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approach in neutrophil-mediated
inflammatory disease
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Neutrophils have a critical role in the innate immune response to infection and

the control of inflammation. A key component of this process is the release of

neutrophil serine proteases (NSPs), primarily neutrophil elastase, proteinase 3,

cathepsin G, and NSP4, which have essential functions in immune modulation

and tissue repair following injury. Normally, NSP activity is controlled and

modulated by endogenous antiproteases. However, disruption of this

homeostatic relationship can cause diseases in which neutrophilic

inflammation is central to the pathology, such as chronic obstructive

pulmonary disease (COPD), alpha-1 antitrypsin deficiency, bronchiectasis, and

cystic fibrosis, as well as many non-pulmonary pathologies. Although the

pathobiology of these diseases varies, evidence indicates that excessive NSP

activity is common and a principal mediator of tissue damage and clinical

decline. NSPs are synthesized as inactive zymogens and activated primarily by

the ubiquitous enzyme dipeptidyl peptidase 1, also known as cathepsin C.

Preclinical data confirm that inactivation of this protease reduces activation of

NSPs. Thus, pharmacological inhibition of dipeptidyl peptidase 1 potentially

reduces the contribution of aberrant NSP activity to the severity and/or

progression of multiple inflammatory diseases. Initial clinical data support this

view. Ongoing research continues to explore the role of NSP activation by

dipeptidyl peptidase 1 in different disease states and the potential clinical

benefits of dipeptidyl peptidase 1 inhibition.

KEYWORDS

dipeptidyl peptidase 1, cathepsin C, elastase, neutrophil, inflammation, pathophysiology,
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1 Introduction

Serine proteases account for more than one-third of known

proteolytic enzymes and are important effectors in many essential

physiologic functions, including blood coagulation, digestion, and host

immunity (1–3). Serine proteases are synthesized as inactive

proenzymes (zymogens) and are locally and transiently activated by

regulated proteolytic cleavage in response to specific stimuli (1, 3, 4).

Certain immune defense cells, including neutrophils, monocytes, mast

cells, and lymphocytes, contain a unique subgroup of serine protease

zymogens that are constitutively activated by dipeptidyl peptidase 1

(DPP1; EC 3.4.14.1), also known as cathepsin C (CatC). DPP1 has a

principal role in the activation of granule serine proteases (Figure 1).

These include neutrophil serine proteases (NSPs)—neutrophil elastase

(NE), proteinase 3 (PR3), CatG, and NSP4—as well as mast cell

chymase and tryptase and lymphocyte granzymes (3–6). Once

referred to as leukoproteases (7), the evolutionarily related serine

proteases NE and PR3 are CatG homologous NSPs that belong to the

chymotrypsin family of proteins (4). Whether activated through

limited proteolysis or constitutively during maturation, NSP activity

is strictly regulated by endogenous antiproteases (8).

Neutrophils are essential for innate immune defense against

invading pathogens and are among the initial mediators of the

inflammatory response (9–11). Developed from pluripotent bone

marrow stem cells, a tightly regulated reservoir of neutrophils

circulates in the bloodstream (12–14). During infection, neutrophils

are the first inflammatory cells to leave the vasculature, migrating to

sites of inflammation along a chemotactic gradient (Figure 1) (14).

Neutrophils clear invading pathogens primarily through

phagocytosis, after which cytoplasmic granules fuse with the

phagosome to mediate pathogen clearance through high

concentrations of oxidants, antimicrobial peptides, and proteases

(10, 11, 15). Alternatively, neutrophils may attempt to control

invading pathogens through the release of neutrophil extracellular

traps (NETs). NETs are web-like structures composed of DNA,

histones, and granular proteins that physically trap extracellular

pathogens (9–11, 16). NSPs are found mainly in neutrophil

azurophilic granules and facilitate non-oxidative intracellular and

extracellular pathogen destruction (9, 17). The intracellular activity of

NE has been reported to be essential for NET formation, and high

concentrations of NSPs on NETs are involved in the extracellular

degradation of bacterial virulence factors (9, 17, 18).

NSPsparticipate in immunedefenses; they are immunomodulatory,

with proteolytic activity in tissue remodeling following injury. However,

uncontrolled NSP activity can wreak degradative and inflammatory
Abbreviations: AAT, alpha-1 antitrypsin; AATD, alpha-1 antitrypsin deficiency;

AAV, ANCA-associated vasculitides; ANCA, antineutrophil cytoplasmic

autoantibodies; Cat, cathepsin; CF, cystic fibrosis; COPD, chronic obstructive

pulmonary disease; CRS, chronic rhinosinusitis; CRSsNP, CRS without nasal

polyps; CRSwNP, CRS with nasal polyps; DNA, deoxyribose nucleic acid; DPP,

dipeptidyl peptidase; HS, hidradenitis suppurativa; IC50, half-maximal inhibitory

concentration; MPO, myeloperoxidase; mPR, membrane proteinase; NE,

neutrophil elastase; NET, neutrophil extracellular trap; NSP, neutrophil serine

protease; PLS, Papillon-Lefèvre syndrome; PR, proteinase.
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havoc. Homeostasis between NSPs and their inhibitors—known as the

protease-antiprotease paradigm—can be disrupted to the extent that

chronic inflammatory lung disease (19) or a myriad of other possible

pathologies, including autoimmune disease, blood coagulation defects,

cancer, and chronic inflammatory disease, ensue (1, 13). Understanding

the mechanisms of neutrophil stimulation and maturation and NSP

activation and inhibition is paramount to developing treatments to

curtail inflammation and disease.

The airway is the major interface between the human immune

system and the external environment; consequently, the lung is a

frequent site of bacterial infection and therefore neutrophil-mediated

pathology. Uncontrolled NSP activity contributes to lung damage in

multiple acute and chronic inflammatory lung diseases, including

acute lung injury, acute respiratory distress syndrome, chronic

obstructive pulmonary disease (COPD), alpha-1 antitrypsin

deficiency (AATD), bronchiectasis, and cystic fibrosis (CF)

(Figure 2) (20–23). The adverse effects of uncontrolled NSP activity

have been demonstrated in preclinical and clinical studies (8).

The requirement to maintain an adequate immune response to

bacterial infection is a key consideration in developing treatments

for neutrophil-mediated diseases. Previous attempts to target

neutrophilic inflammation in CF, for example, have led to increased

rates of infection. In this regard, the loss of NSPs due to the absence of

DPP1 is not associated with major immunodeficiency, suggesting that

DPP1 is an attractive target for modulation of chronic inflammatory

lung disease. For example, individuals with loss-of-function mutations

of the DPP1 gene develop prepubertal aggressive periodontitis,

Papillon-Lefèvre syndrome (PLS) (24), or Haim-Munk syndrome

(25), yet these patients do not exhibit marked immunodeficiency

despite the near total loss of active granule-associated NSPs (26).

