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Abstract A proposal for the regulation of the Mach number in wind tunnels using
static state feedback for saturated systems with delays is presented here. As these
systems can be precisely represented by a time-delay model with saturating inputs,
a general solution for discrete delayed systems with saturating input is first derived.
This general solution is based onmodeling the saturation using a Lyapunov functional,
using free weighting matrices and maximizing the set of admissible initial conditions.
The application of this solution to the control of the Mach number in a wind tunnel is
then presented, illustrating the design procedures.
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1 Introduction

TheMach number dynamics in a wind tunnel were studied in [15,16]. These dynamics
are approximated with reasonable precision by a certain set of differential equations
that include a delay in one of the state variables, representing the transportation time
between the guide vanes of the fan and the test section of the tunnel. Control of
this Mach number has been studied in the literature [12]: a closed-circuit fan-driven
pressure tunnel, inwhich theMach number is regulated by a fanmotor speed regulation
and by controlling small changes in the guide vane angle. Digital computers and
microprocessors can easily be used to control the process, which has prompted us to
develop the discrete-time controllers in this work. For example, previously in [12], a
linear quadratic Gaussian (LQG) controller was proposed, albeit assuming the exact
knowledge of the delay, which might be difficult in practice. Other controllers were
developed in [13,14,18,19]. However, they did not take into account the saturation of
the control input, which always exists in this control problem, because of the existence
of technological and safety constraints. Input saturation is known to be a source of
performance degradation, also generating limit cycles, multiple equilibrium points and
even instability (see, for example, [4] and references therein). The presence in the same
system of time delays and input saturations then makes the closed-loop stabilization
a difficult problem. Therefore, in the present work, the effect of the saturation on
the input is explicitly taken into account. It is emphasized that to develop a practical
controller no assumption of online measurement of the delay is required.

As the model of the Mach number dynamics in a wind tunnel ([12–16] and refer-
ences therein) corresponds to a set of differential equations with delays and saturated
input, controller design can be facilitated by using techniques developed for feedback
stabilization of time-delay systems [4–11,20–23]. From those approaches, our pro-
posal is directly with the one discussed in [11], where six free matrices P1,...,6 were
used to characterize the controller, with only one of them restricted to be positive
definite, as an extension to the methodology introduced in [5]. It must be pointed out
that in [10], an approach was presented to treat the actuator saturation by transform-
ing them into a convex combination of polytopes: some ideas of that work are also
used here (Lyapunov functional, free weighting matrices technique), but a simpler
methodology is presented to avoid the complexity of using the convex combination of
polytopes for real system. The proposed approach is then inspired by these previous
results, but the system discretization inherent to periodic sampling of practical control
problem is explicitly taken into account here. Thus, in this paper, a solution to general
time-delay systems with saturating input is first developed, which is then particular-
ized for the wind tunnel problem. More precisely, a static state feedback controller
for the Mach number is developed to achieve good transient responses: This makes
it possible to reduce the operating cost by reducing liquid nitrogen losses. The per-
formance and effectiveness of the proposed control law are then validated through
detailed simulations.

Notation. sat (u) is the vector valued saturation function described by sat (u, u0) =
[sat (u1) . . . sat (um)]T , where sat (ul) = sign(ul)min{u0l , ul}, l = 1, . . . ,m. Hl

denotes the l-th row of H . λ(P) denotes the maximal eigenvalue of matrix P .
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2 Feedback Control of Mach Number in a Wind Tunnel

2.1 Dynamic Modeling

As has been shown in the literature [15], the dynamic deviations δM of the Mach
number to small deviations in the guide vane angle actuator δθa in a driving fan are
precisely described at a given operating point (determined by the fan speed, liquid
nitrogen injection rate, and gaseous-nitrogen vent rate) by the following dynamic
model [15]:

1

a
δṀ(t) + δM(t) = k δθ(t − τ(t))

δθ̈(t) + 2ξwδθ̇(t) + w2δθ(t) = w2δθa(t) (1)

where δθ is the guide vane angle, a, k, ξ , w are parameters which, at each working
point, can be assumed constant if the deviations δM , δθ , δθa are small. The delay
τ(t) represents the time required by the movement of air between the fan and the test
section.

