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Abstract A new methodology combining 2× 2 cross–

diffusion systems of nonlinear partial differential equa-

tions (CDS) with classical image classification proce-

dures is proposed in the present paper. Such a kind

of mathematical models (CDS) have been theoretically

studied in previous works in the context of image pro-

cessing, however here they are tested and stressed in

very practical instances. In particular, the main con-

tribution of this paper is the improvement of the clas-

sification of satellite images when they are previously

filtered by means of a CDS model. This conclusion is

based on a wide and costly experimentation with satel-

lite images of areas damaged by forest fires and sur-

face coal mining, all of them located in Mediterranean

areas. The efficiency of our methodology is not only

in terms of the classification improvement but also in
terms of the runtime saving since CDS based filtering

is much less costly than other classical partial differen-

tial equations based filtering mathematical models as

for example anisotropic models or higher order ones,

always within the framework of nonlinear partial dif-

ferential equations.
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1 Introduction

Nonlinear Partial Differential Equatins (PDEs) based

models for image processing were originally proposed

by Perona–Malik in [36,37]. In those papers they con-

sidered convenient diffusion coefficients (so–called also

stopping functions) allowing to handle the diffusion over

the whole image by distinguishing parts of the image

with different structure (flat, edges, corners,...). How-

ever the forward–backward parabolic character provided

by these stopping functions may give rise to some the-

oretical drawbacks, in fact the ill– posedness of the as-

sociated initial and boundary value problem (IBVP),

that is why more sophisticated PDEs based models have

been later studied. In particular let us mention the pi-

oneer paper of Catté et al. [8] where a regularization of

the Perona–Malik model is stated, joint with the cor-

responding well–posedness of the associated IBVP. An

extensive review of relevant approaches to mathemati-

cal models for image processing can be found in Weick-

ert [43] and also in Aubert [4].

In the present paper we focus on a novel nonlin-

ear PDEs based approach to image processing: Non-

linear parabolic 2 × 2 cross–diffusion systems. These

models have been studied in connection to several prac-

tical applications, see e.g. Galiano et al. [15,16], or Ni

[33], and recently they have been successfully applied

for image restoration in Araújo et al. [2] where the au-

thors state suitable assumptions on the diffusion ma-

trix of the system to guarantee the well–posedness of
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the cross–diffusion IBVP associated, as well as to en-

sure the compliance of a classical scale–space axiomatic,

and the existence of Lyapunov functionals.

The main aim of this paper is to show that 2 ×
2 cross–diffusion type systems, under the assumptions

stated in [2], can play a crucial role in practical applica-

tions closely related to image processing, beyond some

interesting theoretical properties already studied [29]

and some others to be afforded in future papers. To this

end we will focus on a particular image processing prob-

lem whose practical consequences are attracting the in-

terest of many researchers in different fields (Engineers,

Physicist, or Mathematicians): Achieving accurate es-

timations of earth areas damaged by natural phenom-

ena (e.g. wildfires/forest fires [7,40]), or human–caused

(e.g. surface coal mining [14,17,25,44]). This is a criti-

cal matter in order to evaluate economic losses, and to

state convenient land recovering policies. In particular,

it is very well known that forest fires are at present a

very frequent phenomena all over the world and it may

advocate to the desertification of big areas on the earth.

Related to surface coal mining, several countries suf-

fered such a kind of exploitation in an intensive manner

for decades, and when the activity ended up this left a

highly damaged landscape with multiple environmental

consequences, among other, soil erosion and acidmine

drainage. It is therefore clear that accurate estimations

of damaged areas became a challenge for a sustainable

development, to rehabilitate the affected landscapes,

and to allow designing suitable environmental policies.

This methodology could be used as well to others en-

vironmental degradations as e.g. crude oil leaks at sea,

or even to medical imagery (TACs, MRIs, Scans,...).

Let us also highlight that other approaches have

been proposed as well for similar purposes in the frame-

work of remote sensing, just mention some, for example,

the bilateral filters introduced by Aurich and Weule [5],

and recently applied in the context of remote sensing

by Kaplan et al. [23]. In spite of the simplicity of their

formulation and implementation, some weakness have

been reported, in fact this algorithm is highly runtime

consuming since at each single position/pixel, the com-

putation involves a weighted sum over a large neigh-

boring pixels [34]. Moreover, filtering provided by this

method is typically affected by the stair case phenom-

ena as reported in [6].

