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Abstract
Purpose We examined heart rate variability (HRV) and baroreflex sensitivity (BRS) disease- and age-related response at 
10-and 60-min after an acute high-intensity interval (HIIE) and moderate continuous exercise (MICE) in older adults with 
and without type 2 diabetes mellitus (T2DM) and healthy young adults.
Methods Twelve older male adults with (57–84 years) and without T2DM (57–76 years) and 12 healthy young male adults 
(20–40 years) completed an isocaloric acute bout of HIIE, MICE, and a non-exercise condition in a randomized order. Time 
and Wavelets-derived frequency domain indices of HRV and BRS were obtained in a supine position and offline over 2-min 
time-bins using Matlab.
Results HIIE but not MICE reduced natural logarithm root mean square of successive differences (Ln-RMSSD) (d = − 0.85; 
95% CI − 1.15 to − 0.55 ms, p < 0.001), Ln-high-frequency power (d = − 1.60; 95% CI − 2.24 to − 0.97  ms2; p < 0.001), 
and BRS (d = − 6.32; 95% CI − 9.35 to − 3.29 ms/mmHg, p < 0.001) in adults without T2DM (averaged over young and 
older adults without T2DM), returning to baseline 60 min into recovery. These indices remained unchanged in older adults 
with T2DM after HIIE and MICE. Older adults with T2DM had lower resting Ln-RMSSD and BRS than aged-matched 
controls (Ln-RMSSD, d = − 0.71, 95% CI − 1.16 to − 0.262 ms, p = 0.001; BRS d = − 3.83 ms/mmHg), 95% CI − 6.90 to 
− 0.76, p = 0.01).
Conclusions Cardiovagal modulation following acute aerobic exercise is intensity-dependent only in adults without T2DM, 
and appears age-independent. These findings provide evidence of cardiac autonomic impairments in older adults with T2DM 
at rest and following aerobic exercise.
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Introduction

Cardiac autonomic dysfunction is characterized by dimin-
ished cardiovagal predominance at rest coupled with paral-
lel increases in cardiac sympathetic modulation (Tarvainen 
et al. 2014). Importantly, this cardiac autonomic imbalance at 
rest likely precedes the onset of cardiac autonomic neuropa-
thy (CAN), which is a commonly overlooked complication 
in older adults with T2DM associated with a higher risk of 
sudden cardiac death and all-cause mortality (Rathmann et al. 
1993; Maser et al. 2003; Huggett et al. 2005). Low cardio-
vagal baroreflex sensitivity (BRS) may account for cardiac 
autonomic dysfunction in older adults with T2DM, as it limits 
the ability to reflexively increase vagal and inhibit sympathetic 
outflows via the nucleus tractus solitarius, in response to tran-
sient increases in arterial pressure (Weston et al. 1996; Heusser 
et al. 2005).

Consistent with the reactive hypothesis, the acute exer-
cise model provides clinical insights into cardiac autonomic 
stress reactivity as it uncovers abnormalities that are not pre-
sent at rest following both submaximal and maximal exercise 
(Figueroa et al. 2006; Banthia et al. 2013; Verma et al. 2018; 
Bhati et al. 2019; Goldberger et al. 2022). As such, exercise 
testing-based methods using indices of heart-rate variability 
(HRV) were recently proposed to be more precise and relevant 
in diagnosing CAN in T2DM compared to resting assessments 
(Bhati et al. 2019). T2DM may alter the cardiovagal response 
to acute exercise, such that decreases immediately after exer-
cise testing (Figueroa et al. 2006; Banthia et al. 2013; Verma 
et al. 2018; Bhati et al. 2019; Goldberger et al. 2022), or the 
more pronounced reductions with high rather than moderate-
intensity exercise in healthy young and older adults, may not 
be observed (Kaikkonen et al. 2008; Niemela et al. 2008; Stan-
ley et al. 2013; Michael et al. 2016, 2017a, b; Venturini et al. 
2016). Nonetheless, and to the best of our knowledge, this has 
never been previously investigated.

Therefore, this study aimed to examine HRV and BRS 
disease- and age-related response patterns at 10 and 60 min 
after an acute bout of high-intensity interval exercise (HIIE) 
and moderate-intensity continuous exercise (MICE) in older 
adults with and without T2DM and healthy young adults. 
We hypothesized that (1) reductions in post-exercise HRV 
and BRS would not be observed in older adults with T2DM 
compared to those without, and that (2) declines in HRV and 
BRS estimates following HIIE would be more pronounced 
compared to MICE.

