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Abstract
A methodology for designing congestion controllers, based on active queue management (AQM), is presented here. The
congestion control law is derived using sampled-data H∞ systems theory. More precisely, a sampled-data state feedback that
guarantees the stability of the closed-loop system and satisfies a H∞ disturbance attenuation level is derived here, based on
sufficient conditions expressed in terms of linear matrix inequalities. The effectiveness of the developed technique is validated
on two examples.

Keywords AQM · Network congestion control · Sampled-data controller · Saturating input

1 Introduction

Network congestion in communication networks is being
paid significant attention because of theirwide range of appli-
cations, from Web servers to industrial control systems. In
order to manage network congestion, active queue manage-
ment (AQM) (Braden et al. 1998) techniques are frequently
used, which aim to reduce packet drops and improve the
overall network utilization. One of the most well-known
AQM policies are random early detection (RED) (Floyd and
Jacobson 1993), adaptive RED (ARED) (La et al. 2003)
and nonlinear RED (NLRED) (Rastogi and Zaheer 2016).
Moreover, the fundamentals of control theory have been
used to analyze new AQM schemes, such as proportional
integral (PI) (Hollot et al. 2002), proportional integral deriva-
tive (PID) (Zhang and Papachristodoulou 2014), adaptive
PI (Zhang et al. 2003) and PI enhanced (PIE) (Pan et al.
2013). Also, in Bender (2013) it has proposed the use of
a dynamic anti-windup gain matrix to improve the perfor-
mance of a designed controller used to AQM in congested
TCP/IP routers, and it was developed in El Fezazi et al.
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(2016). A sliding mode variable structure control (SMVS)
scheme for TCP congestion control was developed in Ren
et al. (2005). The new results on modeling and stabilization
analysis of TCP/AQM system with single and multiple bot-
tleneck topologieswere proposed inBelamfedel et al. (2018).

This work concentrates on deriving an AQM based on
sampled-data control theory. There are several approaches
to model sampled-data control systems: One of them is
the discrete-time approach (Zhang et al. 2001), based on
transforming the continuous-time system into a discrete-time
system. A second one is the impulsive systems modeling
approach (Hu et al. 2003) that facilitates dealing with sys-
tems that have uncertain sampling intervals. The third one is
the input delay approach proposed in Fridman et al. (2004),
where the system is represented as a continuous-time system
with a delayed control input.

A common problem that has been overlooked in most pre-
vious AQM proposals is the fact that the input saturates in
all practical systems, creating unexpected oscillations, insta-
bilities and performance degradations (El Fezazi et al. 2015;
El Fezazi et al. 2017a; El Haoussi et al. 2007). In the AQM
context, we can just cite the following papers that deal with
input saturation: (El Fezazi et al. 2016; Lamrabet et al. 2017).

Another shortcoming of most previous AQM proposals is
that in order to derive control laws, it is usually assumed that
the control packets (sent from the controller to the actuator to
implement the control algorithm) are transmitted perfectly,
without any loss in the control data. However, control pack-
ets in practical systems would be lost due to communication
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interferences, congestions, power saving issues, etc. Further-
more, external disturbance appears in all practical systems
and if they are ignored during the controller design, the stabil-
ity of the practical closed-loop system cannot be guaranteed.
It is known that the H∞ control has an excellent ability to
balance the performance of a system in the presence of exter-
nal disturbance (Ardestani 2016; Cui et al. 2016; El Fezazi
et al. 2017).

In summary, this paper concentrates on the problem of
AQM in TCP/IP routers under sampled-data control in the
presence of input saturation. The main objective of this arti-
cle is to design a congestion controller for AQM in TCP/IP
routers using H∞ control ideas. The controller is designed
based on an input delay approach: Sampled-data H∞ con-
trollers are characterized such that the closed-loop system
is asymptotically stable, and a prescribed disturbance atten-
uation level γ is guaranteed. By using Jensen’s integral
inequality together with Schur complement and constructing
a new Lyapunov function, a new set of sufficient conditions
are derived to guarantee the asymptotic stability of the closed-
loop system; these conditions are expressed in terms of LMIs.
The proposal will be illustrated by two numerical examples
that make it possible to compare with previous works.

