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A B S T R A C T

This paper focuses on the problem of crude oil operations scheduling carried out in a system composed of a
refinery and a marine terminal, considering uncertainty in the arrival date of the ships that supply the crudes.
To tackle this problem, we develop a two-stage stochastic mixed-integer nonlinear programming (MINLP)
model based on continuous-time representation. Furthermore, we extend the proposed model to include risk
management by considering the Conditional Value-at-Risk (CVaR) measure as the objective function, and we
analyze the solutions obtained for different risk levels. Finally, to evaluate the solution obtained, we calculate
the Expected Value of Perfect Information (EVPI) and the Value of the Stochastic Solution (VSS) to assess
whether two-stage stochastic programming model offers any advantage over simpler deterministic approaches.
1. Introduction

Oil refineries receive crude oil and transform it into a set of petrol
products. Typically, there is a central office on which a group of
refineries depend. This central office generates a production plan for
a period of time, establishing when crude oil will be received and the
type of products that must be produced in that period in each refinery.
Then, the operation programming unit of each refinery will develop the
detailed scheduling of the operations for that time horizon. Usually, in
the schedule development phase, the possibility of unforeseen events is
not considered, leading to the potential inapplicability of the generated
schedule. One of the main sources of uncertainty that can lead to this
situation is the change in the scheduled arrival dates of ships that
supply crude to the refineries.

The general structure of a refinery can be divided into three parts
based on the processes carried out. The first part concerns the crude oil
operations scheduling, which involves crude oil unloading, inventory
management, and the feeding schedule for crude distillation units.
The second part corresponds to production unit scheduling, which
includes both fractionation and reaction processes. Finally, the third
part is related to the scheduling, blending, storage, and delivery of final
products.

In this paper, we address the optimization problem of crude oil op-
erations scheduling in a refinery that is supplied with crude oil by ships
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whose arrival dates are subject to uncertainty. This problem involves a
complex network of ships, tanks, pipelines, and crude distillation units
(CDUs) [1].

We consider a system that consists of a marine terminal and an
oil storing and processing section, both connected by a pipeline (see
Fig. 1). The terminal is the facility where the unloading operation of
the crude oil transported by the ships begins, which means that it plays
the role of a link between the ships and the refinery, where the supplied
crude is stored in tanks and then processed. Here we analyze the case
of a single-dock terminal, so only one ship can be unloaded at a time.

As for the storing and processing section, two areas can be distin-
guished: the storage tank area and the crude distillation unit area. The
first is connected to the marine terminal by a pipeline and, as its name
indicates, is composed of tanks that store the crude oil coming from
the terminal. Typically, refineries involve two types of tanks: storage
and charging tanks. Storage tanks are used for receiving and storing
crude oil from ships, while charging tanks are used to create blends that
will feed the distillation units, meeting certain quality specifications.
Nevertheless, some refineries remove the charging tanks in order to
save space and eliminate immobilized capital, implementing the mixing
online in the pipelines that feed the CDUs using an appropriate control
system. This is our case where only storage tanks are available. Since
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Fig. 1. Schematic of system.
the storage capacity is limited and there are many types of crude oil
based on their compositions, the tanks are not exclusively dedicated to
a single type of crude; in other words, it is possible to store blends of
crude oil.

At the same time, the tanks are connected to the crude distillation
unit area through a piping system (mixing pipelines), where the final
mixtures of crudes take place in order to achieve the desired flows and
properties required by the different crude distillation units (CDUs). All
operations are subjected to multiple rules and constraints, among them,
the arrival over time of different types and amounts of crude, and the
fulfillment of the company production plan.

Regarding crude oil operations scheduling, it means allocating the
resources involved (vessels, tanks, CDUs) to operations (e.g., loading a
tank, feeding a CDU, etc.) and sequencing them over time so that the
constraints and aims of the process are satisfied. Optimal scheduling,
in addition, will provide the best use of the resources minimizing a cost
function.

One point that is interesting to mention is that analogously to batch
process operations scheduling problems, one could think of the volumes
of crude oil transferred as batches. However, we should note that in
the crude operations scheduling problem, these batches are not defined
in advance at the beginning of the scheduling horizon. Therefore, this
feature increases the complexity of the problem resolution [2].

2. Literature review

In the last decades, a wide variety of articles have been published in
the area of crude oil operations scheduling, covering the development
of both deterministic and stochastic models.

2.1. Deterministic models

The paper of Lee et al. [3] involves one of the earlier works to
address the optimization of short-term scheduling for crude oil unload-
ing, tank inventory management, and CDU charging. In this article, the
authors developed a mixed-integer linear programming (MILP) model
that relies on time discretization, in which the bilinear equations arising
2

from mixing operations are replaced with individual component flows
to maintain linearity.

In Jia et al. [4], the authors addressed the problem of crude-oil
short-term scheduling, which involves optimizing the unloading of
crude oil from vessels, its transfer to storage tanks, and the charg-
ing of crude distillation units. For this purpose, they developed a
novel MILP model based on a continuous-time representation, utiliz-
ing the state-task network (STN) representation introduced by Kondili
et al. [5].

In the paper Reddy et al. [6], a continuous-time mixed-integer
linear programming (MILP) formulation was presented for the short-
term scheduling of operations in a refinery that handles crude from very
large crude carriers. Moreover, the authors put forward an iterative
algorithm to address the crude composition discrepancy. This algorithm
entails solving a series of MILPs with gradually reduced size and
complexity to achieve a near-optimal solution.

The authors of Furman et al. [7] proposed a mixed-integer nonlinear
programming (MINLP) model based on a continuous-time formulation
to optimize the scheduling of fluid transfers within tanks and robustly
handle the synchronization of time events with material balances.
Additionally, they presented a new approach to depict the inflow and
outflow from a tank, which holds the potential to reduce the number of
time events in continuous-time scheduling formulations. Subsequently,
the modeling paradigm was applied to develop charging schedules for
refinery crude units.

Mouret et al. [8] developed a continuous-time MINLP formulation
to tackle crude-oil scheduling problems. This formulation is based on
the representation of a schedule as a sequence of operations and is
called the single-operation sequencing (SOS) model. Additionally, they
introduced a sequencing rule to address the symmetries that may arise
in the model. Finally, a two-step MILP-NLP procedure was implemented
to solve the model.

Li et al. [9] developed a novel unit-specific event-based continuous-
time MINLP formulation to tackle the crude oil scheduling problem for
a marine-access refinery. Furthermore, they introduced a branch-and-
bound global optimization algorithm with a piecewise-linear underes-
timation approach to solve the model.
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In Yadav et al. [10], the authors introduced a simplified STN-based
formulation to tackle the problem of scheduling crude oil operations
using a unit-specific event-based continuous-time representation. The
solution strategy proposed by the authors involves relaxing the MINLP
model by dropping the nonlinear constraints and solving the resulting
MILP model. In case the obtained solution exhibits composition dis-
crepancies, the original MINLP model is also solved to rectify these
discrepancies.

Hamisu et al. [11] proposed an enhanced version of the MILP model
developed by Lee et al. [3] through the inclusion and modification of
a set of constraints that allow for a decrease in operating costs and
provide more flexible operation.

The authors of Castro et al. [12] tackled the optimization of schedul-
ing of crude oil blending operations in a refinery. As a solution, they
developed an MINLP model based on continuous-time formulation
with a single time grid derived from a resource-task network (RTN)
superstructure. Subsequently, the MINLP model was solved using a
two-step MILP-NLP algorithm, which involves a tight relaxation of the
bilinear blending constraints using multiparametric disaggregation.

In Cerdá et al. [13], a MINLP continuous-time approach for schedul-
ing crude oil operations in marine-access refineries was introduced. The
developed model is based on global-precedence sequencing variables to
establish the order of loading and unloading operations in the storage
tanks, and synchronized time slots of variable length are used to model
the sequence of feedstock supplied to each CDU.

Zimberg et al. [14] presented a discrete-time MILP model to opti-
mize the reception, blending, and delivery of crude oil from a terminal
to a pipeline without considering crude oil processing. The authors
proposed replacing the nonlinear equation derived from the blending of
crudes in tanks with a set of linear equations that include an adjustment
term for composition discrepancies.

The paper of de Assis et al. [15] focused on optimizing operations
at a crude oil terminal, specifically, the optimization of crude oil
unloading from vessels to storage tanks and transfers from storage
tanks to the pipeline that connects the terminal to the refinery. In
this work, an MINLP model based on discrete-time formulation was
presented, along with an iterative two-step MILP-NLP decomposition
algorithm, which involves using piecewise McCormick envelopes to
replace bilinear terms and a domain-reduction strategy.

In de Assis et al. [16], the authors tackled the Operational Man-
agement of Crude Oil Supply (OMCOS), which involves optimizing
the schedule of vessel trips and crude oil operations at a terminal in
an integrated manner. As a solution, they proposed a discrete-time
MINLP formulation that was solved through an iterative MILP-NLP
decomposition approach.

In another paper, de Asis et al. [17] introduced an MILP clustering
formulation, whose solution serves as a preliminary step before solv-
ing the OMCOS MINLP formulation. Based on the clustering solution,
bounds on crude properties inside tanks can be inferred, enabling the
linearization of bilinear terms in blending constraints and resulting
in an MILP approximation. Subsequently, they applied an MILP-NLP
decomposition strategy to achieve a solution for the MINLP model.

2.2. Stochastic programming models

All the works mentioned above tackled the problem through a
deterministic approach. However, it is very important to take into
account unplanned events for generating practical and useful schedules,
so stochastic programming models have also been developed to address
the problem of crude oil operations scheduling under uncertainty,
among which the following stand out.

In Wang et al. [18], a discrete-time two-stage robust model was
proposed to address the crude oil operations scheduling problem con-
sidering uncertainty in vessel arrival times and product demand.

Cao et al. [19] presented stochastic chance-constrained mixed-
integer nonlinear programming (SCC-MINLP) models based on discrete-
3

time formulation to solve the integrated problem of crude oil short-term
scheduling, blending, and storage management under uncertainty in
crude distillation unit demands.

In Li et al. [20], the authors addressed the crude oil scheduling
problem for a marine-access refinery under demand uncertainty. To
achieve this, they utilized the unit-specific event-based continuous-
time formulation presented in Li et al. [9] and applied the theory
of robust optimization framework to formulate the robust counterpart
optimization model.

Oliveira et al. [21] proposed a two-stage stochastic MILP model,
based on discrete-time formulation, that simultaneously defines the
scheduling of oil pumping through a pipeline and the sequencing of
ships berthing at a terminal at the lowest possible cost.

All these papers aimed to minimize the expected value of a certain
cost function, but none of them took into account the problem of risk.
That is, the minimization of the probability that in some scenarios the
cost function may have a very bad value.

At the same time, it is worth noting that most of these authors
presented stochastic models using a discrete-time representation, and
only one used unit-specific continuous-time formulation. Consequently,
we believe that it would be interesting to contribute to the advance-
ment of stochastic models that consider risk management and are based
on a predefined set of global time points on an efficient continuous-
time formulation to solve the crude oil operations scheduling problem
in a refinery with only storage tanks. It is worth noting that global
time points refer to instants of time at which the status of the limited
resources are evaluated.

3. Contribution

The aim of this paper is to formulate a two-stage stochastic pro-
gramming model based on continuous-time formulation using global
time points to solve the crude oil operations scheduling problem con-
sidering uncertainty in the arrival date of supplying ships. Then, a
performance analysis using several metrics is conducted to ascertain
potential advantages over deterministic models. Moreover, in the pa-
per, the stochastic MINLP model is reformulated to incorporate risk
management, and solutions obtained for varying levels of risk aversion
are analyzed. Additionally, because of the non-linear terms introduced
by the concentrations of the crude mixtures, solving the final MINLP
model becomes challenging. Therefore, we present a new approach to
address these non-linearities by using a MILP approximation, in which
we replace the non-linear equation with two linear constraints. Then,
we adopt a two-step MILP-NLP procedure.