Methods

Participants

A detailed schematic of participant recruitment and enrol-
ment for the study is provided in Supplement 1. The T2DM 
group included 12 male older adults (aged 57–84 years) 
with long-standing [(17 (6) years], insulin and metformin-
treated (67%) T2DM as diagnosed by the criteria of the 
American Diabetes Association [fasting HbA1 = 7.25% 
(0.73)] (Care and Suppl 2022). Exclusion criteria were 
as follows: smoking, cardiac (e.g., heart failure, ischemic 
heart disease), renal or musculoskeletal diseases. In addi-
tion, 24 healthy male participants were assigned to the 
comparison groups of young (n = 12; aged 20 to 40 years) 
and older adults (n = 12; aged 57 to 76 years) without 
T2DM. All participants completed the Physical Activity 
Readiness Questionnaire for Everyone (PAR-Q +) and the 
International Physical Activity Questionnaire (IPAQ). Par-
ticipants without T2DM were active as they accumulated 
at least 150 min  wk−1 of moderate to vigorous physical 
activity (M = 200, SD = 25 min  wk−1), while participants 
with T2DM were inactive (M = 65, SD = 30 min  wk−1). 
Exclusion criteria for participants without T2DM were 
as follows: smoking, having cardiac (e.g., heart failure, 
ischemic heart disease), renal or musculoskeletal diseases, 
or taking cardioactive medication. All participants gave 
written informed consent after a detailed explanation of 
the experimental procedures and aims of the study. All 
experimental procedures were approved by the ethics com-
mittee of Faculdade de Motricidade Humana – Univer-
sidade de Lisboa (10/2020) and were aligned with both 
the Declaration of Helsinki for Human Research and the 
Ethical Standards in Sport and Exercise Science Research: 
2020 Update (Harriss et al. 2019).

Experimental design

The study was designed as a randomized, cross-over, 
repeated-measures experiment. Participants attended 3 
separate intervention sessions consisting of an acute bout 
of HIIE, an acute bout of MICE, or no exercise (CON) in 
a randomized order (http:// www. rando mizer. org/) to which 
participants were blinded until arrival at the laboratory. 
On a separate day before interventions, all participants 
performed a cardiopulmonary exercise test (CPET) and 
body composition was also measured with a medical bio-
impedance device (seca mBCA 515, Hamburg, Germany). 
Exercise sessions began with a 3 min warm-up at 60% 
heart reserve (HRR) and ended with an identical cool-
down. Both the HIIE and MICE protocols were designed 

http://www.randomizer.org/


European Journal of Applied Physiology 

1 3

to match a weekly energy expenditure (EE) of 8 kcal.
kg−1   week−1 (Ramírez-Vélez et al. 2019) comprising 3 
hypothetical exercise sessions per week. Both exercise 
protocols were individually tailored to each participant 
regarding their weight and peak oxygen uptake (V ̇O2 peak), 
and the prescribed target intensities were supervised by an 
exercise physiologist with a heart rate monitor (Garmin, 
US) throughout the session. To account for possible diur-
nal variations, each participant performed all interventions 
at the same time of the day (in the mornings), with a mini-
mum of 48 h between sessions. Post-exercise measure-
ments at 10 and 60 min were aimed to characterize the 
post-exercise biphasic response of the autonomic nervous 
system (Michael et al. 2017a). Participants reported to 
the laboratory in a fasted state (≥ 4 h) and refrained from 
vigorous exercise, vitamin supplements, foods/beverages 
containing caffeine, and alcohol for at least 12 h before 
each session.

Interventions

The HIIE comprised 1  min exercise bouts at 90% of 
V ̇O2 Reserve interspersed by 1 min active recovery bouts at 
60% V ̇O2 Reserve (1:1). Resting oxygen uptake (V̇O2 Rest) was 
assumed to be one metabolic equivalent (3.5 mL kg  min−1) 
for all participants. The number of bouts of exercise 
recovery for each participant was tailored to achieve the 
desired EE. An example is a participant with a V ̇O2 peak of 
30 mL  kg−1  min−1, weighing 80 kg, and considering that 
5 kcal are expended for every 1L of  O2 consumed, would 
need 6 bouts to match the targeted EE. This protocol was 
performed on a motorized treadmill and the participants 
walked or ran at the pace required to achieve the target 
intensity.

The MICE protocol intensity was set at 60% of VȮ2 Reserve 
and the duration was adjusted so that each participant 
achieved the targeted EE. An example is a participant with a 
V ̇O2 peak of 30 mL  kg−1  min−1, weighting 80 kg, and consid-
ering that 5 kcal are expended for every 1L of  O2 consumed, 
would exercise for 21 min to match the required EE.

