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1. Introduction

Polycyclic codes over a finite local ring R were introduced in [20] and they are described as ideals on the quotient 
ring R[x]/〈 f (x)〉 with f (x) ∈ R[x]. These codes generalize the well-known classes of cyclic and constacyclic codes. Polycyclic 
codes over finite fields have been studied from several points of view, we will be especially interested in the so called ⊥0 -
duality (see [1,28] and the references therein). Polycyclic codes over chain rings have been studied in different directions, 
see for example [9,19,30,29]. In [2], the authors made a generalization where the ring is a finite commutative local ring and 
the polynomial defining the ambient space has simple roots. That paper proposed a transform approach that generalizes the 
classical Mattson-Solomon (Fourier) transform in finite fields.
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On the other side, several papers have been devoted to explain the matrix product code structure of repeated-root cyclic 
and constacyclic codes over finite fields, see for example [31,4], and over some finite chain rings [5].

In this paper, we complete the study on the Mattson-Solomon transform approach in [2] for polycyclic codes over finite 
local rings in the case that the defining polynomial has repeated-roots. Some special cases for the cyclic case have been 
previously studied in [24], the so-called monomial like codes. We also give a matrix product code structure that describes 
repeated-root polycyclic codes over finite fields. In both cases, we provide expressions for the ⊥0-dual code of a given 
polycyclic code.

The structure of the paper is as follows. In Section 2, some preliminaries are given on finite commutative local rings, on 
the Hasse derivative of a polynomial over a finite local ring and on the Generalized Discrete Fourier Transform. Section 3
provides the Generalized Mattson Solomon polynomial (GMS) for polycyclic codes over local rings that gives an explicit 
decomposition of them in terms of idempotents. In Section 5, we state some structural properties of repeated-root polycyclic 
codes over finite fields in terms of matrix product codes. In both Section 3 and Section 5, we give a description of the ⊥0-
dual code of a given polycyclic code.

2. Preliminaries

Throughout the paper, R will denote a finite local ring of characteristic q = pr for a prime p and a positive integer 
r, m will denote the maximal ideal of R and Fq = R/m the finite residue field of R . It is well-known that R is trivially 
complete and thus Hensel, i.e., every element of R is nilpotent or a unit and m is a nilpotent ideal. We denote by ·̄ the 
natural polynomial ring morphism ·̄ : R → (R/m) and, abusing notation, we will use it also for polynomial rings acting on 
the coefficients ·̄ : R[x] → (R/m)[x] = Fq[x]. Let J denote the set of all polynomials f in R[x] such that f̄ has distinct 
zeros in the algebraic closure of Fq , a polynomial in J has distinct zeros in local extensions of R , R f = R[x]/〈 f 〉 (where 
f is monic) is a separable local extension ring if and only if f is an irreducible polynomial in J , and the polynomials 
in J admit a unique factorization into irreducible polynomials and a polynomial in J has no multiple roots in any local 
extension of R . In the rest of the paper, unless other thing is stated, f will denote a polynomial in J and F = f m for a 
non-negative integer m (in some sections m = pk where p is the characteristic of R).

2.1. Hasse derivative and generalized discrete Fourier transform

The Generalized Discrete Fourier Transform (GDFT) for repeated-root cyclic codes over a finite field Fq of characteristic p
(p a prime) of length N = npk , where (n, p) = 1, was defined by Massey in [25]. After that, the definition is generalized for 
quasi-cyclic and quasi-twisted codes over finite fields in [15] and [13], respectively. In those references, the Hasse derivative 
of polynomials over finite fields plays an important role. For more information about the Hasse derivative of polynomials 
over fields we refer the reader to [25,12].

In this section, let R denote a commutative finite unitary ring and p(x) =∑n
i=0 pi xi ∈ R[x] be a polynomial. For k ∈

{0, 1, . . . , n}, the kth formal derivative of p(x) is defined as p(k)(x) = k! ∑n
i=0

( i
k

)
pi xi−k , and the kth Hasse derivative of p(x)

is defined as p[k](x) = 1
k! p(k)(x) [18, page 363], i.e.,

p[k](x) =
n∑

i=0

(
i

k

)
pi x

i−k =
n−k∑
i=0

(
i + k

k

)
pi+kxi .

The following result holds directly from the definition and straightforward computations.

Lemma 2.1. Let p(x) and q(x) be two polynomials in R[x].

1. (p + q)[k](x) = p[k](x) + q[k](x).
2. (Taylor expansion) If p(x) is of degree n and λ is an arbitrary element in R, then p(x + λ) =∑n

k=0 p[k](λ)xk.

3. (Product rule) (pq)[k](x) =∑k
i=0 p[i](x)q[k−i](x).

From now on, let f (x) be a simple-root polynomial f (x) = (x − α0)(x − α1) . . . (x − αn−1) ∈J which has n distinct roots 
in a fixed ordering α0, α1, . . . , αn−1 in an extension ring R ′ of R . Recall that the Discrete Fourier Transform (DFT) of an 
n-tuple (g0, g1, . . . , gn−1) is (g(α0), g(α1), . . . , g(αn−1)), where g(x) = g0 + g1x + . . . + gn−1xn−1 ∈ R[x]/〈 f (x)〉, see [2] for 
further details.

Definition 2.1. Let F (x) = ((x −α0)(x −α1) . . . (x −αn−1))
m = ( f (x))m be a repeated-root monic polynomial in R[x] of degree 

N = nm and g(x) =∑N−1 gi xi ∈ R[x]/〈F (x)〉. We define the Generalized Discrete Fourier Transform (GDFT) of g(x) as
i=0

2
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⎡
⎢⎢⎢⎣

g(α0) g(α1) . . . g(αn−1)

g[1](α0) g[1](α1) . . . g[1](αn−1)
...

... . . .
...

g[m−1](α0) g[m−1](α1) . . . g[m−1](αn−1)

⎤
⎥⎥⎥⎦ ,

where g[i] is the ith-Hasse derivative for all 1 � i � m − 1.