This article expands upon the conference paper [22] by evaluating
the performance of the stochastic model against deterministic models.
This evaluation is based on calculating and interpreting the Expected
Value of Perfect Information (EVPI) and the Value of the Stochastic
Solution (VSS) measures. Moreover, we carry out a more detailed
analysis of solutions obtained using both the risk-neutral approach and
the one incorporating risk management. To the best of our knowledge,
no other paper considers at once a two-stage stochastic approach,
risk management with CVaR, and continuous-time formulation with
global time points applied to the optimization of crude oil operations
scheduling.

The different points addressed throughout the paper to tackle the
crude oil operations scheduling problem under uncertainty in crude oil
supply are mentioned next.

In Section 4, we present the crude oil operations scheduling prob-
lem in more detail. In Section 5, we develop a two-stage stochastic
programming model based on continuous-time formulation with global
time points, considering uncertainty in the arrival date of the ships
utilizing a discrete set of scenarios with different arrival times. Next, in
Section 6, we propose a strategy to cope with the nonlinear constraint
resulting from crude oil blending in tanks. Then, the concepts EVPI and
VSS are defined in Section 7, which will allow us to assess the solution

obtained from the two-stage stochastic programming model against
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those obtained with deterministic models. In Section 8, we extend the
two-stage stochastic programming model, to include risk management,
by employing the Conditional Value-at-Risk (CVaR) measure as the
objective function. In Section 9, we report an example and the com-
putational results. Here, we compute the EVPI and VSS measures, and
we analyze the effect of considering uncertainty in the model. Besides,
we compare the results of applying the two-stage stochastic program-
ming risk-neutral approach versus the approach with risk management
for different confidence level values. Finally, in Section 10, we draw
conclusions and discuss future work.

4. Process operation

The optimization of crude oil operations scheduling can be defined
as the process of deciding the best way to operate the system based on
the management of four macro-operations in a coordinated way, each
of which involves a set of interrelated operations.

• Vessel unloading.
• Tank loading.
• Tank unloading and crude mixing.
• Crude distillation unit loading.

In the following subsections, these macro-operations and the deci-
ions to be made in each of them are explained in more detail.

.1. Vessel unloading

Initially, the ships arrive at the terminal to unload the crude oil.
hen two ships arrive at times very close to each other, the order of

nloading has to be taken into account to meet the production plan
nd, at the same time, to minimize vessel demurrage and tardiness
osts. Demurrage is defined as the difference between the date on which
he unloading of a vessel begins and its arrival date; while tardiness is
efined as the difference between the completion of the discharge and
he scheduled departure date, being null as long as the vessel finishes
n or before the stipulated date.

.2. Tank loading

Concurrently with the unloading of ships, we must select the re-
eiving tanks. However, it must be taken into account that there is
maximum number of tanks that can be loaded simultaneously, and

herefore, their loading must also be sequenced. For example, if we can
oad a maximum of three tanks at a time and we decide that four tanks
ill receive the crude, then at least one of the tanks will receive crude
il once the loading of another tank has been completed. In addition
o the tank assignment and order, the volumes transferred to each tank
ust be calculated.

.3. Tank unloading and crude mixing

In this operation, we must choose the feed from the stored crude
il to each CDU, which consists of selecting and sequencing the par-
icipating tanks and calculating the volumes transferred from each of
hem so that the feed properties in the mixing pipelines are within
he established ranges. We must take into account that while the
anks store blends of crude oils, these blends do not necessarily meet
he specifications to feed the CDUs. The final blends that meet the
pecifications are obtained in the mixing pipelines.

As previously mentioned, the tanks can store mixtures of crudes.
rom this characteristic, we have to consider that the concentration of
rude oil in the outlet flow of a tank must be equal to the concentration
nside the tank. This behavior is represented by a nonlinear constraint,
hich is explained in (A.59).

Besides, other constraints must be met, such as the minimum set-
ling time in a tank after receiving a load, in order to allow possible
ater to settle, and the maximum number of units that can be fed
4

imultaneously from the same tank.
4.4. Crude distillation unit loading

The ‘‘crude distillation unit loading’’ operation is closely related to
the ‘‘tank unloading’’ operation, so it is difficult to distinguish which
decisions belong to which; in any case, they could be thought of as
shared decisions that must be taken considering the constraints and
requirements of both.

The distillation units are in charge of processing the blends obtained
in the mixing pipelines to meet the demands of the final products.
These units must be fed continuously, i.e., their operation cannot
be interrupted. Therefore, it complicates the decision-making process
and inventory management. As mentioned above, one of the crucial
points in the loading of CDUs is compliance with feed quality spec-
ifications, i.e., keeping the concentration of blend properties within
defined ranges. In addition, there are operating constraints, such as the
maximum number of tanks allowed in parallel and the feed flow rates.

One of the main challenges of the crude oil operations scheduling
problem lies in coordinating the decisions taken at the terminal and
the crude oil section since their objectives differ. While the former
seeks to unload the ships as soon as possible to avoid demurrage and
departure tardiness costs, the latter aims to have the crude oil available
at the most convenient times and in the most convenient qualities
and quantities to meet the production plan. One way to address this
problem is through the development of a mathematical programming
model.

5. Stochastic model formulation

In this work, we make use of mathematical programming to address
the problem of crude oil operations scheduling. This problem presents
a large number of logical and operational constraints that are not
simple to model. Therefore, a challenge lies in developing a model with
sufficient complexity to faithfully represent the process but, at the same
time, robust and able to be solved in a time according to the users’
needs.

Before the development of the model, we must select the time repre-
sentation to be used and the way to represent the uncertainty. Regard-
ing time representation, we can choose between two basic approaches:
discrete-time formulation and continuous-time formulation.

5.1. Time representation

In discrete-time-based models, the programming horizon is divided
into a finite number of intervals with a predefined duration, and events
– meaning any change in operations – only take place at the beginning
or the end of these intervals. This approach facilitates the formulation
of the model, in particular regarding the synchronization of events
among different resources, but it has the disadvantage that the size
of the model, its computational efficiency, and the accuracy of the
solutions obtained strongly depend on the number of time intervals
defined. The greater the number of intervals, the more precise the
solution will be, but the size of the model will increase and, therefore,
will require more computational effort for its resolution.

Otherwise, if a smaller number of intervals is defined, the precision
of the solution will decrease, and there is a risk of obtaining suboptimal
or even infeasible solutions since, for a fixed horizon, a small number
of slots would imply that no actions would be taken for an extended
period. As a result of this, infeasibility can arise for various reasons.
For example, tanks could be emptied (interrupting the feed to units),
and certain properties in the blends might not be met, among others.
It is also possible that the number of slots may not be sufficient to
execute the feasible solution that involves the least possible number
of operations over the entire horizon.

One alternative to improve the time precision of the solution and to
decrease the number of variables involved is the use of models based

on continuous-time formulation, where timing decisions are explicitly
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Fig. 2. Continuous-time representation (global time points).

represented as a set of continuous variables defining the exact times at
which the events take place [23].

Continuous-time formulations can be represented in different ways,
including using global time points or unit-specific time events for
network processes, as can be seen in [23]. With global time points, also
called MOS-SST in [24], a common time grid is used for all resources.
The intervals of time (slots) represent the time between two consecutive
events that take place at any resource of the process. In contrast, the
unit-specific time events approach (or MOS representation in [24])
defines a unique time grid for each resource, allowing for different
operations to start at different times for the same event point.

In our study, we have chosen the option characterized by global
time points as a compromise between the ease of synchronization
and the complexity of the corresponding continuous-time model. This
continuous-time formulation is performed as follows:

• The scheduling horizon is divided into consecutive variable-
length slots, synchronized across all the resources (vessels, tanks,
and crude distillation units).

• Three mutually exclusive states are defined for the tanks: loading,
unloading, and idle.

• A new slot is activated whenever a resource changes its state.
• Even so, a resource can maintain its state during consecutive time

slots.

To make it more understandable, Fig. 2 depicts an example involv-
ng two tanks and three slots whose start and end times are represented
y the variables 𝑖𝑠𝑠 and 𝑡𝑠𝑠, respectively. Initially, both tanks are idle

during slot 1, whose start time is 𝑖𝑠𝑠1 = 0. After some time, tank 1
begins loading, and slot 1 ends at that moment, starting slot 2 with
𝑖𝑠𝑠2 = 𝑡𝑠𝑠1, which is the end time of slot 1. It is important to note
that in slot 2, the state of tank 2 (‘‘Idle’’) has not changed, while the
state of tank 1 has changed to ‘‘Loading’’. Then, after some time, tank
2 starts unloading, which ends time slot 2 and begins a new slot 3,
whose start time is 𝑖𝑠𝑠3 = 𝑡𝑠𝑠2. From this moment on, the new state
of tank 2 is ‘‘Unloading’’, while the state of tank 1 remains ‘‘Loading’’.
Notice that the slot number imposes a precedence of events over time
and that, in the proposed formulation, not only the start time is the
same for operations belonging to the same slot, but also the duration
of the operations.

5.2. Representing the uncertainty

As mentioned earlier, another decision we need to make before de-
veloping the mathematical model is whether to formulate a stochastic
5

or a deterministic model.
Deterministic models are very useful and reliable as long as the
process to be optimized is not subject to large uncertainties or is not
very sensitive to variations in the parameter values. Otherwise, there is
a risk that the solution obtained will not be robust enough to adapt to
changes in the process environment if the reality is different from the
assumption in the model, then the quality of the solution will likely
decrease.

When optimizing the scheduling of crude oil operations, we should
consider that weather conditions may influence the arrival time of
vessels and, thus, the availability of crude oil. In turn, these events af-
fect downstream decisions. Based on this premise, we have considered
the arrival dates of ships at the terminal as an important uncertainty
that must be considered explicitly. This uncertainty is represented by
a set of scenarios that cover possible ship arrival dates with different
probabilities that can be obtained with historical data and current
conditions.

Therefore, for a more realistic resolution of the scheduling problem
in the refinery, it becomes imperative to integrate this uncertainty
into the optimization model. Numerous approaches exist for incorpo-
rating this kind of uncertainty, including chance-constrained, robust
optimization, and two-stage methods, among others.

In chance-constrained, we calculate an optimal policy such that the
probability of fulfilling the constraints is greater than a certain user-
defined value. The main problem of this approach is the complexity of
the numerical solution in a mixed-integer context.

In robust optimization, the decision variable is optimized for the
worst case of the uncertain variable so the constraints are satisfied
for all values of the uncertainty. The robust solution is guaranteed to
remain feasible over the entire range of uncertain parameter realiza-
tions [25], but the solution may be too conservative.

Finally, the two-stage stochastic programming approach involves
two types of decision variables: the first-stage variables (‘‘here-and-
now’’ variables) which have to be implemented now and influence all
future decisions, and the second-stage ones that will be implemented
later on when more information about the process is available so that
they can be adjusted to the realization of the uncertainty (recourse
variables or ‘‘wait-and-see’’ variables). This provides solutions that are
less conservative than robust formulations.

In the present work, we propose a model based on two-stage
stochastic programming with recourse [26] to tackle the crude oil
operations scheduling optimization, considering uncertainty in the
arrival date of the vessels, because of the following reasons:

• The uncertainty does not depend on the decisions made and
several scenarios can be selected in a sensible way as small
variations of the planned arrival dates of ships.

• A discrete probability distribution can be defined for the uncer-
tainty, i.e., for the arrival time of vessels.

• The structure of the problem makes it possible to clearly de-
fine which are first-stage decisions and which are second-stage
decisions.