Furthermore, DPP1 knockout mice are protected from NSP-mediated

damage (8, 27). Taken together, these findings suggest that DPP1 is an

attractive therapeutic target for a number of NSP-mediated

pathologies, and DPP1 inhibition is a promising avenue for the

treatment of diseases in which neutrophilic inflammation is central

to the pathology, such as chronic inflammatory diseases, autoimmune

diseases, and cancer. However, achievement of adequate reduction of

NSP activity in neutrophils through pharmacological inhibition of

DPP1 has been challenging (28, 29). Data suggest that effective

attenuation of NSP-mediated damage will likely require the dual

inhibition of DPP1 maturation and its aminopeptidase activity (30).

In this review, we provide an overview of DPP1, its functional

biochemical properties, the consequences of its inactivation and

deficiency, and NSP pathophysiology in a variety of disorders. We

conclude with an assessment of the potential of DPP1 as a

therapeutic target and current progress in the development and

clinical evaluation of DPP1 inhibitors.
2 DPP1 biology and pathophysiology

2.1 Biosynthesis, processing,
and maturation

DPP1 is expressed ubiquitously in mammals; the highest

expression levels are in the lung, spleen, kidney, liver, and myeloid
frontiersin.org
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cell lineages, particularly neutrophils, mast cells, monocytes,

macrophages, and their precursors (31). DPP1 is a unique member

of the papain-like cysteine protease superfamily in terms of its

biosynthesis, processing, and quaternary structure (32). Initially

synthesized as a single-chain monomeric proenzyme (32–34),
Frontiers in Immunology 03
DPP1 spontaneously folds into the proDPP1 homodimer

containing an exclusion domain, a propeptide, and both heavy

and light chains that form a papain-like catalytic domain (Figure 3)

(32, 33). DPP1 activation is achieved primarily via processing by

CatL-like cysteine cathepsins in a two-step process (27, 30, 32, 33).
FIGURE 1

Neutrophilic Response to Inflammation and Infection. NSP proenzymes are activated by DPP1 to their catalytically active forms in promyelocytes
during neutrophil differentiation in the bone marrow. Neutrophils migrate via the bloodstream to sites of inflammation and infection where activated
NSPs are released and other critical neutrophilic functions are triggered. NSP activity is regulated by endogenous inhibitors (serpins) such as AAT,
alpha-1 antitrypsin. DPP, dipeptidyl peptidase; MMP, matrix metalloproteinase; MPO, myeloperoxidase; NE, neutrophil elastase; NET, neutrophil
extracellular trap; NSP, neutrophil serine protease.
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Crystal structures of DPP1 in complex with small molecule

inhibitors have provided insight into the substrate-binding pockets

(35–37). The heavy chain of each monomer harbors a catalytic

cysteine residue in the solvent-exposed active site (33–35, 38). The

active site of each monomer contains a hydrophobic interior pocket

and a large surface-exposed pocket, an architecture that

accommodates the wide substrate specificity of DPP1 (30, 34, 39–

42). Furthermore, the exclusion domain, which is unique to DPP1, is

responsible for the exopeptidase activity of this enzyme because it

blocks regions of the enzyme active site and makes it accessible only

to the N‐terminus of its protein substrates (34). Upon activation,

mature serine proteases and DPP1 are stored together in cytoplasmic
Frontiers in Immunology 04
granules. ProDPP1 is constitutively secreted extracellularly from the

Golgi apparatus (30); however, activation of neutrophils, mast cells,

and lymphocytes results in the release of active DPP1 from granules

into the extracellular milieu (30, 43, 44).
2.2 Extracellular DPP1

Upon neutrophil activation, mature DPP1 and other granule-

associated proteases are secreted into the extracellular milieu.

Mature DPP1 has been found in sputum from patients with CF

and asthma (30), in tracheal aspirates from mechanically ventilated
FIGURE 2

Pathological Spectrum of Aberrant NSP Activity in Lung Tissue. Dysregulated NSP activity contributes to lung damage in multiple acute and chronic
inflammatory lung diseases including acute lung injury, acute respiratory distress syndrome, COPD, AATD, bronchiectasis, and CF. Inhibition of DPP1
is under evaluation as a therapy to reverse NSP dysregulation and control the associated inflammation. AAT, alpha-1 antitrypsin; AATD, alpha-1
antitrypsin deficiency; CatG, cathepsin G; COPD, chronic obstructive pulmonary disease; CF, cystic fibrosis; DPP1, dipeptidyl peptidase 1; IL-1b,
interleukin-1b; IL-8, interleukin-8; MMP, matrix metallopeptidase; NE, neutrophil elastase; NSP, neutrophil serine protease; PR3, proteinase 3; SLPI,
secretory leukocyte protease inhibitor; TNF-a, tumor necrosis factor-a.
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patients with pneumonia (45), and in bronchoalveolar lavage fluid

from patients with non-small cell lung cancer, including patients

with low neutrophil numbers (30). In contrast, proDPP1—but not

mature DPP1—is constitutively secreted by bronchial epithelial

cells from healthy individuals, positioning mature DPP1 as a

biomarker of neutrophilic lung inflammation (30). However, the
Frontiers in Immunology 05
functional role of extracellular DPP1 secreted from neutrophils at

inflammatory sites remains uncertain.

DPP1 is abundantly expressed in mast cells. In vitro data

suggest that DPP1 is packaged into serine protease–rich mature

granules (or a functionally similar compartment) and secreted when

mast cells are activated (44). The high expression level of DPP1 and
A

B

FIGURE 3

3D Structures of Dimeric Pro-DPP1 and Its Functional Tetrameric Form. Model structure (A) DPP1 monomer. The exclusion domain and papain-like
catalytic domain are shown in surface representation and colored in grey. The propeptide (residues Thr120–His206) in the ribbon plot is shown in
cyan. The catalytic cysteine 234 is shown in green. (B) ProDPP1 dimer. Monomers A and B are shown in surface representation with the same color
coding as in (A). Leucine, arginine, and aspartic acid are labeled using their one-letter amino acid codes and shown in dark yellow, blue, and red,
respectively. Cat, cathepsin; D, aspartic acid; DPP, dipeptidyl peptidase; L, leucine; R, arginine; wt, wild type. Figure previously published in Lamort
AS, et al. Int J Mol Sci 2019; 20:4747; reproduced with permission.
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serine proteases in mast cells, neutrophils, and cytotoxic T

lymphocytes suggests that curtailing the downstream effects of

DPP1 activation may alter many cellular functions, including

mast cell function, and impede diseases driven by mast cells.
2.3 Genetic inactivation

Genetic inactivation or loss of DPP1 activity can have widespread

and variable effects. PLS is a rare autosomal recessive disease in which

DPP1 insufficiency, which is caused by a mutation in the DPP1 gene

(CTSC), results in diffuse palmoplantar hyperkeratosis, severe

prepubertal periodontitis, and premature loss of both deciduous and

permanent teeth (26, 46). Neutrophil-mediated bacterial killing remains

intact in patients with PLS, although neutrophil activity has several

functional defects, including impaired chemotaxis, abnormal release of

proinflammatory cytokines, and a lack of NET formation (26, 46, 47).

