distribution over the

original dataset. To bootstrap a supervised learning algorithm, one would need to sample

M bootstrap datasets and run the learning procedure from scratch each time.

Each uncertainty measure was used as a rejection measure for the classification with

a rejection option setting. The problem of choosing the optimal rejection point is not

trivial and simple criteria were applied in this work. For a more comprehensive analysis
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of optimal rejection thresholds, the works from Condessa et al. [48] and Fisher et al. [103]

can be consulted. Therefore, in our classification setting, the final prediction is given by

the following rejection rule:

ω̂ =

reject if Φ(x) > 0

f (x) otherwise
(4.1)

where f (x) is the classifier without rejection and Φ(x) is a function on the input that

evaluates the uncertainty of the prediction model. This uncertainty function is given

by the set of uncertainties—aleatoric (a), model (m), and knowledge (k)—through the

following equation:

Φ(x) =
∑
u∈U

1[φu(x) > τu] (4.2)

where U ∈ [a,m,k] is the set of available uncertainties, φu is an uncertainty function that

evaluates uncertainty u, and τu is a threshold for the rejection point for uncertainty u.

For aleatoric uncertainty, φa represents the Equation (3.2) and the optimal threshold,

τa, was obtained using the following equation:

τa = argmax
θ

(
Eθ −

b
1− b

·Lθ

)
(4.3)

where θ is a threshold in the interval [0,1], representing a normalized entropy value mea-

sured with Equation (3.2), and b is a rejection cost, here set to 0.5. Eθ and Lθ represent

the subset of true rejects and false rejects for the threshold θ, respectively.

The uncertainty function used for model uncertainty, φm, is equal to Equation (3.8),

and τm was set to zero, which means that a prediction must be equal in all bootstraps

samples to not be rejected. This assumption was made because if a sample is predicted

differently using slightly different datasets, the model in that particular region will still

have some uncertainty associated.

For knowledge uncertainty, φk is equal to Equation (3.3). To define τk , we used a

95% value of the training uncertainty values, meaning that τk = P95%[KUE]. A detailed

description of this approach is available in [12].

In summary, our proposed approach was developed in the context of classification

with rejection where rejection was obtained through measures of uncertainty. These un-

certainty measures were distinguished by three different sources: aleatoric, model, and

knowledge uncertainty. For the uncertainty quantification, we used an entropy measure

for aleatoric uncertainty (Equation (3.2)), the variation ratio measure for model uncer-

tainty (Equation (3.8)), and KUE to quantify the knowledge uncertainty. Regarding the

rejection setting, we applied the rejection rule from Equation (4.1), where each source

of uncertainty has an uncertainty function given by Equation (4.2). For the training pro-

cedure, a bootstrap approach with 20 bootstrap samples was used, and the uncertainty

measures were calculated.
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4.1.1.2 Rejection-based evaluation

As previously introduced in Chapter 3.3, the empirical evaluation of methods for quanti-

fying uncertainty is usually done through standard metrics, such as accuracy, to obtain an

accuracy rejection curve [77]. However, for evaluating the performance of classifiers with

rejection, in addition to non-rejected accuracy, additional metrics should be considered.

Condessa et al. [48] expanded the set of performance measures for classification with re-

jection and, besides the non-rejected accuracy, proposed two novel performance measures

to evaluate the best rejection point, namely classification quality and rejection quality.

These measures were employed in this analysis, and a brief explanation is presented

below.

Considering a partition of a set of samples in subsets A, M, N, and R, where A is

a subset of accurately classified samples, M is a subset of misclassified samples, N is a

subset of nonrejected samples, and R is a subset of the rejected samples, each metric can

be derived as follows:

• Nonrejected accuracy measures the ability of the classifier to accurately classify

nonrejected samples, and it is computed as,

NRA =
|A∩N |
|N |

; (4.4)

• Classification quality measures the ability of the classifier with rejection to accu-

rately classify nonrejected samples and to reject misclassified samples. It is com-

puted as,

CQ =
|A∩N |+ |M ∩R|
|N |+ |R|

; (4.5)

• Rejection quality measures the ability of the classifier with rejection to make errors

on rejected samples only, and it is computed as,

RQ =
|M ∩R||A|
|A∩R||M |

. (4.6)

The nonrejected accuracy and the classification quality are bounded in the interval

[0,1]. Unlike these measures, the rejection quality has a minimum value of zero, and its

maximum is unbounded by construction. Nonetheless, the higher the values, the better

the metric performs for rejection.

4.1.1.3 Datasets

Predicted uncertainties are often evaluated indirectly, as data usually do not contain

information about any form of “ground truth” uncertainties. For this reason, using a

synthetic dataset can more readily offer insight into the different types of uncertainties

and their quantification. Moreover, in a controllable setting, we can alter the size of the
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datasets, evaluate the models’ performance and uncertainties under various conditions,

and introduce noise into the data to assess the models’ robustness

Considering the reasons mentioned above, we first validate our experiments on a

synthetic dataset to provide an intuition of the potential use of UQ in addressing the

research questions, and then apply the same reasoning to a real-world dataset of HAR.

• Synthetic dataset: We developed a dataset generator to facilitate our experimental

analysis. This generator includes the option to define the number of classes, the

number of features, and feature distribution-related parameters. The features can

be informative (independently drawn), redundant (random linear combinations

of informative features), or useless (randomly drawn). The features can also be

modeled using different feature distributions, such as Gaussian, Uniform, or Ex-

ponential distribution. Additionally, the features can be modeled as unimodal or

bimodal distributions.

• HAR: A benchmark dataset for Human Activity Recognition (HAR) [104] from

the University of California Irvine (UCI) repository [105] was selected for these

experiments. This dataset contains six different human activities (walking, walking
upstairs, walking downstairs, sitting, standing, and laying) collected with a group of

30 volunteers and recorded using accelerometer and gyroscope smartphone sensors.

The time series signals were pre-processed by applying noise filters and sampled in

fixed-width sliding windows of 2.56 seconds with a time shift of 1.28 seconds. For

this analysis, the 561 features provided with the dataset were used.

4.1.2 Uncertainty for model selection

In machine learning, various criteria can be employed in the problem of model selection.

Model selection involves choosing a final model from a set of candidate models for a given

training dataset. This process can be applied to different types of algorithms or the same

type configured with different hyperparameters. The primary goal of model selection is

to achieve the best predictive performance for modeling learning data and for making

predictions for new examples that were not part of the learning process [106, 107].

In supervised learning, predictive performance is usually considered the most critical

criterion for model selection. However, various criteria for the predictive model quality,

such as interpretability or computational cost, can also play a significant role in model

selection. To the best of our knowledge, uncertainty has not been considered as a criterion

for model selection. Therefore, in this section, we explore how uncertainty might con-

tribute to model characterization by providing valuable quantitative information, either

by describing the quality of the model’s fit or evaluating if sufficient training data were

provided to generate reliable predictions.
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Table 4.1: Performance measures (mean ± standard deviation) for different models using
a training size of 7692 samples. The highlighted baseline accuracies represent the se-
lected models that were considered for further analysis, since the models attained similar
accuracy values.

Model
Baseline Nonrejected Rejection
Accuracy Accuracy Fraction

Gaussian Naive Bayes 0.838 ± 0.004 0.861 ± 0.004 0.056 ± 0.006
KDE Naive Bayes 0.918 ± 0.004 0.929 ± 0.004 0.050 ± 0.007
Exponential Naive Bayes 0.848 ± 0.012 0.894 ± 0.011 0.109 ± 0.041
KDE Bayes 0.845 ± 0.003 0.914 ± 0.004 0.178 ± 0.004
Logistic Regression 0.717 ± 0.003 0.788 ± 0.005 0.198 ± 0.006
Decision Tree 0.764 ± 0.024 0.884 ± 0.004 0.328 ± 0.111
Random Forest 0.806 ± 0.004 0.871 ± 0.006 0.169 ± 0.004
k-Nearest Neighbors 0.820 ± 0.004 0.902 ± 0.007 0.202 ± 0.005
Support Vector Machines 0.744 ± 0.004 0.806 ± 0.005 0.173 ± 0.010

In the following sections, we start with experiments on a synthetic dataset and then

apply the same methodology to the HAR dataset to address our first research question:

How can UQ contribute to choosing the most suitable model for a given classification task?

4.1.2.1 Experiments on synthetic data

A dataset composed of a total of 150,000 ten-dimensional points corresponding to six dif-

ferent classes equally distributed was generated. Features from each class were modeled

using Gaussian, exponential, and uniform distributions. The distributions were randomly

selected and could be unimodal or bimodal distributions. To evaluate the behavior of

uncertainty estimations with the increasing number of training samples, the models were

trained for different training sizes using a k-fold cross-validation as the validation strat-

egy where k was set to 5. An exponential growth of training samples was applied, starting

with 50 samples per class (training size equals 300 samples).

For model training, different classifiers using a training size of 7692 samples were

tested as presented in Table 4.1. Since features data were simulated using Gaussian,

exponential, and uniform distributions, a focus on Bayesian models using Gaussian, KDE,

and exponential distributions was employed. As expected, Bayesian models obtained

higher baseline accuracies than the other tested classifiers, since part of the features

likelihood was modeled with the true data distribution. The three classifiers highlighted

in Table 4.1, with a similar baseline accuracy, were selected to continue the analysis.

These classifiers were: (1) the NB classifier where the features likelihood was assumed

to be Gaussian; (2) the NB classifier where the features likelihood was assumed to be

exponential; (3) the Bayes classifier where the features likelihood was based on KDE.

Additionally, the selected classifiers were trained using a bootstrap procedure with 20

bootstrap samples.
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For this analysis, only aleatoric and model uncertainty measures were considered,

since a synthetic dataset without outliers was used. Therefore, KUE would be near zero

and would not bring relevant information for this analysis.

Figure 4.1 shows the rejection fraction and accuracy with the increasing number of

training samples for the different tested models. The rejection fraction was obtained

using both aleatoric and model uncertainty measures independently, and the nonrejected

accuracy was obtained by rejecting all samples with aleatoric and/or model uncertainty

(see Equation (4.1)).
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Figure 4.1: Uncertainties’ rejection fraction and obtained accuracies using a k-fold cross-
validation with an increasing number of training samples for 3 different models. The
vertical line represents a training size that obtained a similar baseline accuracy for all
models.

As previously mentioned, the model’s accuracy is often one of the most important

elements to model selection. However, we argue that uncertainty quantification methods

should also be evaluated during the model’s training, to help us choose the right model.

Observing Figure 4.1, different models can achieve the same accuracy, but with different

degrees of uncertainty. For example, for a training size of 7692 samples (dashed gray

line in Figure 4.1), the three models obtained a baseline accuracy of 84%, approximately.

Seen only from this point of view, the decision between the three models would be equal.

However, observing the rejection fraction from uncertainty measures, it is easy to under-

stand that the KDE model had higher model uncertainty compared with the other two

models. The reason for this difference is that the KDE model is more complex, which

means that it needs more data to correctly model the data distribution. Therefore, the

differences in the bootstrap samples have a high impact on the model fit, meaning that

the same sample is classified differently depending on the bootstrap sample used to fit

the model. Additionally, observing the standard deviation with the increasing number of
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training samples, we can note a slight decrease in both the rejection fraction and accuracy

values, except from the exponential model, which seemed to have an almost constant

value across the different training sizes. Using this information and since the accuracy

was approximately equal for the three models, the choice of a Gaussian NB would be

probably preferable due to its low aleatoric and model uncertainty.

Nonetheless, if the rejection of samples or the addition of new samples is an option,

a different analysis can be performed. By definition, aleatoric uncertainty is irreducible

for the same dataset, which was verified with these experimental results. Increasing the

number of training samples did not change the aleatoric uncertainty, making the rejection

fraction mostly constant across the different training sizes. Contrarily, model uncertainty

decreased with the increase in the number of training samples, tending towards zero

when the model fit was equal for all bootstrap samples. Thus, the analysis of model uncer-

tainty can give us insights about the usefulness of adding more samples for the model’s

training. In Gaussian and KDE models, the decrease of model uncertainty had a clear

increase in the baseline accuracy. For the Gaussian NB model, from 103 training samples,

the baseline accuracy was mostly constant and the decrease of model uncertainty was

not significant. This means that the model fit did not change using different bootstrap

samples, and the addition of new data did not improve the model’s performance. How-

ever, observing the KDE model, due to its high rejection fraction of model uncertainty,

the addition of new samples still increased the model’s performance. Furthermore, the

nonrejected accuracy was always higher than the baseline accuracy, and it was mostly

constant across the different training sizes. This means that the model uncertainty mea-

sure was in fact detecting the regions in the feature space responsible for a high number

of misclassifications due to a poor model fit.

4.1.2.2 Experiments on HAR dataset

In order to broaden our analysis, we conducted an additional experiment with the HAR

benchmark dataset from the UCI repository [105]. Besides the importance of UQ for trust-

worthy ML systems, the use of uncertainty measures for human movements analysis plays

also an important role in the recognition of abnormal human activities or the analysis,

diagnosis, and monitoring of neurodegenerative conditions [108]. Furthermore, the high

number of available samples (10,299 samples) in this dataset allowed us to make a similar

evaluation to the synthetic data. For the data split into training and test sets, we used the

available partition in the repository, where 70% of the volunteers were selected for gener-

ating the training data and 30% the test data. Regarding the feature vector, the original

561-feature vector with time and frequency domain variables was reduced using features

correlation and the sequential forward feature selector, resulting in a 17-dimensional

feature vector.

Similar to the previous section with synthetic data, we applied a training size expo-

nential growth, starting with 300 samples (50 per class) until the maximum training size
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Table 4.2: Performance measures for different models using a training size of 7352 sam-
ples and the Human Activity Recognition (HAR) dataset.

Model
Baseline Nonrejected Rejection
Accuracy Accuracy Fraction

Gaussian Naive Bayes 0.89 0.90 0.03
KDE Bayes 0.88 0.92 0.12
Logistic Regression 0.89 0.92 0.06
Decision Tree 0.82 0.92 0.23
Random Forest 0.84 0.91 0.16
k-Nearest Neighbors 0.87 0.94 0.13
Support Vector Machines 0.91 0.93 0.06

of 7352 samples. For model training, we tested different classifiers with 20 bootstrap sam-

ples. Table 4.2 shows the obtained baseline accuracy, as well as the nonrejected accuracy

and the rejection fraction for each of the tested classifiers. To visualize the behavior of ac-

curacy and the corresponding rejection fraction for each type of uncertainty, we selected

the 4 models that obtained higher baseline accuracy. Figure 4.2 shows these performance

measures with the increased number of samples used to train the classifiers.
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Figure 4.2: Uncertainties’ rejection fraction and obtained accuracies with the increasing
number of training samples for the Human Activity Recognition (HAR) dataset.

For the HAR dataset, the rejection fraction obtained with both the aleatoric and knowl-

edge uncertainty measures presented a low value for all training sizes and classifiers being

analyzed. As expected, regarding the model uncertainty, the rejection fraction decreased

with the increasing number of training samples for all classifiers, where more complex

classifiers had a higher rejection fraction than simpler classifiers. Due to the low obtained

uncertainty (rejection fraction < 4%) and satisfactory accuracy (baseline accuracy of 89%),

the Gaussian NB classifier was selected.
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4.1.3 Uncertainty for models’ combination

In particularly complex classification problems, it is often found that performance can

be improved by combining multiple models instead of just using a single one. It had

been observed, that although one model would yield the best performance for a given

classification task, the sets of observations misclassified by the different models would

not necessarily overlap. This suggested that different models potentially offered comple-

mentary information about the observations to be classified which could be harnessed

to improve the performance of the selected model [109]. In general, ensembles require

heterogeneity of predictions to be successful, regardless of the combination rule. This

can be achieved through different feature sets or parameter settings for identical learn-

ing models, or through different learning algorithms using the same features. The key

is to avoid identical erroneous decisions on the same observation instances so that the

individual classifiers provide complementary information.

There are several combination rules to train and combine different models. Some

rules address models’ combination using the average of the predictions or the class proba-

bilities. Nevertheless, the uncertainty of multiple models is seldom considered. Thus, we

address how uncertainty can be taken into account for model combination, in the second

research question Can UQ be used to combine different models in a principled manner?.

4.1.3.1 Experiments on synthetic data

From the analysis of the previous section, we observed that different models had different

degrees of uncertainty for the same training size. Since different models are based on

different assumptions, we hypothesized that uncertainty measures can be used to combine

different models, producing a more robust model. In order to validate this hypothesis, a

new synthetic dataset composed of 150,000 ten-dimensional points corresponding to six

different classes equally distributed and modeled as a bimodal Gaussian distribution was

generated.

A Gaussian NB classifier and a KDE Bayes classifier were trained using a bootstrap

approach with 20 bootstrap samples. Figure 4.3 illustrates the rejection fraction and ac-

curacy of both models with an increasing number of training samples. Since the Gaussian

NB model fits the feature data with unimodal distributions, while the dataset contains

features modeled as bimodal Gaussian distributions, the Gaussian NB classifier has a

high rejection fraction due to aleatoric uncertainty, caused by high overlap between the

fitted distributions. In contrast, the KDE Bayes classifier is well-suited for bimodal dis-

tributions, resulting in low overlap between classes and a low rejection fraction due to

aleatoric uncertainty. With regard to model uncertainty, both models initially have high

rejection fractions, but the Gaussian NB classifier reached an almost zero rejection rate

at 105 training samples, while the KDE model, due to its complexity, had a rejection rate

of approximately 10%. In summary, the Gaussian NB classifier exhibits high aleatoric
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uncertainty and low model uncertainty, while the KDE Bayes classifier has low aleatoric

uncertainty and high model uncertainty.
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Figure 4.3: Uncertainties’ rejection fraction and obtained accuracies using a k-fold cross-
validation with an increasing number of training samples for Gaussian NB and KDE Bayes
models.

To verify the potential for combining both models using uncertainty measures, the

following combination rules were applied:

ω̂ =



fc1
(x) if Φc1

(x) = 0 and Φc2
(x) > 0

fc2
(x) if Φc1

(x) > 0 and Φc2
(x) = 0

fc1
(x) if Φc1

(x) = 0 and Φc2
(x) = 0 and fc1

(x) = fc2
(x)

reject otherwise

(4.7)

where c1 and c2 represent the Gaussian NB and KDE Bayes classifier and Φc is the uncer-

tainty function defined in Equation (4.2).

To validate that the proposed combination strategy performed better than the individ-

ual models, we applied the performance measures proposed in the work of Condessa et

al. [48]. To compare the performance of the classifiers with rejection, we used 10% of the

rejected samples with the highest available training size (approximately 90,000 training

samples).

Table 4.3 shows the obtained results for the three models using a 10% rejection frac-

tion. The combination strategy using the uncertainties of both individual models resulted

in higher values for the three performance measures for classifiers with rejection, namely

the non-rejected accuracy, classification quality, and rejection quality.
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These preliminary results demonstrate that access to uncertainty estimations during

the model development process may be a useful source of information to develop more

robust models. Although a simpler model, such as a NB classifier, may have lower per-

formance compared to more complex models, the use of uncertainty estimations can

provide information about the specific regions where the model has low uncertainty. Us-

ing this information in combination with more powerful models can increase overall

model performance.

Table 4.3: Performance measures for individual models (Gaussian naive Bayes and KDE
Bayes) and a combination of both models. The results were obtained using a rejection
fraction of 10% and a training size of 90,000 samples.

Model
Nonrejected Classification Rejection

Accuracy Quality Quality

Gaussian Naive Bayes 0.72 0.72 2.60
KDE Bayes 0.85 0.82 5.84
Model’s Combination 0.86 0.83 6.89

4.1.3.2 Experiments on HAR dataset

To validate the combination strategy using the HAR dataset, we decided to combine the

two trained models with low accuracy and high uncertainty (see Figure 4.2). Thus, we

combined the KDE Bayes model and logistic regression for the different training sizes.

To ensure the same rejection fraction for the three classifiers, we employed the obtained

rejection fraction for the models’ combination, given by Equation (4.7), for both the KDE

Bayes and logistic regression classifiers.

Figure 4.4 shows the performance measures for classification with rejection for the

individual models and their combination. The results show that the combination strategy

outperformed the individual classifiers for almost all training sizes and performance

measures. Notably, the combination strategy always resulted in a lower rejection fraction

than the obtained rejection fraction for the individual classifiers, as can be confirmed by

analyzing Figures 4.2 and 4.4.
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Figure 4.4: Performance measures for classification with rejection for different training
sizes.
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4.1.4 Interpretability of rejection via uncertainty visualization

In high-stakes applications where machine learning models are employed, auditing tools

are essential to building confidence in the models and their decisions. In addition to

quantification metrics, visualization techniques have been utilized to support the in-

terpretability of classification models. In this context, Neto et al. [110] proposed a vi-

sualization explainable matrix applied to random forests, focusing on global and local

explanations where confidence scores were used as an interpretability measure. How-

ever, regarding uncertainty visualization for a specific prediction or applied to the model

itself, there have been few, if any, studies addressing this aspect in the literature. Con-

sequently, to tackle our final research question, Can UQ be employed to enhance models’
interpretability?, we quantify the different sources of uncertainty using visualization meth-

ods. These visualizations aim to aid in interpreting the models’ uncertainty during model

development and to audit individual decisions.

For an overview of the uncertainty estimation obtained during the model’s devel-

opment of HAR dataset, a representation of the overall uncertainty is shown in Figure

4.5. In this visualization, the x-axis represents the number of samples where samples

are ordered by uncertainty. Using this ordering scheme, it was possible to interpret the

overall dataset uncertainty (upper bar), as well as the proportion of the different sources

of uncertainty across the dataset (lower bars). The size of each bar represents the number

of samples rejected by each type of uncertainty. Although in this dataset only 4% of the

test samples were rejected, we can make some observations about the uncertain samples.

The majority of uncertain samples rejected by aleatoric uncertainty were also rejected by

model uncertainty. Regions with an overlap between classes (aleatoric uncertainty) were

also regions where it was expected that the model fit would change between bootstrap

samples. In the case of knowledge uncertainty, it was expected that samples with knowl-

edge uncertainty would not have aleatoric uncertainty. However, for model uncertainty,

it is possible that some samples shared both model and knowledge uncertainty, which is

also verified with Figure 4.5.
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Figure 4.5: HAR dataset uncertainty overview.

Similarly, this representation can be applied to each individual class. Figure 4.6 shows
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the uncertainty distribution by class. From it, we can conclude that aleatoric uncertainty

was presented only in walking, walking upstairs and walking downstairs, which makes

perfect sense due to the similarity of these three classes. It is also possible to note that

laying class did not have aleatoric or model uncertainty. However, it was the class with

the highest knowledge uncertainty. Both sitting and standing classes had a similar pattern

in terms of uncertainty, where the sitting class was the one with the highest number of

uncertain samples.