• It gives robust solutions without being extremely conservative.

In this problem, the first-stage variables refer to those related to
the supply of blends to the CDUs. This involves the allocation of tanks
to units, the output flow rates from tanks, and the input flow rates to
CDUs. The start time, end time, and length of slots are also considered
first-stage decisions.

As for the second-stage decisions, they encompass decisions related
to: activities carried out at the marine terminal after a ship has arrived,
inventory management (including types of crudes and levels stored in
each tank), crude concentration in the output flow from tanks, and
therefore crude concentration in the input flows to CDUs. The crude
oil concentration indicates the proportion of each type of crude oil in
a flow rate. It could also be thought of as the flow rate of each crude

oil.
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The decision regarding which variables correspond to the first stage
is based on the constraint of continuous operation of the CDUs, as
well as on the exercise of putting ourselves in the operator’s shoes. If
we were the decision-makers, then we would have to decide on the
feeding of the CDUs at all times, even without knowing the exact arrival
dates of the ships. This involves selecting the tanks that will feed the
CDUs, the output flow rates from tanks, and the start and end times of
these feeding operations. All these decisions determine the flows and
composition of the CDU feeds.

On the other hand, each time a ship arrives, we must decide in
which tanks the crude oil will be unloaded and the quantity to be
transferred. These decisions constitute the recourse variables since they
allow us to correct the choices made in the first stage and maintain the
solution’s feasibility in the scenarios under study.

An important point to consider is related to concentrations. Among
the first-stage variables, we have mentioned the flow rate from each
tank to each CDU. This flow rate can be defined as the sum of the output
flow of each crude oil while respecting their in-tank concentrations.
However, the output flow of each type of crude oil is a second-stage
variable since the amount of each crude oil in the feeding tank may vary
between scenarios. This is equivalent to saying that the composition of
each tank is a second-stage variable.

5.3. Scenario definition

As mentioned earlier, the crude oil supply is subject to uncertainty
owing to possible deviations in the scheduled arrival time of the
ships. This uncertainty is depicted by a discrete set of scenarios that
contemplates different arrival times. These scenarios are generated as
follows.

For each ship, we assess a most likely arrival date according to the
company planning and the potential deviations from it, both in terms
of arriving earlier or later. This process generates three possibilities per
ship, each accompanied by a corresponding probability of occurrence.
Afterward, we build scenarios by considering the combinations of all
dates. Here, we assume that the arrivals of the ships are mutually
independent events.

5.4. Assumptions and model

The following assumptions have been considered when formulating
the mathematical programming model:

1. There is only one pipeline connecting the terminal with the
refinery, so only one vessel can unload at any moment.

2. A vessel that has started unloading crude can leave the terminal
only once it is completely emptied.

3. Each vessel carries a single type of crude oil, and it is consid-
ered that the pipeline has a negligible volume compared to the
volume to be unloaded.

4. A tank cannot receive crude from a vessel and feed a CDU at
the same time. After receiving crude, a tank should stay idle for
some time for brine settling and removal.

5. A maximum number of tanks can be loaded simultaneously, and
transfers between tanks are not allowed.

6. There is a maximum number of CDUs that a single tank can feed
simultaneously.

7. There is a maximum number of tanks that can feed a CDU at the
same time, and the time to change over tanks is negligible.

8. Perfect mixing of crudes occurs in the mixing pipelines.
9. It is not allowed to stop feeding the crude distillation units.

Under these assumptions, a scheduling model of the process op-
eration, which includes balances, constraints, and other relevant fac-
tors, was developed. Appendix A includes the nomenclature of sets,
parameters, and variables. Additionally, it contains the model’s con-
straints, except for the objective function, which is explained in the
next subsection.
6

5.5. Objective function

The cost associated with each scenario e, including first and second
stage terms, is calculated by using (1). The first term, the costs due
to the difference between processed volume and required demand,
comprises the first-stage cost. The variables 𝑜𝑝𝑢 and 𝑠𝑝𝑢 represent the
overproduction and underproduction, respectively, concerning the de-
mand for CDU u. The second term, demurrage and departure tardiness
costs, represents the second-stage cost, where the variables 𝑑𝑚𝑔𝑏,𝑒 and
𝑡𝑑𝑛𝑏,𝑒 refer to the demurrage and departure tardiness of vessel b under
scenario e, respectively. In both cases, the parameters in capital letters
correspond to the unit costs related to each variable.

𝑧𝑒𝑒 =
∑

𝑢∈𝑈
(𝐶𝑂𝑃𝑢 ∗ 𝑜𝑝𝑢 + 𝐶𝑆𝑃 𝑢 ∗ 𝑠𝑝𝑢)

+
∑

𝑏∈𝐵
(𝐶𝐷𝑀𝐺𝑏 ∗ 𝑑𝑚𝑔𝑏,𝑒 + 𝐶𝑇𝐷𝑁𝑏 ∗ 𝑡𝑑𝑛𝑏,𝑒) ∀𝑒 ∈ 𝐸

(1)

The objective function is composed of the first-stage cost and the
expected value of the second-stage cost, considering all scenarios e.
To calculate it, we sum the costs associated with each scenario (𝑧𝑒𝑒),
weighting them according to their probability of occurrence (𝜋𝑒), as
shown in (2).

𝑀𝐼𝑁
∑

𝑒∈𝐸
𝜋𝑒 ∗ 𝑧𝑒𝑒 (2)

5.6. Deterministic equivalent program

There are different ways to solve the two-stage stochastic program-
ming model. In this paper, we use the deterministic equivalent program
approach, which consists of solving the first and second-stage variables
together, and thus simultaneously obtaining a feasible solution for each
scenario.

The optimization model results in a mixed-integer nonlinear pro-
gramming (MINLP) model as it involves continuous and binary vari-
ables. The objective function is given by (2), and the problem is
subject to constraints (A.1)–(A.59), and (1), among which only (A.59)
is nonlinear. This nonlinearity is caused by the fact that the crude
oil concentration in the output flow of a tank must be equal to the
concentration inside the tank.

6. MINLP solution procedure

Due to the nonconvex nature of the nonlinear constraint (A.59), it
is interesting to develop strategies to address this issue.

For instance, in [8] a two-step procedure has been implemented. In
the first step, the nonlinear constraint is ignored, and the resulting MILP
model is solved. Subsequently, utilizing the solution from the previous
step, the binary variables are fixed, and the MILP solution serves as
a starting point for solving the resulting NLP model. This NLP model
includes the same constraints as the MILP model in addition to the
nonlinear constraint.

The authors of [15] propose an iterative two-step MILP-NLP decom-
position algorithm. First, an MILP relaxation is formulated by replacing
the bilinear terms with piecewise McCormick envelopes, which estab-
lishes a lower bound on the MINLP. Next, the solution of the MILP
is utilized as an initial point, and the binary variables are fixed into
the MINLP, resulting in a non-linear programming (NLP) problem. The
solution of this NLP provides an upper bound when a feasible solution
is obtained.

The paper [12] introduces a two-step MILP-NLP algorithm where
the bilinear blending constraints are relaxed using multiparametric
disaggregation, this technique involves discretizing one of the variables
of the bilinear term over a set of powers.

In this paper, we have developed a strategy that also consists
of two steps. Initially, a mixed integer linear programming (MILP)
model, which is an approximation of the original MINLP, is solved. The
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approximate MILP formulation is obtained by replacing the nonlinear
constraint (A.59), the one which states that the crude oil concentration
at the outlet of a tank must be the same as the one inside the tank,
with the linear constraints (3) and (4), which determine that a tank
maintains the initial crude c concentration until the moment it receives
rude oil from a ship.

In more detail, if a tank has not received any loading until slot
inclusive, then the binary variable 𝑥𝑞𝑞,𝑠′ ,𝑒, indicating if the tank is

eceiving a load, will be equal to zero for slot s and all previous slots
𝑠′ ≤ 𝑠). Thus, from Eqs. (3) and (4), the volume of crude oil type
unloaded (𝑓𝑐𝑞𝑢𝑐,𝑞,𝑢,𝑠,𝑒) will be equal to the total volume unloaded

𝑓𝑞𝑢𝑞,𝑢,𝑠) during slot s, multiplied by the initial concentration of crude
il c in that tank (𝐶𝑂𝑁𝐶𝑞,𝑐). In case the tank has previously received
load, then the constraints become idle.

𝑐𝑞𝑢𝑐,𝑞,𝑢,𝑠,𝑒 ≤ 𝐶𝑂𝑁𝐶𝑞,𝑐 ∗ 𝑓𝑞𝑢𝑞,𝑢,𝑠 + 𝑀3𝑞 ∗
∑

𝑠′∈𝑆,𝑠′≤𝑠
𝑥𝑞𝑞,𝑠′ ,𝑒

𝑐 ∈ 𝐶, ∀𝑞 ∈ 𝑄, ∀𝑢 ∈ 𝑈, ∀𝑠 ∈ 𝑆, ∀𝑒 ∈ 𝐸
(3)

𝑐𝑞𝑢𝑐,𝑞,𝑢,𝑠,𝑒 ≥ 𝐶𝑂𝑁𝐶𝑞,𝑐 ∗ 𝑓𝑞𝑢𝑞,𝑢,𝑠 − 𝑀3𝑞 ∗
∑

𝑠′∈𝑆,𝑠′≤𝑠
𝑥𝑞𝑞,𝑠′ ,𝑒

𝑐 ∈ 𝐶, ∀𝑞 ∈ 𝑄, ∀𝑢 ∈ 𝑈, ∀𝑠 ∈ 𝑆, ∀𝑒 ∈ 𝐸
(4)

Subsequently, the values of the binary variables in the original
INLP (allocation of vessels to tanks, allocation of tanks to units, et

etera) are fixed according to the solution obtained for the MILP, and
he resulting nonlinear programming (NLP) model is solved to get the
alues of volumes loaded into the tanks, volumes unloaded from the
anks, start-time and duration of operations, among others. In case no
easible solution can be reached, the original MINLP model is solved
sing an outer approximation solver (DICOPT [27]).

This procedure is summarizes in algorithm 1, and depicted in Fig. 3.
n this figure, each circle represents a type of model and its components:
he objective function, constraints, and variables. Initially, starting from
he MINLP model, we obtain the MILP model (linear approximation)
nd solve it (MILP solution). Then, based on this solution, we fix the
alues of the binary variables in the MINLP model (binary variables
ILP) and solve the resulting NLP model (solution).

Algorithm 1 MINLP solution strategy
1: Replace equation (A.59) of MINLP model with equations (3) and

(4).
2: Solve resulting MILP model.
3: Fix binary variables from MILP solution in MINLP model.
4: Solve resulting NLP model.
5: if NLP solution is infeasible then
6: Solve MINLP model with DICOPT solver.
7: end if

7. Stochastic model performance evaluation

One of the objectives of this paper is to evaluate whether two-stage
stochastic programming offers any advantage over simpler determin-
istic approaches. To this end, Birge and Louveaux [26] proposed the
value of the stochastic solution (VSS) and the expected value of perfect
information (EVPI) as performance indicators. Before defining both
measures, it should be noted that the two-stage stochastic programming
model is also known as recourse problem (RP).

7.1. Expected value of perfect information

Suppose that we have perfect information about uncertainty, i.e., we
know with complete certainty the arrival date of the ships every time
we have to make a decision; in other words, we know what the future
scenario will be. Furthermore, let us assume that there is at least one
feasible solution for each of the scenarios considered. Thus, we could
solve each of them separately obtaining the corresponding optimal
7

solution and the associated value of the objective function. If we were
to repeat the procedure of applying the appropriate optimal solution
every time we have to make a decision, we would obtain the minimum
expected cost in the long run.