In our study the proposed methodology uses as in-

puts some post–disturbance images of affected areas (by

fires and surface coal mining) acquired by the Opera-

tional Land Imager (OLI) sensor on board of Landsat

8 satellite, and the Moderate Resolution Imaging Spec-

troradiometer (MODIS) sensor on board of Terra and

Aqua satellites.

In the methodology we propose here every single im-

age/input is considered as the initial data of the PDEs

2×2 based cross–diffusion system mentioned above, and

they are evolved until a final time as a prior step to the

classification of each pixel as affected/non affected. The

resulting images of such a process turn out to be images

whose inter–class variance increases, and the intra–class

one decreases. In this manner it is expected to outper-

form the classification of inputs achieved by straightfor-

ward technics, i.e. without any prior restoration. This

idea has been introduced in [39] where a nonlocal and

linear PDEs based model of fractional type was consid-

ered, and later generalized to nonlocal linear models of

Volterra type in [11]. However these models have several

limitations: On the one hand the hight computational

cost due to the memory effect, in fact the experiments

carried out with these models in [11,39] have shown

that runtime keeps far from real time performances;

On the other hand the linearity of the models does not

allows (in general) to state filtering/restoration criteria

as sophisticated as with nonlinear models. The nonlin-

ear and local model we propose here comes to address

these issues.

Related to the classification, since the most impor-

tant contribution of this paper is the use of the math-

ematical model mentioned above prior the classifica-

tion process, we simply make use to classify every sin-

gle pixel of the well known unsupervised algorithm k–

means [27]. This algorithm defines a pre-determined

number of clusters or classes within the satellite im-

age that acts as input, assuming that: 1.-Class centre

is defined by the arithmetic mean of all the points be-

longing to the class, and 2.-Each pixel is closer to its

own class centre than to other class centres. Further and

more recent reading on this algorithm can be found e.g.

in [45] and references therein. Next, in order to group

its different potential output classes into just our two

classes of interest (affected and non affected) we follow

a reclassification strategy which is mentioned in Section

3.

Finally an appropriate data assessment will allow us

to identify the most accurate results as well as the opti-

mal value of the parameters involved in the procedure.

We used confusion matrixes where reference truth data

were the rasterized perimeters of affected area. Note

here that, since a large amount of experimental data

are shown in the present paper, and in order to not

extend unnecessarily the paper, no tables with compar-

ison results are included, so we refer the reader to the

papers cited above. With the same argument, and since

the advantages are so obvious, nor comparative tables

related to the efficiency in terms of the runtime, if com-

pared to the methods considered in [11], are included.
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The paper is organized as follows. In Section 2 the

mathematical model is precisely described, both from

the continuous and the numerical point of view. Sec-

tion 3 is devoted to describe the original and synthetic

bands to be classified, Section 4 describes the statisti-

cal methods for the accuracy assessment, and Section 5

shows several numerical experiments, and analyses the

results in terms of statistical indexes described in the

previous section. Finally in Section 6 we present some

final conclusions and future papers.

2 Mathematical Model.

We devote this section to describe in detail the mathe-

matical model we commented in Section 1 which is used

at the filtering stage, and is prior to the pixels classifi-

cation of the input images as affected/non affected. In

particular in Sections 2.1 and 2.2 we describe the con-

tinuous IBVP and its fully discretization respectively.

2.1 Continuous Model

The evolutionary nonlinear IBVP we propose for the

image restoration reads as the 2× 2 coupled system of

nonlinear partial differential equations,

∂u

∂t
(x, t) = div (D11(u(x, t))∇u(x, t)

+D12(u(x, t))∇v(x, t)) ,
∂v

∂t
(x, t) = div (D21(u(x, t))∇u(x, t)

+D22(u(x, t))∇v(x, t)) ,

(1)

for (x, t) ∈ Ω × [0, T ], where,

u : Ω × [0, T ] −→ R2

(x, t) = (x, y, t) 7→ u(x, t) = (u(x, y, t), v(x, y, t))T ,

and Ω ⊂ R2. Typically Ω stands for a square domain, in

particular, for the sake of the simplicity of the notation,

from now on we will assume that Ω = [0, L] × [0, L],

L > 0. Moreover, Dij : R2 → R, i, j = 1, 2, stand for

the diffusion coefficients, and the operators div, and ∇
are the divergence and gradient operators respectively.