The remainder of this paper is structured as follows. The
next section introduces the problem formulation and vari-
ous preliminary concepts. Section 3 presents the main results
in the form of theorems. The effectiveness of the proposed
method is shown via two numerical examples in Sect. 4.
Finally, conclusions are drawn in Sect. 5.

Notation Throughout the paper, the superscript T
′
stands

for matrix transposition, which denotes the n-dimensional
Euclidean space with vector norm ‖.‖ and R(n×m) the set of
all n×m real matrices. For a matrix P, λ̄(P) denotes its max-
imum eigenvalue. sat(u(t), u0) � sign(u(t))min{|K(t)|,u0 }
denotes the saturation function, with u0 > 0 denoting the
control amplitude bounds of u. For a vector v(t) for t ∈ [−
t0, 0], ‖v‖ � supt∈[−t0,0] ‖v(t)‖.

2 Problem Formulation and Preliminaries

2.1 Network Dynamic Model Rn

In order to derive congestion controllers for networks based
on control theory, the following model is frequently used
(Misra et al. 2000). This model is described by the following
nonlinear delay differential equations:

Ẇ (t) � 1

RT T (t)
− W (t)W (t − RT T (t))

2RT T (t − RT T (t))
p(t − RT T (t))

q̇(t) � −C(t) +
N (t)

RT T (t)
W (t)

RT T (t) � q(t)

C(t)
+ Tp (1)

whereW (t) is the average TCPwindow size (packets), q(t) is
the average queue length (packets), RTT (t) is the round trip
time (secs), C(t) is the available link capacity (packets/secs),
Tp is the propagation delay (secs), N(t) is the number of
TCP sessions and p(t) is the probability of packet mark. It
is assumed thatW (t) ∈ [0,Wm] and q(t) ∈ [0,qm] where Wm

and qm denote maximum window size and buffer capacity,
respectively. The marking probability p belongs to the inter-
val [0, 1]. For a given triplet of network parameters (N, C0,
Tp), and any triplet of initial conditions

L � (W0, q0, p0), let

Ξ �
{
L : W0 � R0C0

N
, q0 � C0

(
R0 − Tp

)
, p0 � 2

W 2
0

}

be the operating point.
It is assumed that the number of TCP sessions is constant

N(t) � N, then defining δ � � � − �0 with � � W, q, p, C.
We can obtain the linearized version of (1) as follows:

δẆ (t) � −N

RT T 2C0
(δW (t) + δW (t − RT T (t)))

− 1

RT T 2C0
(δq(t) − δq(t − RT T (t)))

− RT TC2
0

RT T 2C0
δp(t − RT T (t))

+
RT T − Tp

RT T 2C0
(δC(t) − δC(t − RT T (t)))

δq̇(t) � N

RT T
δW (t) − 1

RT T
δq(t) − Tp

RT T
δC(t)

RT T (t) � δq(t)

C0
+ R0 (2)

Rewriting (2) in state space form yields

ẋ(t) � Ax(t) + Adx(t − τ(t)) + Bu(t − τ(t)) + Bww(t)

y(t) � Cyx(t) (3)

in which

x(t) �
[

δW (t)
δq(t)

]
, w(t) �

[
δC(t)

δC(t − RT T (t))

]

A �
[ −N

RTT 2C0

−1
RT T 2C0

N
RTT

−1
RT T

]
, Ad �

[ −N
RT T 2C0

1
RT T 2C0

0 0

]
,

B �
[ −RT TC2

0
N2

0

]
, Bw �

[
RT T−Tp
RT T 2C0

− RT T−Tp
RT T 2C0−Tp

RT T 0

]
,

u(t) � δp(t), y(t) � δq(t)

C0
,Cy �

[
0 1

C0

]
, τ (t) � RT T (t)
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2.2 Design of the H∞ Congestion Controller

The congestion controller is implemented as a sampled-data
system as follows:

u(t) � Fx(tk), kT ≤ t < (k + 1)T , (k � 0, 1, 2, . . .) (4)

where F is the state gain to be designed, T is the sampling
period and tk � kT is the sampling instants.