0 1 2 3 4
# Samples ×102

Walking

0 1 2 3 4 5
# Uncertain Samples

0 1 2 3 4
# Samples ×102

Walking Upstairs

0.0 0.5 1.0 1.5
# Uncertain Samples ×101

0 1 2 3 4
# Samples ×102

Walking Downstairs

Uncertain

0 2 4 6 8
# Uncertain Samples

Aleatoric

Model

Knowledge

0 1 2 3 4
# Samples ×102

Sitting

0 1 2 3 4
# Uncertain Samples ×101

0 1 2 3 4 5
# Samples ×102

Standing

0.0 0.5 1.0 1.5 2.0
# Uncertain Samples ×101

0 1 2 3 4 5
# Samples ×102

Laying

0.0 0.5 1.0 1.5 2.0
# Uncertain Samples ×101

Figure 4.6: HAR dataset uncertainty overview by class.

Besides the visualization applied to the overall classifier’s uncertainty, an alternative

is to audit the reliability of a given prediction, answering questions such as: Can I trust
this prediction? Why did I reject this sample?

For this purpose, using the uncertainty estimations for each type of uncertainty, Fig-

ure 4.7 was obtained. In this visualization, the bar’s size represents how much the model

is confident or uncertain about a prediction by uncertainty type. To make the visual-

ization more intuitive, 0 confidence/uncertainty represents the obtained threshold for

rejecting a sample. Then, the bars’ sizes were normalized between 0 and 1 by the maxi-

mum/minimum theoretical value for each uncertainty.

Note that, in the aleatoric uncertainty, we visualize the prediction’s expected data en-

tropy, meaning that in Figure 4.7(a), the prediction probability was near 100% (entropy of

0). In the case of Figure 4.7(b), the obtained entropy was greater than the defined thresh-

old for rejection and its value represents approximately 1/3 of the entropies that range

between 1 and the rejection threshold. In the case of model uncertainty, we evaluated if

a given prediction changes between different bootstrap samples, i.e., the bar’s size repre-

sents the normalized variation ratios. In Figure 4.7(a), the prediction was the same in all

bootstrap samples, obtaining a maximum confidence value, and in Figure 4.7(b), the pre-

diction changed half the total number of possibilities, which are given by the number of

bootstrap samples and the number of classes. For instance, this dataset had 6 classes, and

20 bootstrap samples were used, meaning that the maximum variation ratio was 0.8, and

the prediction from Figure 4.7(b) obtained a variation ratio of 0.4. Finally, the knowledge

61



CHAPTER 4. UNCERTAINTY FOR MODEL DESIGN

uncertainty represents how much a prediction is similar to the training dataset, in terms

of probability density. Thus, both Figures 4.7(a) and (b) represent predictions wherein

the combination of feature densities led to an uncertainty distance comparable to several

samples from the training data. In other words, using KDE as a density estimator, these

predictions share similar feature densities with several training samples.
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(a) Prediction accepted by aleatoric, model, and
knowledge uncertainty
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(b) Prediction rejected by aleatoric and model uncer-
tainty.

Figure 4.7: Prediction uncertainty. A confidence value of 0 represents the obtained
threshold for rejecting a sample by the uncertainty source. Bars’ sizes are normalized
between the maximum theoretical confidence/uncertainty.

4.2 Explainability meets uncertainty quantification

Feature importance evaluation is one of the prevalent approaches to interpreting black

box ML models. These techniques allow for visualizing the importance ranking of each

feature and measuring how much a given feature contributes to the prediction. However,

these methods often require a sort of cutoff to get the most informative feature set, which

is usually a non-trivial task. Insights from social sciences [111] support simple model

explanations that involve the minimum number of features. Therefore, it is important

to research methodologies for diminishing the complexity of the explication. This issue

becomes particularly relevant in the context of explaining multimodal machine learning

models, where the complexity of the problem is compounded by an increase in both the

total number of features and the variety of data modalities being considered. An example

scenario is the use of wearable data, where multiple sensors are worn across multiple

body regions and retrieve information from multiple data modalities. A single model

that learns from these high-dimensional datasets is often particularly complex and might

attempt to model dozens of features from a wide spectrum of data modalities.

Multimodal learning attempts to model the combination of different modalities of

data. However, it is often found that improved performance can be obtained by com-

bining multiple models together instead of just using a single model in isolation. The

most straightforward approach to combining models is calculating the mode from the

predictions of a group of individual models. Such a methodology can be justified from a

frequentist viewpoint by weighing the balance between bias and variance. However, such

a combination process assumes that all models perform equally well regardless of their
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reliability or predictive uncertainty. Alternative aggregation methods can incorporate

dynamic weights based on UQ for the aggregation process. Dynamic weighting enables

the ensemble model to consider the uncertainty level of each individual model predic-

tion, attributing more weight to the predictions of more certain models and less weight

to those more uncertain.

In this section, we propose a novel approach to lower the explanation complexity of

multimodal data using uncertainty quantification. Figure 4.8 outlines the intuition of the

proposed approach. A baseline model uses all the data modalities of the dataset. We use

UQ to aggregate specialized models for each modality by accounting for their respective

uncertainty in predicting a given sample. This process allows for discarding less confident

models and using a subset of modalities for making predictions. By reducing the number

of modalities taken into account, the complexity of the explication is also minimized.
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Figure 4.8: Schematic of our framework. (upper) An early fusion model learns with
features from different modalities. It often results in a complex high-dimensional expla-
nation output that hinders human analysis (lower). Our proposed approach with model
aggregation using uncertainty quantification that rejects the most uncertain models. The
reduced number of modalities and features yields simpler explanations.
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Another important aspect of our proposed approach is handling missing data, a com-

mon issue in multimodal time series analysis [112]. Our proposed model combination

approach allows the models trained on the other modalities to handle the missing data in

one modality. For example, if one of the modalities is missing data for a particular time

window, the other models can still provide predictions based on the available data. This

can help improve the model’s robustness and ensure that it continues to provide accurate

predictions even in the presence of missing modalities.

In the subsequent subsections, we start with an overview of essential background

information on aggregation methods and feature-based explanations. Next, we detail the

proposed approach and conclude the section with the experimental results.

4.2.1 Preliminaries

4.2.1.1 Aggregation strategies

The main idea behind combination approaches is to exploit the characteristics of sev-

eral independent classifiers by combining them to achieve higher performance than the

best single model. This approach appears in the literature under several names such

as multi-classifiers combination, multi-classifiers fusion, mixture of experts, ensemble-

based classification systems, among others [113].

Despite the idea of combining models is not new, an interesting issue in the research

community is to find the best combination rule for the task at hand. There are several

combination rules to train and combine different models. Some rules address model

combinations using voting mechanisms based on individual classifiers’ predictions, while

others use aggregation techniques based on the classifiers’ class probabilities. The former

is commonly called hard voting (also known as majority voting), and the latter is soft

voting.

In the literature, it is common to use weights in the model combination process

since models often exhibit varying performance levels. Some studies, such as those by

[114] and [115], that leverage weights based on models’ reliability scores outperform

baseline methods with equal weights. However, dynamic weighting schemes tend to

yield better results than fixed weights [113]. This superior performance can be attributed

to the dynamic combination’s ability to update weights assigned to individual classifiers

before making the final decision. For example, Poh et al. [116] proposed a quality-based

combination approach for multimodal biometrics. The underlying concept is that quality

issues affecting one modality (e.g., signal noise) often do not impact other modalities.

Consequently, the proposed combination method assigns higher weights to more reliable

classifiers under specific conditions.

Different combination strategies exist, but the predictive uncertainty of the individual

classifiers in the ensemble is seldom considered. In the following section, we will discuss

different aggregation strategies and present various measures of uncertainty quantifica-

tion that we proposed to use as weights for the aggregation methods.
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Consider a standard setting of supervised learning with a finite training dataset, D =

{(xi , yi)}Ni ⊂X×Y, with N samples, composed of pairs of input instances x and outcomes

y, where X is an instance space, Y the set of outcomes that can be associated with an

instance. Suppose a hypothesis space H composed by a finite ensemble of M hypothesis,

where a hypothesis h maps instances x to outcomes y. An individual model can be seen

as a hypothesis of the ensemble.

One of the most common forms of aggregation is majority voting. As the name sug-

gests, the predicted class label is obtained by considering the vote of each individual

classifier with equal importance, i.e., the final prediction is the most frequently predicted

class label. This method offers the benefit of directly handling the outputs of individ-

ual classifiers without the need for probabilistic modeling. However, it assumes that all

classifiers perform equally well regardless of their reliability or predictive uncertainty

[117]. In general, the individual models’ performances are not similar, so it is reasonable

to assign higher weights to the decision made by the more accurate classifiers using a

weighted majority voting defined as:

aggvote(x) = argmax
y∈Y

∑
h∈H

wh ∗ ⟦ŷh = y⟧ (4.8)

where wh ∈R+ denotes the weight associated with hypothesis h and ⟦ŷh = y⟧ is an indica-

tor function that takes the value 1 if the expression is true, and to 0 otherwise. If wh = 1

for all M hypotheses in the ensemble, we recover standard majority voting.

Instead of using the predicted class label, aggregation based on the class probabilities

of each individual classifier can be made. One of the most straightforward methods in

this soft-level aggregation is the average or sum of class probabilities. Although these

soft aggregation methods consider more information in the combination process, they re-

quire different models to approximate the same function. Otherwise, the predictions are

incomparable, and averaging is not a meaningful operation [118]. Moreover, calibrating

individual classifiers’ probabilities can be challenging in the combination process. These

aggregations can also be turned into a weighted version. As an example, the sum rule

quantifies the likelihood of a hypothesis by combining the class probabilities generated

by the individual ensemble members using a weighted sum rule defined as:

aggsum(x) = argmax
y∈Y

∑
h∈H

wh ∗ p(y|x,h) (4.9)

where p(y|x,h) is the probability of outcome y given x predicted by hypothesis h.

This definition can be generalized to other rules such as the average, product, maxi-

mum, minimum, median, etc.
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4.2.1.2 Feature-based Explanations

Research on improving the interpretability of black-box machine learning models through

post-hoc explanations has attracted considerable attention over the last few years. Feature-

based explanations are popular among practitioners who want to understand their model

better to ensure its adequate behavior when deploying in real-world applications. These

techniques often involve visualizing the importance ranking of each feature and how

the feature values affect the model’s prediction. Formally, feature-based methods assign

a scalar attribution value, sometimes called "relevance" or "contribution" to each input

sample’s input feature. The goal is to determine the contribution R = [R1,R2, . . . ,Rd] ∈Rd

of each input feature xi to the output ŷ.

Several approaches are available to measure each feature’s relevance across different

data types. Gradient-based methods compute the gradient of the model’s output to its

inputs and use those values to represent in salience maps [119]. Perturbation-based

methods modify or remove parts of the input and measure the impact on the model’s

output [120]. In the previous setting, Local Interpretable Model-Agnostic Explanations

(LIME) is a well-known technique that approximates the model locally with a simpler

surrogate model from which several perturbations are performed [121]. Another well-

known method is SHapley Additive exPlanations (SHAP), which translates the Shapley

values from cooperative game theory into the context of machine learning [122].

The evaluation of the quality of explanations is a non-trivial task due to its subjective

nature. Standardizing such evaluation is an open research topic that has received signifi-

cant attention [123–125]. Insights from social sciences point out that interpretability has

properties of clarity and parsimony. Clarity implies that the explanation is unambigu-

ous, while parsimony means that the explanation is presented in a simple and compact

form [126]. Lombrozo [111] argues that good explanations are simple and broad. The

author’s observation is supported by user research studies involving academics across

several disciplines that identify consistency in their judgment regarding what constitutes

good explanations. Appeals to simplicity were ubiquitous, and some participants also

emphasized the significance of generality or comprehensiveness.

In the literature, model complexity is often used as a proxy for explainability com-

plexity. In addition to the number of features, some model-specific metrics are used, such

as the number of decision tree rules, tree depth, and the number of non-zeros coefficients

in linear models [127–129]. This approach assumes that the more parameters a model

has, the more complex it is. Another popular approach is to use information criteria such

as the Akaike information criterion or the Bayesian information criterion [130]. These

criteria provide means to compare the relative complexity of different models while also

considering their goodness of fit. L1 regularization (Lasso) is a popular method for feature

selection, as it shrinks the less important feature’s coefficient to zero, thus, removing some

features altogether. Prior studies have employed a technique of modifying the method

by increasing the emphasis on minimizing particular modalities by assigning differential
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weights to features based on their modalities or aggregating features belonging to the

same modality and subjecting the group to a penalty [131–134].

Bhatt et al. introduced in [135] three criteria for evaluating feature-based explana-

tions: sensitivity, faithfulness, and complexity. Sensitivity measures the change in the

explanation after perturbation in the model input; faithfulness concerns the capacity

of an explanation method to select the truly relevant features; and complexity concerns

the extent of the simplicity of the explanation. The authors present a desideratum for

good explanations: low sensitivity, high faithfulness, and low complexity. Batterman

and Rice studied the complexity of explanations in [136] and argued for minimal model

explanations that contain only relevant and representative features. In fact, humans can-

not process a high volume of information at once, therefore, explanations should have

reduced complexity (i.e., use few features). In order to examine the influence of expla-

nation intricacy on users’ understanding, Lage et al. [137] investigated the impact of

explanation length and complexity on response time, accuracy, and subjective satisfac-

tion of users. Their findings indicated that heightened explanation complexity led to a

decrease in subjective user satisfaction.

4.2.2 Proposed approach

This section describes the methods of the main contributions of this research work. The

section starts with a description of our proposed approach to measure the complexity

explanation of a single instance, i.e., local explanation, using the feature importance.

Then we describe the proposed aggregation strategies based on uncertainty and finish

with a summary of the proposed approach.

4.2.2.1 Measuring explanation complexity from feature importance

The rationale for our approach resides in the considerations associated with multimodal

problems. In this type of problem, features are associated with different modalities. We

argue that a simpler explanation uses the smallest possible set of modalities and features.

Therefore, let us consider a dataset D composed of a set of R features and M disjoint

modalities. Let us consider that to explain the instance xi , only a subset of r ⊆ R features

and m ⊆ M models are required. We define complexity as the fraction of features and

modalities required to explain a given instance in relation to the total number of features

and modalities.

Given an explanation function g that depends on the subset of r features and the

subset of m modalities to explain the instance xi , the complexity of g(r,m) at xi is:

c(g;xi) =
1
2

(
|r |
|R|

+
|m|
|M |

)
. (4.10)

A complex explanation uses |R| features and |M | modalities in its explanation. Al-

though the explanation is probably faithful to the model, it is difficult for the user to

67



CHAPTER 4. UNCERTAINTY FOR MODEL DESIGN

understand the relationships between the high number of features and different modali-

ties contributing to a given prediction.

To find the subset of r features, different feature importance methods can be used. In

this work, we chose to do it using SHAP. The Shapley values are a solution concept in

cooperative game theory. They denote the marginal contribution of a player to the payoff
of a coalitional game. Let T be a set of players and let v : 2T → R be the characteristic

function, where v(S) denotes the contribution of the players in S ⊆ T . The Shapley value

of player j’s contribution (i.e., averaging player j’s marginal contributions to all possible

subsets S) is:

φj(v) =
1
|T |

∑
S⊆T \{j}

 |T | − 1

|S |

−1

(v(S ∪ {j})− v(S)). (4.11)

In feature-based explanations, the problem is formulated similarly, and the game’s

payoff is the model’s output ŷ = f (x), the players are the d features of x, and the φj

represent the contribution of xi to the game f (x).

SHAP calculates Shapley value explanations with an additive feature attribution

method:

g (z′) = φ0 +
Z∑
j=1

φjz
′
j (4.12)

where g is the explanation model, z′ ∈ {0,1}Z is the coalition vector, Z is the maximum

coalition size, and φj ∈R is the feature importance for feature j, i.e., the Shapley value.

Thus, to obtain the r subset, suppose the SHAP values are rescaled from the log odds to

the probability space. In that case, their sum equals the difference between the posterior

probability, p(y|x), and the expected base value E[f (x)]. The base value is generally the

average of the outcome variable in the training set. We define the minimum number

of relevant features, as the cardinality of the minimum subset from which the sum of

Shapley values, ordered by their absolute value, φ̄j , equals or surpasses the difference

between the posterior probability and the base value.

Given the set of R features, and their Shapley values ordered by their absolute value,

φ̄j , the minimum relevant feature subset, r, to explain the instance xi , is the one that

satisfies the following:

min

r ⊆ R :
d∑

j=1

φ̄j

 ≥ ∣∣∣p(y|x)−E[f (x)]
∣∣∣ . (4.13)

To approximate a global explanation from local explanations, usually, all the local

explanations are aggregated. Therefore, the global explanation complexity can be defined

as the combination of local explanation complexities.

Given the set of c explanation complexities of N samples, the global explanation

complexity of g is:
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C(c) =
1
N

N∑
i=1

ci . (4.14)

4.2.2.2 Uncertainty-weighted model combination strategies

We propose using both soft and hard aggregation strategies, as described in Section 4.2.1.1,

for the task of model combination, weighted at two main levels:

• Model-based: The predictions of each individual model are weighted by the model’s

classification performance. This approach is grounded in the principle that the

more accurate models should be given greater weight than the less accurate ones,

as they are more likely to provide reliable predictions.

• Instance-based: The predictions of each individual model are dynamically weighted

using measures of uncertainty (see Chapter 3) for a given instance. Dynamic weight-

ing enables the ensemble model to consider the confidence level in each individual

model prediction. Although one model may generally be more accurate than the

others, it does not necessarily mean it will always be more certain in its decisions.

In some cases, the most accurate model may exhibit higher uncertainty in its pre-

dictions than the less accurate model.

Although all uncertainty measures can be applied to soft and hard aggregation strate-

gies, aleatoric uncertainty measures will be only used as weights for hard voting methods.

Since aleatoric measures are derived from class probabilities and soft voting methods rely

on these probabilities, we have chosen to apply only epistemic uncertainty measures to

these methods.

Additionally, we proposed a combination strategy based on classification with a re-

jection option for individual models. For instance-based weights, a model with high

uncertainty in a given observation will correspond to a low weight in the combination

process. Therefore, its contribution to the decision process will be minimal.

However, in the case of model-based weights, the abstaining capabilities of individual

models can be advantageous for the combination process. Thus, we proposed to use both

aleatoric and epistemic uncertainty as rejection measures for hard voting strategies and

only epistemic uncertainty for soft voting.

For the rejection threshold, we have established the rejection threshold by considering

a percentage of the maximum theoretical value for each uncertainty measure. Since all the

uncertainty measures used in this study are upper and lower bounded, we have computed

the maximum theoretical value for each measure and set the rejection threshold at 90%

of that value.

Table 4.4 summarizes the combination strategies that will be studied in the experi-

mental analysis.
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Table 4.4: Summary of combination strategies weighted by uncertainty measures. AU :
Aleatoric Uncertainty, EU : Epistemic Uncertainty, TU : Total Uncertainty, MR: Model
Reliability. ∗ combination of other aleatoric and epistemic uncertainty measures.

Aggregation Uncertainty
Source

Metric Abbreviation

Hard Voting

Aleatoric
p(ŷ|x) AUmax
H[p(y|x)] AUentropy
ua(x) AUbayes

Epistemic
vr(x) EUvr
ue(x) EUbayes

Total * TU*

Reliability
F1-score MR
F1-score w/ aleatoric and
epistemic rejection

MRrej

Soft Voting
Epistemic

vr(x) EUvr
ue(x) EUbayes

Reliability
F1-score MR
F1-score w/ epistemic re-
jection

MRrej

4.2.2.3 Lowering explanation complexity via model combination using uncertainty

We hypothesize that reducing the number of modalities and features used in the expla-

nation can simplify the model’s complexity. When modeling multimodal data, one can

either use a single model for all available features and modalities or use separate models

for each modality and combine their strengths and consider them using the combination

strategies previously defined in Section 4.2.1.1.

For the model aggregation strategy, while the individual models might produce ac-

curate predictions in general, in certain circumstances, this may not be the case. For

example, there could be certain regions of feature space where some models referring to

some modalities struggle to differentiate among the different classes. Using the combi-

nation strategy with a rejecting option proposed in Section 4.2.2.2, these models would

abstain from making a prediction when they are likely to misclassify. Another advan-

tage of this approach is that since the model rejects uncertainty modalities, it decreases

the number of modalities and features required to explain a particular instance, thus

lowering the complexity of the explanation.

For each instance, we decrease the number of modalities and features to explain by:

(1) rejecting the models with high uncertainty and (2) using only the individual models

that are in agreement.

To determine the subset r for the proposed approach, an output score must be cal-

culated. The computation varies depending on the aggregation strategy employed. In
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hard voting strategies, the class probability is determined by the fraction of votes of each

modality, whereas in soft voting strategies, the class probabilities are computed as the

mean predicted class probabilities of each model in the ensemble.

In the following sections, we show that this approach reduces the explainability com-

plexity without compromising the overall model performance.

4.2.3 Datasets

We tested our proposed approach in two public datasets composed of multimodal physi-

ological data: WESAD [138] and CSL-SHARE [139].

The WESAD (Wearable Stress and Affect Detection) dataset was introduced and made

publicly available by Schmidt et al. [138]. Their study aimed to elicit different affective

states in the participants. A total of 15 participants experienced three different affective

states, namely baseline, amused, and stressed conditions. This multimodal dataset con-

tains motion and physiological data collected by equipment placed on participants’ wrists

and chests. For our study, only chest sensors were used, which include a 3-axis accelerom-

eter sensor (ACC) and physiological data from electrocardiogram (ECG), electrodermal

activity (EDA), skin temperature (TEMP), electrocardiography (EMG) and respiration

(RESP). The data were collected at a sampling rate of 700 Hz.

The CSL-SHARE (Cognitive Systems Lab Sensor-based Human Activity REcordings)

dataset contains 22 classes of activities of daily living and sports collected from 20 sub-

jects and was made publicly available by Liu et al. [139]. Participants wore a knee

bandage with two triaxial accelerometers (ACC), two triaxial gyroscope sensors (GYRO),

four surface electromyography (sEMG) sensors, one biaxial electrogoniometer (GONIO),

and one airborne microphone (MIC). The data were collected at a sampling rate of 1000

Hz.

4.2.4 Experimental setup

Figure 4.9 shows the pipeline employed in this study. Each individual modality is first

trained separately, and a baseline model using all modalities is also trained for comparison

purposes. Data preprocessing varies for each modality but typically includes methods

such as signal filtering for noise reduction, as well as transformation methods (such as

transforming the ECG signal to heart rate variability) and normalization to reduce inter-

subject variability. For the WESAD dataset, the signals were segmented using a sliding

window with a window shift of 6 seconds and a size of 60 seconds. While, for the CSL-

SHARE dataset, the provided annotations were used to segment the signals. Feature

extraction includes statistical, temporal, spectral, and fractal features that depend on the

modality used. Additional details on data preparation, including signal preprocessing

and feature extraction, are provided in Appendix B.2.