Characterization of NSPs from patients with PLS revealed a

DPP1-independent processing and maturating pathway for NSPs

that is catalyzed by at least one DPP1-like protease (48) termed

NSP-activating alternative protease (NSP-AAP). The proteolytic

elimination pathway of proNSPs is catalyzed by an unknown

granule-associated protease, a pathway initially identified by the

differentiation of isolated human neutrophilic precursors in the

presence of the cell-permeable DPP1 inhibitor (28, 48). In this

pathway, most proNSPs are eliminated during neutrophil

differentiation, while only 5% or less of proNSPs mature (48).

In the human promyelocytic HL-60 precursor cell line, CatS/CatL

inhibition nearly abolishes proDPP1maturation, although it does not

result in significant NSP inactivation. It is hypothesized that even in

the presence of CatS/CatL inhibition and blockade of proDPP1

maturation, NSP-AAP can activate approximately 80% of NSPs.

However, treatment of HL-60 cells with a nitrile inhibitor that

reduces both DPP1 and NSP-AAP activities by approximately 95%

results in near-complete NSP inactivation (30). Taken together, these

data support the action of a yet unknown protease in the human

proteome that is involved in proNSP maturation.

Granzymes are serine proteases with various substrate

specificities that are expressed almost exclusively in cytotoxic T

cells and natural killer cells. Granzyme A, a tryptic protease (49),

and granzyme B, an aspartic protease (50), are the most commonly

expressed granzymes during T- and natural killer cell activation (51)

and are maturated by DPP1 in vitro. Lymphokine-activated killer

cells from patients with PLS and DPP1 deficiency retain 50-60% of

normal granzyme activity and display normal cytotoxic activity

against K562 cancer cells (26). These results highlight that DPP1 is

not the sole proteinase involved in pro-granzyme maturation in

humans. Furthermore, the presence of DPP1-like proteinase(s)

provides a molecular rationale for the absence of a generalized T-

cell immunodeficiency phenotype in patients with PLS.
3 Pathophysiology of NSPs

Once active, NSPs play an integral role in modulating

inflammation and tissue remodeling. Uncontrolled NSP activity
Frontiers in Immunology 06
can cause significant tissue damage; therefore, endogenous

inhibition of NSPs is critical to maintain health and limit disease

progression (Table 1) (13, 80, 81).

Proteolytic action of NSPs is controlled endogenously by the

serpin (serine proteinase inhibitor) superfamily of proteins (e.g.,

alpha1-antitrypsin (AAT), alpha1‐antichymotrypsin, monocyte NE

inhibitor) and the chelonianin family of canonical inhibitors (elafin,

secretory leukocyte protease inhibitor) (8, 82, 83). Serpins include

more than 1000 proteins expressed in animals, plants, and viruses

(84–86). Serpin-mediated NSP inhibition is unique in that after the

initial formation of a non-covalent and reversible serpin-protease

complex, two pathways can occur (87). In the inhibitory pathway,

the protease cleaves a region of the serpin, generating an irreversible

covalent protease-serpin complex; in the substrate pathway, the

serpin is irreversibly inactivated after cleavage by the protease, and

the protease is regenerated (86). Canonical inhibitors use a standard

mechanism to inhibit NSPs, in which a reversible protease-inhibitor

complex forms but can slowly dissociate after cleavage of the

protein inhibitor (88, 89). Elafin and secretory leukocyte protease

inhibitor are synthesized at local sites of injury or in the liver

following an inflammatory signal (80) and are two of the main

canonical inhibitors that have been reported in human lung

secretions (90, 91). Both canonical inhibitors and serpins are

important regulators in balancing not just NSP activity, but other

serine proteases as well, in both tissues and circulation (92).
3.1 Inflammatory respiratory diseases

NSPs are released in the airways of patients with multiple types

of chronic pulmonary diseases such as COPD, AATD,

bronchiectasis, and CF, and have been implicated as key

mediators of chronic inflammation and disease progression (8,

59). Although the etiologies of these conditions vary, excess

extracellular NSP activity is a common characteristic. The

protease–antiprotease theory for the pathogenesis of COPD has

its roots in experimental models of emphysema from the 1960s and

the observation that individuals with genetic deficiency of AAT are

particularly susceptible to severe emphysema and COPD (3). This

theory suggests that the pathogenesis of chronic inflammatory

diseases involving NSPs is the result of an imbalance between

enzymes that degrade the extracellular matrix within the lung and

proteins that oppose this proteolytic activity.
3.1.1 Chronic obstructive pulmonary disease
COPD is characterized by persistent neutrophilic inflammation

of the airway lumen and destruction of the lung parenchyma,

leading to progressive deterioration of lung function (52, 53).

Elevated neutrophil counts have been shown to correlate with

progression of COPD in smokers (93) and with acute

exacerbations of COPD (94).

Multiple lines of evidence point to NSPs as primary mediators

of COPD-associated pulmonary tissue damage and clinical decline

(95, 96). In patients with COPD, activation and degranulation of

neutrophils result in the release of activated NSPs, primarily NE,
frontiersin.org
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PR3, and CatG (54), disrupting the normal balance between

proteases and antiproteases (53). Excess extracellular levels of

NSPs in COPD have been shown to cause pulmonary tissue

damage directly (54). Normally, antiproteases such as AAT limit

this damage, but when excessive amounts of NSPs are released in

patients with COPD, the controlling effect of antiproteases is

overwhelmed (97). In smokers, this situation is exacerbated by

the oxidizing environment associated with cigarette smoke, which

inactivates AAT (98). Hypoxia also adversely affects neutrophil

function in other ways, resulting in reduced destruction of bacterial

pathogens and apoptosis (52, 99).

NE has generally been regarded as the principal NSP

contributing to the pathophysiology of COPD, but more recent

data indicate that PR3 and CatG also have significant roles (97,

100). Studies suggest that free PR3 has a greater radius of activity

than NE upon release from granules (101). Some antiproteases

produced in the lungs inhibit NE but not PR3, such that PR3 but
Frontiers in Immunology 07
not NE activity can sometimes be detected in lung secretions (97,

102, 103). Although NSPs can degrade a broad array of structural

and other proteins, the specific mechanisms with greatest impact on

COPD progression remain unresolved (100).