The relation between time delay and sampling period can
be expressed as follows:

τ(t) � mT + τ̄ , 0 ≤ τ̄ < T , τ (t) ≤ τm � (m + 1)T (5)

If m� 0, the time delay would be less than one sampling
period, whereas in case of node failures or network faults,
the time delay would be greater than one sampling period,
but can be assumed to be a multiple of the sampling period:
m≥1, where m represents the number of successive packet
dropout.

The control input u(t − τ(t)) has different formulations
according to the fact that time delay is less than the sam-
pling period (τ (t) ≤ T ) or greater than the sampling period
(τ (t) ≥ T ). The network models correspond to delays much
greater than T, and in this case τ is assumed to verify (5), so

(k − m − 1)T ≤ t−τ(t) < (k − m + 1)T (6)

which means that min(t−τ(t)) � t(k−m−1). Then, we have
u(t − τ(t)) � Fx(tk−m−1). Further, we represent the sam-
pling instance by a special time delay

dk−m−1(t) � t − tk−m−1 (7)

which satisfies

0 ≤ d1 ≤ dk−m−1(t) ≤ d2, ḋk−m−1(t) � 1 (8)

where d1 � (m+ 1)T and d2 � (m+ 2)T.
Then, by using (4) and (7), the feedback controller can be

rewritten as

u(t − τ(t)) � Fx(t − dk−m−1(t)) (9)

By using controller (9), the system (3) can be written in
the following

ẋ(t) � Ax(t) + Adx(t − τ(t)) + BFx(t − dk−m−1(t)) + Bww(t)

y(t) � Cyx(t) (10)

The initial condition of system (3) is assumed to be given
by

x(θ) � (θ), θ ∈ [−d2, 0]

d2 � max(τ , d2) � max((m + 1)T , (m + 2)T ) � d2

where (t) is a smooth vector-valued initial function.

Remark 1 It should be noted that the delay lower bound d1
and the delay upper bound d2 depend on the sampling period
T.

Since the control signal u(t) is the variation in the packet
mark probability around the operating point, it is reasonable
to assume that the control law is subject to the following
amplitude constraints

|u(t)| ≤ u0, 0 ≤ u0, (11)

and then, the saturated state feedback law has the following
form

u(t) � sat(Fx(t), u0), (12)

If we define the following function

ψ(Fx(t)) � Fx(t) − sat(Fx(t), u0),

and then, the closed-loop system from (3), (9) and (12) can
be written as,

ẋ (t) � Ax (t) + Adx (t − τ (t)) + BFx (t − dk−m−1 (t))

− Bψ (Fx (t − dk−m−1 (t))) + Bww (t)

y (t) � Cyx (t)

(13)

The disturbance vector w(t) is assumed to be limited in
energy, which is a reasonable assumption for practical prob-
lems,

w(t)22 � ∞∫
0

w(t)Tw(t)dt < ∞ (14)

Based on the previous definitions and assumptions, we can
state the objective of this paper in mathematical terms as
finding a controller F such that the following performance
index is satisfied:

y(t)2
w(t)2

�
√

∫∞
0 y(t)T y(t)dt√

∫∞
0 w(t)Tw(t)dt

<
√

γ (15)

where γ is a prescribed positive scalar.To state our results,
we consider a matrix G ∈ R1×2 and define the following
polyhedral set

S �
{
x(t) ∈ R2; |(F − G)x(t)| ≤ u0

}
The following useful lemmas will be used later in the

paper.
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Lemma 1 (Wang et al. 2006) If x(t) ∈ S, then the following
relation

ψT (Fx(t))T [ψ(Fx(t)) − Gx(t)] ≤ 0

is verified for any diagonal positive matrix T ∈ R1×1.