Example 2.2. Suppose that F (x) = x6 − 3x5 + 3x4 − x3 ∈Z4[x], which is decomposed over Z16 as F (x) = (x − 1)3(x − 12)3. 
If g(x) = 1 + 2x3 + x4 + 3x5 ∈Z4[x]/〈F (x)〉, then g[1] = 2x2 + 3x4 and g[2] = 2x + 2x2 + 2x3. Therefore, the GDFT of n-tuples 
related to g(x) is

GDFT(g) =
⎡
⎣ g(1) g(12)

g[1](1) g[1](12)

g[2](1) g[2](12)

⎤
⎦=
⎡
⎣7 1

5 0
6 8

⎤
⎦ .

2.2. Generalized Vandermonde matrices

Let α0, α1, . . . , αn−1 be a fixed ordering of the roots of polynomial f (x) = (x − α0)(x − α1) . . . (x − αn−1) ∈ R[x] in the 
extension ring R ′ of R .

For 0 � i � N − 1, take pi(x) = xi and construct the N × m matrix

R(x) =

⎡
⎢⎢⎢⎢⎣

p0(x) p[1]
0 (x) . . . p[m−1]

0 (x)
p1(x) p[1]

1 (x) . . . p[m−1]
1 (x)

...
... . . .

...

pN−1(x) p[1]
N−1(x) . . . p[m−1]

N−1 (x)

⎤
⎥⎥⎥⎥⎦ .

In fact, i j-entry of R(x) is 
(i−1

i− j

)
xi− j for i � j and zero otherwise. The generalized Vandermonde matrix related to the roots 

α0, α1, . . . , αn of the repeated-root polynomial F (x) = ( f (x))m of degree N = nm over a local ring R is defined by

V = V (α0,α1, . . . ,αn−1) = [R(α0) R(α1) . . . R(αn−1)].

Example 2.3. If F (x) = (x − α0)
3(x − α1)

3 then

V = [R(α0) R(α1)] =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0 1 0 0
α0 1 0 α1 1 0
α2

0 2α0 1 α2
1 2α1 1

α3
0 3α2

0 3α0 α3
1 3α2

1 3α1

α4
0 4α3

0 6α2
0 α4

1 4α3
1 6α2

1
α5

0 5α4
0 10α3

0 α5
1 5α4

1 10α3
1

⎤
⎥⎥⎥⎥⎥⎥⎦

.

Note that if m = 1, the generalized Vandermonde matrix is compatible with the usual Vandermonde matrix related to 
F (x). The determinant of V is 

∏
0�i< j�n−1(αi −α j)

nin j , see [14] for a proof. Thus V is an invertible matrix in the local ring 
R if and only if αi −α j is a unit in R for each pair of indexes i 	= j, if and only if αi 	= α j ; see Lemma 2.5 in [26]. Therefore 
V is an invertible matrix if and only if αi 	= α j for all i 	= j. Note that throughout the paper, it is assumed that f ∈J , then 
f̄ has distinct roots αi for 0 � i � n − 1. Thus V will always be an invertible matrix.

Let F (x) = xN −∑N−1
i=0 Fi xi and C F be the companion matrix related to F (x), i.e.,

C F =

⎡
⎢⎢⎢⎢⎢⎣

0 1 0 . . . 0
0 0 1 . . . 0
...

...
... . . .

...

0 0 0 . . . 1
F0 F1 F2 . . . F N−1

⎤
⎥⎥⎥⎥⎥⎦ .

It is a well-known fact that F (x) is the characteristic polynomial of C F . Let us denote the Jordan form of the companion 
matrix C F by J F , i.e., a diagonal block matrix with n × n blocks so that each block has roots on the diagonal, 1 on the 
superdiagonal and other entries are zero. If V is invertible, then the companion matrix is reduced to C F = V J F V −1.
3
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3. Generalized Mattson Solomon polynomial

Let V be the usual Vandermonde matrix related to the distinct elements α0, . . . , αn−1 and f (x) =∏n−1
i=0 (x − αi). For a 

given g(x) =∑n−1
i=0 gi xi in R[x]/〈 f (x)〉, the Mattson Solomon polynomial of g(x) is

MS(g) =
n−1∑
i=0

g(αi)xi = [g0 g1 . . . gn−1]V [1 x . . . xn−1]tr, (1)

where tr denotes the transpose matrix. Note that the map MS is well defined in the quotient space R[x]/〈 f (x)〉, see [2] for 
a complete account on it. Now, let F (x) = f (x)m be a repeated-root polynomial of degree N = mn over the local ring R and 
fix an ordering on distinct roots α0, . . . , αn−1. Let us consider the quotient polynomial ring R =

(
R ′[y]
〈ym〉 , ·

)
, where · is the 

ordinary polynomial multiplication modulo ym .

Theorem 3.1. The map

MS :
(

R[x]
〈F (x)〉 ,•

)
−→
(

R[x]
〈 f (x)〉 , �

)
g(x) 
→ ∑n−1

j=0

(∑m−1
i=0 g[i](α j)yi

)
x j

is a ring injective homomorphism, where • denotes ordinary polynomial multiplication modulo F (x) and � denotes the component-
wise multiplication modulo f (x).

Proof. First, we will show that the mapping is well-defined. Given two representatives h(x), g(x) of an element in R[x]
〈F (x)〉 , 

that is g(x) − h(x) = k(x) f (x)m , for 0 ≤ i ≤ m − 1. We have by applying the product rule that

g[i](x) − h[i](x) =
i∑

j=0

k[i](x)( f (x)m)[i− j].

But ( f (x)m)[i− j] = (i − j)!( f (x)m)(i− j) (the usual derivative of f (x)m) which is indeed 0 mod f for 0 ≤ i ≤ m − 1. Therefore 
for 0 ≤ i ≤ m − 1 one has that g[i](x), h[i](x) provide the same values when evaluated at α j , j = 0, . . . , n − 1.

Let g(x) =∑N−1
i=0 gi xi ∈ R[x]

〈F (x)〉 and V be the generalized Vandermonde matrix related to roots α0, . . . , αn−1. Consider the 
column vector

u = [1 y . . . ym−1 x xy . . . xym−1 . . . xn−1 xn−1 y . . . xn−1 ym−1]tr ,

where tr denotes the transpose of the vector. Then we have that MS(g) is given by[
g(α0) g[1](α0) . . . g[m−1](α0) . . . g(αn−1) g[1](αn−1) . . . g[m−1](αn−1)

]
u

= [g0 g1 . . . gN−1] V u.