Regarding model training, we considered five machine learning models: Decision

Tree, Random Forest, AdaBoost, Naive Bayes, and Support Vector Machines. We used
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Figure 4.9: Overview of the proposed machine learning pipeline.

a Leave One Subject Out (LOSO) cross-validation approach. A sequential feature selec-

tion and a grid search hyperparameter tuning were also applied for model optimization.

To evaluate the performance of the classifiers, we used different measures depending

on skewed class proportions. For the imbalanced dataset (WESAD), we used F1-score

with macro average, while for the balanced dataset (CSL-SHARE), we used accuracy. We

selected the classifier with the best performance as the final model for each modality.

A comprehensive description of the selected models for each modality, their respective

hyperparameters, and the number of selected features is provided in the Appendix (see

Tables B.3 and B.4).

In the final step of the pipeline, the best models for each modality are combined using

the aggregation methods described in Section 4.2.1.1 weighted by uncertainty measures.

The feature importance for each model was measured using SHAP. We used the TreeEx-

plainer [140] for the Decision Tree and Random Forest models and the KernelExplainer

for the remaining models with K = 100 samples summarized using k-means. The feature

importance and the complexity of explanations were measured for the individual models

with the proposed combined model and the baseline model.

4.2.5 Results and Discussion

To conduct a preliminary performance evaluation, we assessed the performance of our

best models using the pipeline illustrated in Figure 4.9. For the WESAD dataset, we

compared our results with the performance reported by Schmidt et al. [138]. The per-

formance comparison is shown in Table 4.5. Since we did not find baseline performance

results for the CSL-SHARE dataset, we only present the obtained results in Table 4.6.

Our proposed processing and modeling pipeline yielded improved results compared

to Schmidt et al. [138], except for the ECG and RESP. The higher F1-score can be ex-

plained by changes we adopted to the original pipeline design. During preprocessing, we
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Table 4.5: Performance evaluation of the best models for each modality comparing the
results from Schmidt et al. [138] and ours. F1-score with macro average is used as
the performance measure. We report the mean and standard deviation of LOSO. The
standard deviation of the LOSO was not reported by Schmidt et al. [138]. The best results
are highlighted in bold.

Modality
F1-score

Schmidt et al. [138] Ours

ACC 0.443 0.671 ± 0.178
EDA 0.483 0.616 ± 0.195
TEMP 0.425 0.518 ± 0.188
EMG 0.381 0.402 ± 0.126
ECG 0.560 0.555 ± 0.148
RESP 0.618 0.613 ± 0.111

ALL 0.725 0.777 ± 0.155

Table 4.6: Performance evaluation of the best models for each modality. Accuracy is used
as the performance measure. We report the mean and standard deviation of LOSO.

Modality Accuracy

ACC 0.685 ± 0.039
GYRO 0.728 ± 0.043
GONIO 0.650 ± 0.035
EMG 0.375 ± 0.019
MIC 0.257 ± 0.015

ALL 0.835 ± 0.036

normalized feature values for some modalities per subject. This approach aided in reduc-

ing model overfitting and eliminating residual bias stemming from differences in basal

subject-specific values. It is important to note that there were differences in the feature set

used in our study and that of Schmidt et al. [138]. Specifically, we utilized open-source

libraries to extract ECG, RESP, and EDA data [141, 142]. Our LOSO’s standard deviation

was moderate, which reflects some inter-subject variability. Nevertheless, this value was

consistent with findings from other studies utilizing the WESAD dataset [143].

4.2.5.1 Aggregation methods

In Table 4.7, we report the results of combining the individual models for each modality

using the baseline aggregation methods and our proposed weighted version using un-

certainty measures. Note that for soft aggregation strategies, only the best-performing

aggregation method was considered for the weighted variant of soft aggregation strate-

gies.

From Table 4.7, we can conclude that majority voting outperformed all equal-weighted
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Table 4.7: Performance evaluation of baseline aggregation methods compared with the
proposed weighted version using uncertainty measures. The best result per dataset and
aggregation strategy is highlighted in bold.

Aggregation Weight Performance

WESAD CSL-SHARE

Majority Vote 1 0.752 ± 0.123 0.755 ± 0.035
Sum Rule 1 0.699 ± 0.137 0.824 ± 0.032
Mean Rule 1 0.699 ± 0.137 0.824 ± 0.032
Max Rule 1 0.625 ± 0.175 0.783 ± 0.034
Prod Rule 1 0.663 ± 0.211 0.806 ± 0.024
Min Rule 1 0.656 ± 0.209 0.706 ± 0.016

Majority Vote

AUmax 0.774 ± 0.130 0.800 ± 0.030
AUentropy 0.691 ± 0.146 0.792 ± 0.026
AUbayes 0.697 ± 0.140 0.791 ± 0.025
EUvr 0.781 ± 0.131 0.786 ± 0.031
EUbayes 0.772 ± 0.128 0.783 ± 0.023
TU{AUmax;EUvr } 0.776 ± 0.132 0.795 ± 0.030
MR 0.765 ± 0.119 0.787 ± 0.026
MR-rej 0.766 ± 0.115 0.788 ± 0.026

Sum Rule
EUbayes 0.705 ± 0.156 0.827 ± 0.032
EUvr 0.692 ± 0.155 0.823 ± 0.034
MR 0.711 ± 0.153 0.827 ± 0.033
MR-rej 0.710 ± 0.150 0.826 ± 0.033

soft voting strategies on the WESAD dataset, while the opposite was observed for the CSL-

SHARE dataset. As a result, the best weighted aggregation strategy for WESAD dataset

was majority voting weighted by EUvr, while for the CSL-SHARE dataset, the sum rule

weighted by EUbayes obtained the highest score. Overall, the weighted majority voting

demonstrated better performance compared to its unweighted counterpart across both

datasets, except for AUentropy and AUbayes in the WESAD dataset. Concerning soft vot-

ing strategies, while the use of uncertainty-based weighting led to higher scores, the

differences compared to the unweighted approach were minimal.

When comparing the performance improvements of aleatoric and epistemic uncer-

tainty as weighted aggregation measures, we observed that epistemic uncertainty had

a more pronounced effect on the WESAD dataset, while aleatoric uncertainty yielded

higher scores on the CSL-SHARE. Figure 4.10 displays the rejection rate as a function of

the dataset uncertainty values, which are normalized by their maximum theoretical value.

For instance, when the uncertainty threshold is set to 1, it corresponds to the maximum

theoretical value, and as a result, no samples are rejected, leading to a rejection rate of

zero. The figure presents the results for both datasets using the best-performing uncer-

tainty measures when applying majority voting, namely pmax for aleatoric uncertainty

and vr for epistemic uncertainty.
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Figure 4.10: Rejection rate as a function of normalized uncertainty values for (a) aleatoric
and (b) epistemic uncertainties. The uncertainty threshold is normalized to the maximum
theoretical value of each uncertainty measure. Results are shown for both datasets using
the best-performing uncertainty measures when applying majority voting, with pmax for
aleatoric uncertainty and vr for epistemic uncertainty.

Upon evaluating the amounts of epistemic and aleatoric uncertainty in both datasets,

we found that CSL-SHARE generally exhibited greater aleatoric uncertainty than WESAD

and the opposite for epistemic uncertainty. In fact, CSL-SHARE has two modalities (MIC

and EMG) with high aleatoric uncertainty throughout the entire dataset. This observation

may have contributed to the obtained results.

Finally, compared to models trained using all modalities, the top-performing weighted
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aggregation strategy attained comparable performance. It is worth noting that aggrega-

tion methods use less information than the models trained with all modalities, as they do

not consider the dependence between modalities.

4.2.5.2 Missing data

In Figure 4.11, we present an analysis of the model’s performance with missing data, fo-

cusing on the best-performing model from Table 4.7, i.e., the majority voting weighted by

EUvr for WESAD dataset and the sum rule weighted by EUbayes for CSL-SHARE dataset.

The diagram in the figure demonstrates the model’s performance with varying combi-

nations of modalities, using grayscale to represent the obtained performance (dark for

highest and white for lowest). For simplicity and due to the minimal impact of the tem-

perature model on the ensemble performance of the WESAD dataset, the analysis begins

with five modalities instead of the available six and concludes with combining two modal-

ities. The drop in performance varies depending on the missing modality. For instance,

in the WESAD dataset, the removal of the ECG modality results in a minor performance

decrease from 0.777 to 0.762, whereas the removal of the EDA modality leads to a more

significant drop from 0.777 to 0.705.

4.2.5.3 Explanation complexity

Figure 4.12 shows the relationship between the mean explanation complexity and mean

performance for the models learned on individual modalities, the models learned with all

the available modalities (ALL), and the aggregation approaches. Only the best-performing

aggregation strategies are presented for the aggregation approaches: non-weighted de-

noted as BASEagg and weighted denoted as UNCagg.

For both datasets, the models learned on individual modalities exhibited a similar

relationship between performance and explanation complexity scores, demonstrating a

consistent pattern. As expected, using individual modalities led to lower explanation

complexities but with a decreased model performance. The ALL and BASEagg share

a similar behavior, with higher performance but increased explanation complexity. In

both datasets, the BASEagg attained slightly lower performance than ALL and a slightly

lower explanation complexity than ALL for the WESAD and higher complexity in the

CSL-SHARE.

The UNCagg model showed an interesting relationship, exhibiting similar perfor-

mance to ALL but with a lower complexity score with an intermediate value between

the individual models and ALL (0.40 for WESAD and 0.53 for CSL-SHARE). This be-

havior was consistent among the two datasets. Notably, UNCagg achieved slightly higher

performance than BASEagg, with a notably lower explanation complexity. The explana-

tion complexities for BASEagg were 0.75 for WESAD and 0.90 for CSL-SHARE. This lower

complexity arises from UNCagg using, on average, fewer modalities and features than

ALL and BASEagg, as illustrated in Figure 4.13.
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(a) WESAD

(b) CLS-SHARE

Figure 4.11: Diagram illustrating the performance of the best-performing model with
uncertainty-based aggregation methods when handling missing modalities. The gray
scale indicates the obtained performance for each combination of modalities (black for
highest, white for lowest). The diagram starts with five modalities and ends with a com-
bination of two modalities. The performance values for each combination are presented
alongside the modalities in the figure.

To calculate the number of modalities and features from the minimum relevant fea-

tures set, we use the threshold defined in Eq. 4.13. We studied the impact of this threshold

on the results by analyzing how its value relates to the complexity results. Specifically,
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Figure 4.12: Relationship between the mean explanation complexity and mean perfor-
mance for the individual modalities, ALL, and aggregation approaches. The horizontal
and vertical error bars represent the standard deviation across all folds for explanation
complexity and performance, respectively.
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Figure 4.13: Number of modalities and features of the minimum relevant feature subset.
We report the median number of features and modalities and the error bar with a 95%
confidence interval.

we multiplied
∣∣∣p(y|x)−E[f (x)]

∣∣∣ by the scalar α and calculated the resulting complexity

for a range of values of α. The results are presented in Figure 4.14. As expected, lower

values of α lower the cardinality of the minimum relevant feature set, thus lowering the
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explanation complexity. Larger values of α lead to increased complexity. Generally, the

growth rate for the number of features, modalities, and complexity stabilizes on a plateau

for α ≥ 1. For the WESAD dataset, the number of features, modalities, and complexity

was lower for UNCagg compared to ALL, irrespective of α. Similar behavior was observed

in the CSL-SHARE, except for the number of features, which remained approximately

equal to ALL until α ≤ 1.
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Figure 4.14: The impact of the threshold in the minimum relevant feature size. We multi-
plied

∣∣∣p(y|x)−E[f (x)]
∣∣∣ from Eq. 4.13 by the scalar α and calculated the resulting number

of features, modalities, and complexity for a range of values of α. Each point represents
the mean value across all folds. (a) WESAD dataset and (b) CSL-SHARE dataset.

4.2.6 Conclusion

We propose a novel approach to lower the explanation complexity of feature-based time

series models based on reducing the number of modalities and features used to explain

multimodal data. Specifically, we use a model aggregation approach weighted by UQ

measures that consider the most certain modalities to predict a sample, leading to a lower

explanation complexity. We argue that this reduction in explanation complexity yields

less complex local explanations without compromising the models’ performance.

Using an uncertainty-based model combination is a fundamental aspect of our ap-

proach. It allows us to dynamically select the most reliable and certain models for
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each instance. By incorporating uncertainty quantification measures as weights during

the aggregation process, our method can adaptively assess the confidence level of each

model’s predictions. As a result, our approach outperformed static weighting strategies

and yielded better overall performance. The use of confidence or quality measures as

weighted metrics for model combinations is supported by other studies in the literature,

which have reached similar conclusions on the effectiveness of employing such measures

[116].

In the comparison between soft and hard voting strategies, distinct conclusions were

reached. Although many weight measures used in majority voting aggregation surpassed

the baseline majority voting with equal weights, the same could not be observed for soft

voting aggregation. Although soft aggregation methods incorporate more information

during the combination process, the predictions generated by different classifiers are

only compatible if the output classifier scores represent well-calibrated probabilities.

Otherwise, averaging or other combination methods may not yield meaningful results

[118]. In future research, we plan to explore the effects of individual model calibration

on ensemble performance.

Furthermore, our findings suggest that aleatoric and epistemic uncertainty measures

resulted in improved overall performance on datasets containing a higher proportion

of aleatoric and epistemic uncertainty samples, respectively. While this conclusion may

seem apparent, it emphasizes the importance of integrating both uncertainty sources for a

more effective weighted aggregation strategy. Additionally, gaining a deeper understand-

ing of the models during development can enhance the robustness and performance of

such models.

The study also highlights the importance of addressing missing data, demonstrating

that our approach remains robust and reliable even when faced with incomplete data.

This adaptability makes the method suitable for real-world applications where data com-

pleteness cannot always be guaranteed.

Regarding the proposed explanation complexity measure, a general assumption in

previous literature is that linear models with fewer parameters or rule-based models

with few rules are less complex than models with many parameters and rules [144, 145].

Our work extends this previous literature assumption to the multimodal data setting,

arguing that more concise explanations have fewer modalities and features. This no-

tion is supported by previous research in social sciences [111, 126], and user research

studies focusing on model explainability [137]. In previous studies, metrics for post-hoc

interpretability based on the number of features and interactions were proposed [135,

146]. However, these methods are more generalized and do not account for the impact

of modalities on the explanation. Therefore, our technical approach differs, and we have

introduced a novel measure for assessing model complexity appropriate for multimodal

scenarios.

While the current study provides valuable insights and advances, it is important to

acknowledge its limitations. This work relies on calculating a representative feature set
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to reduce the complexity of the explanation. The method to select the representative

feature set was based on a heuristic that measured the difference between the posterior

and prior probabilities. Some features were ignored since their marginal contribution

was deemed minor. As a consequence, the local accuracy of the explanation may have

been reduced, but this approach provided a net benefit in terms of lower complexity.

Regarding the selected threshold, we conducted an experiment to understand better

the impact of the threshold that selects the minimum relevant feature set. In general,

irrespective of its value, our proposed approach yields explanations with fewer modalities

and lower complexity. The reduction in the number of features was more evident in

the WESAD dataset and marginal in the CSL-SHARE. Nevertheless, in the CSL-SHARE

dataset, although the number of features from our approach was similar to the model

trained with all modalities, the complexity was lower. Explaining an instance with the

same number of features but referent to fewer modalities is simpler than with a high

number of modalities.

While the current study used a heuristic to select the threshold to determine the

representative feature set, it is possible that a user research study could provide further

insights into the needs of users and better inform the selection of the optimal feature set.

4.3 Final remarks

As ML models are increasingly being integrated into safety-critical applications, incor-

porating uncertainty quantification estimates should become a required part of the ML

methodology. Uncertainty quantification can be used for “uncertainty-informed” deci-

sions and to support developers and end-users by increasing the interpretability of and

trust in model predictions.

In this chapter, we introduced a complete study focused on how uncertainty quan-

tification can be used in practice through three research questions: (1) How can UQ

contribute to choosing the most suitable model for a given classification task? (2) Can UQ

be used to combine different models in a principled manner? (3) Can UQ be employed to

enhance models’ interpretability?

Regarding the first question, we showed that uncertainty quantification in combina-

tion with the model’s accuracy can give us important elements to choose the most suitable

model. For instance, the decision between different classifiers with the same accuracy

can benefit from the uncertainty quantification methods, whereas classifiers with lower

degrees of uncertainty can be preferable. Furthermore, if model uncertainty is high and

the addition of new samples is possible, the increase of training samples can reduce the

model uncertainty and consequently increase the model’s accuracy. By using uncertainty

as a complement to performance measures, we can make more informed decisions in

model selection.

The combination of multiple models, instead of using a single one, is often touted as

a more robust solution. In this sense, uncertainty estimation can play an important role
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as part of the combination rule. By incorporating uncertainty quantification measures

as weights during the aggregation process, the ensemble model can adaptively assess

the confidence level of each individual model’s predictions. We show empirical evidence

that model combination using UQ methods outperforms static weighting strategies and

yields better overall performance. Also, an uncertainty-based model combination helps

reduce the complexity of explanations provided by feature importance scores. Another

advantage of using dynamic weights as the basis for model combination is the ability to

handle missing data. In real-world applications, it is not uncommon for some data to

be missing or to exhibit poor quality due to various factors, such as sensor failures or

noisy environments. This model combination approach offers a significant advantage in

such scenarios, as it can still provide reliable predictions even when some modalities are

missing, albeit with decreased performance. Therefore, by leveraging the uncertainty-

based weighting scheme, the proposed approach can dynamically adjust the weights

assigned to the available data. This capability not only increases the robustness of our

method but also makes it more suitable for deployment in practical situations where data

completeness cannot be guaranteed.

In the third question, we explored visualization techniques to assist in interpreting

classifiers’ uncertainty during the model’s development and also to audit a given decision.

Understanding which type of uncertainty is present during the model’s development

can give us insights into the limitations of each model and allow us to take actions in

accordance. In the context of prediction reliability, the proposed visualization techniques

were used to assess the interpretability of the rejection option in which a rejection may

correspond to a low prediction probability (aleatoric uncertainty), a poor model fit (model

uncertainty), or an outlier (knowledge uncertainty). In addition, we propose a novel

approach to lower the explanation complexity of feature-based time series models based

on reducing the number of modalities and features used to explain multimodal data.

Specifically, we use the model aggregation approach weighted by UQ measures that

consider the most certain modalities to predict a sample, leading to a lower explanation

complexity. We argue that this reduction in explanation complexity yields less complex

local explanations without compromising the models’ performance. This conclusion is

supported by a general assumption in previous literature that mentions that linear models

with fewer parameters or rule-based models with few rules are less complex than models

with many parameters and rules [144, 145]

In a broader view of research on machine learning, this study also introduces an

innovative example of how we can leverage the intersection between the disciplines of

uncertainty quantification and model explainability towards the topic of responsible AI

Our main motivation with this chapter is to spark future research on how to consider

uncertainty quantification as a tool to improve the ML model development lifecycle.
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Uncertainty for Clinical Decision

Making

Machine learning has made significant progress in a variety of decision-critical domains,

including medicine. However, as these advancements are applied in real-world safety-

critical applications, it is crucial to consider the inherent uncertainty present in the ML

process as a path toward trustworthy AI [5]. While AI research has achieved promising

results across various domains, the adoption of AI in the medical field remains a challenge

[7]. This can be attributed to various factors, including the lack of trust in AI decisions.

In medical AI, it is essential to have the ability to abstain from providing a decision when

there is a high level of uncertainty associated with it. This mirrors the clinical practice of

seeking a second opinion in unusual or complex cases. However, the quantification and

communication of uncertainty are not routinely addressed in the current literature, yet

they are crucial in healthcare applications [1]. Therefore, the development of a systematic

and formal discipline for UQ in AI-based approaches is vital for machine-assisted medical

decision-making.

In this chapter, we address the use of UQ for decision-making using ECG classification

as a domain example. We choose to center our analysis on ECG classification due to the

following reasons:

• There are several (and large) publicly available datasets from different populations,

including different countries, different recording devices, and different time inter-

vals;

• Research studies on ECG classification have only been focused on classification

performance neglecting the robustness of models’ results, which are a key element

for their implementation in clinical practice;

• Uncertainty quantification has only been studied in single-label tasks, however,

ECG classification (and many other medical tasks) should be treated as multi-label

tasks since it is likely that a patient has more than one cardiac pathology at the

same time;
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• Publicly available datasets contain more than 100 diagnoses classes, which allows

studying the robustness of UQ to handle unknown medical conditions (commonly

referred to as OOD samples in literature) and data containing mixtures of known

and unknown medical conditions (unexplored in literature);

This chapter is divided into five sections, beginning with important background for

the experimental analysis, including multi-label classification, dataset shift, active learn-

ing, and the current research in the ECG classification domain. Then, the methods used

and experimental results are presented. The chapter concludes with a discussion of the

results obtained and final remarks.

5.1 Preliminaries

5.1.1 Multi-label classification

Multi-label classification is a classification task where multiple nonexclusive labels may

be assigned to each instance, as opposed to multi-class or binary classification where a

single label is assigned to each instance.

Formally, multi-label classification is the task of finding a hypothesis h that maps

input instance x to binary output vector y. Considering a dataset D = {(xi , yi)}Ni ⊂X×Y
with N samples, X is an instance space and Y ∈ {0,1}K a set of K-dimensional binary

vectors with y = (y1, . . . , yK ) called a multi-label and the components yk micro-label [147].

For a pair (xi , yi) the micro-label yki = 1 means that the kth class is assigned to the ith

example [148].

Multi-label classification approaches can be grouped into two main categories: data
transformation and method adaptation. Data transformation approaches solve the multi-

label tasks by transforming them into multiple single-class problems. Popular transfor-

mation approaches are Binary Relevance that convert a multi-label sample into several

single-label samples and Label Powerset that considers every label combination as a sep-

arate class in a multi-class classification problem [149]. Method adaptation approach

focuses on changing existing single-class classification algorithms to solve multi-label

cases. For example, a multi-label version of KNN algorithm, named ML-kNN, uses the

KNN for each of the C labels independently [149]. In neural networks, by applying

the sigmoid function as an activation function to the output layer with C neurons, the

algorithm is transformed into a binary classification for each class [147].

The applications of multi-label include many real work problems such as text classi-

fication, music information retrieval, image classification, and time series analysis prob-

lems (such as ECG classification). Although the applications are vast, the multi-label

studies that include UQ in their analysis are mainly associated with image recognition

[150] or text classification [151]. Still, even in the mentioned applications, UQ for multi-

label classification remains underexplored and uses rudimentary techniques [53].
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5.1.2 Dataset shift

Commonly, machine learning relies on the assumption that training and test data are

independent and identically distributed. Therefore, good performance on validation data

is expected to translate to good performance in deployment. However, in real-world

applications, the final application distributions often differ from training data, leading

to poor model performance and generalization. In practice, data are subject to a wide

range of possible distributional shifts where the greater the degree of shift, the poorer the

model’s performance [8]. For instance, machine learning models applied in the medical

domain are often trained on data from a few hospitals and then deployed broadly to

hospitals not included in the training set [9]. Data from different populations or medical

equipment can introduce shifts that affect the machine learning models’ performance.