Therefore, the minimum expected cost is equal to the sum of the
optimal costs associated with each scenario weighted by its probability
of occurrence what is known as the wait-and-see solution (WS).

Finally, we obtain the expected value of perfect information (EVPI)
as the difference between the RP solution and the WS solution. The
EVPI represents how much we would be willing to pay, each time we
have to make a decision, to obtain perfect information about the arrival
of the ships.

𝐸𝑉 𝑃𝐼 = 𝑅𝑃 −𝑊𝑆 (5)

7.2. Value of the stochastic solution

One may ask which is the advantage of using the stochastic solution
over the deterministic one. If we do not wish to use the RP, then we
can solve a deterministic problem with the expected arrival times of
the ships. This approach is known as the expected value problem (EV),
and its solution is called the expected value solution.

With this solution, we will apply the first-stage variable values.
Then, when a ship arrives, the best we could do is to solve another
deterministic problem in which we fix the values of the first-stage
variables and optimize the second-stage variables.

In the long run, the cost will correspond to the weighted average of
all these solutions, and it is known as the expected result of using the
EV solution (EEV).

Finally, the value of the stochastic solution (VSS) compares the
EEV solution and the RP solution in order to quantify the reduction of
the expected cost when considering the randomness of the uncertainty
versus its weighted average.

𝑉 𝑆𝑆 = 𝐸𝐸𝑉 − 𝑅𝑃 (6)

It should be noted that there is a risk that the solution obtained
rom the EV model may be infeasible for one or more scenarios.
herefore, when optimizing the second-stage variables, we have incor-
orated slack variables related to vessel unloading start dates to achieve
onvergence in those scenarios for which the solution is infeasible.

. Risk management

The approach described above (A.1)–(A.59), (1), and (2) does not
valuate the risk associated with the objective function, that is, it is
isk-neutral and only seeks to minimize the expected cost in the long
un without taking into account the probability distribution of the
bjective function, that is, the probability of having very bad values
f the cost function in case some scenarios are realized. However, it is
ften important to consider this distribution to reduce the risk that the
olution obtained could produce high costs in certain scenarios.

For this purpose, there are two popular risk measures: Value-at-
isk (VaR) and Conditional Value-at-Risk (CVaR). On the one hand,
aR with confidence level 1 − 𝛼 determines the minimum value 𝜔*,
here 𝜔* is the value of the cost function 𝐽 such that the probability of
btaining a value of 𝐽 less than 𝜔* is 1 − 𝛼. On the other hand, CVaR

with confidence level 1 − 𝛼 represents the average value of the tail of
the distribution, above the VaR1−𝛼 value (Fig. 4).

In Fig. 4, the 𝑦-axis represents the values of the probability density
function. The 𝑥-axis represents the values of the random variable:
the objective function (𝐽 ). The symbol 𝜔* represents the value of 𝐽
obtained from VaR1−𝛼 . The gray area under the curve represents the
value of the cumulative distribution function evaluated at 𝜔*, which is
the probability that 𝐽 is less than 𝜔*. The blue area under the curve
(distribution tail) represents the probability that 𝐽 is greater than 𝜔*.
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Fig. 3. Solution procedure.
Fig. 4. Graphical representation of the CVaR.

Both risk measures have similar meanings but, even if VaR is easier
to interpret, the solution of the optimization problem becomes quite
complex, so in this work, we use CVaR because it is simple to calculate
and consistent since if the cost function is convex with respect to the
decision variables (𝜇), then the CVaR function is also convex.

The formulation of the two-stage stochastic programming model
with risk management maintains the same constraints as the original
two-stage model (A.1)–(A.59), and (1) and incorporates the following.

In (7), a non-negative auxiliary variable is defined for each scenario
(𝜙𝑒). It takes a value greater than zero if the cost of the scenario (𝑧𝑒𝑒)
is greater than VaR variable (𝑣𝑎𝑟); otherwise, it can be made zero. In
(8), the value of the CVaR variable (𝑐𝑣𝑎𝑟) is calculated.

𝑧𝑒𝑒 − 𝑣𝑎𝑟 ≤ 𝜙𝑒 ∀𝑒 ∈ 𝐸 (7)

𝑐𝑣𝑎𝑟 = 𝑣𝑎𝑟 + (1∕𝛼) ∗ (
∑

𝑒∈𝐸
𝜋𝑒 ∗ 𝜙𝑒) (8)

Moreover, the objective function (2) is replaced by (9).

𝑀𝐼𝑁 𝑐𝑣𝑎𝑟 (9)

9. Results

To evaluate each of the presented approaches, and in particular,
the two-stage stochastic programming model with risk management
developed in this paper, we consider an example that consists of
8

Table 1
Arrival times and probabilities.

Scenarios Probabilities Arrival time (h)

Ship 1 Ship 2

1 0.01 5 35
2 0.03 45 35
3 0.01 85 35
4 0.2 5 65
5 0.5 45 65
6 0.2 85 65
7 0.01 5 95
8 0.03 45 95
9 0.01 85 95

a maritime terminal with a pipeline, five storage tanks, two crude
distillation units, and five classes of crude characterized by a single
key property. The arrival of two vessels is expected over a 120-hours (5
days) time horizon. The arrival dates and probabilities for each scenario
are detailed in Table 1. The expected departure date is 12 hours after
the arrival. The demand for CDU 1 is 100 000 m3 and for CDU 2 is
65 000 m3 over the scheduling horizon.

The different formulations mentioned in the paper have been solved
and compared in the following sections.

9.1. Risk-neutral approach

In this section, we analyze the results obtained from the two-stage
risk-neutral stochastic programming model (A.1)–(A.59), (1), and (2),
also known as the recourse problem (RP).

First, in Table 2, we observe that the expected cost of the solution
is 20.97 ke. This value corresponds to the sum of the costs of each
scenario, weighted according to their probability of occurrence.

Second, the costs associated with each scenario are detailed in
Table 3 under the ‘‘Risk-neutral (RP)’’ row. Here, we can see that they
are greater than zero in all cases except for scenarios 4 and 6, and the
worst case corresponds to scenario 2, which has a cost of 159 ke. It
should be mentioned that none of the scenarios incur first-stage costs; in
other words, the demand is met exactly, and these costs are exclusively
attributed to demurrage and tardiness in the unloading of the ships.

Next, we conduct a detailed analysis of Fig. 5, corresponding to a
Gantt chart of ship unloading for the RP solution. On the vertical axis
of this diagram, the scenarios are indicated, and on the horizontal axis,
the timeline (scheduling horizon). Then, blue and red bars represent
the operation of vessels 1 and 2, respectively, and gray bars represent
the time intervals during which no vessel is operating. Please note that
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Fig. 5. Gantt chart of risk-neutral solution.
Table 2
Expected costs associated with proposed models, and values of EVPI and
VSS.

RP WS EEV EVPI VSS
(×103 €)

20.97 0.45 1078.13 20.52 1057.16

Table 3
Cost per scenario.

Model Cost per scenario (×103 €)

e1 e2 e3 e4 e5 e6 e7 e8 e9

CVaR0.99 0 30 0 24 54 24 42 72 42
CVaR0.7 45 99 45 30 30 30 42 42 42
CVaR0.6 45 147 45 24 24 24 42 42 42
Risk-neutral (RP) 69 159 69 0 24 0 42 66 42
EEV 205 123 4123 196 0 4000 3196 3000 7000
WS 0 12 0 0 0 0 0 0 9

slot durations are first-stage variables, and therefore, they are the same
for all scenarios.

In scenario 1, vessel 1 unloads the crude oil at the scheduled times.
In contrast, vessel 2 experiences demurrage and tardiness, beginning its
discharge 10 hours later than the scheduled arrival time and finishing
at hour 65 instead of hour 47 (12 hours after arrival). In scenario 2,
ship 1 starts unloading at the scheduled time (hour 45) but finishes at
hour 65, eight hours later than expected. As for ship 2, it incurs a 30-
hour demurrage, and consequently, it also fails to meet the stipulated
departure time. In this case, we can observe that the order of ship
arrivals is not respected when unloading. Regarding scenario 3, we
observe that vessel 2 starts unloading 10 hours later than expected,
and its tardiness is 18 hours, as it should have left the terminal by hour
47. In scenarios 4 and 6, both vessels adhere to their scheduled times
for starting and finishing unloading, resulting in a cost of zero for these
scenarios. In scenario 5, both ships start unloading at the expected time,
but ship 1 incurs an eight-hour tardiness. Finally, in scenarios 7, 8, and
9, ship 1 begins unloading at the scheduled time and only finishes later
than expected in scenario 8. As for ship 2, in all three scenarios, it starts
and finishes unloading at hours 97 and 120, respectively, which means
there is a two-hour demurrage and a 13-hour tardiness.

9.2. EVPI and VSS

The cost function values obtained for the recourse problem solution
(RP), the expected result of using the EV solution (EEV), and the wait-
and-see solution (WS) are shown in Table 2. Moreover, the expected
value of perfect information (EVPI) and the value of the stochastic
9

solution (VSS) are presented in the same table to analyze the effect of
considering uncertainty. From the value of the EVPI, we can conclude
that if we have access to perfect information, the RP solution will
improve by up to 20.52 ke, so this is the maximum that we would
be willing to pay to obtain that information. Besides, the VSS indicates
that it is worth using the two-stage stochastic optimization since the
expected cost when using the mean value of the uncertain parameter
increases by 1057.16 ke. It is important to mention that this value is
very large since there are scenarios for which the first-stage EV solution
is infeasible, and this feature is represented by high costs. Therefore, it
is preferable to apply the RP solution.

In Table 3, we can see the cost per scenario for the risk-neutral
(RP), EEV, and WS models. The solution obtained for the first-stage
variables using the EV model is infeasible for scenarios 3, 6, 7, 8, and
9, as indicated by the high associated cost for each of these scenarios. It
is worth mentioning that when optimizing the second-stage variables,
we introduced slack variables related to vessel unloading start dates to
ensure convergence in scenarios where the initial solution is infeasible.
These slack variables were incorporated into the objective function
with a high cost. As a result, the objective function value is higher than
three thousand in these cases, highlighting the extent of infeasibility in
the first-stage solution for these scenarios.

We can also observe that the WS solution is zero in several scenarios
because, with perfect information, they fulfill all specifications. How-
ever, it is non-zero in scenarios 2 and 9. This is because when ships
arrive on dates close to each other, the second ship to be unloaded will
inevitably incur demurrage and tardiness, even if the first ship unloads
at the maximum flow rate.

9.3. CVaR

The results obtained for the two-stage stochastic programming
model with risk management (CVaR model) are presented below. Three
cases with different confidence levels have been analyzed: 0.99, 0.7,
and 0.6.

Table 3 shows the cost associated with each scenario for each of
the evaluated cases: CVaR 0.99, CVaR 0.7, and CVaR 0.6. When we
compare these three cases, we can observe that only for CVaR 0.99 are
there scenarios with zero cost, specifically scenarios 1 and 3. This is
due to the fact that, based on the solution obtained for CVaR 0.99, the
demand is met exactly, and ships 1 and 2 are unloaded on the scheduled
dates in scenarios 1 and 3. For the remaining scenarios, costs are greater
than zero due to demurrage or tardiness in the operation of the ships.

Continuing with the analysis of the three solutions, we can observe
that the worst-case scenario for CVaR 0.99 is scenario 8. For the CVaR
0.7 and CVaR 0.6 solutions, the worst scenario is number 2. Addition-
ally, when comparing the three cases, we notice that the highest cost
is associated with scenario 2 of the CVaR 0.6 solution.
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Interestingly, we can observe from Table 3 that for scenarios 7 and
9, the costs associated with the RP and CVaR models are the same. This
is because, in all four solutions, vessel 2 starts unloading two hours later
than planned and finishes 13 hours later than its expected departure
date, resulting in the same demurrage and tardiness costs for these
models. It is worth mentioning that in none of the cases are first-stage
costs incurred.