The equations above do not represent the effect of saturation in the control signal,
which is always present in the guide vane angle actuator. Thus, the following model
is proposed here to represent the dynamics of the real system more precisely:

1

a
δṀ(t) + δM(t) = k δθ(t − τ(t))

δθ̈(t) + 2ξwδθ̇(t) + w2δθ(t) = w2sat (δθa(t), u0) (2)

It must be pointed out that, to simplify the numerical notation, the saturation is
assumed to be symmetric and bounded by u0; however, non-symmetric saturations
that would appear in practice [1,2,17] could be easily incorporated following the
ideas presented in [1].

State-space tools will be used to develop the controller, so (2) is rewritten in state-
space form as follows:

ẋ(t) = Acx(t) + Aτc x(t − τ(t)) + Bcsat (u(t), u0) + Bwcw(t)

z(t) = Czc x(t) (3)

where

x =
⎡
⎣

δM
δθ

δθ̇

⎤
⎦ , Ac =

⎡
⎣

−a 0 0
0 0 1
0 −w2 −2ξw

⎤
⎦ , Aτc =

⎡
⎣
0 ak 0
0 0 0
0 0 0

⎤
⎦ ,

Bc =
⎡
⎣

0
0

w2

⎤
⎦ , Bwc =

⎡
⎣

0
0
10

⎤
⎦ , z =

[
δM
δθ

]
, Czc =

[
1 0 0
0 1 0

]
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In practice the Mach number is controlled by using microprocessor-based systems,
so a digital controller will be designed for an analog time-delay system [22]. Thus,
the following section discusses the discrete-time closed-loop model that will be used
to derive the main results.

2.2 Problem Statement

From the previous discussion, it follows that our aim is to design a microprocessor-
based controller for the class of systems whose dynamic is assumed to be described by
(3), wherematrices Ac, Aτc , Bc, Bwc , andCzc are known.Assuming periodic sampling,
it follows that our controller designwill be based on the following discrete-time system
with time-varying delay:

x(k + 1) = Ax(k) + Adx(k − d(k)) + Bsat (u(k), u0) + Bww(k)

z(k) = Czx(k) (4)

where A = eAcT , Ad = ∫ T
0 eAcs Aτcds, B = ∫ T

0 eAcs Bcds, Bw = ∫ T
0 eAcs Bwcds, and

Cz = Czc and d(k) is a time-dependent positive integer representing the time delay,
satisfying 0 ≤ d(k) ≤ dM where dM is a known positive and finite integer.

The disturbance vector w(k) is assumed to be limited in energy, that is, w(k) ∈ L2.
Hence, for some scalar ω, the disturbance w(k) is bounded as follows:

‖w(k)‖22 =
∞∑
k=0

wT (k)w(k) ≤ ω−1 < ∞ (5)

We suppose that the input vector u(k) is subject to amplitude limitations |ul(k)| ≤
u0l , u0l > 0. Due to these control bounds, the effective control signal to be applied to
the system (4) is sat (u(k), u0) = sat (Kx(k), u0), where K is the vector that contains
the three control gains to be determined in order to ensure closed-loop stability for
the largest possible set of deviations from the working point. This set, called here
estimated domain of attraction, is denoted Ξ ⊂ Φ, and defined to be:

Ξ =
{
φl(k),−dM ≤ k ≤ 0 : max ‖φl(k)‖ ≤ δ

}

with initial condition x0 = φl(k). The domain of attraction of the origin is:

Φ =
{
φl(k),−dM ≤ k ≤ 0 : lim

k→∞ φl(k, x0) = 0
}

Hence, with the proposed controller, the feedback system is:

x(k + 1) = Ax(k) + Adx(k − d(k)) + Bsat (Kx(k), u0) + Bww(k)

z(k) = Czx(k) (6)



Circuits Syst Signal Process (2018) 37:1505–1522 1509

Let Λ be the set of all diagonal matrices in �m×m with diagonal elements that
are either 1 or 0. Then, there are 2m elements Dj in Λ, j = 1, . . . , 2m , and denote
D−

j = Im − Dj , which are elements of Λ.
The controller designgoalwill bemathematically transformed to embed sat (Kx(k),

u0) within a convex hull of a group of linear feedbacks (to avoid saturation). Given
two gain matrices K and H , the matrix set {Dj K + D−

j H} is formed by choosing
some rows of K and the rest from H . For this, the following lemma will be used:

Lemma 2.1 [4]Given K and H, then, sat (Kx(k), u0) ∈ Co{Dj K x(k)+D−
j Hx(k)}

for all x(k) ∈ �n that satisfy |Hlx(k)| ≤ u0l .