Assessing a model’s robustness to distribution shifts and its ability to estimate predictive

uncertainty is crucial for detecting these shifts.

Although there has been significant research done on developing methods for im-

proving the robustness of dataset shift and uncertainty estimation, few studies provide

a comprehensive evaluation of uncertainty estimation under dataset shift. However, in

this context, Ovadia et al. [152] studied the impact of dataset shift on the accuracy and

calibration of deep neural networks. For a diverse classification task tested on bench-

mark datasets, results revealed that models with the best accuracy and calibration do

not necessarily perform well under dataset shift. Regardless of the method, the qual-

ity of uncertainty estimation degrades with increasing dataset shift, leading to incorrect

predictions with high confidence on out-of-distribution data. On the tested uncertainty

methods, the authors concluded that deep ensembles were more robust to dataset shift.

There are limited datasets and benchmarks for evaluating uncertainty estimation and

robustness to dataset shift or even OOD. Some datasets, that synthetically added noise,

natural adversarial attacks, or unseen classes, exist but are typically limited to image

classification or text. The use of data similarity to quantify the degree of OOD or datasets

similarity, associated with generalization, is an old and important question in the ML lit-

erature, as several ML methods implicitly rely on properties related to similarity (e.g., the

large margin assumption in SVM learning) to guarantee good generalization performance

[153]. The potential relationship between data similarity and the generalization proper-

ties of ML models was first investigated from an empirical point of view in the work of

Bousquet et al. [154], where the authors discovered that datasets found to be substantially

dissimilar likely stemmed from different distributions. Based on these findings, Kouw

et al. [155] demonstrated that information about similarity can be used to understand

why a model performs poorly on a validation set, while the same information can be

used to understand when and how to successfully perform domain adaptation. To that

end, several metrics for measuring data similarity have been proposed in the literature.

Bousquet et al. [154] developed a measure (Data Agreement Criterion, DAC) based on

the Kullback–Leibler divergence, which has since become frequently used to assess the
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similarity of distributions. More recently, Cabitza et al. [156] proposed instead a different

approach based on a multivariate statistical testing procedure to obtain a hypothesis test

for OOD data, the degree of correspondence, and also studied the correlation between

degree of correspondence scores and the generalization of ML models. By contrast, in the

Deep Learning literature, approaches based on the use of statistical divergence measures,

such as the Wasserstein distance [157] or the Maximum Mean Discrepancy (MMD) [158],

have become increasingly popular to design methods for OOD detection. See also, the

recent review by Shen et al. [159].

5.1.3 Active Learning

Machine learning models need a large amount of labeled data for proper learning. The

complexity of the problem or input data increases the amount of labeled data needed.

This is particularly true in the medical field. For instance, to automate the analysis

of medical exams, a significant amount of exams must be annotated by an expert to

indicate the presence of a certain condition. Obtaining this amount of labeled data is

time-consuming and costly.

One solution to this challenge is active learning [160], where the model selects the

most informative unlabeled data for training and requests the label from an external

oracle (e.g. medical expert). The selection of data is made by an acquisition function,

which ranks data points based on their informativeness [6]. Many acquisition functions

use uncertainty quantification to determine the informativeness of unlabeled data points.

The more informative the selected data, the fewer labeled examples are required for

improved classifier accuracy. Therefore, uncertainty quantification can play a central role

in active learning.

The use of uncertainty quantification in active learning is common, as it has been

demonstrated that measures of uncertainty, particularly those that quantify epistemic

uncertainty, are effective criteria for model retraining. For example, Gal et al. [21] in-

troduced a Bayesian Convolutional Neural Network (CNN)-based active learning frame-

work that utilized Monte Carlo Dropout for approximate inference, and showed that the

Bayesian CNN outperformed a deterministic CNN in selecting data to be labeled. Sadafi

et al. [11] also developed an active learning framework that leveraged confidence scores

from dropout variation inference to choose the most informative samples for labeling and

found that using uncertainty quantification outperformed random sampling. Nguyen et

al. [10] investigated the usefulness of distinguishing different sources of uncertainty and

compared their performance in active learning. The results indicated that the framework

that used epistemic uncertainty performed better than the framework using aleatoric

uncertainty
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5.1.4 ECG classification

Over the past decade, the automatic interpretation of ECG records has been widely inves-

tigated. Automated classification pipelines have been proposed for classifying individ-

ual heartbeats [161–163] and longer intervals containing multiple heartbeats [164–166].

While traditional ML models have been successful in classifying some medical condi-

tions [167], Deep Learning (DL) methods have gained increasing attention in recent years,

motivated by their superior performance without requiring significant effort in feature

engineering [168]. In either case, research on the automatic interpretation of ECG has

focused on single-label classification, where each ECG record is assigned to a label from a

disjoint set. This approach, however, might be too brittle to answer real-world application

scenarios. At the heart of ECG interpretation lies the interest to determine whether the

record is normal in terms of wave morphology, intervals, and rhythm. Thus, depending

on the case complexity, reference to arrhythmias, myocardial ischemia and infarction,

conduction defects, and cardiac hypertrophies might coexist in clinical interpretation re-

ports. The clinical interpretation resembles more closely multi-label classification where

nonexclusive labels may be assigned to each record.

Prior studies in ECG classification have often overlooked the evaluation and manage-

ment of uncertainty associated with their estimations, focusing primarily on classification

performance without considering practical implementation in real-world applications.

Hong et al. conducted a systematic review of the PhysioNet/CinC Challenge 2020 [169],

highlighting the importance of handling unknown classes and interpretability for real-

world implementation. Surprisingly, none of the top 10 methods in the Challenge 2020

addressed these critical topics.

While research on UQ for ECG classification remains limited, some recent works have

addressed this area, and are summarized in Table 5.1.

Belen et al. [170] employed a variational encoder network to classify atrial fibrillation

using the MITBIH Atrial Fibrillation database. Their method used KL Divergence as a

loss function and estimated uncertainty by running the input through the network multi-

ple times and computing the standard deviation of softmax probabilities. Vranken et al.

[171] explored various uncertainty estimation methods, including Monte Carlo dropout,

variational inference, ensemble, and snapshot ensemble. They evaluated the quality of

uncertainty estimations using rank-based metrics, calibration evaluation, and OOD de-

tection. Their results showed that variational inference with Bayesian decomposition and

ensemble with auxiliary output outperformed other methods in terms of ranking and

calibration across datasets and in both in-distribution and OOD settings. Aseeri et al.

[172] developed a gated recurrent neural network trained using three types of datasets

and estimated uncertainty using Monte Carlo dropout and deep ensemble methods. They

also evaluated the uncertainty calibration of these methods and demonstrated that their

proposed network achieved comparable results with state-of-the-art methods while hav-

ing a strong capability of rejecting low-confidence examples. Elul et al. [173] presented a
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Table 5.1: A summary of related studies on ECG classification using uncertainty quantifi-
cation measures.

Study Data Labels External
Validation

OOD Calibration

Belen et al. [170]
(2020)

MITBIH AF Single No No No

Vranken et al. [171]
(2021)

UMCU-Triage
UMCU-Diagnose
CPSC2018

Single No Yes Yes

Asseri et al. [172]
(2021)

MITBIH ARR
INCART
BIDMC

Single No No Yes

Elul et al. [173]
(2021)

MITBIH NSR
Long-Term AF
MITBIH ARR
MITBIH AF
THEW
CinC 2017

Multi Yes Yes No

Zhang et al. [174]
(2022)

CPSC2018 Single No No No

Jahmunah et al. [175]
(2023)

PTB-XL Single No No No

Park et al. [176]
(2023)

MITBIH ARR
CinC 2017
INCART

Single No No No

comprehensive study on integrating AI into clinical practice, emphasizing the importance

of uncertainty estimation for handling OOD examples or multilabel diagnosis. They de-

veloped a DL model consisting of 10 binary classifiers for each trained ECG pathology,

enabling the model to output any combination of known rhythms and handle unknown

classes when the model outputs a negative prediction for every binary class. They em-

ployed the Monte Carlo dropout method to assess the confidence in predictions. Zhang et

al. [174] employed a Bayesian neural network with Monte Carlo dropout for arrhythmia

classification with a rejection option. They computed total uncertainty using an entropy-

based decomposition of data and model uncertainty and explored different uncertainty

thresholds to improve classification performance by rejecting high uncertainty samples.

Jahmunah et al. [175] trained a Dirichlet DenseNet with reverse KL divergence to com-

pute predictive entropy for model uncertainty in a multi-class classification task. The

authors argue that their approach is faster and computationally lightweight compared to

previous uncertainty quantification methods. Additionally, they included noisy ECG in
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their analysis. Recently, Park et al. [176] proposed a self-attention-based LSTM-FCN deep

learning architecture using a deep ensemble approach to quantify uncertainty. Their re-

sults achieved state-of-the-art performance, showing that epistemic uncertainty is reliable

for classifying the six arrhythmia types.

Even though some multi-label datasets were used in the previously presented studies,

all of them employed a single-label classification approach, except for Elul et al. [173].

To the best of our knowledge, Elul et al.’s work [173] is the only one that applied an UQ

method under the multi-label approach in ECG classification. While this study offers

a comprehensive interpretation of the importance of handling a mixture of classes and

demonstrates that their model is prepared to deal with the multi-label setting, no perfor-

mance evaluation was conducted on multi-label datasets, making it difficult to thoroughly

assess the performance of their model in such settings. Additionally, in this study, only

the Monte Carlo Dropout method was used as the uncertainty quantification method.

Additionally, some studies focus on calibration metrics, others on OOD detection, and

a few on external validation. However, we argue that a good uncertainty quantification

measure should comply with all three validation procedures. In this sense, we focus our

work on multi-label datasets, evaluating not only internal validation sets but also external

sets, OOD, and calibration.

5.1.5 Summary

There is currently a gap in the literature considering multi-label and UQ for automated

ECG interpretation. Both topics are crucial for successfully implementing automated

decision support systems in real clinical practice. The scarcity of studies UQ in the

context of multi-label classification goes beyond the applicability to ECG interpretation

since there has been limited attention on both topics.

In this chapter, we provide an extensive comparison of several UQ methods in the

multi-label classification approach. We choose to center our systematic analysis on the

ECG classification since there are publicly available large multi-label datasets. The large

volume of available datasets allows for studying the robustness of ML/DL models on

external validation sets, including data with unknown medical conditions and hetero-

geneous mixtures of conditions. Furthermore, the integration of UQ and multi-label

techniques might help translate decision support systems for ECG interpretation into

clinical practice. In this sense, besides the comparison of UQ methods, we include in

our work a clinical simulation scenario to assess the benefit of integrating AI uncertainty

estimation methods into the practice of cardiology and provide an illustration in Figure

5.1.

The proposed system is based on an uncertainty-aware AI model, trained to detect car-

diac pathologies based on 12-lead ECG signals. To prevent incorrect ECG interpretations,

ECG data is quality checked before being used for diagnostic classification. In addition

to the classification of cardiac pathologies, the model provides its overall confidence in
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Figure 5.1: Workflow for a clinical decision support system (CDSS) that includes un-
certainty quantification techniques. The process begins with a data quality assessment,
followed by the machine learning model generating a prediction or diagnosis and estimat-
ing the associated uncertainty. The incorporation of UQ allows clinicians to make more
informed decisions. Rejected predictions are used to retrain the model using an active
learning workflow, improving the overall accuracy and reliability of the CDSS.

predicting a given sample which is used to abstain from providing a diagnosis when

there is a large amount of uncertainty. In the case of a prediction with low uncertainty,

an independent confidence score is provided for each predicted diagnosis. With this

ability, additional human expertise can be sought on those rejected samples that later can

be used to retrain the model, improving its performance capabilities. Detecting dataset

shifts and continuous training after a model is deployed is of high importance since the

environment is continuously changing, and concept drifts are likely to occur. In this

scenario, and due to the cost associated with data labeling, uncertainty estimation plays

an essential role in selecting the most informative samples to be labeled.

Contributions. We present a comprehensive comparison of UQ methods in a multi-label

setting, focusing on ECG classification scenarios. Our evaluation of UQ methods across

various validation scenarios highlights the importance of external validation and its influ-

ence on performance, the quality of uncertainty estimates, and calibration. Furthermore,

we provide empirical evidence that incorporating UQ throughout the machine learning

pipeline brings advantages in classification with a rejection option, dataset shift detection,
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and active learning.

In summary, this research work aims to address the following research questions that

will be explored in the experimental results section.

• Is the performance of internal validation consistently reproduced on external vali-

dation? (Section 5.3.1: External validation)

• How does external validation affect the calibration of models’ predictions? (Section

5.3.2: Calibration)

• How reliable are uncertainty methods in a multi-label setting under different vali-

dation strategies? (Section 5.3.3: Uncertainty quantification)

• What is the impact of using sample rejection on ECG classification performance?

(Section 5.3.4: Classification with rejection-option)

• How does the presence of low-quality data impact the performance of uncertainty-

aware models? Is there a correlation between low-quality data and high uncertainty

estimates provided by these models? (Section 5.3.5: Data quality)

• Are uncertainty measures suitable as selection criteria for active learning? (Section

5.3.6: Active learning)

5.2 Methods

We conducted a systematic analysis of various uncertainty quantification methods, fol-

lowing the steps illustrated in Figure 5.2 and dividing this section accordingly. We begin

by discussing the datasets employed and the considerations for data preprocessing and

data quality assessment. Subsequently, we provide details on the neural network ar-

chitecture and its variations for uncertainty estimation. The section concludes with an

explanation of the validation, which involved three distinct sets (internal, external, and

OOD) to assess the methods, the implemented evaluation measures, and particular ap-

plications of uncertainty methods (classification with rejection option, dataset shift and

active learning).

5.2.1 ECG data preparation

An ECG sensor measures the electrical activity of the heart using skin-placed electrodes

and is a noninvasive tool for diagnosing heart problems such as arrhythmias. However,

accurate detection of heart problems depends on a clean ECG reading, but the noise

from internal or external sources can impact the reading and lead to false interpretations.

Therefore, ECG preprocessing is essential to eliminate noise and improve interpretability

before ECG classification.
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Figure 5.2: Overview of the methodology used for uncertainty methods evaluation. Data
is based on 12-lead ECG signals, and uncertainty methods are divided into three main
categories: Single, Bayesian, and Ensemble. Validation is done using three test sets (inter-
nal, external, and OOD) evaluated in terms of performance, calibration, and uncertainty
measures.
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5.2.1.1 Datasets

For dataset selection, our primary criterion was to choose datasets that included 12-

lead ECG data. The PhysioNet/CinC Challenge 2020 provided 12-lead multi-label ECG

datasets from four different data sources. However, due to our validation procedure,

which involved internal and external validation using different data sources, we could

not use the standard 27 classes (out of 111 classes) selected by PhysioNet/CinC Challenge

2020, as not all classes were present in every dataset.

As a result, we decided to utilize only the classes that were common among the

datasets. This approach yielded nine classes (NSR, AF, I-AVB, LBBB, RBBB, PAC, VEB,

STD, and STE) that were represented across the entire CPSC dataset, enabling us to con-

duct consistent validation across the different datasets. Furthermore, these nine classes

are available in three different data sources. The first source is the China Physiological

Signal Challenge 2018 (CPSC) [177], the second is the Physikalisch Technische Bunde-

sanstalt XL (PTB-XL) [178] from Brunswick, Germany, and the third is the Georgia 12-

lead ECG Challenge (G12EC) [179] Database, Emory University, Atlanta, Georgia, USA.

The three datasets contain data from the 12-leads ECG signals, demographic information

(age and gender), and multi-label annotations. The annotations between databases were

previously standardized by PhysioNet/CinC Challenge 2020. However, following the

evaluation procedure of PhysioNet/CinC Challenge 2020, we relabeled the class CRBBB

in G12EC and PTB-XL dataset to RBBB.

5.2.1.2 Preprocessing

As we are using different datasets with different characteristics, the data preprocessing

includes the following steps: resampling, window function, filtering, and normalization.

To improve the computational efficiency of the experiments, the ECG signals were

downsampled from 500 Hz to 250 Hz. A 10-second window size was selected as the

standard 12-lead ECG is a 10-second strip. For ECG signals longer than 10 seconds, the

10 seconds in the center were selected. This choice was made due to poor signal quality

at the beginning and end of some ECG signals. ECG signals shorter than 10 seconds

were discarded as they were few in number (25 signals in the G12EC dataset and 6 in the

CPSC dataset). Additionally, the ECG signals were filtered using a 2nd order band-pass

Butterworth filter between 1 and 40 Hz and normalized through a z-normalization over

the complete training dataset.

In Table 5.2, a summary of ECG data used per class and dataset is presented. The

Table contains information about the number of labels and recordings per dataset.

5.2.1.3 Quality assessment

As previously stated ECG recordings are often corrupted by the noise that resembles

ECG waveforms. To prevent incorrect ECG interpretations, ECG data should be quality
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Table 5.2: Overview of multi-label datasets statistics.

Class CPSC G12EC PTB-XL Total

AF 1220 568 1514 3302
I-AVB 722 766 795 2283
LBBB 235 231 536 1002
NSR 918 1735 18058 20711
PAC 614 636 398 1648
RBBB 1857 554 542 2953
STD 868 38 1009 1915
STE 220 134 28 382
VEB 699 41 1153 1893

# Labels 7353 4703 24033 36089

# Recordings 6871 4301 20214 31386

checked before being used for diagnostic purposes. This process should remove low-

quality data to be sent for the classification models preventing erroneous diagnosis. ECG

quality assessment methods are commonly divided in feature-based and non-feature-

based (deep learning approaches) categories [180]. Feature-based methods typically de-

pend on detecting constant signals (e.g. missing lead), low signal-to-noise ratio, or QRS

detection. On the other hand, non-feature-based methods, rely on supervised deep learn-

ing models with pre-labeled datasets. Autoencoders can also be used in this category,

where reconstruction error is used to detect low-quality signals. This approach is broader

in scope, as it can detect different signal characteristics beyond low quality, such as a

previously unseen pathology.

Uncertainty-aware classification models with a rejection option should theoretically

reject low-quality data by outputting predictions with high uncertainty. In this case, the

quality assessment before the classification model could be considered neglected. How-

ever, current uncertainty quantification methods still exhibit unpredictable behavior in

the presence of unknown data. Furthermore, in contexts of active learning, it is crucial to

distinguish between low-quality signals and high-quality signals with high uncertainty.

For instance, if both low- and high-quality signals have high epistemic uncertainty, select-

ing high-quality data for model retraining is important, as low-quality data may contain

no useful information for learning.

Thus, an exploratory evaluation was performed to assess ECG quality, using both a

feature-based approach and an autoencoder. Three common quality check features were

used in the feature-based approach: stationary signal, heart rate, and signal-to-noise

ratio (as used in [181]). The stationary signal feature detects if an ECG signal is stationary

within a predefined time window. The heart rate feature uses the Pan-Tompkins algorithm

[182] to identify the QRS complex and count heartbeats. Acceptability is determined

based on upper and lower thresholds. The signal-to-noise feature is the ratio of signal

spectral power to noise spectral power, with signals having a signal-to-noise ratio below
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a threshold considered low quality.

For the non-feature-based approach, a one-dimensional CNN-based autoencoder was

implemented for each ECG lead. The encoder comprised 5 blocks, each with a 1D CNN

layer, batch normalization layer, and ReLU activation function. The filter size was 20

until the third block, then reduced to 10. The decoder was set to appear symmetrically

with the encoder.

Since the datasets utilized do not offer information on data quality, an exploratory

assessment was conducted using visualization and by evaluating the classification perfor-

mance of acceptable versus unacceptable signals, labeled through visual inspection. For a

quantitative evaluation, we employed the PhysioNet/Computing in Cardiology Challenge

2011 dataset [183]. This dataset comprises quality assessment annotations reviewed by

a group of annotators with varying levels of expertise in ECG analysis. The annotations

involve classifying a 12-lead ECG recording as acceptable or unacceptable. The dataset

encompasses a total of 1000 recordings, including 225 unacceptable and 775 acceptable

signals.

5.2.2 Uncertainty methods training

The goal of this chapter is not to develop better models or improve the accuracy of existing

methods, but to examine the potential of uncertainty measures as a safety mechanism

in practical ECG classification. To that end, we will provide a brief description of the

baseline architecture and its application to uncertainty methods.

5.2.2.1 Baseline architecture

As baseline architecture, we decided to use the proposed neural network architecture,

which was ranked first in the China Physiological Signal Challenge [166]. The model is

a combined architecture of five CNN blocks, followed by a bidirectional gated recurrent

unit (GRU), an attention layer, and a finally dense layer. For more details, please refer

to Chen et al. [166]. The training was done using the Adam optimizer with a learning

rate of 0.001. To counteract class imbalance in the data, the binary focal loss was used

as the loss function with the focusing parameter set to 1. The training was performed

for 100 epochs using mini-batches of size 64. The best model, which was the one with

the smallest loss on the validation set, was selected as the baseline for the uncertainty

methods.

5.2.2.2 Uncertainty methods

Following the split of uncertainty estimation methods discussed in Chapter 3, we se-

lected the most common methods to estimate uncertainty. Based on the baseline model,

we measure aleatoric and/or epistemic uncertainty using a total of seven measures. For

aleatoric uncertainty estimation, both maximum probability and (Shannon) entropy were

95



CHAPTER 5. UNCERTAINTY FOR CLINICAL DECISION MAKING

employed. For epistemic uncertainty, we selected baseline measures developed to im-

prove OOD uncertainty estimation, namely Joint Energy [53], Mahalanobis distance-

based confidence score [51], Maximum Logit [50], Isolation Forest [55] and Local Outlier

Factor [57].

Regarding Bayesian methods, we selected both MC Dropout and Laplace approxima-

tion to their easy implementation with slight changes in training logic. For MC Dropout,

the same trained network was used without retraining since the baseline architecture

contains dropout layers. In the testing, dropout layers were kept active, and 15 MC

samples were used. For the Laplace approximation, the same trained network was also

used since this method can be applied post-hoc to trained neural networks that use an

exponential family loss function and piece-wise linear activation functions [150]. There-

fore, to approximate the intractable posterior distribution over the parameters of neural

networks, we used the implementation of Rewicki et al. [150] developed under the multi-

label scenario and publicly available1. Similar to MC Dropout, 15 samples were used for

testing.

For ensemble methods, the popular approach introduced by Lakshminarayanan et al.