Since the matrix V is invertible, then MS is injective. Now it is enough to show that MS(g • h) = MS(g) � MS(h) that follows 
applying the product rule of the Hasse derivative, we can easily check that MS(g) � MS(h) can be computed as

n−1∑
i=0

⎛
⎝
⎛
⎝m−1∑

j=0

g[ j](αi)y j

⎞
⎠ ·
⎛
⎝m−1∑

j=0

h[ j](αi)y j

⎞
⎠
⎞
⎠ xi =

n−1∑
i=0

⎛
⎝m−1∑

j=0

(gh)[ j](αi)y j

⎞
⎠ xi . �

Note that the mapping in the above theorem gives the ordinary Mattson-Solomon transform when applied to a simple-
root polynomial. Thus, by abusing the notation, we will denote both the same. We will call the map MS in the above 
theorem the Generalized Mattson Solomon map associated to F .

Example 3.2. (Example 2.2 Cont.) Let m = 3, n = 2, f (x) = x2 − x ∈Z4[x] and R =Z16[y]/〈y3〉. Then

MS(g(x)) = (7 + 5y + 6y2) + (1 + 8y2)x ∈ R[x]/〈 f (x)〉.

Remark 3.3. Theorem 3.1 states that every repeated-root polycyclic code is isomorphic to an ideal in a bivariable polynomial 
ring, since R[x] ∼= R ′[x,y]

m .
〈 f (x)〉 〈 f (x),y 〉

4
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Lemma 3.4. The map MS in Theorem 3.1 is equivalent to each of the following mappings.

MS :
(

R[x]
〈F (x)〉 ,•

)
−→
(

R[x]
〈 f (x)〉 , �

)
g(x) 
→ ∑n−1

i=0 g(αi + y)xi
(2)

and

MS :
(

R[x]
〈F (x)〉 ,•

)
−→
(

R′[u]
〈(u−1)m〉 [x]

〈 f (x)〉 , �

)

g(x) 
→ ∑n−1
i=0 g(uαi)xi .

(3)

Proof. Since ym = 0, by the Taylor expansion for the Hasse derivative, we get g(αi + y) =∑m−1
j=0 g[ j](αi)y j . Thus MS(g) =∑n−1

i=0 g(αi + y)xi , which gives the mapping (2). The set {α0(y + 1) − y, . . . , αn−1(y + 1) − y} are roots of F (x), since ym = 0. 
Put u = y + 1 and use the mapping (2) to find MS(g(x)). Now, R ′[u − 1] ∼= R ′[u] provides the mapping (3). �
Remark 3.5. Note that in the case F (x) is a simple-root polynomial (i.e., m = 1), we get y = 0 and u = 1. Hence, the two 
mappings presented in the previous lemma are compatible with the Mattson Solomon mapping given in [2].

Remark 3.6. In Definition 2.1, we define the GDFT for polycyclic codes of length N = mn over rings as a generalization of the 
GDFT for repeated-root cyclic codes of length N = npk over fields presented by Massey in [25]. Now we are able to present 
other definitions of the GDFT associated with the mappings in Lemma 3.4:

GDFT : R N −→ Rn

(g0, g1, . . . , gN) 
→ (g(α0 + y), g(α1 + y), . . . , g(αn−1 + y))
(4)

and

GDFT : R N −→ An

(g0, g1, . . . , gN) 
→ (g(uα0), g(uα1), . . . , g(uαn−1)),
(5)

where A = R ′[u]
〈(u−1)m〉 . Note that (4) is compatible with the definition of the DFT given in [2], and Equation (5) is also 

compatible with the DFT in [16] in the quasi-cyclic case.

4. The decomposition of the ambient space

We will start by studying the ring R defined in the previous section.

Lemma 4.1 (Corollary 3.8 in [10]). Let R be a local ring and g ∈ R[x] be a monic irreducible polynomial. Then R[x]/〈g(x)n〉 is a local 
ring for any positive integer n.

Lemma 4.2. Let S be a Galois extension of the local ring R. Then

1. S is the unramified local ring, i.e., R and S has the same maximal ideal.
2. If f ∈ R[x] is square-free, then f has distinct zeros in the local extension S.
3. S is an R-free module generated by roots of f .

Proof. See Theorems 3.15, 3.18, 5.11 in [10] �
Corollary 4.3. Let R ′ be the Galois extension of the local ring R containing n distinct roots of the polynomial f (x) =∏n−1

i=0 (x − αi). 
Then R = R ′[y]/〈ym〉 is a local ring.

The proof of the corollary follows from the fact that R is local, R ′ is a Galois extension and applying Lemmas 4.1 and 4.2. 
Then, from the counting argument in [11], if we count the elements in R that are pms , and the number of zero divisors in 
R is given by pc+(s−1)m where pc is the number of zero divisors of R , therefore from [11, Theorem 1], R is a local ring. 
Furthermore, note that R is also a chain ring if and only if R is a finite field. This follows from the fact that the maximal 
ideal of R is 〈m, y〉, where m is the generator of the maximal ideal of R and it is principal if p is the characteristic of R .
5
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4.1. Decomposition of the codes

In this section, we are going to find a decomposition of the ambient space R[x]
〈F (x)〉 . Recall that the ring 

(
R[x]
〈 f (x)〉 , �

)
is 

equipped with the component-wise product and the ring 
(

R[x]
〈F (x)〉 ,•

)
is equipped with the ordinary polynomial product. Let 

us denote R[x]
〈F (x)〉 by R F . Let f = f1 f2 . . . fr , where f1, f2 . . . fr are distinct monic irreducible polynomials. We will define a 

relation on the set of indices I = {0, 1, . . . , n − 1} as follows: i ∼ j if and only if αi, α j are roots of the same polynomial fk , 
i.e., fk(αi) = fk(α j) = 0. Therefore I will be partitioned into the disjoint classes Ik related to fk .