In addition we set the initial conditions u0 = (u0, v0)

where,

u0(x) = (u(x, 0), v(x, 0))T = (u0(x), v0(x))T , (2)

for x ∈ Ω, and the homogeneous Neumann boundary

conditions as follows,

〈D11(u(x, t))∇u(x, t)+D12(u(x, t))∇v(x, t),n〉=0,

〈D21(u(x, t))∇u(x, t)+D22(u(x, t))∇v(x, t),n〉=0,
(3)

for (x, t) ∈ ∂Ω× [0, T ], where ∂Ω stands for the bound-

ary of Ω, 〈·, ·〉 denotes the Euclidean inner product, and

n the outward normal vector on ∂Ω. Recall that given

two vectors a = (a1, . . . , an) and b = (b1, . . . , bn), the

scalar product is defined by 〈a,b〉 =

n∑
j=1

ajbj .

The application of (1)–(3) to image processing re-

quires some explanations before being implemented. In

particular related to the initial data we must point out

that in classical PDEs based approaches to image pro-

cessing, the original image (probably perturbed/ dam-

aged/ noisy/ ...) usually plays the role of the initial

data of the evolutionary model, however in (1)–(3) the

initial data has two components u0 and v0. Different

distributions u0 and v0 are in fact admissible, however

a depth discussion on the results achieved depending on

such a choice is out of the scope of this work, therefore

we state a naive choice of the initial data u0 consist-

ing on u0 simply standing for the original image, and

v0 ≡ 0. This choice is not by chance, in fact this choice

of u0 was proposed by Gilboa et al. in [18] in the frame-

work of nonlinear complex diffusion for image process-

ing. This fact has been discussed in more depth in [2].

Moreover, we briefly comment on the well–posedness of

(1)–(3), in particular denote the diffusion matrix of (1),

D(u) : Ω × [0, T ]→M2×2(R),

D(u)(x, t) := D(u(x, t)) =

(
D11(u(x, t)) D12(u(x, t))

D21(u(x, t)) D22(u(x, t))

)
,

where Ω stands for the closure of Ω. Therefore, if D is

uniformly positive definite , and their entries Di,j , j =

1, 2, are the Lipschitz continuous and global bounded,

then the problem (1)–(3) turns out to be well–posed

(existence and uniqueness of a weak solution), includ-

ing the continuous dependence of the initial data, and

the existence of an extremum principle. Consequently

(1)–(3) admits a continuous evolution operator Tt, so–

called space–scale operator, such that if u stands for its

solution, then we have the (space–scale) representation

Tt : u0(·)→ Tt(u0(·)) = u(·, t).

Other relevant properties of the solution of (1)–(3),

in particular most of classical space–scale properties

(Grey–level shift invariance; Reverse contrast invari-

ance;...) might be under certain additional requirements

for D, are precisely studied in [2].

Related to the matrix diffusion it has been reported

in [2] that slightly different results can be achieved de-

pending on the choice of D, always within the frame-

work of assumptions stated in [2]. In fact, according the

criteria in [1] and [18] a convenient matrix D has the
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following form

D(u) = D(u, v) = g(|vσ|)d, (4)

where

g(w) :=
1

1 + |w|2
ν

,

with ν standing for a threshold parameter, vσ repre-

sents the second component of a Gaussian regulariza-

tion of u, and

d :=

(
d11 d12
d21 d22

)
, dij ∈ R,

is a positive definite matrix.

Note that the function g depends solely on the (reg-

ularized) second component of u (see (4)), following the

ideas of Gilboa et al. [18], and in particular the property

so–called small theta approximation for complex diffu-

sion models. In fact, the numerical experiments of Sec-

tion 5 have been carried out with the threshold ν = 10,

and the Gaussian deviation σ = 10−2. That choice is

suggested by the experiments in [2] where this values

(among the other parameters involved) led to the good

performance shown there.

A convenient choice of the diffusion matrix D ac-

cording the previous comment and assumptions in [2],

leads to a two–components solution u of (1)–(3) where

the first component represents the evolved initial data

(original image) u0 along the time interval 0 ≤ t ≤ T ,

which means a restoration of the original image, and the

second component of u stands for the evolution of some

feature of the original image. Typically the second com-

ponent plays the role of an edge detector, helping the

diffusion process to preserve shapes, and in particular

edges and corners. This property arises from the com-

plex diffusion model considered in [18] where the imag-

inary part of their solution, if the imaginary part of the

complex diffusion coefficient is small (in fact, though

as a limit), behaves like a scaled smoothed Gaussian

derivative of the original image. Here the function v, i.e.

the second component of u, plays the role of the imagi-

nary part in [18] thought the cross–diffusion models as

a generalization of the complex diffusion ones.

Finally let us highlight that several choices of the

matrix d (i.e. the matrix D according to (4)) satisfying

the requirements mentioned above have been experi-

mented in [2], and those results led us to conclude that

a convenient choice of d for our experiments is (NCDF1

according the notation in [2])

d =

(
1.000 0.025

1.000 1.000

)
.