Evaluation of cardiac autonomic function

Heart rate variability

Participants were assessed in a rested supine position in a 
quiet climate-controlled room (22–24 ℃) during all repeated 
measurements. The R–R intervals were sampled at 300 Hz 
frequency to acquire a digital sequence of R waves using 
the 5-ECG lead module of the Finapres Nova device (Finap-
res® NOVA, Finapres Medical Systems, Amsterdam, The 
Netherlands). All data acquisition and offline analyses were 
performed following the standards of the Task Force of the 

European Society of Cardiology and the North American 
Society of Pacing and Electrophysiology (Task Force of the 
European Society of Cardiology and the North American 
Society of Pacing and Electrophysiology 1996).

Heart rate variability data analysis

All HRV analyses were performed offline using the FisioSi-
nal software built-in Matlab (Tavares et al. 2011). Following 
R-R peak detection and semiautomatic removal of signal 
artifacts, 2 min time series were constructed using a cubic 
spline interpolation which allowed estimation of both time-
domain and spectral power indices (Tavares et al. 2011; Wu 
et al. 2020). Ectopic heartbeats (M = 1, SD = 6 b.min−1) were 
also excluded from the final analysis. The time-domain indi-
ces used to characterize HRV were the standard deviation 
of NN intervals (SDNN)—a measure of overall variability, 
and the root mean square of the sum of the squares of the 
differences between NN intervals (RMSSD)—a measure 
of cardiovagal modulation, both in milliseconds. Addition-
ally, non-linear time-domain parameters were derived from 
the Poincaré plot including the vertical deviation (SD1), 
the longitudinal deviation (SD2), and the non-linear ratio 
SD1/SD2. Analyzing HRV through non-linear methods is 
important since R–R intervals are often unpredictable due 
to the complex interactions of the diverse mechanisms that 
regulate HRV (e.g., central and autonomic neural regula-
tions, humoral, hemodynamic) (Shaffer and Ginsberg 2017). 
The time–frequency domain analysis was conducted using 
the Daubechy-12 discrete wavelet algorithm, which allowed 
the estimation of low (0.04 to 0.15 Hz) and high-frequency 
bands (0.15 to 0.4 Hz) in absolute and normalized power 
units. The low-frequency bands reflect both vagal and 
sympathetic modulation to the heart, whereas the high fre-
quencies reflect only cardiovagal modulation (Shaffer and 
Ginsberg 2017). Wavelet analysis was chosen instead of fast 
Fourier transform as it is better suited to characterize acute 
responses of the autonomic nervous system during the post-
exercise period (Belova et al. 2007).

Cardiovagal baroreflex sensitivity

The spontaneous sequence method, chosen for its non-
invasive nature, was employed to estimate the baroreflex 
effectiveness index (BEI) and the gain of the baroreflex arc 
(i.e., baroreflex sensitivity)(La Rovere et al. 2008). Briefly, 
we utilized the automated baroreflex module of FisioSinal 
(Tavares et al. 2011), which identifies systolic blood pres-
sure and RR interval ramps defined as adjacent oscillations 
of at least > 1 mmHg and > 4 ms, respectively. Beat-to-beat 
SBP was recorded using finger plethysmography (Finapres® 
NOVA, Finapres Medical Systems, Amsterdam, The Nether-
lands). A BRS event was defined as the overlap between the 
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BP ramps and the concordant changes in RR. Thus, BRS was 
defined as the average of BRS slopes. The baroreflex effec-
tiveness index was calculated as the total number of BRS 
events divided by the total number of BP ramps observed 
during the 2 min time-bin.

Reliability of cardiovagal modulation and baroreflex 
sensitivity

Our laboratory has excellent intra- and inter-day reliabil-
ity for linear time-domain (Ln-RMSSD; ICC: 0.98; 95% CI 
0.97–0.99 and ICC: 0.95; 95% CI 0.90–0.97, respectively) 
and spectral power analyses (Ln-HF; ICC: 0.97; 95% CI: 
0.96 to 0.99 and ICC: 0.93; 95% CI 0.87–0.96, respectively). 
Intra- and inter-day reliability for BRS is considered good 
(ICC: 0.87; 95% CI 0.77–0.93 and ICC: 0.78; 95% CI 
0.61–0.89, respectively).