3.1.2 Alpha-1 antitrypsin deficiency
AAT is the archetypal member of the serpin superfamily (53).

AAT, the most abundant antiprotease found in human plasma, is

mainly produced in the liver but is also secreted from bronchial

epithelial cells (104). AAT has inhibitory activity against all NSPs

but is particularly active against NE (57). A primary biological role

of AAT is maintenance of the normal protease-antiprotease

balance (53).

AATD is an underrecognized genetic condition characterized

by low circulating AAT levels that may lead to lung and liver

disease; approximately 1 in 2000-5000 individuals are affected (53,

55, 56, 105, 106). AAT deficiency was first described in 1963 when
TABLE 1 Pathobiology of neutrophil serine proteases in inflammatory diseases.

Disease Pathophysiology Neutrophil Serine Protease Involvement

Strength
of
Evidence*

Chronic
obstructive
pulmonary
disease

Neutrophilic airway inflammation causes
progressive destruction of the lung
parenchyma (52, 53).

Activated neutrophil serine proteases disrupt the normal protease-antiprotease
balance; excess extracellular neutrophil serine proteases can cause pulmonary damage
directly (53, 54).

***

Alpha-1
antitrypsin
deficiency

Low alpha-1 antitrypsin causes neutrophilic
airway inflammation and airflow
obstruction, bronchiectasis, impaired
bacterial clearance, and other airway
abnormalities (55, 56).

Alpha-1 antitrypsin is a principal endogenous neutrophil serine protease inhibitor;
low levels can trigger disruption of the normal protease-antiprotease balance (53, 57).
Neutrophils and neutrophil serine proteases in lung fluids may be elevated (58).

**

Bronchiectasis Irreversible bronchial dilatation, pulmonary
inflammation, and mucus obstruction lead
to recurrent infections and progressive lung
damage (59, 60).

Airway inflammation is mediated primarily by excessive neutrophil serine proteases
release (60).

***

Cystic fibrosis Mucus dehydration and airway pH
reduction facilitate persistent pulmonary
bacterial infections and chronic
inflammation, leading to progressive lung
damage (61).

Excess neutrophil elastase activity causes lung necrosis and apoptosis by degrading
essential proteins and activates release of neutrophil extracellular traps that further
increase airway viscosity and contribute to persistent inflammation (59, 61–64).

***

Chronic
rhinosinusitis
without
nasal polyps

Occurs as a common comorbidity of
chronic lower respiratory conditions, such
as chronic obstructive pulmonary disease
or bronchiectasis (65, 66).

Neutrophilic infiltration contributes to rhinosinusitis symptoms; neutrophil elastase
activity may trigger inflammation with goblet cell metaplasia (66, 67).

*

Antineutrophil
cytoplasmic
autoantibodies-
associated
vasculitis

Autoimmune condition with
granulomatosis and/or microscopic
polyangiitis; it often involves lungs and
kidneys, potentially resulting in severe
pulmonary hemorrhage and renal
failure (68).

Antineutrophil cytoplasmic autoantibodies binding to cellular targets, including
proteinase 3, activates neutrophils and monocytes; antineutrophil cytoplasmic
autoantibodies-activated neutrophils release neutrophil extracellular traps with
neutrophil serine proteases, and neutrophil serine proteases are used by myeloid
effector cells to induce necrotizing vasculitis (68, 69).

**

Hidradenitis
suppurativa

Inflammatory skin disease characterized by
recurrent inflamed nodules, abscesses, sinus
tracts (tunnels), and scarring involving the
intertriginous regions (70, 71).

Neutrophils recruited to hidradenitis suppurativa lesions contribute to nodule and
abscess development; elevated neutrophil elastase and neutrophil extracellular traps
occur in patients with hidradenitis suppurativa (70, 71).

*

Cancer Some cancers are associated with
inflammation and tumor-derived immune
cells, particularly tumor-associated
neutrophils; inflammation may increase the
risk of cancer recurrence (72–77).

Immunosuppressive protumor neutrophils foster tumor invasion, metastasis, and
angiogenesis by releasing neutrophil elastase and other proteins. Neutrophil serine
proteases have been associated with poor clinical outcomes in several types of cancer
(72, 73, 78, 79).

**
*Strength of evidence (*weak, **moderate, ***strong) supporting neutrophil serine protease dysfunction as a key etiologic factor.
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absence of the alpha1 protein in serum was associated with early-

onset emphysema in several patients (106). Histological and

radiological analyses of affected patients showed severe

emphysema and frequently bronchiectasis.

AATD is associated with basal emphysema and features of

typical COPD. Elevated neutrophil counts and NSP levels in lung

epithelial lining fluid have been reported (58). The airways show

evidence of neutrophilic airway inflammation leading to airflow

obstruction, bronchiectasis, impaired mucociliary clearance, and

impaired bacterial clearance. Patients may be chronically infected

with bacteria, contributing to an increased risk of exacerbation.

AATD also is associated with panniculitis as well as vasculitis and a

10-fold increase in ulcerative colitis. Finally, emphysema itself is

associated with an increased prevalence of lung cancer. All these

features have a clear NSP implication and hence are modifiable.

Case reports of adults with AATD have indicated a possible

relationship with cutaneous or systemic vasculitis and neutrophilic

panniculitis (107, 108). The estimated prevalence of neutrophilic

panniculitis is 0.1-0.9% in patients with AATD; these are most

commonly white individuals with a Pi*ZZ genotype. Panniculitis

presents with painful recurrent subcutaneous nodules that may be

ulcerating and is characterized by the presence of dense neutrophils

in the deep dermis and connective tissue septae (108, 109).
3.1.3 Bronchiectasis
Bronchiectasis is a heterogeneous condition defined by

irreversible bronchial dilatation, pulmonary inflammation, mucus

obstruction, and progressive lung damage (59, 60). Recurrent

bacterial infections are common and have been proposed as

causal elements of a pathogenic vortex in which infections lead to

chronic inflammation that in turn increases vulnerability to further

infection. Predisposing conditions associated with bronchiectasis

include severe infections; immunodeficiencies; hypersensitivity

conditions, such as allergic bronchopulmonary aspergillosis;

autoimmune conditions; and congenital diseases, such as primary

ciliary dyskinesia.

Inflammation in bronchiectasis is mediated primarily by

activated neutrophils that release NSPs (60). Although NE release

and subsequent formation of NETs are key components of the

innate inflammatory response to pathogens (60, 110, 111), the

excessive release of NE that occurs in bronchiectasis contributes

to disease progression. In a longitudinal study of patients with

bronchiectasis, NE activity in sputum was significantly associated

with airway bacterial load, risk of bronchiectasis exacerbations,

pulmonary functional decline, and risk of hospitalization (112).