From now on in Subsection 4.1, we will consider the MS map in Theorem 3.1 extended to R ′

MS :
(

R ′
F = R ′[x]

〈F (x)〉 ,•
)

−→
(

R[x]
〈 f (x)〉 , �

)

or, what is the same, consider a polynomial f (x) which completely splits in linear factors in the ring we are working on.

It is easy to see that, again for cardinality reasons, it is now an isomorphism and we can define Ei = MS−1
(∑

j∈Ii
x j
)

. 
The pre-images {E1, . . . , Er} will provide us the primitive idempotents, more precisely:

Proposition 4.4.

1. Each Ei is a primitive idempotent.
2. Ei E j = 0 for i 	= j, and 

∑r
i=1 Ei = 1.

3. The only idempotents in R F are in the form 
∑

j∈S E j for some S ⊆ {1, 2, . . . , r}.

4. R ′
F

∼= ⊕r
i=1〈Ei〉 ∼= ⊕r

i=1
R F〈1−Ei〉 .

Proof. 1. Note that x j � x j = x j for all 0 ≤ j ≤ n − 1. Thus E2
i = MS−1

(∑
j∈Ii

x j
)

= Ei . To check that Ei is primitive, let 

Ei = A(x) + B(x), where A(x) and B(x) are orthogonal idempotents in R ′
F . Let MS(A(x)) be denoted by 

∑n−1
k=0 akxk = a(x), 

and similarly let MS(B(x)) be denoted by 
∑n−1

k=0 bkxk = b(x). We want to prove that A(x) = 0 or B(x) = 0, i.e. a(x) = 0
or b(x) = 0. By Contradiction, let a(x) 	= 0 and b(x) 	= 0. We know

∑
j∈Ii

x j = MS(Ei) = MS(A(x)) + MS(B(x)) = a(x) + b(x) =
n−1∑
i=0

(ai + bi)xi,

and hence ak + bk = 1 for k ∈ Ii . Since A(x) and B(x) are idempotent, a(x), b(x) are also idempotent elements in R[x]. 
According to component-wise multiplication in R[x], we conclude that a2

i = ai and b2
i = bi for all i. Now since R is 

local, ai, bi ∈ {0, 1} for all i. Moreover, the orthogonality of A(x) and B(x) implies that 0 = a(x)b(x) =∑n−1
i=0 aibi xi , and 

hence aibi = 0 for all i. Now, considering that ak + bk = 1 and ak, bk ∈ {0, 1} for k ∈ Ii , we must have bk = 0 for that 
k ∈ Ii with ak 	= 0 and ak = 0 for that k ∈ Ii with bk 	= 0. Define M = { j ∈ Ii : a j 	= 0} and N = { j ∈ Ii : b j 	= 0}. Since 
a(x) 	= 0 and b(x) 	= 0, we have M 	= ∅ and N 	= ∅. Therefore, there are two non-empty subsets M � Ii and N � Ii such 
that M ∩ N = ∅, M ∪ N = Ii and a(x) =∑ j∈M x j and b(x) =∑ j∈N x j . According to the definition Ii , there is a polynomial 
fk such that all roots of fk are in Ii . Partitioning the set Ii into two disjoint subsets M and N separates the roots of fk
into two groups. Let’s denote by f M(x) and f N(x) the polynomials whose roots are those corresponding to indices in M
and N , respectively. Then fk(x) = f M(x) f N(x), which contradicts our initial assumption that fk(x) is irreducible.

2. For i 	= j, Ii and I j are disjoint and hence Ei E j = 0. Moreover, since 
∑n−1

i=0 xi is the unit element of R[x] we get

1 = MS−1(

n−1∑
i=0

xi).

3. Clearly, to obtain the idempotents in R ′
F , it is necessary to study idempotents in M S(R ′

F ) = R[x]
〈 f (x)〉 . Let a(x) =∑n−1

k=0 akxk

be an idempotent element in R[x]
〈 f (x)〉 . We get 

∑n−1
k=0 akxk = a(x) = a(x)2 =∑n−1

k=0 a2
k xk . Thus ak = a2

k for all 0 � k � n − 1

and since R is local, we have ak ∈ {0, 1} for all 0 ≤ k ≤ n − 1. If we let S = {i | ai 	= 0}, then a(x) =∑i∈S xi and 
A(x) = MS−1(a(x)) =∑i∈S Ei .

4. The first isomorphism follows from the fact that {E1, . . . , Er} is the set of pairwise primitive orthogonal idempotents. To 
prove the second isomorphism we define θ : R F → 〈Ei〉 via g 
→ g Ei . Let g Ei = 0. Then g = g(1 − Ei) + g Ei = g(1 − Ei), 
and hence ker θ = 〈1 − Ei〉, which gives the result. �

This provides the following description of the codes in terms of the idempotents in the case of a ring of prime charac-
teristic.
6
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Proposition 4.5. Let R ′ be a local ring with prime characteristic p and N = npk. Then

1. If f i(x) =∏ j∈Ii
(x − α j) then ( f i(x))pk = 1 − Ei .

2. If the ideal C of R ′
F has an idempotent generator, then C is generated by 

∏
i∈S ( f i(x))pk

for some S ⊆ {1, 2, . . . , r}.

Proof. 1. 1 − Ei = MS−1(
∑n−1

i=0 xi) − MS−1(
∑n−1

i=0 di xi) = MS−1(
∑n−1

i=0 ei xi) such that ei /∈ Ii . On the other hand, recall that 
αi − α j is a unit in R ′ if and only if αi 	= α j . Since f ∈J , f̄ has distinct roots αi for 0 � i � n − 1, and we get

( f i(α j + y))pk = (α j + y − αi1)
pk

. . . (α j + y − αit )
pk

= ((α j − αi1)
pk + ypk

) . . . ((α j − αit )
pk + ypk

)

= (α j − αi1)
pk

. . . (α j − αit )
pk

=
{

0 j ∈ Ii,

unit j /∈ Ii .