2.2 Fully Discrete Model

The implementation of (1)–(3) is carried out by suit-

able time and space discretizations. Notice that since

the order of convergence is not a crucial matter here

we simply combines a first order in time discretization

based on the explicit Euler method, and a second order

in space difference scheme.

Let Ωh be an uniform spatial mesh of size h > 0,

Ωh = {xij = (ih, jh) ∈ Ω : 0 ≤ i, j ≤ N},

where in fact h = L/N , for an integer N > 0. Be-

sides, let M be the number of time steps for the time

discretization. Hence, for τ = T/M , denote tm = mτ ,

0 ≤ m ≤M .

Denote also U0 = (U0
i,j)0≤i,j≤N , and V 0 = (V 0

i,j)0≤i,j≤N ,

the N × N matrices corresponding to the initial data

in Ωh where U0
i,j = u0(xij) and V 0

i,j = v0(xij), and

Um = (Umi,j)0≤i,j≤N and V m = (V mi,j )0≤i,j≤N , the ma-

trices whose entries correspond to the approximations

of u(xij , tm) provided by the fully discrete scheme con-

sidered in [2] (formula (3.5)), here element–wise written

as follows

Um+1
i,j − Umi,j

τ
=

=
1

2h

{
g(V mi+1,j)

(
d11

Umi+2,j − Umi,j
2h

+ d12
V mi+2,j − V mi,j

2h

)
−g(V mi−1,j)

(
d11

Umi,j − Umi−2,j
2h

+ d12
V mi,j − V mi−2,j

2h

)
+g(V mi+1,j)

(
d11

Umi,j+2 − Umi,j
2h

+ d12
V mi,j+2 − V mi,j

2h

)
− g(V mi−1,j)

(
d11

Umi,j − Umi,j−2
2h

+ d12
V mi,j − V mi,j−2

2h

)}
V m+1
i,j − V mi,j

τ
=

=
1

2h

{
g(V mi+1,j)

(
d21

Umi+2,j − Umi,j
2h

+ d22
V mi+2,j − V mi,j

2h

)
−g(V mi−1,j)

(
d21

Umi,j − Umi−2,j
2h

+ d22
V mi,j − V mi−2,j

2h

)
+g(V mi+1,j)

(
d21

Umi,j+2 − Umi,j
2h

+ d22
V mi,j+2 − V mi,j

2h

)
− g(V mi−1,j)

(
d21

Umi,j − Umi,j−2
2h

+ d22
V mi,j − V mi,j−2

2h

)}
,

(5)

for 0 ≤ m ≤M − 1, and 0 ≤ i, j ≤ N .

Finally the discrete homogeneous Newmann bound-

ary conditions are given in a classical manner, taking

also into account that spatial discretization is based on

a 2h–length finite differences scheme (see [2] for more

details).
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Note that the numerical scheme (5) is explicit and

some restriction related to the time step, i.e. some sta-

bility condition, is expected to be requiered. In fact,

under the assumptions stated in [2] for the matrix dif-

fusion D, it is feasible to extend the stability condition

(2.35) obtained in [3] for complex diffusion models, (or

(3.6) in [2]) to the numerical scheme (5). Since further

analysis on the stability issues is out of the scope of

this paper, we admit that this condition applies for (5),

and that the choice of the time step τ = 0.05 and the

size of the mesh grid h = 1 (normalized without lost of

generality) in Section 5 largely satisfy that condition.

3 Satellite imagery and k–means algorithm

Traditionally, damaged areas were mapped by field-

work, although currently satellite data are widely used

to map the extent of affected areas. In particular map-

ping burned areas we present here makes use of the

coarse spatial resolution imagery provided by the MODIS

sensor launched in 1999 and 2002 on board the Terra

and Aqua satellites, respectively. In the same manner

the study of surface coal mining degraded areas we show

here is based on the OLI sensor on board of Landsat 8

satellite, that offers moderate to high spatial resolution

at no charge since 2008.

The details of the bands and wavelength provided

by MODIS and OLI sensors and Landsat satellite are

shown in Table 1.

3.1 Forest fires

We carried out our experimentation for forest fires oc-

curred in Mediterranean countries in fact in Spain, where

statistical analyses reveal a pattern of great concen-

tration of the total burned area in a relatively small

number of large fires [7]. It has been studied [13,19,24]

that BNIR is more sensitive to the existence of living

vegetation, and the BSWIR3 is more sensitive to the ex-

istence of charred post–fire organic material, therefore

they seem to be the most convenient bands to define

accurate indexes to classify burned areas.