Cardiopulmonary exercise testing

An incremental cardiopulmonary exercise test with mixing-
chamber gas exchange measurements (K5, Cosmed, Rome, 
Italy) was conducted on a motorized treadmill. Participants 
were tested 4 h post-prandial and under regular medica-
tion. Blood pressure was assessed by auscultation using an 
aneroid sphygmomanometer, and heart electrical activity 
was continuously monitored through a 12-lead electrocar-
diogram (at rest, at the end of each stage, and every min 
after peak effort). A certified physician supervised the pro-
tocol, which started with an initial walking period (3 min) 
at a comfortable self-selected pace (a pace that could be 
sustained for 20–25 min). Subsequently, the grade was set 
to 5% and increased by 1% every 2 min until volitional 
exhaustion (Porszasz et al. 2003). The recovery phase con-
sisted of a 3 min walking period. The increases in velocity 
were simultaneous with those of grade and were matched 
for 25 W increments according to the following equation: 
WR = m × g × v × sin(α) , where WR (watts) is work rate; 
m is body mass (kg); g is the gravitational acceleration 
(9.81  ms−1), is the velocity (m  s−1), and α is the grade. The 
 O2 and  CO2 analysers were calibrated using ambient air 
and normal calibration gases with known concentrations 
before each examination (16.7%  O2 and 5.7%  CO2). The 
turbine flowmeter of the K5 Cosmed was calibrated using a 
3-L syringe according to the manufacturer’s guidance. Par-
ticipants were encouraged to exercise until exhaustion, as 
defined by ≥ 2 of the following criteria: attaining a plateau 
(variance of < 2.1 mL  kg−1  min−1 during the last 60-s of 
the test);  HRpeak ≥ 90% of the age-predicted (208–0.7 × age); 
respiratory exchange ratio (RER) > 1.10; rating perceived 
exertion (RPE) ≥ 18 (Borg 6–20); subjective judgment by 
the observer that the participant can no longer continue, 
even after encouragement, unless clinical criteria for early; 

test termination were observed. Pulmonary gases were time 
averaged over 15-s time bins and the V ̇O2 peak was defined 
as the highest V ̇O2 value during the final 20-s of exercise. 
Heart rate recovery (HRR1) was also calculated as the dif-
ference between  HRpeak and HR at the first minute following 
maximal exercise testing.

Anthropometrics, body composition

Body composition parameters (fat mass and fat-free mass) 
were estimated using a bioimpedance device (seca mBCA 
515, seca gmbh & co. kg, Hamburg, Germany) featuring 
four pairs of electrodes positioned at each hand and foot that 
allow impedance to be measured with a current of 100 μA 
at frequencies between 1 and 1 000 kHz. Height and body 
weight were measured to the nearest 0.1 cm and 0.1 kg on a 
scale with an attached stadiometer (model 770, Seca, Ham-
burg, Deutschland).

Statistics analysis

Based on a standardized medium effect size of 0.25, the a 
priori power analysis (G-Power Version 3.1.9.3) suggested 
that a total of 36 participants were required to detect signifi-
cant differences between interventions and groups (α = 0.05, 
1 − β = 0.8).

All statistical analyses were conducted using R software, 
version 4.0.1 (R Core Team 2020), with a significant level 
(α) of < 0.05. Data are presented as mean (SD) unless oth-
erwise noted. The normality and homoscedasticity assump-
tions were verified with the Shapiro–Wilk and Levene tests, 
respectively, and by visual plot inspection. A natural loga-
rithm (Ln) transformation was applied to the HRV indices, 
as these were not normally distributed. One-way ANOVA 
with Tukey’s HSD correction were used to compare the 
characteristics of the participants and aerobic exercise 
intensities.

Intra- and inter-day relative reliability was assessed with a 
two-way absolute agreement mixed model intraclass correla-
tion coefficient (ICC (2,1)) computed with irr package, using 
three static repeated measurements. The ICC was interpreted 
as: poor [< 0.50], moderate [0.50, 0.75], good [0.75, 0.90], 
and excellent [> 0.90] (Koo and Li 2016).