Thus MS(( f i(x))pk
) =∑n−1

j=0( f i(α0 + y))pk
x j ∈ 〈∑ j /∈Ii

x j〉 = MS(1 − Ei). Now since MS is injective, the result holds.
2. The only idempotent elements in R ′

F are in the form 
∑

i∈K Ei for some subset K of {1, 2, . . . , r}. By the fact that Ei ’s 
are orthogonal we have∑

i∈K

Ei = 1 −
∑
i /∈K

Ei =
∏
i /∈K

(1 − Ei) =
∏
i /∈K

( f i(x))pk
.

Now it is enough to take S = K c . �
Corollary 4.6. Let R ′ be a local ring with prime characteristic p and N = npk, where f completely splits. Then

R ′[x]
〈F (x)〉 = R ′[x]

〈( f (x))pk 〉
∼=

r⊕
i=1

R ′[x]
〈( f i(x))pk 〉 .

Proof. Part (4) of Proposition 4.4, Part (1) of Proposition 4.5 and the Third Isomorphism Theorem give the proof. �
Remark 4.7. Note that in this section (Subsection 4.1) we have considered codes over the ring R ′

F , if we want to restrict 
ourselves to R F we must consider subring subcodes that behave as subfield subcodes in the field case, for a reference on 
them, their Galois closure and a Delsarte’s like theorem in the chain ring case see [21].

4.2. ⊥0 duality

Consider the following inner product over the ring R F = R[x]
〈F (x)〉

〈g1(x), g2(x)〉(0) = g1 g2(0), g1(x), g2(x) ∈ R F . (6)

We will denote the dual of the polycyclic code C ⊆ R F associated with this inner product by C⊥0 given by

C⊥0 = {g(x) ∈ R F | 〈g(x),h(x)〉(0) = 0, for all h(x) ∈ C}.

Theorem 4.8. Let C be a polycyclic code of length N = npk in R F . If F0 is an invertible element in R, then

1. The inner product 〈 , 〉(0) is non-degenerate.
2. C⊥0 = Ann(C), where Ann stands for the annihilator ideal.
3. C⊥0 is a polycyclic code.

Proof. 1. We must show that the orthogonal of R F is zero. Let g = g0 + g1x + . . .+ gN−1xN−1 ∈ R F and 〈g, xi〉(0) = 0 for all 
0 � i � N − 1. From 〈g, 1〉(0) = 0 we conclude g0 = 0. Also, by considering 0 = 〈g, xi〉(0) = gN−i F0 for all 1 � i � N − 1
and invertibility F0, we obtain gN−i = 0, i.e., g = 0.

2. Let h(x) ∈ Ann(C), therefore h(x)g(x) = 0 for all g(x) ∈ C and hence hg(0) = 0, i.e., h(x) ∈ C⊥0 . Thus Ann(C) ⊆ C⊥0 . 
Conversely, let h ∈ C⊥0 and g ∈ C be an arbitrary element. Hypothesis 0 = 〈g, h〉(0) = hg(0) implies that xihg(0) = 0 for 
all 0 � i � N − 1. Now by part (1) we have hg = 0, which gives the result.

3. It is obvious by Part (2). �

7
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 g(x2)〉
Remark 4.9. In the literature of simple-root polycyclic codes over R[x]/〈 f (x)〉, it is always assumed that f0 is a unit in the 
ring R , see [20,9]. Because this assumption is guaranteed that every left polycyclic code is right polycyclic and as a result 
we get ride of studying left and right at the same time. In this paper, we always assume that F (0) = F0, the constant term 
of the polynomial F , is a unit in R . Because this assumption is guaranteed that the dual of every polycyclic code (C⊥0 ) is 
again polycyclic (also in our previous paper in the simple-root case [2] we have assumed that f0 is a unit in order to have 
a polycyclic dual code).

We now define another inner product over R F :

〈g1(x), g2(x)〉MS = MS(g1) � MS(g2), g1(x), g2(x) ∈ R F . (7)

As usual, we will denote the dual of the polycyclic code C ⊆ R F associated with this inner product by C⊥MS , which is 
naturally defined as

C⊥MS = {g ∈ R F | MS(g) � MS(c) = 0 for all c ∈ C}. (8)

The following result shows how one can check the annihilator duality in terms of the Mattson Solomon transform.

Theorem 4.10. For the polycyclic code C over R F , we have Ann(C) = C⊥MS .

Proof. Since the Mattson-Solomon mapping is an injective morphism we have

gc = 0 ⇐⇒ MS(gc) = 0 ⇐⇒ MS(g) � MS(c) = 0,

which implies Ann(C) = C⊥MS . �
Remark 4.11. Note that all the results in Subsection 4.2 are given in the ring R F since only injectivity of the MS map is 
needed, so we do not need to consider the ring R ′

F .

4.3. A note on multivariable codes

In [2], the Mattson Solomon map for several variable serial codes over chain rings is presented. That construction was 
based on the decomposition of the tensor product of the R-modules R[x1]/〈 f1(x1)〉 and R[x2]/〈 f2(x2)〉 in terms of the 
tensor product of powers of their related companion matrices E f and E g and their simultaneous diagonalization by the 
matrix V f1 ⊗ V f2 where V fi is Vandermonde matrix corresponding to f i for i = 1, 2. In the case where we have a principal 
ring, at most one of the defining polynomials is a repeated-root one, say f1(x) = f (x1)

m , and the remaining ones should be 
non-repeated-root polynomials and R is a Galois ring, see [22]. In that later is the case, we can provide a Mattson Solomon 
transform in terms of the Generalized Vandermonde matrices in the same fashion as in [2].

Multivariable codes over the ring R are ideals of the quotient ring R = R[x1, . . . xw ]/〈t1(x1), . . . , tw(xw)〉. If all polyno-
mials t1(x1), . . . tw(xw) are simple-roots, then these codes are called serial multivariate codes, and otherwise they are called 
modular multivariate codes. The transform approach to the serial case over local rings was studied in [2]. Note that serial 
multivariate codes are well-behaved because they can be regarded as principal ideals in R . This property is not generally 
true in the modular case. In the case r > 2, R is principal ideal ring if and only if R is a Galois ring and the number of 
polynomials for which t̄i(xi) are not square-free is at most one, see [22, Theorem 1].