In particular the so–called vegetation indexes are in-

dexes though to enhance living vegetation signals and

minimize the background noise due to soil and atmo-

spheric effects, and they are typically based on the spec-

tral difference between two spectral bands, BRed and

BNIR. In this we consider some of the most common

vegetation indexes used in the literature (see Table 2).

However these indexes have general purposes beyond

the specific one of burned area mapping, and in fact

they only involve red and near–infrared (NIR) bands

for their definitions. That is why we also consider in our

analysis other vegetation indexes thought specifically

for burned area mapping. In particular we consider the

indexes in Table 3, where we note that their definitions

mainly involve BNIR and BSWIR3. Let us highlight that

we consider in our study the index NBR which is proba-

bly the most applied burn severity index, together with

its corresponding differenced index (dNBR) [31].

3.2 Surface coal mining

Once again both, original bands and vegetation indexes,

take part of a common methodology for accurate map-

ping of surface coal mining degraded areas (see e.g.

[20]). It is well known that almost all vegetation indexes

display an important decrease in surface coal mining af-

fected areas if compared to vegetated unaffected ones.

NDVI can be considered also here as a reference, how-

ever, in areas where the rate of soil surface exposed is

high (higher than 50%) the reflectance of light on the

red and NIR band can affect vegetation index values.

Specific vegetation indexes have been consider in the

literature as the ones described in Table 4

Let us mention that index SAVI stands for a mod-

ification of the NDVI defined in Table 2 that corrects

the influence of soil brightness when vegetative cover

is low, and the environment is a mixture of soil types.

On the other hand indexes MSAVI and MSAVI2 are

further modifications of index SAVI.

3.3 Classification algorithm

In order to automatize as much as possible the proce-

dure of classification, we consider in this an unsuper-

vised classifier, i.e. no initializing cluster centers have

to be provided by the user. To this end we made use

of the well known unsupervised k–means algorithm [26]

(Matlab c© software package). A refinement of this al-

gorithm is implemented here as in [11,39]. It consists

in: 1.- A first classification ranging between 3 and 10

classes; 2.- A second classification of each of them in

merely two classes, affected or not affected, both steps

computed by means of the k–means algorithm follow-

ing the criteria in [11]. Note that no more sophisticated

classifier has been considered because the main contri-

bution of this is to show how a convenient filtering prior

to the classification helps to improve the accuracy of the

results provided by the classifier himself.
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Landsat OLI MODIS

Spectral resolution
(wavelenght range in

µmeters)

BBlue 0.450 − 0.515 0.459 − 0.479
BGreen 0.525 − 0.605 0.545 − 0.565
BRed 0.630 − 0.680 0.620 − 0.670
BNIR 0.845 − 0.885 0.841 − 0.876
BSWIR1 − 1.230 − 1.250
BSWIR2 1.560 − 1.650 1.628 − 1.652
BSWIR3 2.100 − 2.300 2.105 − 2.155

Spatial resolution (meters) 30 250, BRed and BNIR

500 the rest
Temporal resolution (days) 16 1 − 2

Table 1 Landsat 8 OLI, and MODIS reflective bands. BBlue: Blue band; BGreen: Green band; BRed: Red band; BNIR:
Near–Infrared band; BSWIR: Short Wave Infrared 1, 2, and 3 bands

Normalized Difference Vegetation Index (NDVI) see [42] NDVI =
BNIR − BRed

BNIR + BRed

Global Environment Monitoring Index (GEMI) see [35] GEMI= ν (1 − 0.25ν) −
BRed − 0.125

1 − BRed

Enhance Vegetation Index (EVI) see [21] EVI= G
BNIR − BRed

BNIR + C1BRed − C2BBlue + L

Table 2 Common vegetation indexes. ν =
2(B2

NIR − B2
Red) + 1.5BNIR + 0.5BRed

BNIR − BRed + 0.5
, G = 2.5 gain factor; C1 = 6; C2 = 7.5;

and L = 1.

Normalized Burn ratio (NBR) see [28] NBR :=
BNIR − BSWIR3

BNIR + BSWIR3

Burned Area Index (BAI) see [9] BAI:=
1

(0.06 − BNIR)2 + (0.1 − BRed)2

Burned Area Index adapted to MODIS (BAIM) see [30] BAIM:=
1

(0.05 − BNIR)2 + (0.2 − BSWIR3)2

Table 3 Spectral indexes oriented to map burned areas.