The changes in main cardiovagal indices (e.g., Ln-
RMSSD, Ln-HF, BRS) from pre- to post- conditions, were 
examined using linear mixed models fitted with restricted 
maximum likelihood and applying Satterthwaite's method 
for approximating degrees of freedom for the F test from 
the lmerTest package (Kuznetsova et al. 2017). Fixed effects 
were defined as time, intervention, and group, and the ran-
dom intercept was defined as each participant. Partial omega 
squares (ω2) were calculated for main effects and interac-
tions (condition*time; group*time; group*condition and 
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condition*time*group) using sjstats package and interpreted 
applying the rough benchmarks set by Cohen (1988) [small 
(ω2 < 0.05), medium (ω2 < 0.25), and large ω2 > 0.25) effects 
sizes]. VȮ2 peak,  HRpeak, HR, and %fat mass were added one-
by-one to the mixed model as covariates. Post hoc com-
parisons were performed using Tukey’s HSD test with the 
emmeans package, in the presence of significant differences 
in the main effects and interactions. As similar cardiovagal 
response patterns after acute aerobic exercise were observed 
in young and older adults, despite differences at rest, post 
hoc comparisons were averaged over these two levels and 
compared to those of participants with T2DM.

Results

Characteristics of the participants

Clinical and demographic characteristics are depicted in 
Table 1. Participants with T2DM had a higher BMI [F 
(2, 33) = 6.97, p = 0.002, ω2 = 0.45] compared to young 
(d = − 5.0; 95% CI − 1.6 to − 8.4 kg  m−2; p = 0.002), but 
not older adults (d = − 3.1; 95% CI − 6.6 to 0.3 kg  m−2, 
p = 0.08).  HRpeak [F (2, 33) = 45.40, p < 0.001, ω2 = 0.71] 
and V ̇O2 peak [F (2, 33) = 85.55, p < 0.001, ω2 = 0.82] were 
lower in participants with T2DM when compared to young 
(d  = − 31.44, 95% CI − 28.70 to − 16.70 mL kg  min−1, 

p < 0.001; d = −  46, 95% CI −  58 to −  34 b.min−1, 
p < 0.001) and older adults (d = − 8.78, 95% CI − 14.90 
to − 2.70 mL.kg.min−1, p = 0.003; d = − 15, 95% CI − 27 
to − 3 b  min−1, p = 0.01). A lower HRR1 was observed 
in participants with T2DM [F (2, 33) = 4.08, p = 0.03, 
ω2 = 0.15] in comparison to young (d = − 10, 95% CI − 18 
to − 1 b  min−1, p = 0.02), but not older adults (d = − 7, 
95% CI − 2 to 16 b  min−1, p = 0.16).

Aerobic exercise characteristics

Isocaloric sessions of HIEE and MICE differed among 
groups for the total number of bouts ([F (2, 32) = 48.49, 
p < 0.001, ω2 = 0.73) and duration (F (2, 32) = 44.79, 
p < 0.001, ω2 = 0.71), but not total EE [F (2, 31) = 2.01, 
p = 0.15]. Participants with T2DM completed the highest 
number of HIIE bouts [12 (3)] and exercised for longer in 
MICE [34 (6) min], followed by the elderly [8 (2) bouts; 26 
(5) min], and young adults [4 (1) bouts; 16 (2) min]. The 
peak HR during the last bout of HIIE [F (2, 32) = 36.65, 
p < 0.001, ω2 = 0.67] and mean HR during MICE [F (2, 
32) = 27.80, p < 0.001, ω2 = 0.60] were higher in young 
[HIIE: 176 (10); MICE: 138 (7) b.min−1] compared to 
older adults [HIIE: 148 (12); MICE: 118 (7) b  min−1], and 
lowest in participants with T2DM [HIIE: 132 (16); MICE: 
113 (11) b  min−1].

Table 1  Characteristics of the 
participants

Data presented as mean (SD)
bSBP brachial systolic blood pressure, bDBP brachial diastolic blood pressure, HR heart rate, HRR1 heart 
rate recovery following the first minute after cardiopulmonary exercise testing, V̇O

2
peak oxygen uptake

1 One-way ANOVA with Tukey’s HSD correction for multiple testing
# Significant difference from Young Adults
*Significant difference from Older Adults

Characteristic Young adults (n = 12) Older adults (n = 12) T2DM (n = 12) p  value1