For the sake of simplicity, all results in this section will be proved for w = 2 and can be straightforward worked out for 
w > 2. Let R be a Galois ring, f (x1) a polynomial of degree n over R with distinct simple-roots α0, . . . , αn−1 in an extension 
ring R ′

1, and F (x1) = ( f (x1))
m a polynomial of degree N = nm. Moreover, let g(x2) be a polynomial of degree M over R

with distinct simple-roots β0, . . . , βM−1 in an extension ring R ′
2. Let V be the generalized Vandermonde matrix related to 

α0, . . . , αn−1 and v be the usual Vandermonde matrix related to β0, . . . , βM−1. Consider the tensor product

v ⊗ V =

⎡
⎢⎢⎢⎣

V . . . V
β0 V . . . βM−1 V

... . . .
...

βM−1
0 . . . βM−1

M−1 V

⎤
⎥⎥⎥⎦ .

Since det(v ⊗V ) = det(v)Mdet(V )N and v, V are invertible, then v ⊗V is invertible. A polynomial p(x1, x2) ∈ R[x1, x2]/〈F (x1),

can de written as p(x1, x2) =∑M−1
j=0 p j(x1)x j

2, where p j(x1) =∑N−1
i=0 pi, j xi

1. Relate the vector

p = (p0,0, p1,0, . . . , pN−1,0, p0,1, p1,1, . . . , pN−1,1, . . . , p0,M−1, p1,M−1, . . . , pN−1,M−1)

to the polynomial p(x1, x2). It can be easily seen that the product of the vector p and matrix v ⊗ V is as follows:
8
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p(v ⊗ V ) = (p(α0 + y, β0), . . . , p(αn−1 + y, β0), p(α0 + y, β1), . . . , p(αn−1 + y, β1),

. . . , p(α0 + y, βM−1), . . . , p(αn−1 + y, βM−1)
)
.

Take R ′′ = R ′
1 + R ′

2. Clearly, p(αi + y, β j) ∈ R ′′ for all 0 � i � n − 1 and 0 � j � M − 1. Define the multivariable Mattson-
Solomon transform for modular multivariable codes as

MS :
(

R[x1,x2]
〈F (x1),g(x2)〉 ,•

)
−→
(

R ′′[x1,x2]
〈 f (x1),g(x2)〉 , �

)

p(x1, x2) 
→
n−1∑
i=0

M−1∑
j=0

p(αi + y, β j)xi
1x j

2,

where • denotes ordinary polynomial multiplication modulo F (x1), g(x2) and � denotes the component-wise multiplication 
modulo f (x1), g(x2). Obviously, the mapping MS is a ring homomorphism and since v ⊗ V is invertible, MS is also injective.

5. Matrix-product structure of certain polycyclic codes

We prove the structure of some repeated-root polycyclic codes with the help of matrix-product codes in the paper [31]. 
From now on, we will consider repeated-root polynomials just over the finite field Fq , where q = pr where p is a prime 
number. Let f (x) ∈ Fpr [x] be a simple-root polynomial of degree n and of order e, i.e., e is the smallest integer for which 
f (x)|xe − 1 and gcd(p, e) = 1. Let f (x) =∏s

i=1 f i(x) be the unique factorization of f (x) into distinct irreducible polynomials 
over Fpr [x]. Then, we have f (xpk

) =∏s
i=1 f i(xpk

) and for each 1 ≤ i ≤ s, there exists an irreducible polynomial gi(x) in 
Fpr [x] such that f i(xpk

) = gi(x)pk
. From now on, we will assume that R is the ring

R = Fpr [x]/〈 f (xpk
)〉 = Fpr [x]/

〈(
s∏

i=1

gi(x)

)pk〉
(9)

and we will have that N = npk . One can write any element a(x) ∈ R as a0(x) + a1(x)xpk + . . . + an−1(x)x(n−1)pk
, where 

ai(x) ∈ Fpr [x]. Let S be the ring Fpr [x, y]/〈xpk − y, f (y)〉. We have the following straightforward results.

Lemma 5.1. Any ideal of the ring R is principally generated by a divisor of f (xpk
). In fact, it is of the form 〈G(x)〉, where G(x) =∏s

j=1 gi(x)i j and 0 ≤ i j ≤ pk.

Lemma 5.2. The map ϕ : R → S given by ϕ
(∑n−1

i=0 ai(x)xipk
)

= a(x, y) =∑n−1
i=0 ai(x)yi is a ring isomorphism.

Now we will consider the ring

T = Fpr [x, y]/〈xpk − 1, f (y)〉 =
(
Fpr [x]/〈xpk − 1〉

)
[y]/〈 f (y)〉, (10)

and denote as W the ring W = Fpr [x]/〈xpk − 1〉. Note that W is a finite chain ring whose maximal ideal is 〈(x − 1)〉.

Lemma 5.3. The map ψ : S → T defined by ψ(a(x, y)) = a(ye′
x, y) is a ring isomorphism, where e′ is the inverse of pk in Ze .

As an easy corollary, we have the following.

Corollary 5.4. The code C is a polycyclic code in Fpr [x]/〈 f (xpk
)〉 if and only if μ(C) = ψ(ϕ(C)) is a polycyclic code in W [y]/〈 f (y)〉.

Therefore, since W is a chain ring we can apply [6, Theorem 3.5] and we get the following unique (x − 1)-adic expansion 
of the code C (note that we have also a description of a system of generators of a polycyclic code over a chain ring in [27, 
Theorem 4.4] and its generalization in [23, Theorem 3.13]).

Proposition 5.5. Any polycyclic code C in W [y]/〈 f (y)〉 is of the form

C = 〈h0(y), (x − 1)h1(y), . . . , (x − 1)pk−1hpk−1(y)〉,
where hpk−1(y) | hpk−2(y) | · · · | h0(y) | f (y) over Fpr . Moreover, we have

C =
pk−1⊕

(x − 1)i Ci,
i=0

9
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where for 0 ≤ i ≤ pk − 1, Ci = 〈hi(y)〉 is a polycyclic code in Fpr [y]/〈 f (y)〉 and C0 ⊆ C1 ⊆ · · · ⊆ C pk−1 .