[72] where the same network is trained M independently times using different parameter

initialization was selected. We will refer to this approach as DeepEnsemble. Additionally,

an ensemble based on bootstrapping approach was also trained. Both approaches are

composed of 15 individual ensemble members.

Figure 5.3 presents a summary of the uncertainty estimation methods and correspond-

ing uncertainty measures applied on top of it.

It is important to note that for the calculation of uncertainty measures that are di-

rectly dependent on class probabilities, we considered independence between labels. For

instance, entropy measures are applied in a binary setting scenario for each label, which

results in an uncertainty measure per label. To take into account the joint uncertainty

across labels, we summed the measure of label uncertainties.

5.2.3 Validation approach

To evaluate the generalization capabilities of the trained models, we considered three

different test sets where classification performance, calibration, and uncertainty measures

quality were evaluated. Applications for classification with rejection option, dataset shift,

and active learning are also explored in the following subsections.

5.2.3.1 Training, validation, and test sets

To perform the external validation, instead of the typical procedure of training and test-

ing with data from the same data source, a unique data source from the CPSC dataset was

used for models’ training and G12EC and PTB-XL for external validation. The CPSC data

1https://github.com/ferewi/tf-laplace
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Figure 5.3: Uncertainty methods and corresponding uncertainty measures selected for
this analysis. The acronyms used throughout this work are represented in bold.

was divided using an 80-10-10% train-val-test split. The class labels, gender, and age in-

formation were used as splitting criteria to ensure each set contains the same distribution

of each criterion. Additionally, two OOD datasets were also considered for uncertainty

quantification evaluation. Since we are not using all datasets’ available classes for models’

training, we selected a group of unknown classes as OOD. For this purpose, the hierarchi-

cal organization in terms of coarse superclasses and subclasses for the diagnostic labels

provided by the PTB-XL dataset [178] was used. To reduce the similarity between the

diagnostic labels used, we selected the Myocardial Infraction (MI) superclass and the

Hypertrophy (HYP) superclass as OOD datasets. As the heterogeneous mixture of known

and unknown classes can be presented in this set of labels, we removed all records that

contain known classes mixed with these sets of unknown classes to ensure that OOD

dataset contained only unknown classes.

Thus, the following test sets were used for evaluation purposes:

• IN (CPSC): Test set used for internal validation, i.e, an independent test from the

same data source as the training set. This set contains a total of 687 recordings with

the same proportion of class labels identified in Table 5.2;

• EXT (G12EC): The entire dataset from the G12EC dataset was used for external
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validation, containing a total of 4301 recordings;

• EXT (PTB-XL): The entire dataset from PTB-XL dataset was used for external vali-

dation, containing a total of 20214 recordings;

• OOD-MI: OOD dataset containing IMI, AMI, LMI and PMI diagnostic labels from

PTB-XL dataset, totaling 2214 records.

• OOD-HYP: OOD dataset containing LVH, LAO/LAE, RVH, RAO/RAE and SEHYP

diagnostic labels from PTB-XL dataset, totaling 1553 records.

The provided abbreviations will be used to refer to each test set during the experimen-

tal analysis.

5.2.3.2 Evaluation metrics

For classification performance evaluation, F1-score and AUROC were selected. Addi-

tionally, a binary multi-class, multi-label confusion matrix using the implementation

provided by PhysioNet/CinC Challenge 2020 was used. Assuming a collection of di-

agnoses C = [ci], a confusion matrix is given by A = [aij] where aij is the number of

recordings in a database that were classified as belonging to class ci but belong to class cj .

Calibration evaluation was assessed by calculating ECE and reliability diagrams. Be-

sides the calibration evaluation of uncertainty methods, post-hoc calibration methods

were applied and compared with the base models. The post-hoc methods considered

were: histogram binning, isotonic regression, bayesian binning into quantiles, ensemble

of near isotonic regression, and temperature scaling.

Uncertainty estimation methods were evaluated and compared using threshold inde-

pendent metrics, namely the AUCO for internal and external datasets, and the AUROC

for OOD datasets. Additionally, we also employed threshold dependent measures, based

on the concept of binary confusion matrices [81, 82]. Uncertainty accuracy, specificity,

sensitivity, and precision were used for the evaluation of classification with the rejection

option. A detailed description of all uncertainty measures employed in this study can be

found in Section 3.3.

5.2.3.3 Applications

For the classification with rejection option, the uncertainty measures were used as a

measure for rejection. The rejection threshold was obtained using the training data,

where a given uncertainty training percentile is selected to reject samples on test data.

Thus, for each test sample, the uncertainty is computed and compared with the defined

threshold. If the obtained uncertainty value is greater than the threshold the sample is

rejected and no prediction is made. On the other hand, if the uncertainty is lower than

the threshold the model accepts the prediction, and a confidence level is also returned.
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For dataset shift validation, two popular statistical divergence measures in the deep

learning literature, the Wasserstein distance, and MMD, were applied to measure dataset

similarity between internal and external validation. The Wasserstein-1 version of Wasser-

stein distance [184] was used and is given by:

W1(X,Y ) = inf
π∈Γ (X,Y )

∫
R×R
|x − y|dπ(x,y), (5.1)

where Γ (X,Y ) is the set of distributions whose marginals are X and Y on the first and

second factors, respectively. The variables x and y are samples from each distribution

π(x,y) from the set. Intuitively, the distance is given by the optimal cost of moving a

distribution until it overlaps with the other. In our experiments, x and y are the feature

representations of subsets of the train and test data; thus, W1 represents the cost of

mapping the distribution of x into the distribution of y (or vice versa).

Regarding the MMD, is a kernel-based statistical divergence measure that determines

whether two given datasets come from the same distribution [185]. Given a fixed kernel
function k : X ×X 7→R and two datasets X,Y with sizes |X | = n, |Y | = m, the MMD can be

estimated as:

MMD(X,Y ) =
1

n(n− 1)

∑
i,j

k(xi ,xj ) +
1

m(m− 1)

∑
i,j

k(yi , yj )−
2
nm

∑
i,j

k(xi , yj ) (5.2)

Intuitively, the MMD measures the distance between X and Y by computing the average

similarity in X and Y separately and then subtracting the average cross-similarity between

the two datasets, where the similarity between two instances is quantified by means of the

selected kernel k. In this work, a simple linear kernel was selected. Furthermore, as for

the Wasserstein distance, x and y represent the feature representations of subsets of the

train and test data. Thus, MMD quantifies the average kernel similarity among instances

in x and y, discounted by the cross-similarity between the two datasets. Both similarity

measures were computed on the latent feature space, i.e., the embeddings extracted from

the neural network, between the training set and each of the test sets.

For active learning validation, the samples are sorted based on their uncertainty values

and the highest n uncertain samples are used for retraining the model. This process is

performed using different uncertainty sources and compared to random sampling. The

evaluation is based on the improvement of classification performance metrics.

5.3 Experimental Results

5.3.1 External validation

Although all the uncertainty methods share the same deep learning architecture, differ-

ences in training or testing procedures between them might affect not only the uncertainty

estimation but also the predictive performance. To properly assess these uncertainty
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Table 5.3: Global performance of uncertainty methods in internal (IN) and external (EXT)
validation sets. The highest scores are represented in bold.

Model
IN (CPSC) EXT (G12EC) EXT (PTB-XL)

AUROC F1-Score AUROC F1-Score AUROC F1-Score

Single Network 0.896 0.826 0.830 0.715 0.734 0.567
BNN-Dropout 0.890 0.833 0.811 0.699 0.700 0.516
BNN-Laplace 0.896 0.830 0.830 0.715 0.735 0.568
DeepEnsemble 0.903 0.856 0.831 0.736 0.724 0.559
Bootstrap 0.903 0.851 0.821 0.718 0.717 0.548

methods, we first present the classification performance for each method. Table 5.3 com-

pares the AUROC and F1-score for each method during internal and external validation.

The comparison indicates that the DeepEnsemble method performs slightly better than

the other methods. However, the performance achieved within the same test set is sim-

ilar across all methods. Table 5.3 also reveals a significant drop in performance during

external validation, particularly in the PTB-XL dataset.

To analyze the class level performance between datasets, a binary multi-class, multi-

label confusion matrix for each dataset was computed using the implementation provided

by the PhysioNet/CinC Challenge 2020. As all methods demonstrated comparable perfor-

mance measures, we only present the confusion matrices for the DeepEnsemble method

in Figure 5.4. These confusion matrices reveal that in both external datasets, STE and STD

diagnoses are not accurately recognized. In contrast, the Bundle Branch Blocks (LBBB

and RBBB) maintain consistent performance across both internal and external datasets.
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Figure 5.4: Binary multi-class multi-label confusion matrices for DeepEnsemble method
in internal (IN) and external (EXT) validation sets.

The correlation between data similarity and generalization properties across datasets

has been previously identified as a strong indicator that the datasets originate from differ-

ent distributions. Consequently, information about similarity can offer valuable insights

into understanding why a machine learning model exhibits poor performance on an
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Table 5.4: Comparison of metrics over the three test sets based on the embeddings ex-
tracted from the neural network. For each setting, values were averaged over every test
set.

Metric
IN EXT EXT

(CPSC) (G12EC) (PTB-XL)

Wasserstein 1.513 ± 0.007 2.199 ± 0.017 2.311 ± 0.023
MMD 0.019 ± 0.004 0.931 ± 0.023 1.238 ± 0.050

external dataset [156].

Table 5.4 presents a comparison of dataset similarity between internal and external

datasets using Wasserstein distance and MMD. It is important to note that the raw values

between metrics have different scales and are not comparable, only the ordering of test

sets can be analyzed. Both metrics align with the test set order, which is also consistent

with the classification performance in Table 5.3.

To delve deeper into the differences between test sets, a class-labeled dataset distance

analysis was conducted using Wasserstein distance (as both metrics produced the same

results for overall dataset similarity). Figure 5.5 illustrates the correlation between the

performance drop and Wasserstein distance using the three datasets. The worst class

performances observed in confusion matrices (Figure 5.4) also correspond to those with

1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

Wasserstein distance

0.2

0.4

0.6

0.8

1.0

P
er

fo
rm

an
ce

AF

IAVBLBBBNSR

PAC

RBBB

STD

STE

VEB

AF

IAVB
LBBB

NSR

PAC

RBBB

STD
STE

VEB

AF

IAVB

LBBB

NSR
PAC

RBBB

STD

STE

VEB

r=-0.92, p=1.4e-11

IN (CPSC) EXT (G12EC) EXT (PTB-XL)

Figure 5.5: Class performance drop as a function of Wasserstein distance between training
and each represented test set. Each point is annotated with the class name abbreviation
and the color represents the dataset. The linear regression is obtained with all datasets
and represented in gray. The Pearson correlation coefficient (r) and p-value (p) for testing
non-correlation are annotated in the graph area.

101



CHAPTER 5. UNCERTAINTY FOR CLINICAL DECISION MAKING

Table 5.5: Performance comparison of different combinations of internal (IN) and external
(EXT) validation sets.

CPSC G12EC PTB-XL*

Validation F1-score Validation F1-score Validation F1-score

IN 0.856 EXT 0.736 EXT 0.699
IN 0.807 EXT 0.741 IN 0.891
IN 0.849 IN 0.818 EXT 0.728

EXT 0.722 IN 0.832 IN 0.885
IN 0.826 IN 0.815 IN 0.884

higher Wasserstein distances. The calculated Pearson correlation coefficient (r = −0.92)

suggests that there is a potential shift (label-dependent) in external datasets, and the

Wasserstein distance proves to be useful in detecting it. In addition to the STE and STD

classes, the NSR (Normal Sinus Rhythm) class from the PTB-XL dataset also exhibits a

higher distance and a significant drop when compared to the same class in the CPSC and

G12EC datasets. Based on this observation, we carried out a thorough examination of

the NSR class label and discovered a significant difference in NSR annotations across the

three datasets. To align with the annotation of the training dataset, only a subset of the

NSR class from the PTB-XL dataset will be utilized for the remainder of the analysis. We

refer to this subset as PTB-XL*. A comprehensive explanation and the results obtained

can be found in C.1.

Table 5.5 presents the performance results for various combinations of internal and ex-

ternal sets and Figure 5.6 the correlation between Wasserstein distance and global model
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Figure 5.6: Correlation between Wasserstein distance and F1-score using different
datasets combinations for internal and external datasets. The Pearson correlation co-
efficient (r) and p-value (p) for testing non-correlation are annotated in the graph area.
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performance of different combinations. All models followed the same training procedure,

as detailed in section 5.2.2. Independent validation sets were utilized for internal valida-

tion, either using the publicly available data partition or an 80-10-10% train-val-test split,

with class labels, gender, and age serving as splitting criteria. Regardless of the combina-

tion, internal validation sets consistently achieved a performance higher than 0.80, while

external validation sets showed performance below 0.75. Nevertheless, incorporating

additional datasets for training led to enhanced performance on external datasets.

5.3.2 Calibration

As introduced in Section 3.4 uncertainty estimation methods such as deep ensembles and

BNN can be seen as calibration methods. Besides the analysis of calibration errors with

these uncertainty measures, post-hoc calibration methods were also applied. As post-hoc

methods, Histogram Binning (Hist), Isotonic Regression (IsoReg), Bayesian Binning into

Quantiles (BBQ), Ensemble of Near Isotonic Regression (ENIR), and Temperature Scaling

(Temp) were applied. Note that to apply these post-hoc calibration methods in a multi-

label setting, it is necessary to assume the independence between probability estimates

for each class.

Table 5.6 shows the ECEs for all uncertainty methods, post-hoc calibration methods,

and datasets using 10 bins. All uncertainty methods achieved equal or lower ECEs com-

pared to the Single Network, with BNN-Dropout on the internal validation being the

only exception. The DeepEnsemble model obtained the lowest ECE in CPSC and G12EC

datasets, while BNN-Dropout obtained the lowest ECE in PTB-XL. BNN-Laplace was the

least effective uncertainty method, exhibiting similar results to the Single Network.

Regarding post-hoc calibration methods, none of the methods were able to improve

calibration in the external test sets. In the case of ensemble methods, even in the in-

ternal test set, all post-hoc methods obtained higher ECE than the default uncertainty

method. For the Single Network, BNN-Dropout, and BNN-Laplace, only BBQ improved

the calibration in the three models.
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Figure 5.7: Reliability diagrams for internal (IN) and external (EXT) validation sets. The
diagonal dashed line represents the perfect calibration.
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Based on these results, reliability diagrams were calculated using the default prob-

abilities of each model, i.e without using any post-hoc calibration method. Figure 5.7

shows the reliability diagrams for each test set and model using 10 bins. From the relia-

bility diagrams, we can observe that the Single Network and BNN-Laplace exhibit similar

behavior, with their estimates being overconfident across all datasets. Both ensemble

methods display similar behavior in all datasets, with the DeepEnsemble appearing to be

more robust across the various datasets.

Table 5.6: Expected Calibration Error (ECE) for internal (IN) and external (EXT) valida-
tion sets. The lowest errors are represented in bold.

Model Post-hoc
IN EXT EXT

(CPSC) (G12EC) (PTB-XL*)

Single Network - 0.047 0.121 0.115
Hist 0.047 0.151 0.220
IsoReg 0.050 0.125 0.163
BBQ 0.041 0.163 0.243
ENIR 0.053 0.129 0.164
Temp 0.046 0.122 0.131

BNN-Dropout - 0.066 0.043 0.037
Hist 0.038 0.130 0.174
IsoReg 0.039 0.101 0.148
BBQ 0.041 0.107 0.163
ENIR 0.051 0.109 0.157
Temp 0.049 0.129 0.146

BNN-Laplace - 0.050 0.120 0.114
Hist 0.056 0.124 0.159
IsoReg 0.048 0.116 0.155
BBQ 0.034 0.145 0.194
ENIR 0.063 0.125 0.150
Temp 0.051 0.117 0.133

DeepEnsemble - 0.026 0.034 0.045
Hist 0.054 0.089 0.142
IsoReg 0.067 0.091 0.146
BBQ 0.054 0.107 0.172
ENIR 0.064 0.088 0.146
Temp 0.045 0.106 0.126

Bootstrap - 0.045 0.048 0.062
Hist 0.059 0.100 0.167
IsoReg 0.060 0.086 0.126
BBQ 0.053 0.092 0.132
ENIR 0.059 0.093 0.133
Temp 0.055 0.133 0.161
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5.3.3 Uncertainty quantification

As an initial illustrative visualization, we present the overall uncertainty of internal, ex-

ternal, and OOD datasets using the DeepEnsemble method in Figure 5.8. The uncertainty

values were normalized to their maximum theoretical values, ensuring that all uncertainty

measures are bounded within the range of 0 and 1. Noticeably, all measures consistently

increase the overall uncertainty, regardless of the uncertainty measure employed. Ideally,

we would like the increase in uncertainty values to coincide with the reduction in classi-

fication performance observed earlier. In other words, we would expect the uncertainty

values to remain as consistent as possible under different external validations (as well as

on OOD data) to indicate that models are uncertain when predicting a given input.
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Figure 5.8: DeepEnsemble uncertainty measures distributions for internal (CPSC), exter-
nal (G12EC and PTB-XL), and Out-of-Distribution (OOD) datasets. Uncertainty measures
are normalized with their maximum theoretical value, where 1 represents the maximum
possible uncertainty. The OOD label contains data from both OOD-MI and OOD-HYP
sets.

In addition to assessing the uncertainty between datasets, it is also possible to sta-

tistically evaluate the relationship between the distributions of uncertainty values for

correctly and incorrectly classified samples. In a multi-label setting, we can consider

two scenarios: 1) a label dependence scenario, in which the entire label combination is

treated as either correct or incorrect, and 2) a label independence scenario, in which each

class is addressed as a separate binary classification problem. Figure 5.9 illustrates the

distributions of these two scenarios, using DeepEnsemble as an example. The uncertainty

distributions for the label independence scenario display a more pronounced distinction

between correctly and incorrectly classified samples compared to the label dependence

scenario. When applying the non-parametric Mann-Whitney U statistical test [186] for

unpaired groups, both approaches were found to be statistically significant at a .05 sig-

nificance level (even with Benjamini-Hochberg p-values correction [187]). In addition to

evaluating the practical significance using Cohen’s d effect size [188], we also computed
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the effect sizes for each method. The label independence approach was found to yield

larger effect sizes. The complete results can be found in the C.2.
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Figure 5.9: Comparison of uncertainty value distributions for correctly and incorrectly
classified samples using DeepEnsemble model. (a) label dependence approach, where
the entire label combination is considered as either correct or incorrect, and (b) label
independence approach, where each class is treated as a separate binary classification
problem.

To enable a fair comparison among all uncertainty methods and their correspond-

ing measures, the AUCO metric was calculated for both internal and external test sets.

Smaller AUCO values indicate better performance. Figure 5.10 presents the results, with

the same color representing the same uncertainty measure across different methods, ex-

cept for the Single Network method where uncertainty measures are different. In addition

to the differences in performance between internal and external validation, Figure 5.10

also clearly illustrates that uncertainty estimation measures are affected in external valida-

tion. In general, ensemble-based uncertainty measures appear more robust in preserving

the correct uncertainty ordering compared to other methods, and epistemic uncertainty

measures outperform aleatoric uncertainty measures in external validation. In internal

validation, maximum probability (pmax) achieved the lowest AUCO across all methods.

This is somewhat expected, as the internal dataset exhibits low epistemic uncertainty, un-

like the external validation datasets. It is also worth noting that OOD detection measures

(JE, MLogit, IF, LOF, Maha) do not perform as well as other methods in this rank-based

analysis. Although there is a close relationship between uncertainty estimation and OOD

detection, ordering uncertainty values and detecting OOD are not the same problem,

which might explain the lower performance of these methods.

In regard to OOD detection, the two superclass sets (MI and HYP) from the PTB-

XL dataset, consisting solely of unknown classes, were employed as OOD samples. The

AUROC was calculated with the OOD samples as positive instances and the internal

CPSC test samples as negative instances. The obtained results are presented in Table

5.7. In line with the previous analysis, ensemble methods surpassed other approaches in

terms of AUROC. For the MI set, total uncertainty ut (or entropy H for Single methods)

achieved the highest AUROC across all methods. In contrast, for the HYP set, epistemic
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Figure 5.10: Ranking performance evaluation using Area Under the Confidence-Oracle
(AUCO) for all datasets and uncertainty methods.

uncertainty ue yielded higher AUROC values for ensemble methods and BNN-Laplace. As

for the methods specifically designed for OOD detection (JE, IF, LOF), their performance

in distinguishing OOD samples was surprisingly poor.

While the OOD problem typically refers to anomaly and/or outlier detection, where

OOD samples come from entirely different distributions, in our setting, the OOD samples

consist of classes from the same datasets and are thus more related to novelty detection

associated with the OSR scenario. Although OSR is similar to OOD detection, it is likely

more challenging to address, as the statistics of the new classes often resemble those of

existing classes within the dataset [28].
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Table 5.7: OOD detection performance comparison using all uncertainty methods and
measures. OOD datasets are composed of two superclasses sets (MI and HYP) with only
unknown classes from the PTB-XL dataset.

Model Uncertainty
AUROC

OOD-MI OOD-HYP

Single Network pmax 0.758 0.702
H 0.767 0.703
JE 0.749 0.715
MLogit 0.761 0.716
IF 0.524 0.617
LOF 0.502 0.633
Maha 0.614 0.569

BNN-Dropout pmax 0.763 0.717
vr 0.671 0.647
σ2 0.645 0.648
ua 0.773 0.719
ue 0.450 0.529
ut 0.767 0.717

BNN-Laplace pmax 0.759 0.704
vr 0.574 0.575
σ2 0.742 0.727
ua 0.767 0.704
ue 0.710 0.730
ut 0.767 0.704

DeepEnsemble pmax 0.781 0.752
vr 0.721 0.736
σ2 0.778 0.790
ua 0.787 0.740
ue 0.751 0.787
ut 0.794 0.764

Bootstrap pmax 0.775 0.757
vr 0.735 0.747
σ2 0.783 0.793
ua 0.776 0.730
ue 0.764 0.794
ut 0.791 0.767

5.3.4 Classification with rejection-option

In the previous sections, we compared various uncertainty estimation methods using

threshold-independent measures. However, to evaluate the benefits of integrating AI un-

certainty estimation methods in supporting medical decision-making within cardiology, a

confidence threshold must be established. This threshold enables the classifier to abstain

in situations with high uncertainty. The selection of a threshold restricts the comparison
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Figure 5.11: Uncertainty performance measures for varying threshold values across differ-
ent datasets using four uncertainty estimation methods with epistemic uncertainty. The
chosen threshold for each method is denoted by a data point superimposed on each line
plot.

among methods, as each method may have a varying optimal threshold.