Sputum NE activity was shown to be associated with increased risk

and frequency of exacerbations, infections, hospitalizations and all-

cause mortality (22, 23). Levels of PR3 were found to be raised in

patients with bronchiectasis during exacerbations compared with

stable disease, correlating with levels of NE (113). CatG activity was

also found to cause dysfunction of ciliated cells and destruction of

airway epithelium in patients with bronchiectasis, and activity

correlated with disease severity (114). These observations

provided the rationale for clinical trials of agents designed to

reduce NSP activity in patients with bronchiectasis (115, 116).
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were supported by the observation that antibiotic treatment

significantly reduces sputum NE. Protease-antiprotease balance is

extremely disrupted in severe bronchiectasis, as shown in proteomic

studies of sputum from patients with bronchiectasis that

demonstrated that both elevated NSPs and reduced secretory

leukocyte protease inhibitor levels were associated with disease

severity (117, 118). However, other studies have shown that

antibiotic therapy alone is insufficient to modify disease

progression because other factors can maintain inflammatory

processes and tissue damage (60).

3.1.4 Cystic fibrosis
CF is caused by a genetic deficiency of the CF transmembrane

conductance regulator protein, which is produced primarily

in epithelial cells of airway, mucus-producing, secretory tissues

(61, 119). CF transmembrane conductance regulator dysfunction

results in airway mucus dehydration and reduction in the pH of

airway surface fluids; these changes compromise antibacterial

defenses and facilitate persistent pulmonary bacterial infections.

CF transmembrane conductance regulator dysfunction also impairs

immune responses to infection by neutrophils, macrophages, and T

lymphocytes (61, 120–122). Together, these processes lead to

chronic systemic and airway inflammation, pulmonary tissue

damage, and respiratory insufficiency.

In patients with CF, NE participates in pathogenic processes

that cause disease progression. NE contributes to production of

hyperconcentrated airway mucus and airway obstruction (59, 123,

124). Several processes are involved: NE increases expression of the

mucin 5AC gene by both transcriptional and posttranscriptional

mechanisms and activates mucin secretion from the bronchial

epithelium. NE also decreases ciliary functioning and reduces

surface hydration by disrupting regulatory ion channels.

As in other chronic respiratory diseases, excessive NE

proteolytic activity causes tissue damage and disease progression

by degrading proteins essential for maintaining alveolar structure

(59, 62), increasing apoptosis and necrosis in the lungs, and

activating senescence in airway epithelial cells (63, 64). NE also

activates release of NETs that further increase sputum viscosity and

contribute to persistent inflammation (61, 122). As in non-CF

bronchiectasis, NE activity in sputum has been shown to be

associated with disease severity and to predict lung function

decline (125).

3.1.5 Chronic rhinosinusitis without nasal polyps
Chronic rhinosinusitis (CRS), defined by chronic inflammation

of the paranasal sinuses, is a common comorbidity in individuals

with chronic lower respiratory conditions, such as COPD,

bronchiectasis, CF, and asthma (65, 66). Co-diagnosis of

bronchiectasis with CRS or other chronic respiratory conditions is

associated with more severe disease (65, 126–129). CRS is

reportedly present in 51% of patients with COPD and 45-77% of

patients with bronchiectasis (127, 130).

CRS is classified phenotypically by the endoscopic presence or

absence of nasal polyps, referred to as CRSwNP and CRSsNP,
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respectively (131); approximately 80% of patients with CRS have the

CRSsNP phenotype. CRSsNP histological findings include basement

membrane thickening, fibrosis, and goblet cell hyperplasia (66). The

risk of developing CRSsNP is increased by respiratory viral or bacterial

infections, chronic lung diseases, bronchitis, rhinitis, gastroesophageal

reflux disease, immunodeficiencies, and some other conditions.

The pathogenesis and underlying mechanisms of CRSsNP are

complex. Overall, multiple endotypes of CRSsNP together describe

a mixed inflammatory condition with helper T type 1, 2, and 17

components, although CRSsNP is proportionally more neutrophilic

and less eosinophilic than CRSwNP (66). Evidence suggests that

neutrophilic infiltration contributes to disease symptoms. In vitro

data and mouse studies suggest that NE proteolytic activity triggers

an inflammatory process that induces goblet cell metaplasia, which

results in overexpression of mucins that contribute to the

symptomatology of CRS (66, 67).
3.2 Antineutrophil cytoplasmic
autoantibodies associated vasculitis

Antineutrophil cytoplasmic autoantibodies (ANCA)-associated

vasculitides (AAV) are a group of autoimmune systemic small

vessel diseases (68). Patients with AAV harbor ANCA to PR3

(132, 133) or myeloperoxidase (MPO) (134), which are both

autoantigens exclusively expressed by neutrophils and monocytes.

The clinical AAV entities are granulomatosis with polyangiitis,

microscopic polyangiitis, and eosinophilic granulomatosis with

polyangiitis. The lungs and kidneys are frequently involved,

resulting in life-threatening pulmonary hemorrhage and rapidly

progressive renal failure often requiring renal replacement therapy.

Untreated, systemic AAV is invariably lethal. Standard therapies

consist of steroids, cytotoxic drugs, and depleting anti-CD20

antibodies. With these treatments, approximately 75% of patients

with active AAV achieve remission at 12 weeks, and 30-50%

experience vasculitis flares. Improved treatment efficacy, reduced

treatment-related morbidity and mortality, and disease-specific

strategies are needed. Recently, C5a receptor blockade was found

to be protective in a murine AAV disease model (135) and steroid

sparing in patients with AAV (136).

ANCA binding to their target cell surface antigens activate

neutrophils and monocytes that subsequently contribute to vascular

inflammation and injury. NSPs are used by myeloid effector cells to

induce necrotizing vasculitis. Some NSP-dependent mechanisms

pertain to both PR3- and MPO-ANCA, whereas others specifically

relate to the former. PR3 is a unique NSP family member because it

acts as both an ANCA autoantigen and an active serine protease (97).

The presentation of the PR3 autoantigen on the cell membrane

(mPR3) of neutrophils and monocytes is pivotal for PR3-AAV.

PR3-ANCA bind and cross-link mPR3 (137) on neutrophils,

thereby initiating, together with Fcg receptor engagements (138,

139), intracellular mitogen-activated protein kinase (140), Syk

tyrosine kinase (141), and phosphoinositide 3-kinase/Akt (142,

143), signaling and subsequently cell activation. The mPR3

pattern on human neutrophils is bimodal (144), caused by a

subset-restricted expression of neutrophil-specific CD177 (145).
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CD177 binds PR3 with high affinity as shown by ectopic

expression studies (146) and surface plasmon resonance (147).