Table 4 displays the VaR and CVaR values at confidence levels 0.99,
0.7, and 0.6. In addition, the expected costs for all cases, including
the risk-neutral approach, are shown. When we compare the solutions
that include risk management, we can observe that as the significance
level (𝛼) decreases, the VaR and CVaR values increase. This is because a
reater weight is given to the worst-case scenarios, i.e., those scenarios
hat present a high cost.

Likewise, as 𝛼 decreases, the expected cost (value of the objective
unction) increases because more conservative policies are adopted.
hese policies help obtain solutions that avoid high costs in less proba-
le scenarios but come at the expense of increasing the cost associated
ith scenarios that have a higher probability of occurring. Further-
ore, we can note that the RP solution is better in terms of expected

ost, but it may have very high costs in some scenarios, as can be seen
n Table 3 for scenario 2.

Figs. 6 to 8 show Gantt charts of vessel operations for the three
isk-managed solutions. In these figures, we can observe the arrival and
eparture times of the two vessels for each of the nine scenarios.

When comparing scenarios within the same case, we observe that
he decisions related to the unloading of the vessels vary among them,
ince they are not first-stage decisions. Moreover, when comparing
he three risk-managed solutions, we notice variations in the decisions
egarding the start and end times of the time slots.

We also notice that the decisions (unloading dates and operation
urations) related to ship 1 for scenarios 1, 3, 4, 6, 7, and 9 remain
he same in all cases, including the risk-neutral case. Meanwhile, con-
erning vessel 2, the decisions related to scenarios 7, 8, and 9 are the
ame in all cases. Furthermore, only in the case of higher risk aversion
CVaR0.99) is the order of arrival of the vessels in scenario 2 respected.
his results in the lowest cost case for scenario 2, excluding the WS
olution, as can be seen in Table 3.

Fig. 9 illustrates the costs per scenario in each of the three risk-
anaged solutions and the risk-neutral solution. From this figure,
e can see more clearly the effect of the adopted risk level on the
btained solution. As we assume less risk (lower 𝛼), the costs of the
cenarios tend to be more uniform. Additionally, we can notice that
he possibility of having scenarios with very high costs is avoided.

It is worth mentioning that although the total volume of the feed
ixture is the same for all scenarios since it is a first-stage variable,

he concentration of the property can be different between scenarios if
he composition of the mixture changes. This fact is shown in Figs. 10,
1, and 12, which depict the evolution of key property concentration
n the feed mixture of CDU 1 for scenarios 3, 5, and 7, corresponding
o the CVaR0.99 solution.

By analyzing these figures, we can observe that the evolution of the
oncentration maintains a very similar profile up to hour 65 in the three
cenarios, and in none of the cases, the established limits are violated.
owever, scenarios 3 and 7 are more critical than scenario 5 since,
t the end of the horizon, the property’s concentration value is at the
ower bound or very close to it.

.4. Time analysis and model statistics

In order to evaluate the complexity of the presented method, an
nalysis of the computational time has been carried out by varying the
umber of evaluated scenarios. For this purpose, four cases have been
roposed: the first involves 4 scenarios, the second 9 scenarios (the
ame as those shown in Table 1), the third 16 scenarios, and finally,
10

he fourth case with 25 scenarios. Each of the cases has been solved
Table 4
VaR and CVaR values.

1-𝛼 VaR1−𝛼 (×103 €) CVaR1−𝛼 (×103 €) Expected cost (×103 €)

0.99 72 72 40.5
0.7 30 39.9 32.97
0.6 24 36.53 29.01
Risk-neutral
(RP) – – 20.97

Table 5
Solution time for different number of scenarios.

Model Number of scenarios
(CPU time in seconds)

4 9 16 25

RP 8.9 40.5 1178.9 –
CVaR0.7 4.3 19.1 482.7 –
CVaR0.99 7.0 38.0 149.1 –

for the models: RP, CVaR0.7, and CVaR0.99; and in each of them, eight
slots have been used.

As can be seen from the values in Table 5, as the number of scenar-
ios increases, the solution time increases exponentially, increasing by
three orders of magnitude for the RP case. Moreover, it should be noted
that it was not possible to obtain solutions in less than 3600 seconds
for any of the three proposed models.

From the previous result, we can see that the number of scenarios
evaluated constitutes a bottleneck when solving case studies with the
proposed model, which is why it is of great interest to the authors to
apply and develop decomposition methods in future work.

Lastly, Table 6 summarizes the statistics for each of the instances
solved, including EV and WS models. In the EV and WS models the sce-
narios are solved separately, therefore, the table shows the number of
variables and constraints corresponding to a single scenario. However,
the Time column shows the total time taken to solve all scenarios. The
example has been solved using GAMS 41.3.0 software, Gurobi 9.5.2
for MILPs, and CONOPT 4.29 for NLPs on a computer with Intel Core
i9-13900K 3.00 GHz processor and 128 GB RAM.

10. Conclusions

In this paper, we developed a scheduling model to characterize the
operation of a system comprising a crude oil section and a maritime
terminal of an oil refinery. The model is used to decide the best
way of operating the crude section while considering the uncertainty
linked with ship arrivals. Alongside formulating a two-stage stochas-
tic scheduling problem, we assessed the advantages of concurrently
incorporating a two-stage stochastic approach and a continuous-time
formulation for optimizing crude oil operations scheduling compared
to deterministic approaches. Furthermore, we examined the impact of
integrating risk management into the model and how solutions vary
across different aversion levels.

From the value of the stochastic solution, we can conclude that
the two-stage formulation offers a more robust solution compared to
deterministic approaches, mainly because it allows us to correct the
consequences of decisions taken now based on future conditions.

Moreover, introducing CVaR enables the penalization of extreme
values that may appear if some scenarios are realized, thereby mini-
mizing risk. While the inclusion of risk management in the two-stage
stochastic model increases the expected cost with higher risk aversion,
Fig. 9 highlights that risk-aware solutions exhibit greater uniformity
compared to risk-neutral ones. Notably, in scenario 2, the cost of the
risk-neutral solution exceeds five times that of CVaR at a confidence
level of 0.99.

Regarding the solution strategy for the presented MINLP, even

though the solution of the approximate MILP model might not be
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Fig. 6. Gantt chart of CVaR0.99 solution.
Fig. 7. Gantt chart of CVaR0.7 solution.
Fig. 8. Gantt chart of CVaR0.6 solution.
Table 6
Model statistics.

Model Continuous variables Binary variables Constraints Time (s)

MILP NLP MILP MILP NLP

CVaR0.99

1272 20 016 16 416
38.02

CVaR0.7 9356 19.12
CVaR0.6 54.39

Risk-neutral 9345 20 006 16 406 40.51

EEV 1273 248 2670 2270 0.77

WS 1257 2.82
11
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Fig. 9. Cost of scenarios.

Fig. 10. Evolution of key property concentration in scenario 3 (CVaR0.99).

Fig. 11. Evolution of key property concentration in scenario 5 (CVaR0.99).

Fig. 12. Evolution of key property concentration in scenario 7 (CVaR0.99).
12
optimal for the MINLP, it provides an efficient way of selecting very
good and feasible decisions. However, the authors are aware that the
method can be improved. One option would be to define an iterative
process in which cutoffs are added to the MILP.

One of the main limitations found in this work corresponds to the
number of evaluated scenarios. One way to overcome this difficulty is
through the development and application of decomposition methods for
stochastic problems. Currently, progress is being made in this direction,
and results are expected to be presented soon.

Finally, future work will also focus on extending the scope of the
studied system, including downstream processing units, to achieve
more comprehensive solutions.
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Appendix

This appendix includes the nomenclature and constraints of the
model presented. We should mention that certain notation has been
adopted from [6]. Besides, one point that is interesting to mention
concerns the way precedence is handled. In this work, the precedence
between vessels is not subject to the order of the elements of the
set ‘‘Vessels’’ as stated in [13], and there is no pre-allocation of time
slots for each vessel as in [6]. In the present work, the ‘‘pre-defined
precedence’’ concept has been applied, which means that the set of slots
is pre-ordered, and the optimization algorithm allocates each vessel to
some of these slots [28].

Appendix A. Model constraints

A.1. Notation

A.1.1. Sets
• B = vessels
• BC = vessel–crude pairs. This set indicates which type of crude

oil c is transported by each vessel b, i.e., its elements are pairs (b,
c), where b is in B, and c is in C.

• C = types of crude oils
• E = scenarios
• K = key components
• Q = tanks
• S = time slots
• U = crude distillation units
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A.1.2. Parameters
• 𝐴𝑇 𝑏,𝑒 = arrival time of vessel b under scenario e
• 𝐶𝐴𝑃 𝑞 = minimum inventory of crude mix in a tank
• 𝐶𝐴𝑃 𝑞 = maximum capacity of a tank
• 𝐶𝐷𝑀𝐺𝑏 = demurrage or sea waiting cost
• 𝐶𝑂𝑁𝐶𝑞,𝑐 = initial crude c concentration in the tank q
• 𝐶𝑂𝑃 𝑢 = cost due to overproduction concerning the demand of

unit u
• 𝐶𝑆𝑃 𝑢 = cost due to underproduction concerning the demand of

unit u
• 𝐶𝑇𝐷𝑁𝑏 = departure tardiness cost
• 𝐷𝐸𝑀𝑢 = total demand of blended crude for CDU u
• 𝐸𝐷𝑇 𝑏,𝑒 = departure time of vessel b under scenario e
• 𝐹𝐵𝑏 = minimum rate of crude transfer from vessel b
• 𝐹𝐵𝑏 = maximum rate of crude transfer from vessel b
• 𝐹𝑄

𝑞
= minimum rate of crude transfer to tank q

• 𝐹𝑄𝑞 = maximum rate of crude transfer to tank q
• 𝐹𝑈 𝑢 = minimum rate of crude transfer to CDU u
• 𝐹𝑈 𝑢 = maximum rate of crude transfer to CDU u
• 𝐻 = length of the scheduling horizon
• 𝐼𝐼𝐶𝑞,𝑐 = initial amount of crude c in the tank q
• 𝑁𝑅 = maximum number of tanks that can feed a CDU
• 𝑁𝑇 = maximum number of tanks that can be loaded
• 𝑁𝑈 = maximum number of CDUs that can be loaded simultane-

ously by a tank
• 𝑂𝐹𝑄

𝑞
= minimum rate of crude transfer from tank q

• 𝑂𝐹𝑄𝑞 = maximum rate of crude transfer from tank q
• 𝑃𝑅𝑐,𝑘 = volumetric concentration of the key component k in the

crude type c
• 𝑃𝑅𝑂𝑃 𝑢,𝑘 = minimum allowed concentration of key component k

in the feedstock of CDU u
• 𝑃𝑅𝑂𝑃 𝑢,𝑘 = maximum allowed concentration of key component k

in the feedstock of CDU u
• 𝑆𝑇 = time to settle and remove the brine
• 𝑉 𝑂𝐿𝑏,𝑐 = amount of crude c in the vessel b
• 𝛼 = significance level
• 𝜋𝑒 = scenario e probability

.1.3. Continuous variables
The domain of continuous variables is the set of non-negative real

umbers, except for the variables 𝑧𝑒𝑒 (cost per scenario) and 𝑐𝑣𝑎𝑟
(Conditional Value-at-Risk), whose domain is the set of all real numbers
since they represent the objective functions.