4 Accuracy Assessment

The most recommended approaches to measure the ac-

curacy of classification procedures are the confusion

matrix, and κ statistic [10]. Recall, the confusion matrix

is a 2 × 2 matrix that accounts the positives (affected

pixels) or negatives (non affected pixels), correctly or

not correctly classified, in the following manner(
m11 = #True affect. m12 = #False affect.

m21 = #False non affect. m22 = #True non affect.

)
.

(6)

Moreover κ statistic defines as

κ := 1− 1− P (a)

1− P (e)
, (7)

where,

– P (a) := p11+p22, stands for the probability of agree-

ment (true affected + true non affected), with

pij =
mij

m11 +m12 +m21 +m22
, i, j = 1, 2.

– P (e) := P1 + P2 where,

P1 := (p11 + p12) (p11 + p21) ,

and

P2 := (p21 + p22) (p12 + p22) .

Note that P1 stands for the probability of true and

simultaneously affected, and similarly P2 stands for

the probability of false and simultaneously non af-

fected. Therefore P (e) represents the probability of

random agreement.

It has been reported the interest of considering dispro-

portional samplings prior the confusion matrix compu-

tation [41]. In fact, a stratified random disproportional

sampling consisting in 80% of the validating pixels lo-

cated on the affected areas, and the rest (20%) on un-

affected areas have been applied in our experiments.

The McNemar test [12] is used to predict the statis-

tical significance of the difference in accuracy between

two classifications with κ statistics estimated from the

same or related samples. This test acts on the confusion
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Soil–Adjusted Vegetation Index (SAVI) see [22] SAVI :=
1.5(BNIR − BRed)

BNIR + BRed + 0.5

Modified Soil-Adjusted Vegetation Index 2 (MSAVI2, of-
ten MSAVI) see [38]

MSAVI2:=
2BNIR + 1 −

√
(2BNIR + 1)2 − 8(BNIR − BRed)

2

Table 4 Spectral indexes oriented to map degraded areas by coal mining

matrix (6), and is based on the chi square test, i.e. χ2

test,

χ2 =
(m12 −m21)2

m12 +m21
.

With a sufficiently large number of discordant data

(m12,m21 >> 0), χ2 has a chi–squared distribution

with 1 degree of freedom, and in our case this test helps

us to determine whether the accuracy difference of es-

timates obtained for damaged areas, with and without

previous filtering, has statistical significance. Note that

the McNemar test, with continuity correction [12], gives

χ2
c = 3.84 with 95% statistical significance, and the null

hypothesis is rejected if χ2 > χ2
c .

Finally, note that we consider as reference truth for

the burned areas experiments the official burned area

perimeters, and for the surface coal mining damaged

area mapping experiment, the perimeters digitized over

ortho–photographs (50 cm).

5 Numerical Experiments

This section is devoted to present some practical experi-

ments according the methodology described in previous

sections. In fact, we classify satellite images correspond-

ing to areas affected by forest fires and areas affected

by coal mining, but previously applying to every single

input image a filtering based on the (continuous) math-

ematical model (1)–(3) and its numerical discretization

(5), according to the parameters stated in Section 2.

First of all, we show in Sections 5.1 and 5.2 ad-

ditional information, i.e. not previously provided, re-

lated to the numerical experiments carried out, and we

conclude with the Section 5.3 where we include several

comments on the results obtained.

5.1 Study Areas

To illustrate the outperformance of the proposed method-

ology we consider several damaged areas located Spain.

In fact, Table 5 describes the four burned study areas

considered in this , all of them located in the North-

ern Spain. The MOD13Q1 product provides two pri-

mary vegetation layers, NDVI and EVI. Along with the

vegetation layers it includes MODIS Reflectance bands

RRed, RNIR, RBlue, and RSWIR1. All the layers are re-

sampled to 250m.

Burned area perimeters measured on the ground

from helicopters by GPS, and provided by the Autonomous

Community of Castilla y León government (Spain), were

used as reference truth.

The surface coal mining damaged areas considered

for our experiments are described in Table 6, all of them

also located in Spain (Northern–Western).

A Landsat 8 Operational Land Imager (OLI) scene

(path 2013, row 30), acquired on June 29, 2013, and

downloaded from US Geological Survey (USGS)

(www.glovis.usgs.gov) was used. An ortho–photograph

subsequent to surface coal mining activities was used

to validate the surface coal mining affected area esti-

mates. Specifically, we used a 50cm ortho–photograph

from the Spanish National Center of Geographic Infor-

mation (CNIG;

http://www.cnig.es/). It was recorded in summer 2013

in the frame of the Spanish Aerial Ortho–photography

National Planning (PNOA).