Note that the ideal defining C over the ring W is a single generated and the generator can be derived from the polyno-
mials hi(x) in the above expression (see the proof of [23, Theorem 3.13]). The following theorem follows directly.

Theorem 5.6. Let C = 〈g1(x)i1 g2(x)i2 · · · gr(x)ir 〉. Then we have

μ(C) =
pk−1⊕
i=0

(x − 1)iCi,

where Ci is a simple-root polycyclic code with respect to f (y) over Fpr . In fact we have Ci = 〈ki(y)〉, where ki(y) =∏
j∈Ai

g j(y) and Ai = {1 ≤ j ≤ r | i j > i}.

The following definition introduces matrix product codes in this work. Matrix-product codes over some classes of rings 
have been studied in several works, see for example [8,7,5,17], but they did not consider the ⊥0-orthogonality.

Definition 5.1. Let A = [aij] be an α × β matrix with entries in Fpr and let C1, . . . Cα be codes of length n over Fpr . The 
matrix-product code [C1, . . . , Cα] · A is the set of all matrix products [c1, . . . , cα]A, where ci ∈ Ci , defined by

[c1, . . . , cα] · A = [c1, . . . , cα]

⎡
⎢⎢⎢⎣

a11 a12 . . . a1β

a21 a22 . . . a2β

...
... . . .

...

aα1 aα2 . . . aαβ

⎤
⎥⎥⎥⎦ (11)

= [a11c1 + a21c2 + . . . + aα1cα,a12c1 + a22c2 + . . . + aα2cα,

. . . ,a1βc1 + a2βc2 + . . . + aαβcα].

Lemma 5.7 (Proposition 2.9 [3]). If a matrix consisting of some α columns of A is non-singular and C = [C1, . . . , Cα] · A, then | C |=|
C1 | . . . | Cα |.

Definition 5.2 (Definitions 1 and 2 in [31]).

• Let J be the pk × pk matrix whose (i, pk − i + 1)-th entry (1 ≤ i ≤ pk) is equal to 1 and other entries are equal to zero, 
let P be the pk × pk matrix whose (i, j)-th entry (1 ≤ i, j ≤ pk) is equal to 

( i−1
j−1

)
mod p, and let Q be the pk × pk

matrix whose (i, j)-th entry is equal to (−1)(i+ j)
( i−1

j−1

)
mod p and CYC(p, k) to be J Q J .

• For 0 ≤ i ≤ N − 1 we will write i = apk + j where 0 ≤ a ≤ n − 1, 0 ≤ j ≤ pk − 1. We define the permutation σ on 
{0, 1, . . . , N − 1} as σ(i) = jn + a.

Lemma 5.8. A = CYC(p, k) is a non-singular matrix.

Proof. The matrix CYC(p, 1) is upper triangular with exactly p − i zeros in the column i and ones in the diagonal, and 
A = CYC(p, k) =⊗k

i=1 CYC(p, 1) by [31]. Since the tensor product of two upper triangular matrices is again upper triangular 
the result follows. �
Theorem 5.9. Let C be a polycyclic code in Fpr [x]/〈( f (x))pk 〉 and μ(C) =⊕pk−1

i=0 (x − 1)i Ci , then we have that

σ(C) = [C pk−1, C pk−2, . . . , C0] · CYC(p,k).

Proof. Assume a(x) = ∑n−1
i=0 ai(x)xi·pk ∈ C , then ϕ(a(x)) = ∑n−1

i=0 ai(x)yi and hence ψ(ϕ(a(x))) = ∑n−1
i=0 ai(ye′

x)yi . If 

σ(a(x)) = b(x) =∑pk−1
i=0 xibi(xpk

) then we have ψ(ϕ(a(x))) =∑pk−1
i=0 (ye′

x)ibi(y).
On the other hand, we can write

b0(y) + (ye′
)xb1(y) + · · · + y(pk−1)e′

x(pk−1)bpk−1(y) =
b0(y) + (ye′

)(x − 1 + 1)b1(y) + · · · + y(pk−1)e′
(x − 1 + 1)(pk−1)bpk−1(y) =

pk−1∑
i=0

⎛
⎝ i∑

j=0

(
i

j

)
(x − 1) j

⎞
⎠ y je′

bi(y) =
10
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pk−1∑
j=0

y je′
⎛
⎝pk−1∑

i= j

(
i

j

)
bi(y)

⎞
⎠ (x − 1) j.

For 0 ≤ j ≤ pk − 1, let us denote by c′
j(y) = y je′∑pk−1

i= j

( i
j

)
bi(y), and c j(y) :=∑pk−1

i= j

( i
j

)
bi(y). Hence 

∑pk−1
j=0 c′

j(y)(x − 1) j ∈
ψ(ϕ(C)) and since ψ(ϕ(C)) =⊕pk−1

i=0 (x − 1)i Ci , we have c′
j(y) ∈ C j . But C j is a polycyclic code and y is a unit element 

because we assume that f0 is a unit (see Remark 4.9). Hence c j(y) ∈ C j as well. Now we have

[c0(y), c1(y), . . . , cpk−1(y)] = [b0(y),b1(y), . . . ,bpk−1(y)] · P ,

where P is an invertible matrix whose inverse is the matrix Q . Therefore we have

[c0(y), c1(y), . . . , cpk−1(y)] · Q = [b0(y),b1(y), . . . ,bpk−1(y)],
and it follows σ(C) ⊆ [C0, C1, . . . , C pk−1] · Q and since both of the sets have the same size, we have σ(C) =
[C0, C1, . . . , C pk−1] · Q . Using similar arguments as those used in [31], we get σ(C) = [C pk−1, C pk−2, . . . , C0] · CYC(p, k), 
and the proof is now completed. �
Remark 5.10. Note that if we consider C as a cyclic code of length npk over the field Fpm in [31], a permutation π is 
provided such that

π(C) = [C pk−1, C pk−2, . . . , C0] · CYC(p,k).