Lemma 2 (Seuret and Gouaisbaut 2013). For any scalar
b>a, positive matrix R and function x, the following inequal-
ity holds

b∫
a
ẋT (s) Rẋ (s) ds ≥ 1

b − a
(x (b) − x(a))T R (x (b) − x (a))

+
3

b − a
θT Rθ

where θ � x(b) + x(a) − 2
b−a

b∫
a
x(s)ds

Finally, for a positive scalar β, the ellipsoid De is defined
as follows:

De �
{
x(t) ∈ �2; xT (t)Px(t) ≤ β−1

}

3 Main Results

3.1 Sampled-Data H∞ Performance

In this subsection, we present the stability criterion for the
system (13) with an H∞ disturbance attenuation level γ ,
which is derived by using the Lyapunov–Krasovskii func-
tional method.

Theorem 1 For given scalars τm, d2, γ > 0 and matrix
F, the system (13) is asymptotically stable and satisfies the
H∞ performance (15), if there exist symmetric positive def-
inite matrices P, Q, Rn(n � 1, 2) and appropriately sized
matrices T0, G such that

Γ �

⎡
⎢⎢⎣

Π
√

τmΠT
1 R1

√
d2 ΠT

1 R2 Π2

∗ −R1 0 0
∗
∗

∗
∗

−R2 0
∗ −γ I

⎤
⎥⎥⎦ < 0 (16)

where

Π1 � [
AAd BF − BBw02×5

]
Π2 � [

Cy01×12
]T

,

and the elements of Π are defined by

Π11 � PA + AT P + Q − 4

τm
R1 − 4

d2
R2

Π12 � PAd − 4

τm
R1,Π13 � PBF − 2

d2
R2,

Π14 � −PB,Π15 � PBw, ,Π16 � 6

τ 2m
R1, Π17 � 6

d22
R2

Π22 � −(1 − d)Q − 4

τm
R1,Π26 � 6

τ 2m
R1

Π33 � − 4

d2
R2,Π34 � GT T T

0 ,Π37 � 6

d22
R2

Π44 � −2T0,Π55 � −I ,Π66 � − 12

τ 3m
R1, Π77 � −12

d32
R2

Proof Let us consider the following Lyapunov function

V (t) � xT (t)Px(t) +
t∫

t−τ(t)
xT (s)Qx(s)ds

+
0∫

−τm

t∫
t+θ

ẋ T (s)R1 ẋ(s)dsdθ

+
0∫

−d2

t∫
t+θ

ẋ T (s)R2 ẋ(s)dsdθ (17)

For a prescribed scalar γ , we define the following perfor-
mance measure function:

J (t) � V̇ (t) − wT (t)w(t) +
1

γ
yT (t)y(t) (18)

Computing the derivative of the functional (17) along the
trajectory of the system (13) and using Lemma 1, we have
that

J (t)≤ 2ẋ T (t) Px (t)+xT (t) Qx (t)−(1 − d) xT (t − τ (t))

× Qx (t − τ (t)) + τm ẋ
T (t) R1 ẋ (t)

− t∫
t−τm

ẋT (s) R1 ẋ (s) ds + d2 ẋ
T (t) R2 ẋ (t)

− t∫
t−d2

ẋ T (s) R2 ẋ (s) ds − 2ψT (Fx(t − dk−m−1 (t)))

× T0
[
ψ (Fx (t − dk−m−1 (t))) − Gx (t − dk−m−1 (t))

]
− wT (t)w (t) +

1

γ
yT (t) y (t)

(19)

From (5) and (8), it is clear that the following are true

− t∫
t−τm

ẋT (s)R1 ẋ(s)ds ≤ − t∫
t−τ(t)

ẋ T (s)R1 ẋ(s)ds (20)

− t∫
t−d2

ẋ T (s)R2 ẋ(s)ds ≤ − t∫
t−dk−m−1(t)

ẋ T (s)R2 ẋ(s)ds (21)

Furthermore, by applying Lemma 2 to (20) and (21), we
get
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− t∫
t−τ(t)

ẋ T (s)R1 ẋ(s)ds

≤ − 1

τm
(x(t) − x(t − τ(t)))T R1

× (x(t) − x(t − τ(t)) − 3

τm

T

1
R11 (22)

− t∫
t−dk−m−1(t)

ẋ T (s)R2 ẋ(s)ds

≤ − 1

d2
(x(t) − x(t − dk−m−1(t)))