An ellipsoid De that approximates the domain of attraction is defined as follows,
for a positive scalar β and positive definite symmetric matrix P:

De =
{
x(k) ∈ �n; xT (k)Px(k) ≤ β−1

}

The polyhedral set Θ is constructed as follows:

Θ =
{
x(k) ∈ �n; |Hlx(k)| ≤ u0l

}

Then, the system (6) becomes:

x(k + 1) =
2m∑
j=1

λ j A j x(k) + Adx(k − d(k)) + Bww(k)

z(k) = Czx(k) (7)

where A j = A + B(Dj K + D−
j H), λ j ≥ 0, and

∑2m
j=1 λ j = 1.

Our objective is to design a controller such that the closed-loop system is stable
and the H∞ performance constraint is satisfied. In other words, we aim to design a
controller such that the closed-loop system satisfies the following requirement:

‖z(k)‖22
‖w(k)‖22

=
∑∞

k=0 z
T (k)z(k)∑∞

k=0 wT (k)w(k)
< γ (8)

where the ratio between the norm of the controlled output and that of the disturbance
is less than a specified scalar γ .

3 General Results

This section provides some general results based on LMI techniques for the stabiliza-
tion of any system that can be described by (7). As has been mentioned, this provides
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a control theory approach for addressing the Mach number control problem of a wind
turbine under degradation and instability.

3.1 Stability Results

Theorem 3.1 For given scalars ε1, ε2, if there exist positive definite symmetric matri-
ces X1, Q, R, and appropriately sized matrices U, G, X2, X3 satisfying:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Σ11 ∗ ∗ ∗ ∗ ∗ ∗ ∗
Σ21 Σ22 ∗ ∗ ∗ ∗ ∗ ∗
Σ31 Σ32 Σ33 ∗ ∗ ∗ ∗ ∗
Σ41 Σ42 0 Σ44 ∗ ∗ ∗ ∗
0 Σ52 0 0 Σ55 ∗ ∗ ∗

Σ61 0 0 0 0 Σ66 ∗ ∗
Σ71 Σ72 0 0 0 0 Σ77 ∗
Σ81 0 0 0 0 0 0 Σ88

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0, (9)

[
X1 ∗
Gl βu20l

]
≥ 0 (10)

β − ω ≤ 0 (11)

where

Σ11 = X2 + XT
2 + ε1(Ad X1 + X1A

T
d ), Σ22 = −X3 − XT

3

Σ21 = XT
3 − X2 − X1 + (A + ε2Ad)X1 + B(DjU + D−

j G), Σ31 = −ε1QAT
d

Σ32 = (1 − ε2)QAT
d , Σ33 = −Q, Σ41 = −dMε1RAT

d , Σ42 = −dMε2RAT
d

Σ44 = −dM R, Σ52 = BT
w, Σ55 = −I, Σ61 = X1, Σ66 = −Q, Σ71 = dM X2

Σ72 = dM X3, Σ77 = −dM R, Ω81 = CzX1, Ω88 = −γ I

Then, the closed-loop system (7) is stabilized by the feedback gain K = UX−1
1

where the estimated domain of attraction is given by:

δ2
{
λ(X−1

1 ) + dMλ(Q
−1

) + 4λ(R
−1

)
}

≤ β−1 − ω−1, δ = max ‖φ‖ (12)

Proof To prove this theorem, let us consider the following Lyapunov functional:

V (k) = V1(k) + V2(k) + V3(k)

= xT (k)P1x(k) +
k−1∑

i=k−d(k)

xT (i)Qx(i) +
−1∑

θ=−d(k)

k−1∑
i=k+θ

yT (i)Ry(i)
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and let us compute the difference of the Lyapunov functional:

�V1(k) =
(
x(k + 1) − x(k)

)T
P1

(
x(k + 1) − x(k)

)

+ 2xT (k)P1
(
x(k + 1) − x(k)

)

= yT (k)P1y(k) + 2xT (k)P1y(k) (13)