Age (years) 27 (4) 64 (5)# 67 (8)#  < 0.001
Height (m) 1.75 (0.05) 1.74 (0.07) 1.68 (0.05)#,* 0.01
Weight (kg) 75.8 (7.9) 81.2 (10.2) 84.2 (15.0) 0.2
Body mass index (kg  m−2) 24.8 (2.4) 26.7 (2.1) 29.8 (4.8)# 0.003
Waist circumference (m) 0.8 (0.1) 1.0 (0.1)# 1.0 (0.1)#  < 0.001
Fat mass (%) 17.5 (5.9) 25.0 (4.8)# 32.3 (5.5)#,*  < 0.001
Fat-free mass (kg) 62.2 (4.8) 60.8 (8.3) 56.5 (7.9) 0.14
bSBP (mmHg) 129 (10) 121 (16) 132 (12) 0.14
bDBP (mmHg) 78 (10) 74 (12) 77 (10) 0.6
HRresting (b  min−1) 60 (8) 60 (10) 65 (8) 0.086
HRpeak (b  min−1) 188 (9) 157 (11)# 142 (116)#,*  < 0.001
HRR1 (b  min−1) 24 (12) 21 (7) 14 (5) 0.026
V̇O2 peak (L  min−1) 4.2 (0.4) 2.7 (0.6)# 2.0 (0.5)#,*  < 0.001
V̇O2 peak (mL  kg−1  min−1) 55.5 (7.2) 32.8 (6.5)# 24.0 (4.2)#,*  < 0.001
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Cardiovagal modulation and baroreflex sensitivity 
at rest

Indices of cardiovagal modulation differed among groups, 
as participants with T2DM had lower Ln-RMSSD [F(2, 
33) = 34.61, p < 0.001, ω2 = 0.59], and Ln-HF [F(2, 
33) = 25.37, p < 0.001, ω2 = 0.60] in comparison to young 
(Ln-RMSSD, d = − 1.25, 95% CI − 1.70 to − 0.80 ms, 
p < 0.001; Ln-HF, d = − 2.52, 95% CI − 3.39 to − 1.65  ms2, 
p < 0.001) and older adults (Ln-RMSSD, d = − 0.71, 95% 
CI − 1.16 to − 0.262 ms, p = 0.001; Ln-HF, d = − 1.36, 95% 
CI − 2.23 to − 0.50  ms2, p = 0.002; Tables 2 and 3). Similar 
results were observed for Ln-SDNN and Ln-SD1.

BRS [F (2, 33) = 14.85, p < 0.001, ω2 = 0.60] and BEI [F 
(2, 33) = 22.39, p < 0.001, ω2 = 0.54; Table 3] were reduced 
in participants with T2DM compared to young (BRS, 
d = − 6.81, 95% CI − 9.88 to − 3.74 ms/mmHg, p < 0.001; 
BEI, d = − 32.4, 95% CI − 44.56 to 20.32%, p < 0.001) and 
older adults (BRS, d = − 3.83, 95% CI − 6.90 to − 0.76, 
p = 0.01; BEI, d = −  21.9, 95% CI −  34.0 to −  9.76, 
p < 0.001), but not different amongst participants without 
T2DM. Group fixed effects for BRS and Ln-RMSSD did 
not remain significant after adjustment for V̇O2 peak, while 
adjustments for %fat mass only eliminated the BRS group 
effect. Furthermore, adjustments for resting HR did not 
change the results of cardiovagal modulation and baroreflex 
sensitivity. Non-logarithmic cardiovagal modulation data are 
shown in supplement 2.

Cardiovagal modulation and baroreflex sensitivity 
after acute exercise

Exercise-by-time-by-group interaction effects were observed 
in Ln-SDNN (Table 2), Ln-RMSSD [F (8, 254) = 2.065, 
p = 0.039, ω2 = 0.03], Ln-HF [F (8, 254) = 2.20, p = 0.0277, 
ω2 = 0.04], Ln-SD1 (Table 2), SD1/ SD2 (Table 2), and BRS 
[F (8, 246) = 3.129, p = 0.001, ω2 = 0.02). This suggests Ln-
SDNN (d = − 0.53; 95% CI − 0.84 to − 0.23 ms, p < 0.001), 
Ln-RMSSD (d = − 0.85: 95% CI − 1.15 to − 0.55 ms, 
p < 0.001) (Fig. 1), Ln-HF (d = − 1.60; 95% CI − 2.24 
to − 0.97  ms2; p < 0.001), SD1/SD2 (d = − 0.17; 95% CI 
− 0.25 to − 0.08 ms, p < 0.001), and BRS (d = − 6.32; 95% 
CI − 9.35 to − 3.29 ms/mmHg, p < 0.001) (Fig. 1) decreased 
immediately following HIIE in both young and older adults 
but not in participants with T2DM. Only the interbeat inter-
val (IBI) was reduced after HIIE in both participants with 
and without T2DM (Table 2). These outcomes returned to 
baseline following a 60-min recovery period. Adjustments 
for V ̇O2peak, HRpeak and %fat mass did not change the 
results, while adjustment for IBI abolished the significant 
interactions described above. Cardiovagal modulation and 
BRS indices remained unchanged after MICE. Normalized 
frequency HRV outcomes are depicted in Table 3.