T R2

× (x(t) − x(t − dk−m−1(t))) − 3

d2

T

2
R22 (23)

where

1 � x(t) + x(t − τ(t)) − 2

τm

t∫
t−τ(t)

x(s)ds

2 � x(t) + x(t − dk−m−1(t)) − 2

d2

t∫
t−dk−m−1(t)

x(s)ds

Now combining Eqs. (19)–(23), for every x ∈ S we have

J (t) ≤ξ T (t)
[
Π + τmΠT

1 R1Π1 + d2Π
T
1 R2Π1

]
ξ(t)

+
1

γ

(
Cyx(t))

T (Cyx(t)
)

(24)

where

ξ T (t) �
[
xT (t)xT (t − τ(t))xT (t − dk−m−1(t))

ψT (Fx(t − dk−m−1(t)))

wT (t)
t∫

t−τ
xT (s)ds

t∫
t−dk−m−1(t)

xT (s)ds

]

Π and Π1 are defined previously.
The inequality (24) can then be written as follows:

J (t) ≤ ξT (t)

[
Π + τmΠT

1 R1Π1 + d2Π
T
1 R2Π1 +

1

γ
ΠT
2 Π2

]
ξ(t)

(25)

Since (16) holds, by Schur complement we obtain J (t) <

0.
When w(t) � 0, it can seen that V̇ (t) < 0 which implies

the asymptotic stability of (13). Integrating J (t) from 0 to
∞ yields

∞∫
0
J (t) �V (∞) − V (0) − ∞∫

0
wT (t)w(t)

+
1

γ

∞∫
0
yT (t)y(t)dt < 0 (26)

which implies that

V (∞) < V (0) +
∞∫
0
(wT (t)w(t) − 1

γ
yT (t)y(t))dt

Under the zero initial condition V (0) � 0 and V (∞) � 0,
we have (15) which implies that the system (13) fulfills its
restrictedL2-gain fromw(t) to y(t)which is smaller than γ .
This completes the proof.

Remark 2 Some elements of the matrix inequality (16) con-
tain the product of P and F or G and T0. Thus, it follows
that (16) is a bilinear matrix inequality that is difficult to
solve with LMI toolbox. To solve (16), we can fix F and G,
but this is not a practical solution, as they cannot be easily
fixed a priori. Thus, our goal is to avoid the bilinearity in
order to determine the matrices F and G; by solving an LMI
condition, this is carried out in the next subsection.

3.2 Sampled-Data H∞ Controller Design

This subsection is devoted to characterizing the controller
gains F such that the system in (13) is asymptotically stable
and the H∞ performance index γ is guaranteed.

Theorem 2 For given scalars τm, d2, γ > 0, the system
(13) is asymptotically stable and satisfies the H∞ norm per-
formance, if there exist symmetric positive definite matrices
X , Q̃, and appropriately sized matrices S,W ,Y such that

Γ̃ �

⎡
⎢⎢⎣

Π
√

τmΠ̃T
1

√
d2Π̃T

1 Π̃2

∗ −X 0 0
∗ ∗ −X 0
∗ ∗ ∗ −γ I

⎤
⎥⎥⎦ < 0 (27)

[
X Y T − WT

∗ βu20

]
≥ 0 (28)

where

Π̃1 � [
AX Ad X BY −BS Bw 02×5

]
,

Π̃T
2 � [

CyX 01×12
]

and the elements of Π̃ are defined by

Π̃11 � AX + X AT + Q̃ − 4

τm
X − 4

d2
X

Π̃12 � Ad X − 4

τm
X , Π̃13 � BY − 2

d2
X , Π̃14 � −BS

Π̃15 � Bw, Π̃16 � 6

τ 2m
X , Π̃17 � 6

d22
X , Π̃26 � 6

τ 2m
X

Π̃33 � − 4

d2
X ,Π34 � WT

Π̃37 � 6

d22
X , Π̃44 � −2S, Π̃55 � −I
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Π̃66 � − 12

τ 3m
X , Π̃77 � −12

d32
X

for every initial condition in De with,

(29)

(
λ̄

(
X−1

)
+ τm λ̄

(
X−1 Q̃X−1

))
‖‖2

+

(
τ 2m

2
λ̄

(
X−1

)
+
d22
2

λ̄
(
X−1

))
‖·‖2 ≤ β−1

Moreover, the controller gain can be calculated by F �
Y X−1.