Thus, we obtain:

2xT (k)P1y(k) = 2

⎡
⎣

x(k)
y(k)

x(k − d(k))

⎤
⎦
T

⎡
⎢⎢⎣
PT
1 PT

2 PT
4

0 PT
3 PT

5

0 0 PT
6

⎤
⎥⎥⎦

⎡
⎣
y(k)
0
0

⎤
⎦

= 2
2m∑
j=1

λ j

⎡
⎣

x(k)
y(k)

x(k − d(k))

⎤
⎦
T

⎡
⎢⎢⎣
PT
1 PT

2 PT
4

0 PT
3 PT

5

0 0 PT
6

⎤
⎥⎥⎦

×
⎡
⎢⎣

y(k)
−y(k) + (A j − I )x(k) + Adx(k − d(k)) + Bww(k)

x(k) − x(k − d(k)) − ∑k−1
i=k−d(k) y(i)

⎤
⎥⎦

= 2
2m∑
j=1

λ j

⎡
⎣

x(k)
y(k)

x(k − d(k))

⎤
⎦
T

⎡
⎢⎢⎣
PT
1 PT

2 PT
4

0 PT
3 PT

5

0 0 PT
6

⎤
⎥⎥⎦

( ⎡
⎢⎣

0 I 0

A j − I −I Ad

I 0 −I

⎤
⎥⎦

×
⎡
⎣

x(k)
y(k)

x(k − d(k))

⎤
⎦ +

⎡
⎣

0
0

−I

⎤
⎦

k−1∑
i=k−d(k)

y(i) +
⎡
⎣

0
Bw

0

⎤
⎦w(k)

)

=
2m∑
j=1

λ jη
T (k)

(
Ξ jη(k) + 2

⎡
⎣

−PT
4−PT
5−PT
6

⎤
⎦

k−1∑
i=k−d(k)

y(i)

+2

⎡
⎣
PT
2 Bw

PT
3 Bw

0

⎤
⎦ w(k)

)

where

k−1∑
i=k−d(k)

y(i) = x(k) − x(k − d(k)), η(k) = [
xT (k) yT (k) xT (k − d(k))

]T
,

Ξ j =

⎡
⎢⎢⎣

(A j − I )T P2 + PT
2 (A j − I ) + P4 + PT

4 ∗ ∗
PT
3 (A j − I ) + PT

5 + P1 − P2 −P3 − PT
3 ∗

AT
d P2 − P4 + PT

6 AT
d P3 − P5 −P6 − PT

6

⎤
⎥⎥⎦
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On other hand, we have:

�V2(k) = xT (k)Qx(k) − xT (k − d(k))Qx(k − d(k)) (14)

Also, by Cauchy–Schwartz inequality we obtain:

�V3(k) = d(k)yT (k)Ry(k) −
k−1∑

i=k−d(k)

yT (i)Ry(i)

≤ dM yT (k)Ry(k) −
( k−1∑

i=k−d(k)

y(i)

)T R

dM

( k−1∑
i=k−d(k)

y(i)

)
(15)

From (13)–(15), it follows that:

�V (k) + 1

γ
zT (k)z(k) − wT (k)w(k) ≤

2m∑
j=1

λ j

⎡
⎣

η(k)∑k−1
i=k−d(k) y(i)

w(k)

⎤
⎦
T

Π j

×
⎡
⎣

η(k)∑k−1
i=k−d(k) y(i)

w(k)

⎤
⎦ (16)

where

Π j =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

(A j − I )T P2 + PT
2 (A j − I ) + P4 + PT

4 + Q + 1
γ
CT
z Cz

PT
3 (A j − I ) + PT

5 + P1 − P2

AT
d P2 − P4 + PT

6

−P4

BT
w P2

∗ ∗ ∗ ∗
−P3 − PT

3 + dM R + P1 ∗ ∗ ∗
AT
d P3 − P5 −P6 − PT

6 − Q ∗ ∗
−P5 −P6 − R

dM
∗

BT
w P3 0 0 −I

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(17)

It is clear that if Π j < 0, then:

�V (k) + 1

γ
zT (k)z(k) − wT (k)w(k) < 0 (18)
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From (9), it can be easily seen that X3 is non-singular, and since P1 = PT
1 > 0,

let:

X =
[
P1 0

P2 P3

]−1

=
[
X1 0

X2 X3

]

Multiplying both sides of Π j by �T and �, respectively, where � = diag{X, I,
I, I }. Then, let:

P−1
1 = X1, Q−1 = Q, R−1 = R, N1 = (X1P

T
4 + XT

2 PT
5 )X1, N2 = XT

3 PT
5 X1.

Thus, some conditions are obtained that are bilinear due to cross products of P6 with
P1, P2, and P3. To avoid such terms, first we select P6 = 0, which leads to:

⎡
⎢⎢⎢⎢⎣

Ω11 ∗ ∗ ∗ ∗
Ω21 Σ22 ∗ ∗ ∗
Ω31 Ω32 Ω33 ∗ ∗
Ω41 Ω42 0 Ω44 ∗
0 Σ52 0 0 Σ55

⎤
⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎣

X1
0
0
0
0

⎤
⎥⎥⎥⎥⎦
Q

−1 [
X1 0 0 0 0

]

+

⎡
⎢⎢⎢⎢⎣

XT
2

XT
3
0
0
0

⎤
⎥⎥⎥⎥⎦
dM R

−1 [
X2 X3 0 0 0

]

+

⎡
⎢⎢⎢⎢⎣

X1CT
z

0
0
0
0

⎤
⎥⎥⎥⎥⎦

1

γ
I
[
CzX1 0 0 0 0

]
< 0 (19)

where Σ22, Σ52, and Σ55 are defined previously and

Ω11 = X2 + XT
2 + N1 + NT

1 , Ω21 = XT
3 − X2 + N2 + (A j − I )X1

Ω31 = −X−1
1 NT

1 , Ω32 = AT
d − X−1

1 NT
2 , Ω33 = −Q

−1

Ω41 = −X−1
1 NT

1 , Ω42 = −X−1
1 NT

2 , Ω44 = −R
−1

dM

The presence of some nonlinearities such as X−1
1 , N1 and N2 in (19) does not allow

for the condition to be solved directly: the variables then have to be tuned. For this
reason, we choose N1 = ε1Ad X1, N2 = ε2Ad X1. On the other hand, results derived
from Lyapunov techniques would lead to nonlinear constraints that are not practical
for numerical optimization, as it is difficult to transform them into LMIs. To solve
this issue, the Schur complement approach is used here as it is the simplest method to
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transform them into LMIs [3]. Then, by replacing A j by A + B(Dj K + D−
j H) and

using the Schur complement, we obtain LMI (9) where U = K X1 and G = HX1.
Since (9) holds, the condition (18) is satisfied. Now, summing (18) from 0 to ∞

with respect to k yields

V (∞) < V (0) +
∞∑
k=0

(
wT (k)w(k) − 1

γ
zT (k)z(k)

)
(20)

Under the zero initial condition V (0) = 0 and by noting that V (∞) ≥ 0, we have
(8) which implies that system (7) has its restricted L2−gain from w(k) to z(k) less
than γ . Now taking w(k) = 0, it is easy to see that �V (k) < 0.

Moreover, the satisfaction of LMI (10) guarantees that |Hlx(k)| ≤ u0l ,∀x(k) ∈ De.
This can be proven following similar reasonings as those in [3].

Furthermore, from �V (k) < 0 it follows that V (k) ≤ V (0), and thus, we obtain:

V (0) ≤ V1(0) + V2(0) + V3(0) ≤
(
λ(P) + dMλ(Q) + 4λ(R)

)
‖φ‖2 = �

Therefore, we have:

xT (k)P1x(k) ≤ V (k) ≤ V (0) + ‖w(k)‖22 ≤ � + ω−1 ≤ β−1

Finally, we obtain (11) and (12). Then, the inequality (12) guarantees that the
trajectories of x(k) remain within De for all initial functions φ(k) ∈ Ξ , this completes
the proof. �
Remark 3.1 It must be pointed out that when deriving Theorem 3.1 we have taken P1
that contains free matrices P2, P3, P4, P5, and P6. Thus, our results are more general
than the one of [5] since it provides more degree of freedom. In fact, it improves
existing delay-dependent analysis and synthesis results that require all the symmetric
matrices in a chosen Lyapunov functional to be positive definite. This constraint is
relaxed in this paper.