It can be easily checked that, in general, π 	= σ , where σ is the permutation defined above, while the codes Ci , 0 ≤ i ≤
pk − 1, are the same. Therefore we have two permutations for which π(C) = σ(C) or equivalently π−1 ◦ σ ∈ Aut(C), the 
group of automorphism of the code C . The reason for getting different permutation in this case is related to the different 
kinds of isomorphisms we have considered. In fact, in [31] the mapping considered was

Fpm [x]
〈xnpk − 1〉

∼−→ F pm [x, y]
〈xn − y, ypk − 1〉 ,

while in this paper we have considered the isomorphism

Fpm [x]
〈xnpk − 1〉

∼−→ F pm [x, y]
〈xpk − y, yn − 1〉 .

Since the matrix CYC(p, 1) is a Non-Singular by Columns matrix (NSC matrix) (see [31] for a definition), Proposition 2 in 
[32] implies the following corollary involving the minimum Hamming distance di of each of the component codes Ci and 
the distance of the code d(C).

Corollary 5.11. Let C be a polycyclic code in Fpr [x]/〈( f (x))pk 〉 such that μ(C) =⊕pk−1
i=0 (x − 1)i Ci , then we have

d(C) = min{pkdpk−1, (pk − 1)dpk−2, . . . ,d0},
where dt = d(Ct) and t = 0, 1, ..., pk − 1.

5.1. ⊥0 duality of codes in Fpr [x]/〈 f (xpk
)〉

The annihilator dual of a matrix-product code can be also explicitly described in terms of matrix-product codes. First we 
will introduce the following auxiliary result.

Lemma 5.12. The isomorphism μ introduced in Corollary 5.4 is a ⊥0-duality preserving map, i.e., μ(C⊥0) = (μ(C))⊥0 .

Proof. For all p(x) and q(x) in Fpr [x]/〈 f (xpk
)〉, it is easy to see that

〈p(x),q(x)〉0 = 0 ⇐⇒ 〈μ(p(x)),μ(q(x))〉(0) = 0. (12)

Let p(x) ∈ C⊥0 . By Equation (12), we have 〈μ(p(x)), μ(q(x))〉0 = 0 for all q(x) ∈ C , i.e., μ(p(x)) ∈ (μ(C))⊥0 , which gives 
μ(C⊥0 ) ⊆ (μ(C))⊥0 . Conversely, let z ∈ (μ(C))⊥0 . Then 〈z, μ(p(x))〉0 = 0 for all p(x) ∈ C . Using Equation (12), we get 
〈μ−1(z), p(x)〉0 = 0 for all p(x) ∈ C , which implies μ−1(z) ∈ C⊥0 , i.e., z ∈ μ(C⊥0 ). �
11
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We will need the following Theorem to prove some results relating the ⊥0-dual of the matrix product code in terms of 
the ⊥0-duals of their constituent codes. For a matrix A we will denote its transpose as Atr .

Theorem 5.13. Let D0, . . . , D pk−1 be polycyclic codes over Fpr [x]/〈 f (xpk
)〉. Then

([D pk−1, . . . , D1, D0] · CYC(p,k)
)⊥0 = [D⊥0

pk−1
, . . . , D⊥0

1 , D⊥0
0 ] · (CYC(p,k)−1)tr.

Proof. We claim that

[Ann(D pk−1), . . . ,Ann(D0)] · (CYC(p,k)−1)tr ⊆ Ann
([D pk−1, . . . , D0] · CYC(p,k)

)
. (13)

Indeed, let z = [zpk−1, . . . , z0] · (CYC(p,k)−1)tr ∈ [Ann(D pk−1), . . . , Ann(D0)] · (CYC(p,k)−1)tr. Note that z is a row vector. If 
we consider the product of two row vector v, w as v.w = v wtr, then for an arbitrary element x = [xpk−1, . . . , x0] ·CYC(p, k) ∈
[D pk−1, . . . , D0] · CYC(p, k) we have

z.x = ([zpk−1, . . . , z0] · (CYC(p,k)−1)tr) · (CYC(p,k)tr · [xpk−1, . . . , x0]tr)
= [zpk−1, . . . , z0] · [xpk−1, . . . , x0]tr = 0.

Using the above claim, we get

[(D pk−1)
⊥0 , . . . , (D0)

⊥0 ] · (CYC(p,k)−1)tr ⊆ ([D pk−1, . . . , D0] · CYC(p,k)
)⊥0

.

By Lemmas 5.7, 5.8 it follows

| [(D pk−1)
⊥0 , . . . , (D0)

⊥0 ] · (CYC(p,k)−1)tr | =| (D pk−1)
⊥0 | . . . | (D0)

⊥0 |

= | Fpr |n
| D pk−1 | . . .

| Fpr |n
| D0 |

= | Fpr |pkn

| D pk−1 | . . . | D0 |

= | Fpr |pkn

| [D pk−1, . . . , D0] · CYC(p,k) |
=| ([D pk−1, . . . , D0] · CYC(p,k)

)⊥0 |,
which gives the proof. �
Corollary 5.14.

([D pk−1, . . . , D1, D0] · CYC(p,k)
)⊥0 = [D⊥0

0 , . . . , D⊥0

pk−2
, D⊥0

pk−1
] · CYC(p,k).

Proof.

([D pk−1, . . . , D1, D0] · CYC(p,k)
)⊥0 = [D⊥0

pk−1
, . . . , D⊥0

1 , D⊥0
0 ] · ((CYC(p,k))−1)tr

= [D⊥0

pk−1
, . . . , D⊥0

1 , D⊥0
0 ] · Q

= [D⊥0
0 , . . . , D⊥0

pk−2
, D⊥0

pk−1
] · J Q

= [D⊥0
0 , . . . , D⊥0

pk−2
, D⊥0

pk−1
] · CYC(p,k). �

Now, combining Theorem 5.13 and Corollary 5.14 we get the following result.

Corollary 5.15. Let C be a polycyclic code in Fpr [x]/〈 f (xpk
)〉 of such that σ(C) = [C pk−1, C pk−2, . . . , C0] ·CYC(p, k) as in Theorem 5.6. 

Then

σ(C⊥0) = [C⊥0 , . . . , C⊥0
k , C⊥0

k ] · CYC(p,k).
0 p −2 p −1

12
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