Proof Pre- and post-multiplying both sides of (16)

by diag
{
P−1, P−1, P−1, T−1

0 , I , P−1, P−1, P−1, P−1, I
}

and denoting X � P−1 � R−1
1 � R−1

2 , Q̃ � XQX ,Y �
FX ,W � GX , S � T−1

0 . Thus, we can easily obtain the
inequalities (27) of Theorem 2. On the other hand, the sat-
isfaction of (28) guarantees that ∀x ∈ De, x ∈ S. In fact,
De ⊂ S is verified by the following conditions,

[
P FT − GT

∗ βμ2
0

]
≥ 0 (30)

Pre- and post-multiplying (30) by �′ � diag
{
P−1, I

}
, we

obtain the LMI (28).

Moreover, the satisfaction of (29) can be proven as fol-
lows. From the Lyapunov functional defined in (17), we have

V (0) ≤ xT (0) Px (0) +
0∫

−τ (t)
xT (s) Q1x (s) ds

+
0∫

−τm

0∫
θ

xT (s) R1x (s) dsdθ

+
0∫

−d2

0∫
θ

ẋ T (s) R2 ẋ (s) dsdθ

≤ (
λ̄ (P) + τ λ̄ (Q1)

) ‖‖2

+

(
τ 2

2
λ̄ (R1) +

d22
2

λ̄ (R2)

)
‖·‖2 � ε

Therefore, we have xT (t)Px(t) ≤ V (t) ≤ V (0) ≤ ε ≤
β−1 for all t≥0. That is, the trajectories of the system do not
leave the set De, for any initial functions F(θ ) in De, which
ensures that x(t) ∈ S. This concludes the proof.

Remark 3 In this paper, we consider just a long time-delay
controller (τ(t) > T ) as it is the most frequent case in con-
gestion control. Nonetheless, the theoretical results for the
short delay controller (when τ(t) ≤ T ) can be straightfor-
wardly deduced by setting m � 0.

Remark 4 It should be pointed that the main difference of the
proposed congestion controller approachwith previousAQM
solutions for TCP/IP routers is that sampling is explicitly
taken into account: Relation between time delay and sam-
pling period is analyzed to derive the new control law.

Remark 5 In El Fezazi et al. (2017b), the authors transformed
the continuous-time model into a discrete-time one, where
not only the input but also other variables are sampled (state,
disturbance and output). However, this solution requires per-
fect synchronization of the various samplers of the various
variables, which is a shortcoming, as perfect synchronism is
difficult to obtain in practice. Sampled-data approach was
used in Lamrabet et al. (2019) to design an anti-windup
compensator for time-delay systems subject to actuator sat-
uration. We can also cite El Haiek et al. (2017) and Zabari
et al. (2017). However, the application of these methods to
the network (AQM) requires that all sampled variables must
be transmitted in the same packet, which is a drawback for
practical implementations.

Remark 6 In this paper, by incorporating LKF andWirtinger
integral inequality, some sufficient condition are established
in terms of LMIs and thus can be effectively solved by using
available LMI solvers. In order to obtain the simpler form of
LMI, no free-weighting matrices are adopted, which reduce
the computational complexity significantly.

4 Numerical Examples

In the following, two numerical examples are developed to
illustrate the effectiveness of the proposed methodology.

Example 1 (El Fezazi et al. 2017) For this network, we
assume that the operating point is defined by N � 60, C0 �
3750, q0 � 175 and R0 � 0.2464, so we can estimate
the nominal window size, steady-state discard probability
and propagation delay using W0 � R0C0

N , p0 � 2
W 2

0
and

Tp � R0 − q0
C0

.

For the state feedback controller F � 10−4

[−5.379 − 0.093] given in El Fezazi et al. (2017), when
m � 2, solving the LMI conditions in Theorem 1 with the
above parameter values, using MATLAB LMI toolbox, we
can obtain a minimum allowable value of γ , which is 2.6×
10−4, while it is 1.4×10−3 in El Fezazi et al. (2017a, b).
From this example, it can be seen that Theorem 1 gives the
best H∞ performance.