Figure 5.11 depicts the predictive uncertainty performance evaluation metrics for

the three datasets, using the uncertainty estimation methods while varying the uncer-

tainty threshold. For visualization purposes, we selected the epistemic uncertainty (σ2)

to demonstrate the differences in thresholds for the various methods. Although these

differences are more pronounced when using epistemic uncertainty measures, aleatoric

uncertainty also presents some disparities between methods (see Figure 5.12). Regard-

less of the chosen threshold, we can observe from the figure that there is a degradation
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Figure 5.12: Uncertainty performance measures for varying threshold values across differ-
ent datasets using four uncertainty estimation methods with aleatoric uncertainty. The
chosen threshold for each method is denoted by a data point superimposed on each line
plot.

of performance metrics in the external datasets. For instance, the uncertainty accuracy

in internal validation reaches a maximum of over 0.8, while in external datasets, the

maximum is approximately 0.70.

Since the proper definition of an uncertainty threshold is beyond the scope of this

work, we opted for an analysis based on a given rejection rate obtained in training. Con-

sequently, we defined a 15% rejection rate on the training set and used the corresponding

uncertainty value to reject samples on the testing sets. Each threshold is represented by a

data point placed on top of each line plot in Figure 5.11, emphasizing that the threshold
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Table 5.8: Performance evaluation metrics for classification with rejection option using
DeepEnsemble method. F1-score is presented without rejection (baseline) and with re-
jection (Non-rejected F1-score). The rejection threshold was set to 15% rejection on the
training set. Predictive uncertainty evaluation measures used the same threshold.

Metric
IN EXT EXT

(CPSC) (G12EC) (PTB-XL*)

F1-score (Baseline) 0.856 0.736 0.699

Non-rejected F1-score 0.915 0.844 0.795
Rejection Rate 0.207 0.385 0.317

Uncertainty Accuracy 0.818 0.722 0.716
Uncertainty Sensibility 0.576 0.661 0.554
Uncertainty Specificity 0.880 0.755 0.823
Uncertainty Precision 0.548 0.595 0.675

value differs for each method and selecting the same threshold for all methods does not

provide a fair comparison between methods.

To simplify the analysis of experimental results for classification with a rejection op-

tion, Table 5.8 presents a summary of the complete performance results with rejection

for the best uncertainty method, the DeepEnsemble. The uncertainty rejection measure

used was the variance of ensemble members’ probabilities, σ2, as it achieved better per-

formance measures in the previous analysis.

The first observation from Table 5.8 is that rejecting highly uncertain samples im-

proves classification performance across all datasets. For the same threshold, the rejec-

tion rate varies considerably between datasets. As expected, the internal dataset CPSC

exhibits a lower rejection rate (similar to the 15% applied in training), but for the external

datasets, the rejection rate more than doubles, reaching 0.385 and 0.317 for G12EC and

PTB-XL datasets, respectively. This observation aligns with the results obtained so far, in

which the external test sets contain more uncertain samples. Applying the same thresh-

old for the OOD datasets results in rejection rates of 0.634 and 0.666 for OOD-MI and

OOD-HYP, respectively. While the performance of non-rejected samples can be consid-

ered acceptable (at least comparable to the internal validation), more than 30% of OOD

samples were not rejected, which might be a substantial proportion of OOD samples.

Naturally, lowering the uncertainty threshold would reject more OOD samples. However,

this comes at the cost of rejecting more samples from known classes.

Table 5.8 also highlights acceptable uncertainty accuracy. However, with the selected

threshold, all models exhibit higher specificity than sensitivity. This means that if we

want to increase sensitivity (while decreasing specificity), the rejection rate will also

increase.
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5.3.5 Data quality

As the datasets do not have signal quality information, an exploratory evaluation was

done by assessing the performance and uncertainty estimation of signals classified as

acceptable or unacceptable signals. Due to the absence of ground truth, this analysis was

simplified to use only lead II instead of the 12-leads used previously. The DeepEnsemble

model and the best uncertainty measures for aleatoric and epistemic uncertainty were

considered for this analysis. Based on the results of AUCO, the maximum probability

pmax was selected for aleatoric uncertainty and the variance of ensemble members’ prob-

abilities σ2 for epistemic uncertainty.

For the feature-based approach using stationary, heart-rate, and signal-to-noise fea-

tures, the hyperparameters and thresholds used were set to be equal to those in the work

of Kramer et al. [181]. Table 5.9 shows that this approach classified 2.1%, 6.7%, and 5.5%

of CPSC, G12EC, and PTB-XL samples as unacceptable, respectively. When comparing

the classification performance of unacceptable versus acceptable samples, we observe a

decrease in performance within the unacceptable subset. However, due to the small per-

centage of samples classified as unacceptable, the performance of the acceptable subset

shows no improvement.

Table 5.9: Percentage of samples and classification performance of unacceptable and
acceptable subsets using the feature-based approach.

% samples F1-score

unacceptable acceptable unacceptable acceptable

IN (CPSC) 2.2 97.8 0.77 0.86
EXT (G12EC) 6.7 93.3 0.72 0.74
EXT (PTB-XL) 5.5 94.5 0.65 0.70

For the non-feature-based approach, a one-dimensional CNN-based autoencoder was

implemented for ECG lead II. The training data was the same as that used in the previ-

ous experimental analysis, i.e., the training partition of the CPSC dataset. However, to

enhance the data quality utilized for autoencoder training, samples classified as unac-

ceptable by the feature-based approach were excluded from the training set, resulting

in the rejection of 180 training samples (3.3%). The reconstruction error was employed

to establish a rejection threshold. The 99th percentile of training samples reconstruction

error was set as the upper threshold for rejecting a test sample. Figure 5.13 displays an

example of autoencoder reconstruction of an acceptable signal (left) and an unacceptable

signal (right).

The results obtained for the percentage of samples classified as unacceptable and

the corresponding classification performance are presented in Table 5.10. Similar to the

feature-based approach, the classification performance remained unchanged for the ac-

ceptable subset. However, the proportion of unacceptable data decreased to 1.2%, 1.8%,
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Table 5.10: Percentage of samples and classification performance of unacceptable and
acceptable subsets using the non-feature-based approach (autoencoder).

% samples F1-score

unacceptable acceptable unacceptable acceptable

IN (CPSC) 1.2 98.8 0.62 0.86
EXT (G12EC) 1.8 98.2 0.48 0.74
EXT (PTB-XL) 1.3 98.7 0.49 0.70

and 1.3% for CPSC, G12EC, and PTB-XL samples, respectively. Regarding the classifi-

cation performance of unacceptable data, the autoencoder exhibited a more significant

decrease in performance compared to the feature-based approach.

In principle, unacceptable data should be associated with high uncertainty. Based on

this hypothesis, Figure 5.14 compares the distribution of unacceptable versus acceptable

data for the feature-based approach (Figure 5.14(a)) and the non-feature-based approach

(Figure 5.14(b)). The visualization clearly demonstrates that the unacceptable samples

classified by the autoencoder exhibit high uncertainty. To quantitatively verify this, we

employed the non-parametric Mann-Whitney U statistical test to compare the distribu-

tions of unacceptable and acceptable samples. As anticipated, the unacceptable and

acceptable subsets were significantly different for all datasets with a p-value lower than

0.01 when using the autoencoder. However, the results for the feature-based approach

were not statistically significant for all datasets. The detailed results can be found in

Table 5.11.

The results suggest that the samples classified as unacceptable by the autoencoder

are likely to have low quality, but a definitive conclusion cannot be made without expert
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Figure 5.13: Example of reconstruction ECG signals using the autoencoder. On the left
side, the ECG signal was classified as acceptable, and on the left side, the signal was
classified as unacceptable.
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Figure 5.14: Aleatoric and epistemic uncertainty values distribution for unacceptable and
acceptable ECG signals and for internal and external datasets.

annotation. Since the used datasets do not include annotations for data quality assess-

ment, we validate our approach using the PhysioNet/Computing in Cardiology Challenge

2011 dataset [183], which contains quality assessment annotations reviewed by a group

of annotators with varying levels of expertise in ECG analysis. Using this dataset, we

obtained a sensitivity of 72% and a specificity of 99%, indicating that our approach does

not detect all samples considered unacceptable, but few acceptable samples are deemed

unacceptable.

Table 5.11: Statistical analysis to compare the unacceptable and acceptable subsets dis-
tributions for feature-based and non-feature-based approaches. The values represent the
obtained p-values using the non-parametric Wilcoxon-Mann-Whitney test.

Approach Uncertainty
IN EXT EXT

(CPSC) (G12EC) (PTB-XL)

Feature-based Aleatoric 2.31e-01 2.36e-02 4.28e-10
Epistemic 1.90e-01 9.00e-03 8.24e-06

Non-featured-based Aleatoric 2.36e-03 1.89e-11 3.12e-22
Epistemic 9.74e-04 3.59e-30 3.06e-60
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Figure 5.15: ECG lead II examples of signals classified as acceptable for both approaches.
From the top row to the down row, the ECG signals are from the CPSC, G12EC, and
PTB-XL datasets.
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Figure 5.16: ECG lead II examples of signals classified as unacceptable for at least one of
the tested approaches. From the top row to the down row, the ECG signals are from the
CPSC, G12EC, and PTB-XL datasets. ECG signals with a red square on the upper right
corner represent the signals not rejected using the classification with rejection option.
The filename on the upper corner is displayed for reproducibility.

Although this validation supports our approach, we also conducted a visual inspection

to better validate our results using the CPSC, G12EC, and PTB-XL datasets. Figure 5.15

displays ECG signals classified as acceptable by both approaches. The ECG signals from

the first row were randomly selected from the CPSC dataset, the second row from the

G12EC dataset, and the last row from PTB-XL. Although some signals exhibit more or

less noise, it is possible to observe the common pattern of an ECG signal in all signals

from Figure 5.15. On the other hand, Figure 5.16 presents ECG signals classified as

unacceptable by at least one approach. The signals were visually selected to showcase the

low quality of some ECG signals in the used datasets. The signals in each row are from

the CPSC, G12EC, and PTB-XL datasets, respectively, and the filename is displayed for

reproducibility.
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Additionally, the ECG signals with a red square in the upper right corner represent

signals not rejected using the previously defined threshold for the classification with

rejection option (from Section 5.3.4), meaning that they do not exhibit high uncertainty

values. Although the signals definitely have low quality, it can be debated whether this

low-quality signal associated with lead II is affecting the classification of the 12-lead

trained model since not all leads are required to diagnose heart disease.

Since this experimental analysis resulted in a low rejection rate of signals classified

as unacceptable and was both quantitatively and qualitatively evaluated, the samples

deemed unacceptable by the autoencoder were discarded for subsequent experiments.

5.3.6 Active learning

An essential procedure after deploying a model in clinical practice is continuous training

to respond to changes in the data and prevent models from becoming unreliable and

inaccurate. For model retraining, it is necessary to label data that requires expert knowl-

edge. Obtaining large amounts of labeled data can be unfeasible during clinical practice.

One possible approach to reduce this effort is to rely on active learning to select what

unlabeled data would be most informative to the model and ask an expert annotator for

a label on only these selected samples.

Following this reasoning, we retrained the DeepEnsemble method using data from

PTB-XL and G12EC datasets. The retraining procedure consisted of selecting the rejected

samples with higher uncertainty from one of the datasets and retraining the model with

these new samples. For comparison purposes, we repeated this process 5 times using

different uncertainty measures and random sampling. The process consisted of retraining

the model using 400 new samples and repeating the process eight more times with a step

of 400 new samples, totaling 3200 samples at the end of the process. For this analysis,

we split the external datasets into train and test sets and present the results always using

the test set for a fair comparison. Since PTB-XL has an available 10-fold split provided

by PhysioNet, we used the last fold, as proposed by PhysioNet, for the test set and the

other folds for training. For the G12EC dataset, since there is no proposed split, we used

a 90-10% train-test split using classes, gender, and sex as group criteria for data splitting.

The obtained performance in these test sets was similar to the performance using the

entire dataset and represented the first point (0 samples) in the plots of Figure 5.17.

Figure 5.17 shows the evolution of classification performance with the increased num-

ber of samples used to retrain the models. In the first row, data from the G12EC dataset

was used to retrain the model, and in the second row, PTB-XL data was used. The gray

background represents the dataset used to retrain the models. Besides the performance

evolution within the dataset used for retraining, we also show the classification perfor-

mance in the other datasets to ensure that the increase in performance in one dataset does

not represent a performance degradation in the other datasets. Observing Figure 5.17

we note that adding new samples from external datasets does not affect the performance

116



5.4. DISCUSSION

in the internal CPSC dataset. Contrary, adding new samples from one of the external

datasets increased not only the performance on that dataset but also the performance

in the other external dataset. Comparing the random sampling with the different uncer-

tainty measures, we conclude that every uncertainty measure performs better than using

random samples to retrain the model. Even though random sampling also increases the

classification performance but at a slower rate. As for the uncertainty measure used to

retrain the model, aleatoric, epistemic, and total uncertainty obtained similar results on

the G12EC dataset. Otherwise, on the PTB-XL dataset, epistemic uncertainty obtained a

higher improvement compared to aleatoric and total uncertainty, with the only exception

on the first 400 samples of the PTB-XL dataset.
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Figure 5.17: Classification performance as a function of the number of samples used to
retrain the DeepEnsemble. In the upper plots data from the G12EC dataset was used to
retrain the model, and in the lower plots, PTB-XL data was used. The gray background
represents the dataset used to retrain the models.

5.4 Discussion

This study addresses the importance of uncertainty quantification in multi-label ECG

classification to develop a practical approach suitable for implementation in clinical

practice.

The external validation of machine learning models is becoming increasingly impor-

tant, particularly in the medical domain. Although it offers a more reliable validation

compared to internal validation, the results do not necessarily guarantee reliability on

their own [156]. Our findings on external validation align with studies in the literature
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[156, 189], where models trained in one setting (data from the same source) do not gener-

alize well to other external data sources. Furthermore, incorporating more data sources

into the training scheme improves overall performance on both internal and external

data sources. However, it still does not guarantee the same level of performance as with

internal datasets.

We showed that a trained model that performs well on internal validation (with compa-

rable classification performance with similar studies in literature [166]) might be highly

affected when validated on an external set. Different factors, such as concept shift, a

low agreement between annotators, or difficulty in handling a mixture of known and

unknown medical conditions, can be associated with low performance on external valida-

tion. Our results showed a drop of F1-Score from 0.86 to a range between 0.74 and 0.70

on external validation, depending on the dataset used. Besides being from a completely

different source, the external datasets included not only the known classes for the model

but also a mixture with unknown classes, i.e., since a multi-label setting is being used,

a sample can be labeled with a known and an unknown class. In fact, in the external

datasets, 50% of samples include unknown classes, and on the remaining 50%, only 20%

of samples are not from the Normal class. Therefore, the majority of cardiac pathologies

in the external datasets represent a heterogeneous mixture of medical conditions, which

can be one of the major reasons for the performance drop. We showed that there is a

strong correlation (r = −0.92) between class performance drop and the distance between

the train and test sets using the Wasserstein distance. Nonetheless, independently of the

performance drop reason, the mentioned factors will always be presented after a model

is deployed in clinical practice, and appropriate methods must be taken into account to

reduce unreliable or inaccurate predictions.

In this context, uncertainty quantification methods serve as a promising approach to

assess the level of uncertainty associated with a given prediction and abstain from pro-

viding a diagnosis when high uncertainty is present. Various methods and measures exist

in the literature for uncertainty quantification; however, their application in multi-label

settings is limited or nonexistent [53]. Consequently, we systematically investigate the fea-

sibility of existing methods applied to multi-label ECG classification. For the evaluation

of uncertainty measures, our results demonstrated that ensemble-based methods yielded

more robust uncertainty estimations compared to single or Bayesian methods. In terms of

calibration analysis, MC-Dropout and ensemble methods achieved lower ECE values than

the baseline network. Therefore, the uncertainty measures not only provide an assess-

ment of uncertainty but also offer an improved and better-calibrated probability measure.

While, to the best of our knowledge, no studies in the literature compare uncertainty

methods using a multi-label setting, in single-label ECE analysis scenarios, Vranken et

al. [171] obtained similar conclusions. In different application modalities (image, text,

categorical), Ovadia et al. [152] conducted a comprehensive comparison of uncertainty

methods under dataset shift and also reported better results for ensemble-based methods.

For the uncertainty source, aleatoric uncertainty estimations achieved better results in
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internal validation, while epistemic uncertainty estimations yielded superior results in ex-

ternal validation in terms of rank-based measures. Regarding OOD detection, ensemble-

based methods using epistemic or total uncertainty outperformed other methods, achiev-

ing approximately 0.80 AUROC. Surprisingly, the methods designed for OOD detection

and with proven results in other studies in the literature [50, 51, 53] obtained poor results

in our ECG classification problem. Although OOD and OSR are similar concepts and

OOD is often used in literature to represent a broad view of anomaly, outlier, or nov-

elty detection, in our setting, OOD datasets are more related to the OSR problem since

samples are composed of classes from the same datasets. For this reason, OSR problems

are typically associated with more challenging scenarios where the statistics of unseen

classes can be similar to the statistics of known classes in the dataset.

While acknowledging the importance and valuable use of available measures for

quantifying uncertainty, our results showed that in external validation, the quality of all

uncertainty measures was also affected. This indicates that the available measures are not

fully capable of handling the multi-label setting and dataset shift, at least in the context

of ECG classification.

While uncertainty evaluation measures are important to compare different uncer-

tainty estimates, they do not take into consideration the real impact of using said mea-

sures when implementing new technologies into clinical practice. The notion of un-

certainty and the ability to abstain from predicting a sample should be considered key

features of any ML model to be used in clinical practice. Although, in the ECG classifica-

tion field, none or few works address this important concept. In our analysis, we showed

that by using such techniques, the ML-based models were able to abstain from predicting

samples with high uncertainty, reducing the wrongly classified samples and consequently

increasing the overall classification performance. Applying a 15% rejection threshold in

the training set leads to more than double the rejection rate in external datasets, along

with a 10% increase in classification performance. This indicates that the samples from

external datasets indeed have more samples with high uncertainty, and the models are

not fully prepared to classify every sample. The high rejection rate could serve as an

indicator of dataset shift effects and the need to retrain the models.

In the context of rejection, low-quality data should be thoroughly checked before

being used for diagnostic analysis to avoid misclassification. Our exploratory analysis

revealed that the reconstruction error of an autoencoder can assist in this detection. Using

a data quality assessment dataset, the autoencoder achieved a sensitivity of 72% and a

specificity of 99%. Since the datasets used do not contain quality assessment annotations,

we applied a statistical test and discovered that the unacceptable samples classified by

the autoencoder were statistically different (p-value < 0.01) from the acceptable group in

terms of uncertainty values and resulted in lower performances. Although uncertainty-

aware models might reject low-quality data, in applications such as active learning, it is

crucial to differentiate between low- and high-quality samples with high uncertainty to

select the samples for labeling.
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In this sense, after deploying a ML model, we need to take into account that the en-

vironment where the model is operating is continuously changing, and concept drifts

are likely to occur as well as the appearance of unknown medical conditions that can

be submitted to the model during testing. In this scenario, and due to the cost associ-

ated with the data labeling, it is very important to request an expert annotator to label

the most informative samples to the model. Following this reasoning, we showed that

an uncertainty estimation is also a viable option for being used as a selection criterion

within the active learning concept. After retraining the DeepEnsemble model using the

rejected samples with higher uncertainty, the model was able to learn the new data and

obtain a similar performance to the internal validation after adding 2000 new samples,

approximately.

5.5 Final remarks

In this chapter, we emphasize the crucial role of uncertainty quantification in clinical

decision-making, with a specific focus on multi-label classification, a largely overlooked

topic in the literature. We use ECG classification as a case study.

As a key contribution, we present the adaptation and evaluation of state-of-the-art

uncertainty estimation methods for multi-label classification, which has broad practical

applications [149]. Our results demonstrate that uncertainty estimation methods can

aid in the machine learning process. However, current methods still have limitations in

accurately quantifying uncertainty, particularly in the case of dataset shift. On external

validation, a significant decrease in performance was noticed, accompanied by a decline

in the quality of uncertainty estimates. Nevertheless, incorporating uncertainty estimates

with a classification with rejection option improves the ability to detect such changes.

After deploying a ML model, the data may change rapidly due to various reasons, such as

a shift in the population, use of different medical equipment, or limited or unrepresenta-

tive training data. These changes often occur when new technologies are introduced in

clinical practice, and retraining the ML models may become necessary. In such situations,

where labeling a large amount of data may be impractical, we demonstrated that using

uncertainty estimates as a criterion for sample selection can significantly reduce the num-

ber of samples that need to be labeled, and therefore, the frequency of model retraining

compared to random sampling. Additionally, it is important to assess the quality of data

before using it for classification, not only to prevent misclassifications when models are

unable to abstain but also to avoid selecting a sample with high uncertainty to be labeled,

which would be of low quality and unsuitable for classification. However, more research

is required to assess the feasibility of using uncertainty measures for this purpose.

Despite the fact that uncertainty estimation is a fundamental feature for every ML

model to be applied to clinical practice and there is a wealth of research on multi-label

ECG analysis, few studies address uncertainty estimations in their methodology. Our

aim is to provide novel mechanisms to evaluate the decision under uncertainty among
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the community regarding the importance of a comprehensive approach to uncertainty

estimation for multi-label classification, by highlighting its evaluation not only in small-

scale classification tasks but also in terms of robustness against dataset shifts in large-

scale tasks. We believe that this work will serve as a crucial stepping stone towards the

proper evaluation of uncertainty quantification methods and contribute to advancing this

field, ultimately promoting the safe deployment of ML in various applications.
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Conclusions

The central theme of this research work has been the exploration of methods for deriv-

ing measures of uncertainty in machine learning models to enhance their robustness,

reliability, and trustworthiness. The use of uncertainty estimations led us to two main

directions: firstly, the awareness of uncertainty throughout the entire development pro-

cess of machine learning models, and secondly, the importance of knowing the associated

uncertainty in predictions to support clinical decision-making.

In our work, we have demonstrated that uncertainty estimations can guide AI practi-

tioners to better understand the predictions for reliable decision-making. We have lever-

aged the outcome from uncertainty quantification to improve the model development

process and interpretability. We present empirical evidence that the uncertainty-weighted

model combination improves upon unweighted aggregation strategies in terms of perfor-

mance and helps reduce the complexity of feature-based explanations. The improvement

in models’ robustness and interpretability opens the doors for the wider adoption of

machine learning models in clinical practice.

In this context, we explored the benefits of integrating uncertainty estimation methods

into a real-world safety-critical application: a cardiovascular disease diagnosis classifica-

tion problem using ECG data. In this topic, our research covered crucial scientific topics

under the umbrella of uncertainty for AI safety, such as the quality of uncertainty estima-

tion under different validation strategies (in-distribution, out-of-distribution, and dataset

shift), the use of uncertainty estimations as a labeling criterion for active learning, and

the benefits of classification with a rejection option to minimize machine learning model

misclassifications.