Epigenetic CD177 silencing in one neutrophil subset and random

monoallelic expression in another neutrophil subset yields two

distinct CD177neg/mPR3low and CD177pos/mPR3high cell

populations (148). The latter ranges from 0% to 100% and is

stable in a given individual. The higher the CD177pos/mPR3high

neutrophil percentage, the stronger the PR3-ANCA–induced

neutrophil activation in vitro (149) and the worse the clinical

outcome (150, 151). Thus, PR3 on the membrane of viable

neutrophils is highly relevant to PR3-ANCA vasculitis.

ANCA-activated neutrophils either release PR3, human NE,

and CatG into the surroundings as soluble molecules or tethered to

NETs. Degranulated, proteolytically active NSPs are acquired by

endothelial cells and cleave endothelial proteins (152), increasing

endothelial permeability and injury. In addition, NETs are detected

in patients with AAV. ANCA-activated neutrophils generate NETs

that are decorated with NSPs together with other granule proteins,

DNA, and histones (69). Human NE participates in NET formation

by promoting chromatin decondensation (17). ANCA induce NETs

via receptor-interacting protein kinase 1/3–dependent necroptosis,

and these NETs provide a scaffold for the activation of the

alternative complement pathway that in turn causes endothelial

cell damage in vitro. The in vivo relevance of necroptosis, NETs, and

the alternative complement pathway, specifically the C5a-C5a

receptor interaction, for disease induction was established in

murine MPO-AAV models (135, 153–155).

Two large genome-wide association studies found significant

associations between PR3-AAV, but not MPO-AAV, and single

nucleotide polymorphisms (SNPs) in the PR3 and AAT genes (156,

157). Some of the PR3 SNPs are associated with higher PR3 plasma

levels in healthy individuals (158). Another study found that NSP

transcription that is normally silenced during neutrophil

maturation is reactivated in blood neutrophils from patients with

active AAV (159, 160). Comparison of AAT and PR3 in individuals

with or without AAV showed that in patients with PR3-AAV, but

not those with MPO-AAV, elevated PR3 pools were quantitatively

associated with ANCA titer, inflammatory response, and disease

severity (161). These findings suggest that oxidation-resistant AAT

or other strategies for reducing PR3 activity may have value as

adjunctive therapy for PR3-AAV.

NSP contributions to AAV suggest that NSP downregulation

provides protection from AAV. Several strategies to reduce NSPs

are conceivable, including pharmacological DPP1 inhibition. A

DPP1-targeting approach is supported by the observation that

chimeric mice that received DPP1-deficient bone marrow were

protected from MPO-ANCA vasculitis (155). Human data from

patients with PLS showed abrogated NET (162) formation and

strongly reduced mPR3 on activated neutrophils and monocytes

(48, 163). Pharmacological DPP1 inhibition in neutrophils

differentiated from human hematopoietic stem cells recapitulated

these findings (48). Consequently, decreased mPR3 levels resulted

in reduced PR3-ANCA–induced neutrophil activation. Moreover,

both genetic DPP1 deficiency and pharmacological inhibition

reduced neutrophil-induced glomerular microvascular endothelial

cell damage (163). Conceivably, DPP1 inhibition is more effective in
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PR3-AAV because of the importance of PR3 as an autoantigen and

mPR3 for the activation of myeloid effector cells by PR3-ANCA.

Since no appropriate PR3-AAV model exists, clinical studies with

adjunctive DPP1 inhibitor administration in patients with PR3-

AAV may provide the best approach to test this hypothesis.
3.3 Hidradenitis suppurativa

Neutrophils are also the predominant leukocyte infiltrate in HS

lesions. HS is a chronic inflammatory skin disease characterized by

recurrent inflamed nodules, abscesses, sinus tracts (tunnels), and

scarring involving the intertriginous regions (i.e., the axillae, inguinal,

and anogenital area). Neutrophils recruited to HS lesions may play an

essential role in the development of the inflammatory nodules and

abscesses (70). Elevated levels of both NE and NETs are observed in

tissue samples of patients with HS, and NETs from HS lesions are

associated with worsening disease (71).
3.4 Cancer

The World Health Organization ranks cancer as the second

most common cause of death globally. More than 2 million new

cases of lung cancer alone were reported in 2020 (164, 165). Lung

cancer subtypes and associated metastases have been studied with

respect to mutation patterns and molecular disease mechanisms

(72, 166, 167). When adhesion molecules are lost, cancer cells can

disseminate outside the primary tumor, remaining dormant and

undetected until they engender metastases or secondary tumors,

sometimes years later. The lungs are a common site of metastases

for tumors originating from many other tissues (168). Development

and progression of some cancers are associated with inflammation

and tumor-derived immune cells, particularly tumor-associated

neutrophils (TANs). TANs can have both tumorigenic and

antitumorigenic functions, referred to as protumor and antitumor

TANs, respectively (72–74).

Antitumor neutrophils interfere with tumor cell proliferation

directly as well as by recruiting additional immune cells. Protumor

neutrophils, on the other hand, are immunosuppressive and foster

tumor invasion, metastasis, and angiogenesis by releasing NE and

other proteins, e.g. matrix metalloproteinase-9 (MMP-9), S100

calcium-binding protein A8 (S100A8), S100 calcium-binding

protein A9 (S100A9), Bv8, and high mobility group box 1

(HMGB1) (73, 78, 79, 169, 170). Smoking also increases the risk

of tumor progression and death in patients with breast cancer (171).

Studies suggest that inflammation may increase the risk of

cancer recurrence (75–77). Chemokines recruit neutrophils to

tumor sites, creating a microenvironment that favors cancer

progression and adverse patient outcomes (172, 173). Many of

the details regarding the specific chemokine pathways that trigger

neutrophil recruitment to tumor sites remain uncertain (174);

however, neutrophils have been identified as key in awakening

quiescent cancer cells and promoting cancer-associated thrombosis,

which can cause significant morbidity in patients with cancer (73,

175). NETs released by activated neutrophils are covered with
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procoagulant and prothrombin effects of NETs suggest that

targeting NETs may comprise a viable approach for prevention of

cancer-related thrombosis. Preclinical models suggest that cancer

can enhance NET formation by neutrophils both locally and

systemically, thereby expanding the inflammatory and

prothrombotic environment. Thus, NSPs released from activated

neutrophils may promote both primary tumors and metastatic

tumor expansion.

Extracellular NSPs have been detected in several types of cancer

and have been associated with poor clinical outcomes (72). PR3, as

well as NE and MPO, were found to be elevated and catalytically

active in the urine of patients with bladder cancer, but they were not

detected in the urine of healthy controls (177, 178). Due to the

presence of neutrophil markers NE and MPO, it is likely that the

urinary PR3 originated from cancer-associated neutrophils.