5.2 Numerical results

The stability condition for the numerical scheme men-

tioned in Section 2.2 is here taken into account to set

the time and space mesh lengths. In fact we consider

h = 1 (without loss of generality), and τ = 0.05 (with

final time T = 5), and therefore fulfilling such a condi-

tion.

The parameters involved in the experiments appeared

in Tables 1–8 are:

– I stands for the time step of the time discretization

where the best result is reached.

– C and RC represent the classes and re–classes ac-

cording the criteria commented in Section 4.

– McN stands for the McNemar test values.

– And finally, UA, PA, and OA stand for the User Ac-

curacy, Producer Accuracy, and Omission Accuracy

respectively.

In Tables 1–8 we show the best values of κ (first

line), %κ represents the improvement of κ (in %) of

filtered input with respect to the non–filtered one (sec-

ond line), McNemar test (third line), User Accuracy,
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Study area Fire date Burned area
(km2)

Forest species

Zamora (1) 17 July 2004 23.8 Quercus ilex L., Quercus pyrenaica Willd, Citrus.
Zamora (2) 24 August 2008 2.6 Non–forested and Pinus pinaster and Quercus pyrenaica.
Burgos 31 July 2008 9.0 Non–forested.
Segovia 6 August 2008 9.9 Pinus pinaster Ait., Pinus nigra Arn.

Table 5 Study areas for burned areas mapping experiement.

Disctric Mine name Damaged area
(km2)

Degaña Cerredo 3.17
Villablino (1) Fonfŕıa 2.35
Villablino (2) Feixoĺın 1.91
Cabrillanes Nueva Julia 3.41

Table 6 Study areas for surface coal mining damaged areas mapping experiment.

Producer Accuracy, and Omission Accuracy (fourth to

sixth lines), and the values of I, C and RC where

the best results are reached (last line), for different in-

stances:

– For burned area mapping (Tables 1–4) we show the

best values for the vegetation indexes EVI, GEMI,

BAI, BAIM, and NBR, and for surface coal mining

mapping (Tables 5–8) the best values of the original

bands BRed, BNIR, and BSWIR3, and the vegetation

indexes MSAVI and NDVI. In both cases the best

value of bands and vegetation indexes are chosen in

terms of the optimal κ, and for each of them with

and without filtering (first and second five–column

blocks for each table respectively). In case of filter-

ing I indicates the time level where the best value

is reached. Obviously no filtering means that I = 0.

The parameters C and RC indicate the number of

classes and re–classes for which the best value is

reached.

– The third five–columns block show the best values

of bands and vegetation indexes in terms of the op-

timal time iteration according the criteria stated in

[32]. Recall that this criteria provides the iteration

where the image optimal restoration is reached in

terms of the correlation coefficient of U0 − Um and

the original image U0. In fact this criteria states

that the optimal iteration is computed as follows,

Iopt := min
{
m : corr(U0 − Um, Um)reachs

the min., for 1 ≤ m ≤M} , (8)

where the correlation between two images U1 and

U2 is defined as

corr(U1, U2) :=
〈U1 − Ū1, U2 − Ū2〉F
‖U1 − Ū1‖F ‖U2 − Ū2‖F

being 〈·, ·〉F the Frobenius inner product, ‖ · ‖F the

associated norm, and Ūj the constant image with

all intensities equal to the intensities mean value,

j = 1, 2.

The Figures shown in the present have been gener-

ated by Matlab c©, R2014b release.

In Figures 1–6 we visually illustrate some of the nu-

merical results of Tables 1–8. Every single eight–block

figures represents from left to right, and from top to

bottom: The original input; the filtered one according

the best κ; the filtered input according the optimal

time; the curve of correlation according (8) with the

optimal time (circle) and the optimal κ (solid dot); the

ground truth; classification for the best κ; classification

for the optimal time; and classification without filter-

ing.

Figures 1–2 intend to show that under a threshold

size of the affected area classification becomes less and

less accurate, even worse after filtering. On the contrary,
under some size Figures 3–4 show that the filtering

procedure (in terms of the optimal κ and the optimal

time) outperforms the results of the classification him-

self, in fact it can be observed that isolated patches are

completely removed. Finally Figures 5–6 are intended

to show, in addition to the classification improvement,

that the optimal time is not always reached at last time

step, on the contrary depending of the features of the

image it can be reached at early steps. Observe anyhow

that best κ is always reached before the optimal time.
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5.3 Comments on the numerical results

The large amount of experiments carried out for the

present work over a wide range of values for each pa-

rameter, allows us to draw several and interesting con-

clusions.