• 𝑐𝑣𝑎𝑟 = Conditional Value-at-Risk
• 𝑑𝑚𝑔𝑏,𝑒 = demurrage of vessel b under scenario e
• 𝑑𝑚𝑔𝑠𝑏,𝑠,𝑒 = auxiliary variable to calculate 𝑑𝑚𝑔𝑏,𝑒
• 𝑑𝑠𝑠 = length of slot s
• 𝑓𝑏𝑞𝑏,𝑞,𝑠,𝑒 = amount of crude transferred from b to q during s
• 𝑓𝑐𝑏𝑐,𝑏,𝑠,𝑒 = total amount of crude c unloaded from b during s
• 𝑓𝑐𝑏𝑞𝑐,𝑏,𝑞,𝑠,𝑒 = amount of crude c transferred from b to q during s
• 𝑓𝑐𝑞𝑢𝑐,𝑞,𝑢,𝑠,𝑒 = amount of crude c transferred from q to u during s

under scenario e
• 𝑓𝑞𝑢𝑞,𝑢,𝑠 = amount of crude mix transferred from q to u during s
• 𝑓𝑢𝑢,𝑠 = total amount of crude mix transferred to u during s
• 𝑖𝑞,𝑠,𝑒 = total level in q at the beginning of s
• 𝑖𝑐𝑞,𝑐,𝑠,𝑒 = amount of c in q at the beginning of s
• 𝑖𝑐𝑒𝑞,𝑐,𝑠,𝑒 = amount of c in q at the end of the horizon
• 𝑖𝑒𝑞,𝑠,𝑒 = total level in q at the end of the scheduling horizon
• 𝑖𝑠𝑠 = start-time of slot s
• 𝑜𝑝𝑢 = overproduction concerning the demand of unit u
13

• 𝑠𝑝𝑢 = underproduction concerning the demand of unit u
• 𝑡𝑑𝑛𝑏,𝑒 = departure tardiness of vessel b under scenario e
• 𝑡𝑑𝑛𝑠𝑏,𝑠,𝑒 = auxiliary variable to calculate 𝑡𝑑𝑛𝑏,𝑒
• 𝑡𝑠𝑠 = end-time of slot s
• 𝑣𝑎𝑟 = Value-at-Risk
• 𝑧𝑒𝑒 = cost associated with scenario e
• 𝜙𝑒 = auxiliary variable to assess the CVaR

A.1.4. Binary variables
• 𝑥𝑏𝑏,𝑠,𝑒 = is equal to 1 if vessel b is unloading during s under

scenario e; 0 otherwise
• 𝑥𝑓𝑑𝑏,𝑠,𝑒 = is equal to 1 if vessel b finishes its unloading at the end

of s under scenario e; 0 otherwise
• 𝑥𝑖𝑑𝑏,𝑠,𝑒 = is equal to 1 if vessel b starts its unloading at the

beginning of s under scenario e; 0 otherwise
• 𝑥𝑞𝑞,𝑠,𝑒 = is equal to 1 if tank q is receiving crude during s under

scenario e
• 𝑦𝑞,𝑢,𝑠 = is equal to 1 if tank q feeds CDU u during slot s
• 𝑦𝑞𝑞,𝑠 = is equal to 1 if tank q is delivering crude during slot s
• 𝑧𝑞𝑞,𝑠,𝑒 = is equal to 1 if tank q is idle or settling during slot s under

scenario e

.2. Constraints

A vessel is unloaded during a slot s (𝑥𝑏𝑏,𝑠,𝑒) if it was unloading
uring the previous slot (𝑥𝑏𝑏,𝑠−1,𝑒) and has not finished yet (𝑥𝑓𝑑𝑏,𝑠−1,𝑒),
r if it starts at the beginning of the current slot (𝑥𝑖𝑑𝑏,𝑠,𝑒) (A.1). Note
hat it applies to every scenario as it involves second-stage variables.

𝑏𝑏,𝑠,𝑒 = 𝑥𝑏𝑏,𝑠−1,𝑒 + 𝑥𝑖𝑑𝑏,𝑠,𝑒 − 𝑥𝑓𝑑𝑏,𝑠−1,𝑒
𝑏 ∈ 𝐵, ∀𝑠 ∈ 𝑆, ∀𝑒 ∈ 𝐸

(A.1)

A vessel can finish unloading at the end of a slot as long as it was
nloading during that slot (A.2). Note that if the ship is not being
nloaded (𝑥𝑏𝑏,𝑠,𝑒 = 0), then 𝑥𝑓𝑑𝑏,𝑠,𝑒 will be equal to 0.

𝑏𝑏,𝑠,𝑒 ≥ 𝑥𝑓𝑑𝑏,𝑠,𝑒
𝑏 ∈ 𝐵, ∀𝑠 ∈ 𝑆, ∀𝑒 ∈ 𝐸

(A.2)

All ships may start and end unloading only once within the schedul-
ng horizon, (A.3) and (A.4) respectively.
∑

𝑠∈𝑆
𝑥𝑖𝑑𝑏,𝑠,𝑒 = 1 ∀𝑏 ∈ 𝐵, ∀𝑒 ∈ 𝐸 (A.3)

∑

𝑠∈𝑆
𝑥𝑓𝑑𝑏,𝑠,𝑒 = 1 ∀𝑏 ∈ 𝐵, ∀𝑒 ∈ 𝐸 (A.4)

Only one vessel can unload at any moment (assumption 1).
∑

𝑏∈𝐵
𝑥𝑏𝑏,𝑠,𝑒 ≤ 1 ∀𝑠 ∈ 𝑆, ∀𝑒 ∈ 𝐸 (A.5)

A maximum of NT tanks can be loaded simultaneously (assumption
). That is, the sum of the binary variable indicating that a tank is being
oaded (𝑥𝑞𝑞,𝑠,𝑒), over all tanks, must be less than or equal to 𝑁𝑇 .
∑

𝑞∈𝑄
𝑥𝑞𝑞,𝑠,𝑒 ≤ 𝑁𝑇 ∀𝑠 ∈ 𝑆, ∀𝑒 ∈ 𝐸 (A.6)

When unloading crude oil from a vessel, it is necessary to have at
least one tank being loaded. Note that if no tank is receiving a load,
then ∑

𝑞∈𝑄 𝑥𝑞𝑞,𝑠,𝑒 equals zero.
∑

𝑞∈𝑄
𝑥𝑞𝑞,𝑠,𝑒 ≥ 𝑥𝑏𝑏,𝑠,𝑒 ∀𝑏 ∈ 𝐵, ∀𝑠 ∈ 𝑆, ∀𝑒 ∈ 𝐸 (A.7)

A tank cannot be loaded if there is no ship unloading.

𝑥𝑞𝑞,𝑠,𝑒 ≤
∑

𝑏∈𝐵
𝑥𝑏𝑏,𝑠,𝑒 ∀𝑞 ∈ 𝑄, ∀𝑠 ∈ 𝑆, ∀𝑒 ∈ 𝐸 (A.8)

A tank may not charge more than NU crude distillation units simul-

taneously (assumption 6). Therefore, the sum of the variable indicating
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that a tank is feeding a unit (𝑦𝑞,𝑢,𝑠), over all units, must be less than or
qual to NU at all times.
∑

𝑢∈𝑈
𝑦𝑞,𝑢,𝑠 ≤ 𝑁𝑈 ∀𝑞 ∈ 𝑄, ∀𝑠 ∈ 𝑆 (A.9)

At most NR tanks are allowed to concurrently feed a CDU (assump-
ion 7).
∑

𝑞∈𝑄
𝑦𝑞,𝑢,𝑠 ≤ 𝑁𝑅 ∀𝑢 ∈ 𝑈, ∀𝑠 ∈ 𝑆 (A.10)

Each CDU must continually process feedstock coming from tanks
assumption 9). This means that each CDU must be fed by at least one
ank at all times.
∑

𝑞∈𝑄
𝑦𝑞,𝑢,𝑠 ≥ 1 ∀𝑢 ∈ 𝑈, ∀𝑠 ∈ 𝑆 (A.11)

A tank must be in one of the three states (i.e., loading, unloading,
r idle) during a given slot.

𝑞𝑞,𝑠,𝑒 + 𝑦𝑞𝑞,𝑠 + 𝑧𝑞𝑞,𝑠,𝑒 = 1 ∀𝑞 ∈ 𝑄, ∀𝑠 ∈ 𝑆, ∀𝑒 ∈ 𝐸 (A.12)

A tank must be discharging (𝑦𝑞𝑞,𝑠) if it is feeding a CDU (𝑦𝑞,𝑢,𝑠).

𝑞𝑞,𝑠 ≥ 𝑦𝑞,𝑢,𝑠 ∀𝑞 ∈ 𝑄, ∀𝑢 ∈ 𝑈, ∀𝑠 ∈ 𝑆 (A.13)

A tank must be feeding at least one unit (∑𝑢∈𝑈 𝑦𝑞,𝑢,𝑠) if it is being
nloaded (𝑦𝑞𝑞,𝑠).
∑

𝑢∈𝑈
𝑦𝑞,𝑢,𝑠 ≥ 𝑦𝑞𝑞,𝑠 ∀𝑞 ∈ 𝑄, ∀𝑠 ∈ 𝑆 (A.14)

The end-time of a slot is equal to its start-time plus its length.

𝑠𝑠 = 𝑖𝑠𝑠 + 𝑑𝑠𝑠 ∀𝑠 ∈ 𝑆 (A.15)

The start-time of a slot coincides with the end-time of the previous
lot. This implies that the durations of operations of all resources are
ynchronized in each slot.

𝑠𝑠 = 𝑡𝑠𝑠−1 ∀𝑠 ∈ 𝑆 (A.16)

The total length of the time slots must be equal to the length of the
cheduling horizon.
∑

𝑠∈𝑆
𝑑𝑠𝑠 = 𝐻 (A.17)

The big-M method, explained by Winston and Goldberg [29], is
pplied to compute the amount of crude unloaded to tanks. The M
alues are determined based on physical limits. For example, M1 takes
nto account the volume carried by each vessel.

We calculate the upper bound of the volume of crude oil unloaded
rom a ship to a tank (𝑓𝑐𝑏𝑞𝑐,𝑏,𝑞,𝑠,𝑒) as a function of the maximum flow
ate that the receiving tank admits (𝐹𝑄𝑞) and the duration of the

operation.

𝑓𝑐𝑏𝑞𝑐,𝑏,𝑞,𝑠,𝑒 ≤ 𝐹𝑄𝑞 ∗ 𝑑𝑠𝑠
𝑞 ∈ 𝑄, ∀(𝑏, 𝑐) ∈ 𝐵𝐶, ∀𝑠 ∈ 𝑆, ∀𝑒 ∈ 𝐸

(A.18)

We calculate the lower bound of the volume of crude oil unloaded
rom a ship to a tank (𝑓𝑐𝑏𝑞𝑐,𝑏,𝑞,𝑠,𝑒) as a function of the minimum flow

rate the tank admits (𝐹𝑄
𝑞
) and the duration of the operation. Note that

his constraint is activated only if ship b is unloading (𝑥𝑏𝑏,𝑠,𝑒 = 1) and
ank q is receiving a load (𝑥𝑞𝑞,𝑠,𝑒 = 1).