The sample-data controller (SDC) is now compared with
the PI controller proposed in Floyd and Jacobson (1993) and
with the RED controller in Hollot et al. (2002). For this com-
parison, we use the disturbance profile depicted in Fig. 1, and
we set u0 � p0. The queue length regulation and the drop
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Fig. 1 Disturbance profile

Fig. 2 Queue length comparison. SDC, PI and RED

Fig. 3 Drop probability comparison. SDC, PI and RED

probability are depicted inFigs. 2 and 3, respectively,with the
above control gain and the samplingperiodT � 0.01. Param-
eters of the PI and RED controllers are listed in Table 1.

Table 1 Parameters of the AQM controllers

Controller type Controller parameters

PI KPI � 9.6426 × 10−6, wPI � 0.53

RED LRED � 1.86 × 10−4, KRED � 0.005

From Fig. 2, it can be seen that the variables effectively
converge toward the desired operating point (defined by q0
� 175 packets). However, we can clearly see that the queue
size tracks the equilibrium point much faster when SDC is
used (4 s), while the convergence time of PI and RED is
over 10 s and 30 s, respectively. It can be concluded that
the dynamic behavior of SDC is the best; the desired queue
length is guaranteed. In fact, Fig. 3 shows that SDC curve
converges to the desired value in a high speed (4 s). However,
one can easily see that PI curve converges to the equilibrium
point in a relative long time span after the simulation starts
(over 15 s), while the RED curve fluctuates far away from
the desired value significantly.

Example 2 In this second example, we study the disturbance
attenuation properties via LMI toolbox of MATLAB. For
this, we use the parameters from the example in Zheng and
Nelson (2009):

Case (1): high-speed network

N � 1200, C0 � 25000, p0 � 0.0952 � u0 and q0
� 500, so W0 � 4.5833, RTT� 0.2199 and Tp� 0.1999.
Using LMI tools of MATLAB, applying Theorem 2, with
m � 2, and β � 1 we can obtain γ � 0.0085 and F �
[−0.03120.0000].

Case (2): low-speed network

N � 120, C0 � 2500, p0 � 0.0288 � u0 andq0 � 500,
so we have W0 � 8.3333, RTT� 0.3999 andTp� 0.1999.
According to Theorem 2, with m� 2, and β � 1, a mini-
mum attenuation level of γ � 0.0105 is obtained and F �
[−0.00360.0000].

For comparison purpose, we report the result of Zheng and
Nelson (2009). By Theorem 1 of Zheng and Nelson (2009),
it is obtained that γ � 0.1719 and γ � 0.1783, for Case (1)
and (2), respectively. It can be seen that the proposed method
achieves better attenuation than Zheng and Nelson (2009),
which illustrates that the technique proposed in the paper is
more effective.

We validate the performance of our proposed SDC via
evaluating it through the network simulator NS3. The per-
formance of SDC is compared with PIE, RED, NLRED and
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Fig. 4 SDCvs. PIE,RED,NLREDandRAEDperformance comparison

ARED for case (1). The queuing delay is controlled around
the desired value 20 ms. Figure 4 presents the trade-off
between goodput and queuing delay. We mention here that
the ideal AQM should provide high goodput, small average
queuing delay and small ellipse. The figure shows that all the
AQMs have a well-average queuing delay. SDC provides the
well performance since it has the best compromise between
the average queuing delay and goodput, which demonstrate
the superiority of our controller.

5 Conclusion

In this study, we have proposed a technique to design a con-
gestion controller for networks based on TCP/IP, by using
sampled-data control theory. The stability of the process is
then ensured even in the presence of saturation nonlinearity,
and an H∞ norm performance is ensured for the attenuation
of the effect of the disturbance input on the controlled out-
put. The feedback controller can be constructed by solving a
set of LMIs, which can be easily checked using off-the-shelf
software. It is proved in the examples that the obtained result
is less conservative than some ones in the existing literature.
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