First of all it can observed that all of κ values of

filtered inputs are improved if compared to the non

filtered ones (with the same C and RC), and even if

compared to the best of non filtered ones (i.e. even for

different values of R and RC), and if compared to the

results reached for the optimal iterations.

Moreover, the results in Tables 1-4 for filtered inputs

outperform as well the results in [11] where a nonlocal

and linear filter was considered instead of the local and

nonlinear considered in the present . If we add the dra-

matic runtime reduction achieved by the present model,

the convenience of these procedure keeps even clearer.

In most cases the best κ is reached before the op-

timal time, so we can conclude that optimal time, as

computed in (8), stands for a threshold for the best κ,

or in other words in view of practical results the best κ

is expected to be reached long before the optimal time.

Note that in most favorable cases (see Figures 5-6) the

optimal time is reached for a short number of steps.

Note also that the poor behavior of the optimal time,

according Definition 8, is driven for the low inter–class

variance that typically characterizes this kind of images,

and makes the norm ‖Um− Ūm‖F to take small values.

Consequently the correlation becomes larger, and the

optimal time as well.

Moreover, it can be visually observed that data pro-

vided by the best κ outperform the ones achieved for the

optimal time, and of course the ones achieved without

any previous filtering. In fact, note that optimal time

provide much worse results under some critical size of

the affected area (Figures 1–2).

Finally, related to the classes and re–classes, no clear

patterns have been found for the best results achieve-

ment. However it can be observed that in most cases the

best results are achieved for a few time steps, number

of classes close to 10, and a few number of classes.

6 Conclusions and future works

Our study has shown that the accuracy of degraded

(burned/surface coal affected) are maps is notably higher

when the proposed PDE’s based filter is applied if com-

pared to the accuracy of the scheme without filtering. In

addition, since the best results were obtained in a short

number of steps, it makes their implementation feasi-

ble in practical instances. Moreover since most times

the best results were obtained before the optimal time

for the filtering process is reached, one can consider the

optimal time as a heuristic benchmark for the number

of iterations.

In the near future we expect to achieve real opti-

mizations of results in terms of the parameters involved

in the procedure, in particular for affected areas of small

size whose patterns keep not clear at all in view our ex-

perimental results.
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Fig. 1 2nd Forest fire, Zamora (2): EVI (rows 1 and 2), GEMI (rows 3 and 4), BAI (rows 5 and 6)
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Fig. 2 2nd Forest fire, Zamora (2): BAIM (rows 1 and 2), NBR (rows 3 and 4)



Cross–diffusion based filtering as pre–processing step for remote sensing procedures 17

Original Input
Filtered Im. for the Best Kappa.

Step=7
Filtered Im. for the Opt. Time.

Step=100

0 20 40 60 80 100
0.2

0.21

0.22

0.23

0.24

0.25

0.26

0.27

0.28

0.29

0.3

Images Correlation Curve
Opt. Time(o), and Best Kappa(*)

Ground truth Classification for the Best Kappa Classification for the Opt. Time
The Best Classifications

without filtering

Original Input
Filtered Im. for the Best Kappa.

Step=16
Filtered Im. for the Opt. Time.

Step=100

0 20 40 60 80 100
0.2

0.21

0.22

0.23

0.24

0.25

0.26

0.27

0.28

0.29

0.3

Images Correlation Curve
Opt. Time(o), and Best Kappa(*)

Ground truth Classification for the Best Kappa Classification for the Opt. Time
The Best Classifications

without filtering

Original Input
Filtered Im. for the Best Kappa.

Step=11
Filtered Im. for the Opt. Time.

Step=100

0 20 40 60 80 100
0.2

0.21

0.22

0.23

0.24

0.25

0.26

0.27

0.28

0.29

0.3

Images Correlation Curve
Opt. Time(o), and Best Kappa(*)

Ground truth Classification for the Best Kappa Classification for the Opt. Time
The Best Classifications

without filtering

Fig. 3 3rd Forest fire, Burgos: EVI (rows 1 and 2), GEMI (rows 3 and 4), BAI (rows 5 and 6)
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Fig. 4 3rd Wildfire, Burgos: BAIM (rows 1 and 2), NBR (rows 3 and 4)
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Fig. 5 1st Coal, Cerredo:BRed (rows 1 and 2), BNIR (rows 3 and 4), BSWIR3 (rows 5 and 6)
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Fig. 6 1st Coal, Cerredo: MSAVI (rows 1 and 2), NDVI (rows 3 and 4)