Remark 3.2 The result of Theorem 3.1 is derived by using (17), where P6 is fixed to
be zero, in order to simplify the numerical solution: Although this makes the solution
only slightly more conservative, it reduces significantly the computational cost (see
[11] for a previous use of this approach).

Remark 3.3 For given ε1 and ε2, inequality (9) is linear, so the problem can easily be
solved using off-the-shelf software like Yalmip and SeDumi. Then, to find the optimal
values of ε1 and ε2, a numerical optimization algorithm can be used: Conservatism is
reduced if we take scalars ε1 and ε2 as parameters of adjustment.

3.2 Controller Design by Optimization

The proposed conditions in Theorem 3.1 are in LMI form, so they can be easily
considered in convex optimization problems. Below we present three problems of
interest for practical controller design.
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3.2.1 Maximization of the Disturbance Tolerance

The idea is to maximize the L2−norm bound on the disturbance so as to ensure that
the system trajectories remain bounded. Considering that the initial condition is null,
this can be accomplished by the following convex optimization problem:

min β

subject to (9)–(11) (21)

3.2.2 Maximization of the Disturbance Attenuation

For a non-null positive bound on the L2−norm of the admissible disturbances (given
by β−1 = ω−1), the idea is to minimize the upper bound of the L2−gain of w(t)
on z(t). Considering that the initial condition is null, this can be obtained from the
solution of the following convex optimization problem:

min γ

subject to (9)–(11) (22)

3.2.3 Maximization of the Region of Admissible Initial Conditions

Now,we consider the free-disturbance case (w(k) = 0). As it would be very difficult to
come upwith a simple solution tomaximize the domain of initial conditions, due to the
nonlinearity of (12), our proposal is based on developing amethodology to estimate the
largest possible domain of initial conditions for which it can be ensured that the closed-
loop system trajectories remain bounded. As in [10,11], we impose σ1 I ≥ λ(X−1

1 ),

σ2 I ≥ λ(Q
−1

), and σ3 I ≥ λ(R
−1

), where σ1, σ2, and σ3 are weighting parameters.
Consequently, by the Schur complement, the following LMIs are obtained:

[
σ1 I I
I X1

]
≥ 0,

[
σ2 I I
I Q

]
≥ 0,

[
σ3 I I
I R

]
≥ 0 (23)

It follows that condition (12) is satisfied if the following LMI holds:

δ2
{
σ1 + dMσ2 + 4σ3

}
≤ β−1 (24)

Combining the facts derived above, we can construct an optimization problem as
follows:

Minimize ϑ = σ1 + dMσ2 + 4σ3
subject to (9), (10), (23), (24) (25)

This optimization problem can then be easily solved using off-the-shelf numerical
tools, providing a methodology to design controllers that ensure stability and simul-
taneously maximize the operating region, as is illustrated below for the problem that
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Table 1 Comparison of
maximum allowable delay dM

[15] [13] Theorem 3.1

dM 0.33 0.97 12.0

motivated these developments. It must be pointed out that the computational complex-
ity of design conditions plays an important role for practical design and implementation
of controllers. In the next section,we evaluate this complexity between different design
methods.

4 Application to Mach Number Control

In this section, a controller is designed based on the approach presented in the previous
section, and some simulation results are presented to show the adequate closed-loop
performance.

We consider a wind tunnel with the following parameters, borrowed from the lit-
erature: 1

a = 1.964s, k = −0.0117deg−1, ξ = 0.8, and w = 6rad/s. The controller
design methodology presented in the previous section can easily be applied to this
problem.

First, consider a time-delay system for which control values are saturated at ±1
and described as follows:

x(k + 1) = Ax(k) + Adx(k − d(k)) + Bsat (u(k), u0)

where x = [
δM δθ δθ̇

]
.

Solving the optimization problem (25) with T = 1, β = 1, ε1 = 0.1, and ε2 = 0.1
gives the following state feedback gain, where δ = 949.0:

K =
[
0.0001 − 0.0012 0.0236

]

The proposed solution is compared in Table 1 with previous approaches in the
literature [13,15]: It can be clearly seen that much larger delays are tolerated with the
proposed approach.