𝑓𝑐𝑏𝑞𝑐,𝑏,𝑞,𝑠,𝑒 ≥ 𝐹𝑄
𝑞
∗ 𝑑𝑠𝑠 − 𝑀1𝑏 ∗ (2 − 𝑥𝑏𝑏,𝑠,𝑒 − 𝑥𝑞𝑞,𝑠,𝑒)

∀𝑞 ∈ 𝑄, ∀(𝑏, 𝑐) ∈ 𝐵𝐶, ∀𝑠 ∈ 𝑆, ∀𝑒 ∈ 𝐸
(A.19)

If vessel b is not being unloaded, then 𝑓𝑐𝑏𝑞𝑐,𝑏,𝑞,𝑠,𝑒 will be equal to
zero.
𝑓𝑐𝑏𝑞𝑐,𝑏,𝑞,𝑠,𝑒 ≤ 𝑀1𝑏 ∗ 𝑥𝑏𝑏,𝑠,𝑒 (A.20)
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∀𝑞 ∈ 𝑄, ∀(𝑏, 𝑐) ∈ 𝐵𝐶, ∀𝑠 ∈ 𝑆, ∀𝑒 ∈ 𝐸
If tank q is not being loaded, then 𝑓𝑐𝑏𝑞𝑐,𝑏,𝑞,𝑠,𝑒 will be equal to zero.

𝑓𝑐𝑏𝑞𝑐,𝑏,𝑞,𝑠,𝑒 ≤ 𝑀1𝑏 ∗ 𝑥𝑞𝑞,𝑠,𝑒
𝑞 ∈ 𝑄, ∀(𝑏, 𝑐) ∈ 𝐵𝐶, ∀𝑠 ∈ 𝑆, ∀𝑒 ∈ 𝐸

(A.21)

Also, we use the big-M method to calculate the crude volume
unloaded from a vessel during a slot s (𝑓𝑐𝑏𝑐,𝑏,𝑠,𝑒). The upper and lower
bounds are obtained by (A.22) and (A.23), respectively.

𝑓𝑐𝑏𝑐,𝑏,𝑠,𝑒 ≤ 𝐹𝐵𝑏 ∗ 𝑑𝑠𝑠 ∀(𝑏, 𝑐) ∈ 𝐵𝐶, ∀𝑠 ∈ 𝑆, ∀𝑒 ∈ 𝐸 (A.22)

𝑓𝑐𝑏𝑐,𝑏,𝑠,𝑒 ≥ 𝐹𝐵𝑏 ∗ 𝑑𝑠𝑠 − 𝑀1𝑏 ∗ (1 − 𝑥𝑏𝑏,𝑠,𝑒)

∀(𝑏, 𝑐) ∈ 𝐵𝐶, ∀𝑠 ∈ 𝑆, ∀𝑒 ∈ 𝐸
(A.23)

If ship b is not being unloaded, then 𝑓𝑐𝑏𝑐,𝑏,𝑠,𝑒 will be equal to zero.

𝑓𝑐𝑏𝑐,𝑏,𝑠,𝑒 ≤ 𝑀1𝑏 ∗ 𝑥𝑏𝑏,𝑠,𝑒 ∀(𝑏, 𝑐) ∈ 𝐵𝐶, ∀𝑠 ∈ 𝑆, ∀𝑒 ∈ 𝐸 (A.24)

The crude volume unloaded from a vessel during a slot s is equal to
the sum of volumes unloaded to each tank.

𝑓𝑐𝑏𝑐,𝑏,𝑠,𝑒 =
∑

𝑞∈𝑄
𝑓𝑐𝑏𝑞𝑐,𝑏,𝑞,𝑠,𝑒 ∀(𝑏, 𝑐) ∈ 𝐵𝐶, ∀𝑠 ∈ 𝑆, ∀𝑒 ∈ 𝐸 (A.25)

The total volume loaded into a tank during a slot s is calculated by
using (A.26).

𝑓𝑏𝑞𝑏,𝑞,𝑠,𝑒 =
∑

𝑐∈𝐵𝐶
𝑓𝑐𝑏𝑞𝑐,𝑏,𝑞,𝑠,𝑒 ∀𝑏 ∈ 𝐵, ∀𝑞 ∈ 𝑄, ∀𝑠 ∈ 𝑆, ∀𝑒 ∈ 𝐸 (A.26)

To make each vessel unload fully during the scheduling horizon
(assumption 2), we use (A.27).
∑

𝑠∈𝑆
𝑓𝑐𝑏𝑐,𝑏,𝑠,𝑒 = 𝑉 𝑂𝐿𝑏,𝑐 ∀(𝑏, 𝑐) ∈ 𝐵𝐶, ∀𝑒 ∈ 𝐸 (A.27)

The big-M method is applied to compute the amount of crude
unloaded from tanks (A.28)–(A.30). Constraint (A.28) establishes the
upper bound of the amount of crude oil discharged from tank q to unit
u (𝑓𝑞𝑢𝑞,𝑢,𝑠) as a function of the maximum discharge flow rate from the
tank (𝑂𝐹𝑄𝑞) and the duration of the operation.

𝑓𝑞𝑢𝑞,𝑢,𝑠 ≤ 𝑂𝐹𝑄𝑞 ∗ 𝑑𝑠𝑠 ∀𝑞 ∈ 𝑄, ∀𝑢 ∈ 𝑈, ∀𝑠 ∈ 𝑆 (A.28)

We compute the lower bound as a function of the minimum dis-
charge flow rate of tank q (𝑂𝐹𝑄

𝑞
) and the duration of the operation.

This constraint will be activated if tank q is feeding unit u (𝑦𝑞,𝑢,𝑠 = 1).

𝑓𝑞𝑢𝑞,𝑢,𝑠 ≥ 𝑂𝐹𝑄
𝑞
∗ 𝑑𝑠𝑠 − 𝑀2𝑞 ∗ (1 − 𝑦𝑞,𝑢,𝑠)

𝑞 ∈ 𝑄, ∀𝑢 ∈ 𝑈, ∀𝑠 ∈ 𝑆
(A.29)

If tank q is not feeding unit u, then 𝑓𝑞𝑢𝑞,𝑢,𝑠 will be equal to zero.

𝑓𝑞𝑢𝑞,𝑢,𝑠 ≤ 𝑀2𝑞 ∗ 𝑦𝑞,𝑢,𝑠 ∀𝑞 ∈ 𝑄, ∀𝑢 ∈ 𝑈, ∀𝑠 ∈ 𝑆 (A.30)

The total volume unloaded from a tank during a slot s is calculated
by using (A.31). It should be noted that this total volume does not
depend on the scenarios as it is a first-stage variable. However, its
composition does, as the inventory profile in each tank may be different
between scenarios due to receiving crude from ships at different times.

𝑓𝑞𝑢𝑞,𝑢,𝑠 =
∑

𝑐∈𝐶
𝑓𝑐𝑞𝑢𝑐,𝑞,𝑢,𝑠,𝑒 ∀𝑞 ∈ 𝑄, ∀𝑢 ∈ 𝑈, ∀𝑠 ∈ 𝑆, ∀𝑒 ∈ 𝐸 (A.31)

The total feed to CDU u during slot s (𝑓𝑢𝑢,𝑠) is equal to the sum of
the volumes transferred from each tank (𝑓𝑞𝑢𝑞,𝑢,𝑠).

𝑓𝑢𝑢,𝑠 =
∑

𝑞∈𝑄
𝑓𝑞𝑢𝑞,𝑢,𝑠 ∀𝑢 ∈ 𝑈, ∀𝑠 ∈ 𝑆 (A.32)

Constraints (A.33) and (A.34) set the upper and lower limits for
𝑓𝑢𝑢,𝑠, respectively

𝑓𝑢𝑢,𝑠 ≤ 𝐹𝑈 𝑢 ∗ 𝑑𝑠𝑠 ∀𝑢 ∈ 𝑈, ∀𝑠 ∈ 𝑆 (A.33)

𝑓𝑢 ≥ 𝐹𝑈 ∗ 𝑑𝑠 ∀𝑢 ∈ 𝑈, ∀𝑠 ∈ 𝑆 (A.34)
𝑢,𝑠 𝑢 𝑠
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The concentration of key components in the feedstock for the CDUs
is given by (A.35)–(A.36). Constraint (A.35) sets the upper bound as
the multiplication between the maximum allowed concentration of key
component k in the feedstock of CDU u (𝑃𝑅𝑂𝑃 𝑢,𝑘) and the total volume
eceived by u (𝑓𝑢𝑢,𝑠). Similarly, constraint (A.36) establishes the lower
ound. Note that, in both cases, the variable 𝑓𝑢𝑢,𝑠 is on the right-hand
ide of the inequality to avoid nonlinear constraints.
∑

𝑞∈𝑄

∑

𝑐∈𝐶
𝑓𝑐𝑞𝑢𝑐,𝑞,𝑢,𝑠,𝑒 ∗ 𝑃𝑅𝑐,𝑘 ≤ 𝑃𝑅𝑂𝑃 𝑢,𝑘 ∗ 𝑓𝑢𝑢,𝑠

𝑘 ∈ 𝐾, ∀𝑢 ∈ 𝑈, ∀𝑠 ∈ 𝑆, ∀𝑒 ∈ 𝐸
(A.35)

∑

𝑞∈𝑄

∑

𝑐∈𝐶
𝑓𝑐𝑞𝑢𝑐,𝑞,𝑢,𝑠,𝑒 ∗ 𝑃𝑅𝑐,𝑘 ≥ 𝑃𝑅𝑂𝑃 𝑢,𝑘 ∗ 𝑓𝑢𝑢,𝑠

∀𝑘 ∈ 𝐾, ∀𝑢 ∈ 𝑈, ∀𝑠 ∈ 𝑆, ∀𝑒 ∈ 𝐸
(A.36)

The amount of crude c in each tank at the start of slot s (𝑖𝑐𝑞,𝑐,𝑠,𝑒) is
alculated as the amount of crude oil c at the beginning of the previous
lot (𝑖𝑐𝑞,𝑐,𝑠−1,𝑒), plus the load of crude oil c received during the previous
lot (𝑓𝑐𝑏𝑞𝑐,𝑏,𝑞,𝑠−1,𝑒), minus the volume of crude oil c discharged from
ank q to the units during the previous slot (𝑓𝑐𝑞𝑢𝑐,𝑞,𝑢,𝑠−1,𝑒).

𝑐𝑞,𝑐,𝑠,𝑒 = 𝑖𝑐𝑞,𝑐,𝑠−1,𝑒 +
∑

𝑏∈𝐵𝐶
𝑓𝑐𝑏𝑞𝑐,𝑏,𝑞,𝑠−1,𝑒 −

∑

𝑢∈𝑈
𝑓𝑐𝑞𝑢𝑐,𝑞,𝑢,𝑠−1,𝑒

𝑞 ∈ 𝑄, ∀𝑐 ∈ 𝐶, ∀𝑠 ∈ 𝑆 ⧵ {𝑠1} , ∀𝑒 ∈ 𝐸
(A.37)

The amount of crude c in each tank at the beginning of the horizon
s given by (A.38).

𝑐𝑞,𝑐,𝑠,𝑒 = 𝐼𝐼𝐶𝑞,𝑐 ∀𝑞 ∈ 𝑄, ∀𝑐 ∈ 𝐶, 𝑠 = 𝑠1, ∀𝑒 ∈ 𝐸 (A.38)

The amount of crude c in each tank at the end of the horizon
(𝑖𝑐𝑒𝑞,𝑐,𝑠,𝑒) is calculated as the amount of crude oil c at the beginning of
he last slot of the horizon (𝑖𝑐𝑞,𝑐,𝑠,𝑒), plus the crude oil load c received
uring the final slot (𝑓𝑐𝑏𝑞𝑐,𝑏,𝑞,𝑠,𝑒), minus the volume of crude oil c
ischarged from tank q to the units during that slot (𝑓𝑐𝑞𝑢𝑐,𝑞,𝑢,𝑠,𝑒).