This chapter serves as a conclusion to this thesis, highlighting the societal impact of

our research, current challenges in evaluating uncertainty estimation methods, the main

scientific contributions, and proposing future research directions.
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6.1. BROADER IMPACT

6.1 Broader Impact

Our research focuses on demonstrating the importance of uncertainty quantification in

machine learning, with a particular emphasis on clinical decision-making. The complex-

ity and lack of interpretability of machine learning models have hindered their adoption

in healthcare [7], leading in some cases to distrust among clinicians [1]. Uncertainty

quantification can help improve the interpretability and trustworthiness of models by

providing estimates of uncertainty associated with predictions. This ability to derive un-

certainty estimates is not only important for improving model adoption but also essential

for the safe deployment of machine learning models.

Accurately quantifying uncertainty in models’ predictions enables abstaining from

providing an output when a high level of uncertainty is present, escalating uncertain

decisions to appropriate human decision-makers. This capability is particularly crucial

in situations where models encounter unknown classes or adversarial examples. In these

cases, models may make unreasonable decisions that could introduce biases and impact

the judgment of experts.

Our research focuses on biomedical applications, but we believe that our work is foun-

dational and has the potential to impact a variety of application areas. This approach

will benefit fields that try to mitigate the risk in domains with potentially critical con-

sequences and are prone to automation, including healthcare applications (e.g. medical

diagnosis or rare disease identification), autonomous driving, robotics, or finance.

Our goal is to promote awareness among the community about the importance of a

comprehensive approach to uncertainty estimation. We hope that our work will serve as a

crucial stepping stone towards the proper evaluation of uncertainty quantification meth-

ods and contribute to advancing this field, ultimately promoting the safe deployment of

machine learning in various applications.

6.2 Review of major contributions

The focus of this thesis is on the development of robust and trustworthy machine learning

models, with a particular focus on their application in safety-critical domains such as

medicine. Accurate uncertainty quantification is crucial in such domains and therefore

plays an essential role in our work. As discussed in Chapter 1, this work is organized into

three main research topics that span different stages of the machine learning pipeline: 1)

uncertainty quantification, 2) uncertainty for model design, and 3) uncertainty for clinical

decision making. While these three topics are central to our work, we also developed two

Python libraries, Time Series Feature Extraction Library (TSFEL) and Time Series Subse-

quence Search Library (TSSEARCH), at the beginning of our research. Although these

libraries are not directly related to the main research topics, they indirectly contribute to

the development of different outcomes.
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To summarize the contributions of this work, we have presented Figure 6.1, which

highlights the three main topics discussed earlier in the machine learning pipeline. Each

topic is accompanied by a list of scientific publications that contributed to that particular

topic. It is worth noting that some publications contributed to multiple research topics

and are therefore overlapping more than one research topic in the diagram. Each scien-

tific work is represented by an abbreviation, and their full description can be found in

subsection 6.2.1. In the following, we describe the main outcomes of this thesis in more

detail:

Uncertainty Quantification

Data

Model Design

Decision Making

DecisionModel Prediction

[MULTILABEL]

[KUE]

[TSFEL]

[TSSEARCH]

[REJECTION]

[DOMAIN]

[MULTIMODAL]

[EMG-ALS]
[ACOUSTIC]

[HEARTBEAT]

[HUMAN-AI]

[C-MULTILABEL]

Uncertainty Quantification

Figure 6.1: Overview of the main contributions of this research project.

Time series libraries: Two open source python libraries were developed, namely TSFEL

[190] and TSSEARCH [191].

• TSFEL: Feature extraction is one of the preliminary steps of conventional machine

learning pipelines. Quite often, this process ends up being a time-consuming and

complex task as data scientists must consider a combination between a multitude

of domain knowledge factors and coding implementation. Therefore, we developed

TSFEL, which provides support for fast exploratory analysis supported by an auto-

mated process of feature extraction on multidimensional time series. We applied

TSFEL on various of our preliminary outcomes, such as [101, 192, 193].

• TSSEARCH: The subsequence search is one of the most important subroutines for

time series pattern mining. Subsequence search is used across different stages of

the machine learning stack. In the initial stages, subsequence search can segment

windows of interest, further characterized downstream using feature extraction

methods. Furthermore, measuring the distance between a query and the segmented

intervals provides quantitative data to perform downstream data mining tasks,

such as clustering or supervised classification. In the context of this work, we used

TSSEARCH for stride segmentation in the context of HAR tasks and to segment

electrocardiography data. Also, an exploratory analysis of how uncertainty in time
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series can help in the subsequence search tasks was conducted and is available

in the library. The subsequence search can therefore be computed using a query

sample weights that assigns weights to each point of the query based on its relative

uncertainty compared with the other points. For instance, we can search for a query

where we are more uncertain about the shape of some intervals than others, thus

assigning lower weights to specific intervals.

Uncertainty Quantification: This work explored the most notable state-of-the-art meth-

ods for uncertainty quantification in machine learning. The identified gaps in current

methods led us to make two main contributions: 1) proposing a new method for knowl-

edge uncertainty quantification and 2) adapting and studying current state-of-the-art

methods in a multi-label classification setting.

1. We proposed an agnostic knowledge uncertainty estimation measure named KUE,

based on feature-level density estimation of in-distribution data. Our proposed

measure has the following properties: 1) Assumes independence between classes,

allowing the addition or removal of classes with low cost; 2) Allows the definition

of the rth percentile per class for threshold learning; 3) Assumes independence

between features; 4) Does not rely on out-of-distribution data for hyperparameter

tuning nor threshold selection. The measure and its results were published in [12].

2. We introduced adaptations of single-label uncertainty quantification methods for

multi-label classification. We presented a comprehensive comparison of UQ meth-

ods in a multi-label setting, focusing on ECG classification scenarios, demonstrating

the quality of uncertainty estimations and calibration across various validation sce-

narios. The obtained results are reported in Chapter 5 and were published in [194].

Uncertainty for model design: The main purpose of this topic was to develop methods

to support practitioners in making more informed decisions and develop models that

are more transparent and reliable. The specific contributions include: 1) Strategies to

help select the most suitable model for a given classification task; 2) Model combination

approaches based on uncertainty quantification; 3) Leveraging uncertainty to enhance

model interpretability. A comprehensive study of uncertainty-based rejection for en-

hancing the machine learning development process and interpretability was published

in [101] and a novel approach for uncertainty-weighted model fusion was published in

[195].

1. We introduced the concept of leveraging uncertainty quantification as a novel cri-

terion for model selection. In addition to choosing the most suitable model for a

specific classification task, we further investigated scenarios in which augmenting

the dataset with more samples could potentially enhance the quality of the model fit

and, consequently, its performance [101]. Within this context, we also explored the
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generalization capabilities of various model types using both traditional machine

learning approaches and deep learning methods (details can be found in [192]).

2. We propose employing uncertainty estimates to enhance the performance and in-

terpretability of machine learning models. In a preliminary study published in

[101], we demonstrated that merging two models based on their respective uncer-

tainty estimates resulted in an improvement in terms of performance-based rejec-

tion metrics. In the context of multimodal time series, we proposed employing an

uncertainty-weighted model combination technique. This approach enables the

model to adapt to the most certain modalities for each instance, outperforming

conventional aggregation strategies in terms of performance. The obtained results

were published in [195].

3. We developed a visualization tool for classification with rejection to facilitate the

interpretation of classifiers’ uncertainty during model development and to audit

specific decisions. This tool enables practitioners to make better-informed decisions

throughout the model development process. The findings were published in [101].

Moreover, we proposed an innovative approach to reduce the explanation complex-

ity of feature-based time series models by reducing the number of modalities and

features used for explaining multimodal data, employing the uncertainty-weighted

model combination technique (research work published in [195]).

Uncertainty for clinical decision making: The contributions in this topic focused on the

practical usefulness of uncertainty estimation methods throughout the entire lifecycle of

a deployed machine learning model. A key contribution was addressing the classification

with rejection option based on uncertainty estimates, which can aid in decision-making.

Although the developed knowledge applies to a wide range of applications, we mainly

focused on time series data and biomedical applications, with notable contributions in

ECG classification and HAR tasks.

1. A key contribution of our research involved developing various machine learning

models with abstaining capabilities, emphasizing the importance of employing clas-

sification with rejection options in clinical decision support systems. Published

works focusing on uncertainty-based rejection spanned diverse domains, includ-

ing Amyotrophic Lateral Sclerosis diagnosis using electromyography signals [193],

cardiac pathologies classification employing ECG [194, 196], human activity recog-

nition through inertial sensing [101], and quality control using acoustic data in

industrial scenarios [197].

2. In the ECG classification application domain, we conducted an in-depth study of

uncertainty estimation techniques, exploring their application from the initial stage

of the machine learning pipeline to their integration in clinical decision-making.

Preliminary findings were published in [196], and an extension of this work was
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published in [194]. Additionally, our published works [163, 198] contribute to ECG

classification in terms of interpretability and human-AI protocols.

3. In the HAR domain, we published different works that highlighted the use of uncer-

tainty for HAR, including those published in [12, 101, 192]. Moreover, the research

detailed in Section 4.2 underscores the importance of uncertainty estimation in

multimodal HAR tasks.

6.2.1 List of publications

Throughout the period of this thesis, the work developed has been disseminated through

scientific publications. Although the main publications have already been mentioned in

this manuscript, we summarize them here and include other co-author works that are

also outcomes of this research project.

6.2.1.1 Journal Papers

• [TSFEL] - M. Barandas, D. Folgado, L. Fernandes, S. Santos, M. Abreu, P. Bota, H.

Liu, T. Schultz, H. Gamboa. TSFEL: Time series feature extraction library. SoftwareX

11: 100456, 2020.

• [KUE] - C. Pires, M. Barandas, L. Fernandes, D. Folgado, Hugo Gamboa. Towards
Knowledge Uncertainty Estimation for Open Set Recognition. Machine Learning and

Knowledge Extraction 2(4): 505-532, 2020.

• [HEARTBEAT] - I. Neves, D. Folgado, S. Santos, M. Barandas, A. Campagner,

L. Ronzio, F. Cabitza, Hugo Gamboa. Interpretable heartbeat classification using
local model-agnostic explanations on ECGs. Computers in Biology and Medicine 133:

104393, 2021.

• [REJECTION] - M. Barandas, D. Folgado, R. Santos, R. Simão, H. Gamboa.

Uncertainty-Based Rejection in Machine Learning: Implications for Model Development
and Interpretability. Electronics 11(3): 396, 2022.

• [TSSEARCH] - D. Folgado, M. Barandas, M. Antunes, M. Nunes, H. Liu, Y.

Hartmann, T. Schultz, Hugo Gamboa. TSSEARCH: Time Series Subsequence Search
Library SoftwareX 18: 101049, 2022.

• [DOMAIN] - N. Bento, J. Rebelo, M. Barandas, A. Carreiro, A. Campagner, F.

Cabitza, H. Gamboa. Comparing Handcrafted Features and Deep Neural Representa-
tions for Domain Generalization in Human Activity Recognition. Sensors 22(19): 7324,

2022.

• [EMG-ALS] - M. Antunes, D. Folgado, M. Barandas, A. Carreiro, C. Quintão, M.

Carvalho, Hugo Gamboa. A morphology-based feature set for automated Amyotrophic
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Lateral Sclerosis diagnosis on surface electromyography. Biomedical Signal Processing

and Control 79: 104011, 2023.

• [HUMAN-AI] - F. Cabitza, A. Campagner, L. Ronzio, M. Cameli, G. Mandoli, M.

Pastore, L. Sconfienza, D. Folgado, M. Barandas, H. Gamboa. Rams, Hounds and
White Boxes: Investigating Human-AI Collaboration Protocols in Medical Diagnosis.
Artificial Intelligence In Medicine: 102506, 2023

• [MULTIMODAL] - M. Barandas, D. Folgado, L. Famiglini, R. Santos, F. Cabitza,

H. Gamboa. Uncertainty Quantification Meets Explainability: Insights from Model
Combination on Multimodal Time Series Information Fusion 100: 101955, 2023.

• [MULTILABEL] - M. Barandas, L. Famiglini, A. Campagner, D. Folgado, R. Simao,

F. Cabitza, H. Gamboa. Evaluation of uncertainty quantification methods in multi-label
classification: A case study with automatic diagnosis of electrocardiogram. Information

Fusion 101: 101978, 2024.

6.2.1.2 Conference Proceedings

• [ACOUSTIC] - M. L. Nunes, M. Barandas, H. Gamboa, F. Soares. Acous-
tic structural integrity assessment of ceramics using supervised machine learning and
uncertainty-based rejection. ACM SIGKDD Explorations Newsletter 24(2): 105-113,

2022.

• [C-MULTILABEL] - R. Simao, M. Barandas, D. Belo, H. Gamboa. Study of Uncer-
tainty Quantification Using Multi-Label ECG in Deep Learning Models. In Proceedings

of the 16th International Joint Conference on Biomedical Engineering Systems and

Technologies - BIOSIGNALS: 252-259, 2023.

6.3 Future work

With the increasing integration of artificial intelligence into various aspects of our lives,

the importance of understanding and managing uncertainty has never been more crucial.

As we continue to push the boundaries of our knowledge, the potential for uncovering

novel methodologies and techniques for dealing with uncertainty in machine learning is

vast. This new age of uncertainty invites us to not only refine existing approaches but

also to venture into uncharted territory, laying the groundwork for the development of

more robust, reliable, and interpretable AI systems.

In this final chapter, we explore the current challenges and future research directions

in the field of uncertainty in machine learning, as well as outline specific areas of investi-

gation that we plan to pursue in our ongoing quest to better understand and harness the

power of uncertainty for the improvement of AI-driven clinical practice.
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6.3.1 Current challenges

Even though many advances in uncertainty quantification have been made over the last

years, the evaluation of uncertainty estimations in machine learning remains a challenge.

In the following, we highlight three main challenges that impact the evaluation of un-

certainty estimations: the lack of ground truth uncertainties, the absence of benchmark

datasets for evaluating uncertainty estimation methods, and the lack of standardized

evaluation protocols.

• Lack of ground truth: The empirical evaluation of methods for quantifying uncer-

tainty is a non-trivial problem due to the lack of ground truth uncertainty infor-

mation. A common approach for indirectly evaluating the predicted uncertainty

measures is by accessing their usefulness to improve classification performance.

However, this approach may not always provide a complete or accurate picture

of the uncertainty associated with machine learning models and their predictions.

Additionally, the lack of ground truth data makes it difficult to determine the ap-

propriate level of uncertainty for different applications.

• Absence of benchmark datasets: The lack of ground truth uncertainties poses a

challenge to the availability of benchmark datasets to evaluate uncertainty estima-

tion methods. While synthetic datasets with out-of-distribution or dataset shifts

exist, such as those with added noise, natural adversarial attacks, or unseen classes,

these are often limited to image classification or text. Thus, the development of

benchmark datasets for evaluating uncertainty estimation in other domains and

applications remains a challenge.

• Lack of standardized evaluation protocol: There is no standardized approach for

evaluating uncertainty estimates. Different methods may have different assump-

tions, requirements, and limitations, making it difficult to compare and select appro-

priate uncertainty estimation techniques for different applications. Moreover, there

may be inconsistencies in reporting and interpreting uncertainty estimates across

different studies, making it challenging to evaluate the effectiveness of different

methods.

6.3.2 Specific future research directions

The research presented raises some unresolved issues and opens new questions that we

plan to investigate further in future research. In the following paragraphs, we outline

some of the ideas that we intend to explore in our future research efforts.

• Extend KUE validation: Although we conducted a thorough validation process

and compared our uncertainty estimation method with other state-of-the-art meth-

ods across almost 30 different scenarios, we only used four datasets for validation.
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Therefore, further validation using benchmark datasets is necessary to study the ro-

bustness of our approach to different kinds of data. Additionally, we aim to explore

more efficient methods to incorporate feature dependencies into our measure and

test it on large-scale datasets in future research.

• Uncertainty based combination: Regarding the utilization of uncertainty esti-

mates for model combination, we achieved promising results with our proposed

approaches. However, we identified several challenges related to soft aggregation

methods. In future research, we aim to investigate the impact of individual model

calibration on the ensemble’s overall performance. Furthermore, we plan to explore

more advanced combination strategies that consider both aleatoric and epistemic

uncertainties.

• Uncertainty in multi-label: In our work, we adapted current uncertainty estima-

tion methods for single label tasks to multi-label settings by assuming independence

between classes. However, this assumption may not always hold in real-world sce-

narios, where dependence between some classes can improve uncertainty estimates.

Therefore, there is a need to extend multi-label uncertainty estimation to better

represent class dependencies and obtain more accurate uncertainty estimates. Ad-

ditionally, we validated our approach using an ECG classification problem, but it is

important to consider other application domains in future research.

• Impact on clinical decision-making: Research on the impact of uncertainty-aware

machine learning models on clinical practice has not yet been conducted. However,

this research is crucial for the introduction of these models in clinical practice. It is

important to address the potential ethical and practical challenges associated with

their implementation in future research.

We expect that this research will inspire additional research into the role of uncertainty

quantification as a means of improving the machine learning development process and its

application as a decision support tool. By adopting a responsible AI strategy, our objective

is to raise awareness within the community regarding the need to develop reliable and

trustworthy mechanisms that facilitate the integration of AI in safety-critical domains,

such as medicine.
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A

KUE Experiments: Dataset Details

and Additional Results

A.1 Supplementary details for Bacteria dataset

Bacteria dataset from the work of Ho et al. [199] is publicly available at https://github.

com/csho33/bacteria-ID. The combinations used for OOD were defined based on the

antibiotic treatment for a specific set of bacteria described on the work of Ho et al. The

correspondence between antibiotic and bacteria names can be consulted in Table A.1,

where each combination antibiotic treatment correspond to the OOD combination in the

experiments analysis of KUE measure.

Table A.1: Bacterial classes used as OOD for each antibiotic.

Antibiotic Bacteria

Daptomycin Enterococcus faecium

Caspofungin
Candida albicans
Candida glabrata

Ceftriaxone
Streptococcus pneumoniae 1
Streptococcus pneumoniae 2

Vancomycin

Methicillin-sensitive Staphylococcus aureus 1
Methicillin-sensitive Staphylococcus aureus 2
Methicillin-sensitive Staphylococcus aureus 3
Methicillin-resistant Staphylococcus aureus 1
Methicillin-resistant Staphylococcus aureus 2
Staphylococcus epidermidis
Staphylococcus lugdunensis

Ciprofloxacin Salmonella enterica

TZP
Pseudomonas aeruginosa 1
Pseudomonas aeruginosa 2
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Table A.1: Cont.

Antibiotic Bacteria

Meropenem

Klebsiella aerogenes
Escherichia coli 1
Escherichia coli 2
Enterobacter cloacae
Klebsiella pneumoniae 1
Klebsiella pneumoniae 2
Proteus mirabilis
Serratia marcescens

Penicillin

Enterococcus faecalis 1
Enterococcus faecalis 2
Streptococcus sanguinis
Group A Streptococcus
Group B Streptococcus
Group C Streptococcus
Group G Streptococcus

A.2 KUE using different classifiers

The experimental evaluation of KUE method for OOD detection was performed using

a Random Forest classifier to provide a fair comparison between methods that required

the use of ensemble techniques. Nevertheless, we provide detailed results using a set of

classical algorithms, namely KNN, NB, SVM and Logist Regression, for both AUROC and

accuracy performance measures. In Table A.2 we report both AUROC and the respective

accuracy of each method on different OOD combinations.

Table A.2: AUROC for detecting OOD inputs using KUE method with KDE applied to
4 different classifiers and the correspondent accuracy (ACC) in % of the classifiers on 4
datasets. All values are averages over 10 consecutive repetitions.

KUEKDE

KNN NB SVM LR Mean
OOD AUROC ACC AUROC ACC AUROC ACC AUROC ACC AUROC

B
ac

te
ri

a

Daptomycin 0.92 79.0 0.89 71.5 0.92 84.1 0.91 83.7 0.91± 0.01
Caspofungin 0.98 76.3 0.99 71.2 0.98 84.3 0.97 83.3 0.98± 0.01
Ceftriaxone 0.80 81.7 0.78 73.5 0.79 86.8 0.83 86.7 0.80± 0.02
Vancomycin 0.83 79.0 0.84 74.1 0.83 81.5 0.86 84.0 0.84± 0.01
Ciprofloxacin 0.73 80.4 0.71 72.4 0.72 82.7 0.71 83.7 0.72± 0.01
TZP 0.88 77.9 0.88 71.2 0.88 83.7 0.88 83.7 0.88± 0.00
Meropenem 0.75 85.7 0.76 78.9 0.75 88.3 0.76 88.9 0.75± 0.01
Penicillin 0.76 79.4 0.76 70.9 0.77 83.2 0.77 84.9 0.76± 0.01
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Table A.2: Cont.

KUEKDE

KNN NB SVM LR Mean
OOD AUROC ACC AUROC ACC AUROC ACC AUROC ACC AUROC

H
A

R

Walking 0.69 86.2 0.67 82.1 0.72 89.6 0.71 86.6 0.67± 0.02
Upstairs 0.85 86.9 0.84 85.6 0.87 88.6 0.86 87.1 0.85± 0.01
Downstairs 0.83 84.8 0.82 82.9 0.83 87.9 0.83 85.8 0.83± 0.01
Sitting 0.75 87.3 0.77 88.6 0.76 88.8 0.74 86.6 0.76± 0.01
Standing 0.55 86.6 0.54 89.2 0.54 89.9 0.56 86.0 0.55± 0.01
Laying 0.99 78.0 1.00 76.7 0.99 81.4 0.99 80.1 0.99± 0.01
Stairs 0.89 88.9 0.90 86.1 0.90 91.5 0.90 88.4 0.90± 0.00
Dynamic 1.00 84.5 1.00 81.1 1.00 87.9 0.99 88.4 1.00± 0.00
Static 0.99 79.3 1.00 80.2 0.99 82.0 0.99 83.5 0.99± 0.01

D
ig

it
s

0 0.95 97.4 0.93 78.4 0.96 95.8 0.95 94.2 0.95± 0.01
1 0.66 98.3 0.63 82.1 0.65 96.3 0.65 95.2 0.65± 0.01
2 0.90 97.6 0.83 79.7 0.90 96.4 0.91 94.1 0.88± 0.03
3 0.76 98.1 0.74 80.1 0.76 96.9 0.77 94.5 0.76± 0.01
4 0.95 98.0 0.95 81.7 0.94 95.6 0.94 95.4 0.95± 0.01
5 0.86 97.5 0.81 80.0 0.87 96.3 0.89 95.1 0.86± 0.03
6 0.94 98.0 0.89 77.7 0.92 95.8 0.92 94.9 0.91± 0.02
7 0.92 97.8 0.87 78.2 0.92 96.7 0.92 94.9 0.91± 0.02
8 0.90 98.5 0.87 83.7 0.90 97.3 0.90 95.5 0.89± 0.01
9 0.88 98.3 0.84 82.7 0.88 96.9 0.86 94.9 0.87± 0.02

C
ar

d
io Suspect 0.65 80.1 0.64 60.8 0.67 87.1 0.67 84.5 0.66± 0.01

Pathologic 0.83 79.3 0.80 62.1 0.83 87.0 0.82 94.9 0.82± 0.01

By the analysis of the results from different classifiers, we notice that AUROC are

very similar between the different algorithms. However, algorithms with higher accuracy

tend to have also higher AUROC, which makes sense due to the dependency on the

classification accuracy of our proposed method.