NE has been detected by bronchoalveolar lavage in patients with

lung cancer (179). The quantities of NE and MPO in lavage fluid

from patients with lung cancer were higher than those in patients

with COPD. Studies suggest that NE is involved in primary tumor

growth and secondary organ metastasis (180). In mouse models,

pharmacological inhibition or genetic deletion of NE reduced

cancer progression (78, 180). Consistent with these findings, the

cleavage pattern of peptides in cancer tissue was consistent with the

cleavage preferences of NE, suggesting that NE is a primary

participant in cancer-specific proteolytic processing (181).

In mouse models, sustained lung inflammation induced by

lipopolysaccharides or tobacco smoke promoted formation of

NETs that awakened dormant malignant mammary cancer cells

(73). In this process, activated neutrophils awakened cancer cells by

laminin processing via NET-associated NE and MMP-9. The

products of proteolytic laminin cleavage triggered transformation

of the dormant cancer cells into aggressively growing metastases by

activating integrin signaling. In related studies, NETs secreted by

inflammation-activated neutrophils impaired tumor clearance by

encircling cancer cells and blocking immune cells from exerting

their normal anticancer effects (182, 183). However, NE inhibition

attenuated these effects, confirming that NE and NETs can mediate

the tumorigenic actions of neutrophils and may comprise useful

therapeutic targets for multiple types of cancer (73, 180).

Upregulation of DPP1 expression and activity has been

observed in human cancer and in animal models of

carcinogenesis (184–186). DPP1 expression and enzymatic

activity were increased in breast cancer and squamous cell

carcinoma in mouse tissue compared with healthy controls (184).

In this mouse model, however, DPP1 promoted angiogenesis and

tumor growth only in squamous cell carcinoma and not breast

cancer. Overall, DPP1 depletion reduced keratinocyte proliferation

and vascularization in squamous cell carcinogenesis (184, 187).

Interestingly, reduced levels of NE and mast cell chymase were

observed in neoplastic skin of DPP1 knockout mice, suggesting a

role of immune cell serine protease in squamous cell carcinoma

development (184).

An oncogenic role for DPP1 in renal carcinoma (188) and

hepatocellular carcinoma has also been reported (186). DPP1

expression was identified as a prognostic marker for survival in
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humans with hepatocellular carcinoma (186). DPP1 mRNA levels

were found to be significantly higher in human hepatocellular

carcinoma tissue than in normal healthy tissue, and upregulated

DPP1 was correlated with poor overall survival. Interestingly, this

study also reported a correlation between high DPP1 expression

and clinical features such as cirrhosis and ascites. In gain- and loss-

of-function mouse studies, DPP1 was identified as an oncogenic

protein that promoted hepatocellular carcinoma cell proliferation

and metastasis, potentially involving the TNF-alpha/p38 mitogen-

activated protein kinase pathway (186). Collectively, these studies

underscore the implications of the wide variation in DPP1

expression and its far-reaching downstream effects, supporting

future investigations of DPP1 not only as a biomarker but also as

a therapeutic target to combat cancer progression.

Mature DPP1 secreted by tumor cells has shown potential to

promote lung metastasis of breast cancer cells (185). DPP1 was

identified among the highest regulated proteins, and its expression

and secretion were elevated in lung metastases of breast cancer.

Moreover, high DPP1 expression in primary tumors was negatively

correlated with patients’ overall survival. Hence, tumor-derived

DPP1 provides a prognostic survival marker. In addition, in

experimental murine breast cancer models, a strong correlation

was observed between DPP1 expression and infiltrating neutrophils

that deposited NETs in both primary tumors and lung metastasis.

The authors reported the dual function of tumor-secreted mature

DPP1 in neutrophil recruitment to metastatic niches and

NETosis induction.
4 Pharmacological inhibition of DPP1

DPP1 is increasingly recognized as a pharmacological target for the

blocking of NSPs and NETosis in neutrophil-driven inflammatory and

autoimmune diseases (3, 8, 189). Because NE and NETs are identified

as therapeutic targets in cancer, pharmacological DPP1 inhibition can

also be envisaged as a therapeutic strategy to prevent primary tumor

growth and secondary organ metastasis (37). Data from PLS patients-

derived neutrophils and monocytes showed abrogated NET formation

(162) and strongly reduced intracellular NSP activities and proteins

(26, 48, 163). Furthermore, mPR3 on activated neutrophils and

monocytes was strongly reduced (48, 163). The observation that

DPP1 knockout mice are resistant to NSP-driven experimental

diseases supports the therapeutic strategy of DPP1 inhibition (3, 155,

190). The protective effect correlates with the inactivation of NSPs,

significantly less secretion of NETs and reduced neutrophil infiltration

into the inflammatory sides. Potent reversible as well as irreversible

chemical inhibitors blocking DPP1 in the bone marrow have been

synthetized, some of which are now being tested in preclinical and

clinical trials (3, 13, 189). Pharmacological DPP1 inhibition in

neutrophils differentiated from human hematopoietic stem cells

recapitulated these findings (48). Consequently, decreased mPR3

levels resulted in reduced PR3-ANCA-induced neutrophil activation.

Moreover, pharmacological inhibition reduced neutrophil-induced

glomerular microvascular endothelial cell damage (163).

Although small molecule or peptide-based inhibitors against

individual NSPs have been extensively explored in the past 50 years,
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impact in the clinic, except for AAT augmentation therapy in

patients with emphysema and congenital AATD (191). This

discovery from the 1960s led to the development of the protease-

antiprotease imbalance hypothesis: overshooting protease

concentrations, especially high levels of NE, were deemed to have

a destructive effect on lung tissue (53). Synergistic involvement of

NSPs in tissue damage was demonstrated in mice, with a triple

deficiency of NSPs showing better protection against tissue damage

than a single NE deficiency in knockout mice (100).
4.1 Design and in vivo evaluation

Most of the reported nitrile-based inhibitors of DPP1 are

dipeptidyl nitriles. The first study, published in 2006 by Bondebjerg

et al. (192), started with a moderate DPP1 inhibitor, glycyl-L-

phenylalanine nitrile (Gly-Phe-CN). The inhibitory activity towards

DPP1 was improved by introduction of aminobutanoic acid (Abu) in

the P2 position, whereas various hydrophobic, aromatic amino acid

residues, such as phenylalanine (Phe) and biphenyl (Bip), were

evaluated in the P1 position. Abu-Bip-CN was identified as the

most potent inhibitor in the series (half-maximal inhibitory

concentration [IC50], 13 ± 3 nM [pIC50, 8.7]) but was poorly

potent in the cell assay due to rapid proteolytic withdrawal in the

cell assay medium. In addition, the amide bond was hydrolyzed

in plasma.