𝑐𝑒𝑞,𝑐,𝑠,𝑒 = 𝑖𝑐𝑞,𝑐,𝑠,𝑒 +
∑

𝑏∈𝐵𝐶
𝑓𝑐𝑏𝑞𝑐,𝑏,𝑞,𝑠,𝑒 −

∑

𝑢∈𝑈
𝑓𝑐𝑞𝑢𝑐,𝑞,𝑢,𝑠,𝑒

𝑞 ∈ 𝑄, ∀𝑐 ∈ 𝐶, 𝑠 = |𝑆| , ∀𝑒 ∈ 𝐸
(A.39)

The total level in each tank at the start of slot s (𝑖𝑞,𝑠,𝑒) and at the
nd of the horizon (𝑖𝑒𝑞,𝑠,𝑒) is given by (A.40)–(A.43).

𝑞,𝑠,𝑒 = 𝑖𝑞,𝑠−1,𝑒 +
∑

𝑏∈𝐵
𝑓𝑏𝑞𝑏,𝑞,𝑠−1,𝑒 −

∑

𝑢∈𝑈
𝑓𝑞𝑢𝑞,𝑢,𝑠−1

𝑞 ∈ 𝑄, ∀𝑠 ∈ 𝑆 ⧵ {𝑠1} , ∀𝑒 ∈ 𝐸
(A.40)

𝑒𝑞,𝑠,𝑒 = 𝑖𝑞,𝑠,𝑒 +
∑

𝑏∈𝐵
𝑓𝑏𝑞𝑏,𝑞,𝑠,𝑒 −

∑

𝑢∈𝑈
𝑓𝑞𝑢𝑞,𝑢,𝑠

𝑞 ∈ 𝑄, 𝑠 = |𝑆| , ∀𝑒 ∈ 𝐸
(A.41)

Moreover, both at the beginning of each slot (A.42) and at the end
f the horizon (A.43), the total level in a tank q is equal to the sum of
he volumes of each crude oil s stored in that tank.

𝑞,𝑠,𝑒 =
∑

𝑐∈𝐶
𝑖𝑐𝑞,𝑐,𝑠,𝑒 ∀𝑞 ∈ 𝑄, ∀𝑠 ∈ 𝑆, ∀𝑒 ∈ 𝐸 (A.42)

𝑒𝑞,𝑠,𝑒 =
∑

𝑐∈𝐶
𝑖𝑐𝑒𝑞,𝑐,𝑠,𝑒 ∀𝑞 ∈ 𝑄, 𝑠 = |𝑆| , ∀𝑒 ∈ 𝐸 (A.43)

Eqs. (A.44)–(A.47) establish the physical limits for the inventory
evels.

𝑞,𝑠,𝑒 ≤ 𝐶𝐴𝑃 𝑞 ∀𝑞 ∈ 𝑄, ∀𝑠 ∈ 𝑆, ∀𝑒 ∈ 𝐸 (A.44)

𝑖𝑞,𝑠,𝑒 ≥ 𝐶𝐴𝑃 𝑞 ∀𝑞 ∈ 𝑄, ∀𝑠 ∈ 𝑆, ∀𝑒 ∈ 𝐸 (A.45)

𝑖𝑒𝑞,𝑠,𝑒 ≤ 𝐶𝐴𝑃 𝑞 ∀𝑞 ∈ 𝑄, 𝑠 = |𝑆| , ∀𝑒 ∈ 𝐸 (A.46)

𝑖𝑒𝑞,𝑠,𝑒 ≥ 𝐶𝐴𝑃 𝑞 ∀𝑞 ∈ 𝑄, 𝑠 = |𝑆| , ∀𝑒 ∈ 𝐸 (A.47)

To ensure minimum settling time (assumption 4), we use (A.48). If
tank q receives a charge during slot s (𝑥𝑞 = 1) and is discharged
15

𝑞,𝑠,𝑒
during slot 𝑠′ (𝑦𝑞𝑞,𝑠′ = 1), where 𝑠′ is later than 𝑠, then the start time
f slot 𝑠′ must be greater than or equal to the end time of slot 𝑠, plus

the time required to settle (ST).

𝑖𝑠𝑠′ − 𝑡𝑠𝑠 ≥ 𝑆𝑇 ∗ (𝑥𝑞𝑞,𝑠,𝑒 + 𝑦𝑞𝑞,𝑠′ − 1)

∀𝑞 ∈ 𝑄, ∀𝑠 ∈ 𝑆, ∀𝑠′ ∈ 𝑆, 𝑠 < 𝑠′, ∀𝑒 ∈ 𝐸
(A.48)

To calculate the difference between processed volume and required
demand by each CDU, we use (A.49)–(A.50). Constraint (A.49) sets
the overproduction volume at unit 𝑢 (𝑜𝑝𝑢) as the difference between
the volume processed over the horizon and the established demand.
Constraint (A.50) computes the underproduction volume at unit 𝑢 as
the difference between the required demand and the volume processed
over the horizon. Note that if the demand is not met, then 𝑠𝑝𝑢 will
be greater than zero, and constraint (A.49) will be idle. Otherwise, if
the demand value is exceeded, then 𝑜𝑝𝑢 will be greater than zero, and
constraint (A.50) will be idle.

𝑜𝑝𝑢 ≥
∑

𝑠∈𝑆
𝑓𝑢𝑢,𝑠 − 𝑑𝑒𝑚𝑢 ∀𝑢 ∈ 𝑈 (A.49)

𝑠𝑝𝑢 ≥ 𝑑𝑒𝑚𝑢 −
∑

𝑠∈𝑆
𝑓𝑢𝑢,𝑠 ∀𝑢 ∈ 𝑈 (A.50)

The discharge of crude oil from vessel b cannot start before its
arrival time.

𝑖𝑠𝑠 ≥ 𝐴𝑇 𝑏,𝑒 ∗ 𝑥𝑖𝑑𝑏,𝑠,𝑒 ∀𝑏 ∈ 𝐵, ∀𝑠 ∈ 𝑆, ∀𝑒 ∈ 𝐸 (A.51)

The demurrage is calculated as the time elapsed between the arrival
of a ship and the start of its unloading.

From constraints (A.52)–(A.54), the auxiliary variable 𝑑𝑚𝑔𝑠𝑏,𝑠,𝑒 is
calculated, which represents how many hours after its arrival a ship 𝑏
has started unloading in slot 𝑠, for scenario 𝑒.

In case the ship has not started unloading at the beginning of slot
𝑠 (𝑥𝑖𝑑𝑏,𝑠,𝑒 = 0), then constraints (A.52) and (A.53) will be inactive,
and the variable 𝑑𝑚𝑔𝑠𝑏,𝑠,𝑒 be zero (A.54). Otherwise, if the ship starts
unloading at the beginning of slot 𝑠 (𝑥𝑖𝑑𝑏,𝑠,𝑒 = 1), then constraints
(A.52) and (A.53) are activated, and the value of 𝑑𝑚𝑔𝑠𝑏,𝑠,𝑒 is computed.

𝑑𝑚𝑔𝑠𝑏,𝑠,𝑒 ≥ 𝑖𝑠𝑠 − 𝐴𝑇 𝑏,𝑒 ∗ 𝑥𝑖𝑑𝑏,𝑠,𝑒 −𝐻 ∗ (1 − 𝑥𝑖𝑑𝑏,𝑠,𝑒)

𝑏 ∈ 𝐵, ∀𝑠 ∈ 𝑆, ∀𝑒 ∈ 𝐸
(A.52)

𝑚𝑔𝑠𝑏,𝑠,𝑒 ≤ 𝑖𝑠𝑠 − 𝐴𝑇 𝑏,𝑒 ∗ 𝑥𝑖𝑑𝑏,𝑠,𝑒 ∀𝑏 ∈ 𝐵, ∀𝑠 ∈ 𝑆, ∀𝑒 ∈ 𝐸 (A.53)

𝑚𝑔𝑠𝑏,𝑠,𝑒 ≤ 𝐻 ∗ 𝑥𝑖𝑑𝑏,𝑠,𝑒 ∀𝑏 ∈ 𝐵, ∀𝑠 ∈ 𝑆, ∀𝑒 ∈ 𝐸 (A.54)

From constraint (A.55), the demurrage of each ship in each scenario
s calculated as the summation of the auxiliary variable 𝑑𝑚𝑔𝑠𝑏,𝑠,𝑒 over
ll slots. Note that, at most, a single term of the summation will be
reater than zero.

𝑚𝑔𝑏,𝑒 =
∑

𝑠∈𝑆
𝑑𝑚𝑔𝑠𝑏,𝑠,𝑒 ∀𝑏 ∈ 𝐵, ∀𝑒 ∈ 𝐸 (A.55)

If vessel b leaves the terminal after its expected departure time
𝐷𝑇 𝑏,𝑒, it should pay a penalty that will be proportional to the depar-

ure tardiness (𝑡𝑑𝑛𝑏,𝑒). Analogously to the calculation of the demurrage,
the tardiness of each ship in each scenario (𝑡𝑑𝑛𝑏,𝑒) is computed from the
auxiliary variable 𝑡𝑑𝑛𝑠𝑏,𝑠,𝑒, using constraints (A.56)–(A.58).

𝑡𝑑𝑛𝑠𝑏,𝑠,𝑒 ≥ 𝑡𝑠𝑠 − 𝐸𝐷𝑇 𝑏,𝑒 ∗ 𝑥𝑓𝑑𝑏,𝑠,𝑒 −𝐻 ∗ (1 − 𝑥𝑓𝑑𝑏,𝑠,𝑒)

∀𝑏 ∈ 𝐵, ∀𝑠 ∈ 𝑆, ∀𝑒 ∈ 𝐸
(A.56)

𝑡𝑑𝑛𝑠𝑏,𝑠,𝑒 ≤ 𝐻 ∗ 𝑥𝑓𝑑𝑏,𝑠,𝑒 ∀𝑏 ∈ 𝐵, ∀𝑠 ∈ 𝑆, ∀𝑒 ∈ 𝐸 (A.57)

𝑡𝑑𝑛𝑏,𝑒 =
∑

𝑠∈𝑆
𝑡𝑑𝑛𝑠𝑏,𝑠,𝑒 ∀𝑏 ∈ 𝐵, ∀𝑒 ∈ 𝐸 (A.58)

If a tank is being discharged, then the crude oil concentration in
the outflow must be equal to the concentration inside the tank. In
other words, this principle states that the proportion of each crude in
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the volume transferred (𝑓𝑐𝑞𝑢𝑐,𝑞,𝑢,𝑠,𝑒/𝑓𝑞𝑢𝑞,𝑢,𝑠) must be the same as the
roportion of each crude in the volume stored (𝑖𝑐𝑞,𝑐,𝑠,𝑒/𝑖𝑞,𝑠,𝑒). This rule
s satisfied by (A.59). It should be noted that this equation yields two
ilinear terms which are non-convex.

𝑞,𝑠,𝑒 ∗ 𝑓𝑐𝑞𝑢𝑐,𝑞,𝑢,𝑠,𝑒 = 𝑖𝑐𝑞,𝑐,𝑠,𝑒 ∗ 𝑓𝑞𝑢𝑞,𝑢,𝑠
𝑐 ∈ 𝐶, ∀𝑞 ∈ 𝑄, ∀𝑢 ∈ 𝑈, ∀𝑠 ∈ 𝑆, ∀𝑒 ∈ 𝐸

(A.59)

ppendix B. List of abbreviations and symbols

• CDU: crude oil distillation unit
• CVaR: conditional value-at-risk
• EEV: expected result of using the EV solution
• EV: expected value problem
• EVPI: expected value of perfect information
• M1: M-value applied to constraints of calculation of volume

loaded to tanks
• M2: M-value applied to constraints of calculation of volume dis-

charged from tanks
• M3: M-value applied to linear approximation constraints
• MILP: mixed-integer linear programming
• MINLP: mixed-integer nonlinear programming
• NLP: nonlinear programming
• RP: recourse problem
• VaR: value-at-risk
• VSS: value of the stochastic solution
• WS: wait-and-see solution
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