A.3 AUPR-In and AUPR-Out Results

In Tables A.3 and A.4 we present the detailed results for AUPR-Out and AUPR-In, where

in-distribution and out-distribution inputs are specified as negatives and positives, re-

spectively. The conclusions drawn for the AUPR are analogous to the AUROC analysis

since we used 50% of in- and out-distribution inputs.
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Table A.3: AUPR-Out for detecting OOD test inputs using two variants of KUE (KDE and
Gaussian) and other baseline methods on 4 datasets. The Mean and Standard Deviation
(SD) over OOD combinations is presented after each dataset. All values are averages over
10 consecutive repetitions.

AUPR-Out

OOD KUEKDE KUEG p(ŷ|x) H[p(y|x)] I[y,h] OCSVM SVMovo SVMova NCM OSNN IF

B
ac

te
ri

a

Daptomycin 0.86 0.86 0.61 0.66 0.87 0.52 0.87 0.75 0.57 0.59 0.59
Caspofungin 0.92 0.97 0.40 0.38 0.89 0.98 0.54 0.65 0.40 0.46 0.94
Ceftriaxone 0.76 0.75 0.76 0.83 0.82 0.53 0.90 0.81 0.83 0.73 0.40
Vancomycin 0.87 0.87 0.66 0.66 0.82 0.79 0.81 0.72 0.69 0.61 0.81
Ciprofloxacin 0.66 0.66 0.82 0.89 0.66 0.40 0.85 0.76 0.79 0.71 0.35
TZP 0.81 0.86 0.68 0.71 0.90 0.73 0.89 0.80 0.85 0.77 0.53
Meropenem 0.74 0.74 0.81 0.84 0.75 0.48 0.85 0.81 0.80 0.73 0.44
Penicillin 0.63 0.76 0.70 0.72 0.65 0.67 0.80 0.81 0.70 0.66 0.71

Mean 0.78 0.81 0.68 0.71 0.80 0.64 0.81 0.76 0.70 0.66 0.60
SD 0.10 0.09 0.13 0.15 0.09 0.18 0.11 0.05 0.14 0.09 0.20

H
A

R

Walking 0.59 0.59 0.72 0.71 0.71 0.35 0.69 0.68 0.65 0.68 0.35
Upstairs 0.80 0.81 0.74 0.79 0.81 0.43 0.64 0.65 0.74 0.66 0.44
Downstairs 0.78 0.76 0.65 0.63 0.64 0.84 0.54 0.70 0.44 0.65 0.88
Sitting 0.75 0.72 0.49 0.49 0.70 0.66 0.46 0.43 0.50 0.45 0.64
Standing 0.50 0.47 0.52 0.58 0.76 0.51 0.47 0.66 0.53 0.45 0.52
Laying 0.85 0.93 0.36 0.38 0.47 1.00 0.32 0.35 0.71 0.49 1.00
Stairs 0.83 0.83 0.48 0.52 0.67 0.74 0.33 0.42 0.49 0.42 0.79
Dynamic 0.02 0.23 0.64 0.69 0.70 0.78 0.52 0.52 0.76 0.88 0.85
Static 0.65 0.69 0.66 0.66 0.74 0.98 0.37 0.58 0.44 0.78 0.99

Mean 0.64 0.67 0.58 0.61 0.69 0.70 0.48 0.55 0.58 0.61 0.72
SD 0.25 0.20 0.12 0.12 0.09 0.22 0.12 0.12 0.12 0.15 0.23

D
ig

it
s

0 0.84 0.89 0.82 0.82 0.96 1.00 0.93 0.46 0.87 0.96 0.72
1 0.63 0.72 0.86 0.84 0.79 0.94 0.78 0.62 0.81 0.89 0.60
2 0.70 0.78 0.86 0.82 0.83 0.99 0.88 0.52 0.87 0.94 0.82
3 0.68 0.74 0.86 0.80 0.75 0.95 0.81 0.61 0.83 0.93 0.60
4 0.73 0.85 0.86 0.87 0.96 0.99 0.84 0.61 0.82 0.91 0.91
5 0.73 0.82 0.90 0.88 0.89 0.98 0.81 0.59 0.85 0.94 0.65
6 0.80 0.86 0.84 0.84 0.96 0.99 0.94 0.52 0.91 0.95 0.75
7 0.78 0.86 0.92 0.93 0.86 0.99 0.89 0.49 0.91 0.95 0.84
8 0.79 0.78 0.96 0.98 0.93 0.97 0.95 0.81 0.90 0.95 0.44
9 0.80 0.85 0.84 0.82 0.80 0.91 0.87 0.73 0.82 0.95 0.57

Mean 0.75 0.82 0.87 0.86 0.87 0.97 0.87 0.60 0.86 0.94 0.69
SD 0.06 0.05 0.04 0.05 0.07 0.03 0.06 0.10 0.04 0.02 0.14

C
ar

d
io

Suspect 0.60 0.59 0.42 0.42 0.52 0.67 0.47 0.48 0.41 0.59 0.62
Pathologic 0.79 0.80 0.42 0.42 0.53 0.98 0.36 0.72 0.41 0.61 0.93

Mean 0.70 0.70 0.42 0.42 0.52 0.82 0.42 0.60 0.41 0.60 0.78
SD 0.10 0.11 0.00 0.00 0.01 0.15 0.05 0.12 0.00 0.01 0.16

Mean 0.72 0.76 0.70 0.71 0.77 0.78 0.70 0.63 0.70 0.73 0.68
SD 0.16 0.15 0.17 0.17 0.13 0.21 0.21 0.13 0.17 0.18 0.19
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Table A.4: AUPR-In for detecting OOD test inputs using two variants of KUE (KDE and
Gaussian) and other baseline methods on 4 datasets. The Mean and Standard Deviation
(SD) over OOD combinations is presented after each dataset. All values are averages over
10 consecutive repetitions.

AUPR-In

OOD KUEKDE KUEG p(ŷ|x) H[p(y|x)] I[y,h] OCSVM SVMovo SVMova NCM OSNN IF

B
ac

te
ri

a

Daptomycin 0.93 0.93 0.71 0.71 0.88 0.64 0.91 0.82 0.60 0.63 0.72
Caspofungin 0.99 0.99 0.52 0.48 0.82 0.98 0.53 0.61 0.47 0.55 0.93
Ceftriaxone 0.85 0.85 0.86 0.87 0.86 0.51 0.93 0.85 0.83 0.82 0.43
Vancomycin 0.87 0.87 0.65 0.63 0.73 0.65 0.82 0.76 0.58 0.62 0.66
Ciprofloxacin 0.79 0.80 0.89 0.92 0.73 0.43 0.90 0.83 0.83 0.80 0.36
TZP 0.89 0.89 0.82 0.81 0.89 0.58 0.90 0.80 0.85 0.84 0.50
Meropenem 0.79 0.79 0.90 0.90 0.82 0.51 0.89 0.86 0.86 0.83 0.47
Penicillin 0.78 0.78 0.72 0.73 0.69 0.53 0.80 0.85 0.64 0.73 0.59

Mean 0.86 0.86 0.76 0.76 0.80 0.60 0.84 0.80 0.71 0.73 0.58
SD 0.07 0.07 0.12 0.14 0.07 0.16 0.12 0.08 0.14 0.11 0.17

H
A

R

Walking 0.74 0.72 0.81 0.82 0.84 0.36 0.77 0.73 0.78 0.77 0.39
Upstairs 0.88 0.88 0.83 0.85 0.88 0.45 0.76 0.71 0.83 0.76 0.49
Downstairs 0.87 0.87 0.76 0.75 0.77 0.90 0.59 0.70 0.57 0.74 0.90
Sitting 0.73 0.75 0.59 0.60 0.68 0.66 0.64 0.54 0.60 0.55 0.63
Standing 0.55 0.56 0.70 0.72 0.82 0.68 0.68 0.73 0.62 0.50 0.68
Laying 0.99 1.00 0.36 0.36 0.42 1.00 0.37 0.35 0.86 0.59 1.00
Stairs 0.92 0.91 0.63 0.65 0.73 0.78 0.50 0.48 0.57 0.51 0.80
Dynamic 1.00 1.00 0.80 0.81 0.77 0.85 0.67 0.68 0.91 0.94 0.87
Static 1.00 0.99 0.74 0.74 0.76 0.99 0.44 0.55 0.59 0.83 1.00

Mean 0.85 0.85 0.69 0.70 0.74 0.74 0.60 0.61 0.70 0.69 0.75
SD 0.14 0.14 0.14 0.14 0.13 0.21 0.13 0.13 0.13 0.15 0.21

D
ig

it
s

0 0.94 0.96 0.93 0.94 0.98 1.00 0.96 0.95 0.93 0.98 0.84
1 0.69 0.85 0.91 0.91 0.86 0.96 0.80 0.92 0.88 0.92 0.66
2 0.90 0.93 0.92 0.92 0.90 1.00 0.91 0.95 0.92 0.96 0.84
3 0.79 0.86 0.93 0.91 0.87 0.97 0.88 0.90 0.89 0.97 0.66
4 0.95 0.96 0.90 0.90 0.96 0.99 0.87 0.96 0.86 0.94 0.95
5 0.88 0.91 0.91 0.90 0.90 0.98 0.86 0.92 0.90 0.97 0.66
6 0.93 0.94 0.90 0.90 0.98 0.99 0.96 0.92 0.95 0.97 0.83
7 0.93 0.94 0.96 0.96 0.93 0.99 0.90 0.93 0.95 0.97 0.88
8 0.92 0.88 0.97 0.98 0.96 0.98 0.96 0.97 0.93 0.97 0.48
9 0.90 0.92 0.92 0.90 0.87 0.96 0.92 0.92 0.90 0.97 0.64

Mean 0.88 0.92 0.92 0.92 0.92 0.98 0.90 0.93 0.91 0.96 0.74
SD 0.08 0.04 0.02 0.03 0.04 0.01 0.05 0.02 0.03 0.02 0.14

C
ar

d
io

Suspect 0.71 0.67 0.39 0.38 0.44 0.80 0.59 0.60 0.39 0.71 0.75
Pathologic 0.86 0.88 0.40 0.39 0.50 0.98 0.41 0.81 0.41 0.71 0.95

Mean 0.78 0.78 0.40 0.38 0.47 0.89 0.50 0.70 0.40 0.71 0.85
SD 0.08 0.10 0.01 0.01 0.03 0.09 0.09 0.11 0.01 0.00 0.10

Mean 0.86 0.87 0.77 0.77 0.80 0.80 0.76 0.78 0.76 0.79 0.71
SD 0.10 0.10 0.17 0.18 0.14 0.21 0.18 0.16 0.17 0.16 0.19
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APPENDIX A. KUE EXPERIMENTS: DATASET DETAILS AND ADDITIONAL

RESULTS

A.4 Accuracy Rejection Curves

In this section, we present the accuracy-rejection curves for HAR (Figure A.1), Cardio

(Figure A.2) and Digits (Figure A.3) and datasets. In the three figures, the average re-

jection rates against the average accuracy for our method, total, aleatoric, and epistemic

uncertainty are presented. The proposed combination is also shown in black, and the

optimal rejection is represented by the dashed line.

Figure A.1: Accuracy-rejection curves for aleatoric, epistemic, and total uncertainty for
HAR dataset. The curve for perfect rejection is included as a baseline. The name in each
plot represents the activity used for each OOD input combination.
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A.4. ACCURACY REJECTION CURVES

Figure A.2: Accuracy-rejection curves for aleatoric, epistemic, and total uncertainty for
the Cardio dataset. The curve for perfect rejection is included as a baseline. The name in
each plot represents the OOD input combination.

Figure A.3: Accuracy-rejection curves for aleatoric, epistemic, and total uncertainty for
the Digits dataset. The curve for perfect rejection is included as a baseline. The name in
each plot represents the digits used for each OOD input combination.
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B

Multimodal Experiments:

Preprocessing and selected models

The proposed approach to lower the explanation complexity of feature-based time series

models using an uncertainty-weighted model aggregation strategy was tested in two

public datasets composed of multimodal physiological data: WESAD [138] and the CSL-

SHARE [139].

The details of signal preprocessing and feature extraction, are provided in Tables

B.2 and B.1 for WESAD and CSL-SHARE datasets, respectively. Regarding the selected

models for each modality, their respective hyperparameters, and the number of selected

features are presented in Tables B.3 and B.4, respectively.
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Table B.1: Pre-processing and features extracted for each modality of CSL-SHARE dataset.

Modality Pre-processing Feature

ACC Magnitude Catch22 [200] (D = 114)
Statistical, temporal and spectral domain
features of 3-axial accelerometer sensors
(2 sensors)

GYRO Magnitude Catch22 [200] (D = 144)
Statistical, temporal and spectral domain
features of 3-axial gyroscope sensors (2
sensors)

GONIO Baseline removal Catch22 [200] (D = 38)
Statistical, temporal and spectral domain
features of 2-axial goniometer sensor (1
sensor)

EMG Baseline removal

3th order 10-350 Hz bandpass
Butterworth

Phinyomark et al. [201](D = 80)
Statistical, temporal and spectral domain
features of filtered EMG signals (4 sen-
sors)

MIC Baseline removal Catch22 [200] (D = 144)
Statistical, temporal and spectral domain
features of 3-axial airborne sensor (1 sen-
sors)
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APPENDIX B. MULTIMODAL EXPERIMENTS: PREPROCESSING AND

SELECTED MODELS

Table B.2: Pre-processing and features extracted for each modality of WESAD dataset.

Modality Pre-processing Feature

ACC Magnitude FLIRT [142] (D = 22)
Statistical and temporal domain fea-
tures of magnitude signal

EDA 2nd order lowpass Butterworth
filter with cutoff of 5 Hz

Decomposition in phasic and tonic
component using cvxEDA [202]

Min-Max normalization

FLIRT [142] (D = 42)
Statistical and temporal domain fea-
tures of phasic and tonic compo-
nents

TEMP Moving average with window size
of 2× fs

Min-Max normalization

(D = 6)
Mean, std; min; max; dynamic
range; slope

EMG Baseline removal

3th order 10-350 Hz bandpass
Butterworth

Phinyomark et al. [201] (D = 19)
Statistical, temporal and spectral
domain features of filtered EMG sig-
nal

ECG Interbeat interval NeuroKit2 [203] (D = 72)
Time, frequency and non-linear do-
mains of interbeat interval

RESP 2nd order 0.1-0.35 Hz bandpass
Butterworth filter

Constant detrending

NeuroKit2 [203] (D = 9)
Statistical domain features of inspi-
ration and expiration cycles.
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Table B.3: Selected models for each modality with corresponding hyperparameters and
the number of selected features for WESAD dataset. Hyperparameters not referenced
were set to the default values of scikit-learn implementation.

Modality Classifier Hyperparameters # Features

ACC Random Forest n_estimators=100
max_depth=4
min_samples_split=20
class_weight=’balanced’

7

EDA Naive Bayes - 14
TEMP Random Forest n_estimators=100

max_depth=3
min_samples_split=20
class_weight=’balanced’

4

EMG SVM kernel=’sigmoid’
gamma=0.1
C=0.1
class_weight=’balanced’

10

ECG Random Forest n_estimators=100
max_depth=5
min_samples_split=20
class_weight=’balanced’

7

RESP Random Forest n_estimators=100
max_depth=3
min_samples_split=20
class_weight=’balanced’

7

ALL SVM kernel=’sigmoid’
gamma=0.001
C=0.1 class_weight=’balanced’

49
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APPENDIX B. MULTIMODAL EXPERIMENTS: PREPROCESSING AND

SELECTED MODELS

Table B.4: Selected models for each modality with corresponding hyperparameters and
the number of selected features for CSL-SHARE dataset. Hyperparameters not referenced
were set to the default values of scikit-learn implementation.

Modality Classifier Hyperparameters # Features

ACC Random Forest n_estimators=200
max_depth=9
min_samples_split=30

23

GYRO Random Forest n_estimators=200
max_depth=10
min_samples_split=15

30

GONIO Random Forest n_estimators=200
max_depth=10
min_samples_split=15

14

EMG Random Forest n_estimators=200
max_depth=9
min_samples_split=15

15

MIC Random Forest n_estimators=200
max_depth=6
min_samples_split=40

8

ALL Random Forest n_estimators=200
max_depth=10
min_samples_split=15

78
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C

Multi-label ECG Classification:

Annotations details and statistical

analysis

C.1 Datasets annotations

The performance differences observed between internal and external datasets, particu-

larly for the NSR (Normal Sinus Rhythm) class of PTB-XL, prompted us to investigate

the potential causes of these discrepancies. Upon closer examination, we identified a

substantial difference in NSR annotations across the three datasets. We found that CPSC

and G12EC datasets do not contain multi-label annotations with NSR class, unlike the

PTB-XL dataset that contains 2704 multi-label annotations associated with NSR class. To

avoid the differences related to different annotation protocols, the annotations provided

by PhysioNet/CinC Challenge 2020 were used. However, originally PTB-XL had both

NORM (normal ECG) and SR (Sinus Rhythm) label annotations that were merged and

relabeled to NSR (Normal Sinus Rhythm). Contrarily, the CPSC dataset had originally

only the Normal label that was relabeled to NSR. For the G12EC dataset, since it was first

used on PhysioNet/CinC Challenge 2020, no additional information was found.

Following this finding, we proceed with an evaluation of a subset of the PTB-XL

dataset that contains only Normal labels to understand whether the mentioned differences

in annotation affected the classification performance. Figure C.1 compares the F1-Score

using the entire dataset (NORM ∪ SR), a subset with Normal class (NORM) containing

13932 recordings and the subset without Normal class (NORM ∩ SR) that contains 8544

recordings. The sum of recordings exceeds the number of PTB-XL records because of

multi-label annotations per record. As expected, the subset with only Normal classes

resulted in a significant improvement in performance across all methods. With this

subset, both external validation sets obtained comparable performance. This subset is

referred to as PTB-XL* in the subsequent results analysis of Chapter 5.
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APPENDIX C. MULTI-LABEL ECG CLASSIFICATION: ANNOTATIONS DETAILS

AND STATISTICAL ANALYSIS

Single BNN-Dropout BNN-Laplace DeepEnsemble Bootstrap0.0
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0.389
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PTB-XL
NORM SR NORM NORM SR

Figure C.1: F1-Score for three subsets of the PTB-XL dataset. NORM ∪SR represents the
full dataset, NORM is the subset with Normal Class and NORM ∩ SR is the subset with
only SR annotations.

C.2 Statistical analysis

A statistical analysis was performed to assess the relationship between the distributions

of uncertainty values for correctly and incorrectly classified samples. In a multi-label

setting, we can consider two scenarios: 1) a label dependence scenario, in which the entire

label combination is treated as either correct or incorrect, and 2) a label independence

scenario, in which each class is addressed as a separate binary classification problem.

Tables C.1, C.2, C.3 present a statistical analysis comparing the distribution of uncer-

tainty values for correctly and incorrectly classified samples using the Deep Ensemble

as an example. The analysis employs the Mann-Whitney U test to assess the differences

in the distributions. Before applying Mann-Whitney U test we performed the analysis

for validating the assumptions for the two samples t-test. Firstly, the Kolmorov-Smirnov

test was performed for normality assumptions (in both scenarios the normality is met).

Secondly, we computed the Levene test to evaluate if there was equal variance between

the analyzed groups. In this case the equal variance assumption is not met. For this

reason we performed the non parametric Mann-Whitney U test. Ultimately, Benjamini-

Hochberg correction was applied to the p-values within each dataset. In a multi-label

setting, we consider two scenarios: a label dependence scenario, where the entire label

combination is either correct or incorrect, and a label independence scenario, where each

class is treated as a binary classification problem. Both approaches are included in the

table.

Table C.1 reports the statistical analysis for the internal dataset CPSC:

Table C.2 reports the statistical analysis for the external dataset G12EC:

Table C.3 reports the statistical analysis for the external dataset PTB-XL:
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C.2. STATISTICAL ANALYSIS

Table C.1: Statistical comparison of average uncertainty values for correctly classified
and wrongly classified samples using the non-parametric Mann-Whitney U test. P-values,
P-values adjusted with Benjamini-Hochberg procedure, and the absolute value of Cohen’s
d effect sizes (∆) are shown for each comparison. Internal CPSC dataset.

Uncertainty Label Independence Label Dependence

pvalue pvalueadj ∆ pvalue pvalueadj ∆

pmax < .001 < .001 1.700 < .001 < .001 1.485
ut < .001 < .001 1.893 < .001 < .001 1.344
ua < .001 < .001 1.835 < .001 < .001 1.283
ue < .001 < .001 1.060 < .001 < .001 1.022
σ2 < .001 < .001 1.490 < .001 < .001 1.246
vr < .001 < .001 1.147 < .001 < .001 1.292

Table C.2: Statistical comparison of average uncertainty values for correctly classified
and wrongly classified samples using the non-parametric Mann-Whitney U test. P-values,
P-values adjusted with Benjamini-Hochberg procedure, and the absolute value of Cohen’s
d effect sizes (∆) are shown for each comparison. External G12EC dataset.

Uncertainty Label Independence Label Dependence

pvalue pvalueadj ∆ pvalue pvalueadj ∆

pmax < .001 < .001 1.566 < .001 < .001 1.100
ut < .001 < .001 1.689 < .001 < .001 0.977
ua < .001 < .001 1.584 < .001 < .001 0.849
ue < .001 < .001 1.050 < .001 < .001 0.906
σ2 < .001 < .001 1.442 < .001 < .001 1.062
vr < .001 < .001 1.184 < .001 < .001 1.117

Table C.3: Statistical comparison of average uncertainty values for correctly classified
and wrongly classified samples using the non-parametric Mann-Whitney U test. P-values,
P-values adjusted with Benjamini-Hochberg procedure, and the absolute value of Cohen’s
d effect sizes (∆) are shown for each comparison. External PTB-XL dataset.

Uncertainty Label Independence Label Dependence

pvalue pvalueadj ∆ pvalue pvalueadj ∆

pmax < .001 < .001 1.409 < .001 < .001 0.877
ut < .001 < .001 1.503 < .001 < .001 0.762
ua < .001 < .001 1.439 < .001 < .001 0.672
ue < .001 < .001 0.965 < .001 < .001 0.736
σ2 < .001 < .001 1.310 < .001 < .001 0.875
vr < .001 < .001 1.050 < .001 < .001 0.936
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