Discussion

The main findings of the present study were that cardiova-
gal modulation remained unchanged in older adults with 
T2DM following a single bout of HIIE and MICE, whereas 
in young and older adults without T2DM cardiovagal 
modulation was reduced 10-min after HIIE. All indices of 
cardiovagal modulation returned to baseline levels 60 min 
into recovery. These findings support our initial hypothesis 
that cardiovagal modulation following an acute aerobic 
exercise is disease- and intensity-dependent, but appar-
ently not influenced by age.

Cardiovagal modulation at rest

In this study, cardiovagal modulation indices in older 
adults with T2DM were markedly reduced compared to 
young (Ln-RMSSD: − 34%, Ln-HF: − 40%) and older 
adults without T2DM (Ln-RMSSD: −  22%, Ln-HF: 
− 27%). This is in line with observations from cross-
sectional and prospective cohort studies suggesting that 
the incidence of cardiac autonomic dysfunction increases 
with age and may contribute to the pathogenesis of T2DM, 
but also that T2DM may cause imbalances in cardiovagal 
modulation (Gerritsen et al. 2001; Carnethon et al. 2003; 
Almeida-Santos et al. 2016). In fact, only one adult with 
T2DM in our sample would not meet the criteria for CAN 
based on recent cut-off values for resting HRV measure-
ments (e.g., RMSSD < 26.18  ms) (Bhati et  al. 2019). 
Even if the authors concluded that cardiovagal modula-
tion measurements at rest were less sensitive to detect 
CAN compared to post-maximal exercise measurements, 
resting values in older adults with T2DM in the present 
study were similar to the proposed cut-off values for 
post-exercise HRV measurements (i.e., RMSSD: ~ 14 ms 
vs < 14.85 ms) (Bhati et al. 2019). This suggests that the 
incidence of CAN in older adults with TDM2 is higher, 
likely due to prolonged hyperglycemia causing damage 
to the vagus nerve and hence contributing to cardiac 
autonomic dysfunction (Vinik et al. 2013), even though 
they have adequate glycemic control. Mechanistically, 
longstanding hyperglycemia increases protein glycation 
causing accumulation of advanced glycation end products 
(AGEs) and upregulates reactive oxygen species produc-
tion through its receptor’s signaling, which ultimately acti-
vates proinflammatory responses mediated by nuclear kB 
factor leading to cytotoxic damage (Vinik et al. 2013). In 
addition, the burden of CAN is expected to arise second-
arily to increases in sympathetic outflow to the heart and 
vasculature from the insulin therapy prescribed as β-cells 
become progressively dysfunctional with advanced T2DM 
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(Paolisso et al. 1999; Muta et al. 2015). Age-related cat-
echolamine spill-over may also increase insulin resistance 
in pre-diabetic older adults and worsen CAN in T2DM, 
respectively, as catecholamines promote free-fatty acids 
and glucose release into circulation (Benthem et al. 2000).

Cardiovagal modulation responses after aerobic 
exercise

The intensity of aerobic exercise is the main determinant of 
early cardiovagal modulation recovery in healthy physically 
active young and older adults (Michael et al. 2017a), but 
not in middle-aged and older adults with T2DM (Figueroa 
et al. 2006, 2007). Reductions in indices of cardiovagal 
modulation and BRS have been reported following a bout 
of submaximal or maximal aerobic exercise in middle-aged 
and older adults with T2DM (Figueroa et al. 2006; Ban-
thia et al. 2013; Bhati et al. 2019; Goldberger et al. 2022), 
while in young and older adults, these appear mainly after 
near-maximal exercise (Michael et al. 2017a). However, in 
the present study, the indices of cardiovagal modulation 
and BRS remained unchanged in older adults with TDM2 
after HIIE and MICE. Sex and methodological differences 
between studies in exercise intensity, duration of the exer-
cise, or the time points at which HRV was measured dur-
ing recovery, are likely candidates to explain this discrep-
ant finding. For instance, in the study by Figueroa et al. 