Some simulation results are presented in Figs. 1 and 2, where the evolution from the
constant initial conditions x0 = [−5 5 − 5]T is presented. Note that, even though
the control input is initially saturated (u(0) > u0), the states, in due course, are driven
to the working point, showing the adequate stability and performance of the proposed
controller.

Thus, it is illustrated how, by using the proposed approach, a control law can be
obtainedwhich is simple to implement in amicroprocessor-based control system using
state variables x(k), which provides stability in a wide range of initial conditions, with
good transient responses and feasible control signals.
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Fig. 1 Evolution with the proposed controller of the states (deviations from the desired values of M , θ and
θ̇)
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Fig. 2 Evolution with the proposed controller of the control input (deviation from the nominal value of
the actuator angle θa )

Then, in order to take into account the effect of disturbances in the model, we
consider the following time-delay system with an actuator that saturates at ±1:

x(k + 1) = Ax(k) + Adx(k − d(k)) + Bsat (u(k), u0) + Bww(k)

z(k) = Czx(k)

Taking T = 1, ε1 = 0.5, and ε2 = 0.5, the algorithm proposed in (21), based on
Theorem 3.1, successfully finds feedback stabilizing gains K and optimal values of β

according to values of the upper bound of the delay dM , as given in Table 2.
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Table 2 Computational results for several values of the maximum delay using the algorithm in (21)

dM β K

3 4.56 × 10−6
[

− 0.0002 − 1.0310 1.8681
]

× 10−3

6 4.98 × 10−6
[

− 0.0001 − 1.0447 15.1677
]

× 10−3

9 5.52 × 10−6
[

− 0.0001 − 1.0485 19.6508
]

× 10−3

Table 3 Computational results
for several values of the
maximum delay using the
algorithm in (22)

dM γ K

2 1.94 × 10−4
[

− 0.2099 8.9911 − 0.0624
]

4 3.30 × 10−4
[

− 0.1311 5.6643 − 0.0152
]

6 5.74 × 10−4
[

− 0.0933 3.5048 − 0.0010
]
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Fig. 3 Evolution of the states with the controller in Table 2, dM = 9 (deviations from the desired values
of M , θ , and θ̇)

Now, we use the method given in Theorem 3.1 and the algorithm proposed in (22)
to compute the minimal value of the H∞ performance γ for the closed-loop system.
Then, Table 3 gives the values of K and γ according to the values of dM , where T = 1,
β = 1, ε1 = 0.2, and ε2 = 0.2.

Some simulation results are now presented in Figs. 3, 4 (for the controller corre-
sponding to dM = 6 in Table 2) and in Figs. 5, 6 (for the controller corresponding to
dM = 6 in Table 3), when the disturbance is:

w(k) =
{
1, 5 ≤ k ≤ 10
0, k ≥ 10
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Fig. 4 Evolution of the control signal using the controller in Table 2, dM = 9 (deviation from the nominal
value of the actuator angle θa )
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Fig. 5 Evolution of the states with the controller in Table 3, dM = 6 (deviations from the desired values
of M , θ , and θ̇)

It can be seen that the disturbance does not significantly affect neither the Mach
number nor the vane angle. Finally, the Gaussian noise presented in Fig. 7 is used
as disturbance to check the effect of random disturbances using the controller corre-
sponding to dM = 6 in Table 3). A stable operating condition is also reached, rejecting
adequately these disturbances, as shown in Fig. 8.

In summary, the simulation results presented show that the proposed controller
stabilizes the controlled system in spite of significant disturbances, combined with
good transient performance.
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Fig. 6 Evolution of control signal using the controller in Table 3, dM = 6 (deviation from the nominal
value of the actuator angle θa )
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Fig. 8 Evolution with the proposed controller of the Mach number and the vane angle (deviations from
the desired values of M and θ )

5 Conclusion

This paper deals with the control of the Mach number in wind tunnels. For this, a
general solution is developed for a class of discrete-time systems with time-varying
delay and saturating actuators with the aim of maximizing the set of admissible initial
conditions. The application of the problem at hand to get improvements in the feedback
control of the Mach number in a wind tunnel is proposed. This is obtained by solving
an LMI optimization problem to design the state feedback gains, maximizing this
estimate of the domain of attraction. Simulation results confirm the performance in
terms of stability, tracking behavior, and disturbance rejection.
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