The study on Abu-Bip-CN and related compounds was

continued and ultimately led to the identification of AZD5248 ((S)-

4-amino-N-(1-cyano-2-(4’-cyanobiphenyl-4-yl)ethyl)-tetrahydro-

2H-pyran-4-carboxamide), which was selected by Furber et al. as the

most promising candidate for in vivo studies (36). AZD5248

displayed potent inhibitory activity and selectivity and showed both

low clearance and high bioavailability in rat, mouse, and dog models.

Although maximal NSP inhibition in bone marrow (90%, 64%, and

88% reduction in NE, PR3, and CatG activity, respectively) was

observed in rats after 8 days of treatment (10mg/kg orally twice daily)

(81), AZD5248 showed aortic binding in a rat quantitative whole-

body autoradiography study, so its development was stopped (193).

The aortic binding was hypothesized to be mediated by imidazolin-4-

one formation with aldehydes involved in the cross-linking of elastin,

but no direct proof was presented.

A novel series of nitrile inhibitors free from aorta-binding

liabilities was developed. Brensocatib (AZD7986/INS1007) was

identified as a highly potent, reversible, and selective inhibitor of

human DPP1 and showed comparable effects on mouse, rat, dog,

and rabbit DPP1. Brensocatib almost completely inhibited

activation of NE, PR3, and CatG in a concentration-dependent

manner in human primary bone marrow-derived CD34+

neutrophil progenitor cells. This compound did not bind to aortic

tissue homogenates and showed good stability in plasma with a

half-life of greater than 10 h (194). An extensive naïve dosing study

with brensocatib at different dosing levels, frequencies, and

durations was conducted in rodent models to determine its

pharmacokinetic (PK) profile and its pharmacodynamic (PD)

effects on NSPs. Dose-dependent PK exposure responses were
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observed regardless of the rodent species and strain, with mice

showing greater NSP activity reduction compared to rats. A

duration-dependent reduction was observed in NSP levels that

reached a maximum after approximately 7 days and recoveries to

baseline levels were nearly symmetrical (195). Brensocatib was

shown to mitigate interferon-a-accelerated lupus nephritis in

mice (196). Targeting DPP1 with brensocatib was also shown to

suppress lung metastasis of breast cancer in mice (185).

Furthermore, the combination of brensocatib and anti-PD-L1

antibody was shown to block DPP1-induced colorectal cancer

metastasis in mice (197). Brensocatib has also been shown to

reduce bone marrow NSP levels, and significantly improve disease

score, in two rodent models of rheumatoid arthritis (198).

A preclinical study demonstrated that BI 1291583 can bind

human DPP1 in a covalent, reversible manner, selectively and fully

inhibiting DPP1 enzymatic activity. This subsequently led to a

concentration-dependent inhibition of NE activation in U937 cells

and dose-dependent inhibition of NE and PR3 activity (up to 97%

and 99%, respectively) in BALF neutrophils in an in vivo LPS-

challenge model in mice. BI 1291583 distributed to the bone

marrow at up to 100 times the exposure compared with

plasma (199).

HSK31858 is a potent “non-peptidyl non-covalent” DPP1

inhibitor with an IC50 = 57.4 nM. The activities of NSPs all

decreased to 15-40% in HSK31858 treated mice versus control

mice. This compound exhibited effective anti-inflammatory activity

in a rat model COPD (200).
4.2 Assessment in clinical trials

To date, several DPP1 inhibitors have progressed to clinical trials

in patients with chronic inflammatory lung diseases. In phase 1

studies, brensocatib reduced NE levels in blood with acceptable safety

and pharmacokinetics (194, 201), prompting a 24-week phase 2

WILLOW trial conducted in 256 patients with bronchiectasis, in

which treatment with 10 mg or 25 mg of brensocatib daily for

24 weeks significantly prolonged time to exacerbations compared

with placebo (115, 202). In an exploratory analysis of this study,

brensocatib reduced serum NE activity and sputum-associated NSP

activity, suggesting a broad anti-inflammatory effect underlying the

improved bronchiectasis-associated clinical outcomes observed in the

primary trial. Furthermore, positive correlations among the sputum

NSPs were observed at baseline and in response to treatment at all

time points, pointing to the interrelated efficacy of brensocatib on all

three NSP activities (202). The failure of NE inhibitors alone (116),

and the data for brensocatib in the Phase 2WILLOW trial (115, 202),

suggests that combined inhibition of NSPs, as well as inhibition prior

to extracellular release by the neutrophils, may be required for

observation of efficacy in bronchiectasis. Following on from the

results of the WILLOW study, a phase 3 study of brensocatib in

bronchiectasis is underway (ASPEN; NCT04594369) (203).

ASPEN is a multinational, randomized, double-blind, placebo-

controlled, parallel-group study that is evaluating the frequency

and severity of exacerbations as well as the safety and tolerability of

long-term (52-week) treatment with brensocatib compared with
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placebo in patients with non-cystic fibrosis bronchiectasis.

Approximately 1620 participants will be randomized to receive

placebo or brensocatib (10 mg or 25 mg) once daily. In addition to

this study in patients with bronchiectasis, studies of brensocatib in

other indications, such as CRSsNP (NCT06013241), are underway.

Another DPP1 inhibitor, BI 1291583, showed generally positive

results and an acceptable safety profile in phase 1 studies in healthy

volunteers, supporting the initiation of a phase 2 trial in patients with

bronchiectasis (Airleaf™; NCT05238675) (204, 205). This

multinational, randomized, double-blind, placebo-controlled,

parallel-group, dose-finding study has a screening period of at least

6 weeks, a treatment period of 24-48 weeks and a follow-up period of

4 weeks. Approximately 240 adults with bronchiectasis of multiple

etiologies will be randomized to placebo once daily, or 3 different

doses of BI 1291583 (205). Phase 2 development of HSK31858, a

DPP1 inhibitor discovered in China, has also been initiated in

patients with bronchiectasis (206).
5 Conclusion

NSPs are key mediators of inflammatory lung diseases and

other pathologies, and proteolytic damage has been clearly linked to

disease progression. Inhibition of DPP1, the key protease that

catalyzes maturation of NSPs, is a potential approach to this

objective. Consistent with preclinical findings, treatment with a

DPP1 inhibitor in a phase 2 study reduced NSP activity and

improved outcomes in patients with bronchiectasis. These initial

clinical results support the concept of DPP1 inhibition as a potential

therapeutic strategy across multiple inflammatory diseases that

involve excessive NSP secretion or neutrophil dysregulation

and hyperresponsiveness.
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