(Figueroa et al. 2006) enrolling 8 middle-aged women with 
obesity and T2DM, 20-min of walking (~ 65% of V ̇O2peak) 
was sufficient to reduce post-exercise HF and BRS, whereas 
in this study, older male adults with T2DM exercised 40% 
longer and still no changes in HF and BRS were observed. 
We assessed post-exercise cardiovagal modulation and 
BRS 10 min into recovery which could have resulted in an 
inability to detect changes appearing outside this time-point 
(< 10 min). However, this is also a doubtful explanation as 
reductions in cardiovagal modulation have been reported to 
occur between 3 and 10 min after exercise cessation and 
remain reduced 20 to 30 min into recovery in middle-aged 
and older adults with T2DM (Figueroa et al. 2006; Banthia 
et al. 2013; Bhati et al. 2019; Goldberger et al. 2022). In 
addition, a slower cardiovagal recovery is generally observed 
in adults with low CRF compared to fit adults, as was the 
case with our adults with and without T2DM, respectively 
(Stanley et al. 2013). Another explanation may be that the 
loss of cardiovagal predominance at rest in older adults 
with T2DM may transpose into the early recovery period, 
in line with the findings suggesting that both resting and 
post-exercise HRV provide an accurate diagnostic test for 
CAD in T2DM (Sacre et al. 2012). Finally, changes in indi-
ces of cardiovagal modulation following exercise should be 
interpreted with caution, as they may simply reflect a math-
ematical artefact, given the non-linear association between 
HR (or IBI) and HRV (Boyett et al. 2013, 2017; Sacha et al. 

Fig. 1  The ln-root mean square 
of successive differences 
(RMSSD) and cardiac barore-
flex sensitivity post-aerobic 
exercise response in older adults 
with and without TD2M and 
young adults. Vertical bars 
correspond to the 95% CI. 
Circles correspond to individual 
responses in the control (CON) 
condition. Triangles correspond 
to individual responses in the 
high-intensity interval exercise 
(HIEE) bout, while the squares 
to the moderate continuous 
exercise (MICE) bout. *HIIE 
post 10 significantly different 
from CON (p < 0.01); ¥HIIE 
post 10 significantly different 
from exercise premeasures 
(p < 0.01); #HIEE post 10 signif-
icantly different from exercise 
post 60 measures (p < 0.01)
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2013). In fact, as we covaried indices of HRV and BRS to 
HR as suggested by Sacha et al. (2013), changes in indices 
of HRV and BRS observed 10-min after HIIE in young and 
older adults were no longer significant, although group dif-
ferences were still observed. This may suggest that changes 
in cardiovagal modulation after exercise are mediated by HR 
recovery to a greater extent than HR influences cardiovagal 
modulation at rest.

Limitations

The present study is not without limitations. Respiratory 
sinus arrhythmia was not controlled and may have influenced 
cardiovagal modulation and BRS estimates. Although paced 
breathing has been suggested to reduce respiratory influ-
ences on autonomic parameters (Shaffer and Ginsberg 2017), 
research shows that it does not significantly affect post-
exercise cardiovagal modulation (Kaikkonen et al. 2007). 
BRS was assessed with the spontaneous sequence method 
which may not reflect the “true” sensitivity of the arterial 
baroreflex arch to pharmacological and mechanical stressors 
as measured with the Oxford and the neck chamber meth-
ods, respectively, in fact poor agreement has been reported 
between methods (Lipman et al. 2003). Thus, findings from 
studies using different baroreflex assessment methodolo-
gies should be interpreted with caution. The lack of inva-
sive measures in this study, such as catecholamine plasma 
concentrations and blood lactate, precluded meaningful 
mechanistic insight into sympathetic activity and skeletal 
muscle recovery after exercise. Furthermore, the indices of 
cardiovagal modulation and BRS dynamics during exercise 
were not measured, excluding additional inferences. Most 
participants with T2DM were taking oral glycemic agents, 
and insulin therapy, which may have confounded the present 
findings. It would have been ideal to take these participants 
off their medication, but ethical and medical considerations 
must be considered, particularly in the presence of prolonged 
T2DM. We have not assessed CAN using the gold standard 
cardiovascular autonomic reflex tests (CARTs)—Ewing’s 
criteria—and as such, we were unable to truly confirm CAN 
within participants with T2DM (Ewing et al. 1985). Finally, 
our results apply only to older male adults with and without 
T2DM and male young adults without T2DM. Young and 
older adult females with and without TD2M can show dis-
tinct post-exercise cardiac autonomic recovery patterns, thus 
limiting the generalization of our results.

Conclusions

The main findings of the present study were that cardiovagal 
modulation remained unchanged in older adults with T2DM 
following a single bout of HIIE and MICE, whereas in young 

and older adults without T2DM cardiovagal modulation 
was reduced 10-min after HIIE. All indices of cardiovagal 
modulation returned to baseline levels 60 min into recov-
ery. Overall, these findings support our initial hypothesis as 
cardiovagal modulation following an acute aerobic exercise 
is disease- and intensity-dependent, but apparently not influ-
enced by age.
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