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Abstract: Oral disorders, including oral cancer, pose substantial diagnostic challenges due to
late-stage diagnosis, invasive biopsy procedures, and the limitations of existing non-invasive
imaging techniques. Optical coherence tomography angiography (OCTA) shows potential in
delivering non-invasive, real-time, high-resolution vasculature images. However, the quality
of OCTA images are often compromised due to motion artifacts and noise, necessitating more
robust and reliable image reconstruction approaches. To address these issues, we propose a
novel model, a U-shaped fusion convolutional transformer (UFCT), for the reconstruction of
high-quality, low-noise OCTA images from two-repeated OCT scans. UFCT integrates the
strengths of convolutional neural networks (CNNs) and transformers, proficiently capturing
both local and global image features. According to the qualitative and quantitative analysis in
normal and pathological conditions, the performance of the proposed pipeline outperforms that
of the traditional OCTA generation methods when only two repeated B-scans are performed. We
further provide a comparative study with various CNN and transformer models and conduct
ablation studies to validate the effectiveness of our proposed strategies. Based on the results,
the UFCT model holds the potential to significantly enhance clinical workflow in oral medicine
by facilitating early detection, reducing the need for invasive procedures, and improving overall
patient outcomes.

© 2023 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

Oral cancer was highly attended by global public health, especially by dentists [1], which was a
malignant tumor that appeared on lips and intra-oral. Lips, as a highly visible and cosmetically
critical anatomical structure, can significantly affect an individual’s appearance when altered.
There exists an extensive range of mucocutaneous disorders affecting the lips, such as ulcers,
salivary gland stones, and chronic nibbling of the lips [2–4]. Notably, lip ulcers are relatively
common in oral medicine. Although most lip ulcers are benign and often resolve quickly
without clinical intervention, some can signify potentially lethal systemic or neoplastic disorders
stemming from infection, auto-immunity, trauma, or malignancy [1,5,6]. Given that the five-year
survival rate for oral cancer is lower than 60%—primarily due to late-stage diagnosis [7] -early
histopathological examination of lip ulcers is of vital importance. While biopsy remains the
gold standard for diagnosing lip diseases, its invasive nature presents challenges, as it often
results in bleeding, pain, and technical difficulties when applied for preventative health screenings
[8,9]. Consequently, there is a pressing need for a rapid, non-invasive, and reproducible imaging
modality to evaluate erosive or ulcerative areas. Several techniques, such as intraoral scanners
[10], multispectral digital microscopes [11], and fluorescence visualization detection [12], have
been explored for lip disease diagnosis. Nevertheless, these approaches cannot provide in-depth
information on lip tissues, leading to potential misdiagnoses and reducing early oral disease
detection chances.
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Optical coherence tomography (OCT) offers a non-invasive imaging technique that is real-time,
high-resolution (e.g., ∼10 µm), and has a penetration depth of 1∼2 mm [13]. The micro-
anatomical information of oral tissues provided by OCT has proven to be of clinical importance in
various oral diseases [9,14–17]. However, research indicates that OCT struggles to differentiate
between oral cancer lesions based on structural images [18]. As an extended function of OCT,
OCT-angiography (OCTA) can provide vasculature images at the capillary-level resolution,
aiding in disease identification by examining vascular structure and perfusion in oral lip tissues,
thereby contributing to the diagnosis of diverse lip conditions [19–22].

The generation of OCTA images hinges on suppressing static signals from tissue and extracting
moving scattering signals from red blood cells in repeatedly scanned OCT signals taken from
the same location at different time points [23,24]. Consequently, OCTA image quality is tightly
linked to the number of repeated scans: more scans equate to better signal-to-noise ratio (SNR)
and connectivity in the OCTA image. However, excessive scans can increase data acquisition time,
particularly in lip OCTA imaging, where unintended motion artifacts due to patient and scanning
probe movement are more likely, underscoring the need for an optimized OCTA scanning process
that balances data acquisition speed and image quality.

Deep-learning-based strategies using convolution neural network (CNN) models have shown
promise in reconstructing high-quality OCTA images based on two- or four-repeated OCT scans
[25–32], even in dermatology and ophthalmology. However, these models need retraining to learn
the specific vasculature features of lips and ulcers. More importantly, their data acquisition relies
on a fixed sample lens, minimizing motion but adopting invasive collection methods [27–29]-an
approach unsuitable for this study.

While CNNs excel in extracting local features based on local connections and sliding window
mechanisms, they struggle to capture long-term information [33]. In contrast, transformers can
readily capture global information by capturing distant features [34]. Notably, transformers are
convolution-free neural networks that use a self-attention mechanism to extract intrinsic features,
a feature that holds potential for broad application. For instance, Vision Transformer (ViT) [35]
applies a pure transformer layer directly to image patches to denoise natural images. Additionally,
transformer layers have shown impressive sensitivity and efficiency in image reconstruction,
classification, and segmentation [36–40]. However, the training of transformers requires extensive
datasets (e.g., ImageNet2K, JFT3M), and there is currently a shortage of datasets for high-quality
lip OCTA image reconstruction.

To combine the strengths of CNNs and transformers, Wu et al. [41] introduced convolution
operations into the transformer layer, enabling the model to extract spatial relationships between
image patches. Wang et al. [42] proposed a fusion neural network design to augment feature
extraction from two different models. Inspired by these works, we introduced a novel model
named U-shaped Fusion Convolutional Transformer (UFCT) to reconstruct high-quality and
low-noise OCTA images based on two-repeated OCT scans. This model integrates convolution
operations in the sequence generation to better capture spatial information between image patches
and employs a fusion network for a multi-scale feature representation strategy, capturing a more
comprehensive set of features and enhancing generalization and performance.

Our contributions are as follows: (1) we proposed a deep-learning-based pipeline for lip OCTA
to enhance the clinical workflow in oral medicine using only two repeated OCT scans; (2) we
proposed a UFCT model combining vision transformer and convolution operation advantages,
offering superior OCTA image reconstruction; (3) we conducted a comparative study of various
CNN and transformer models for lip OCTA image reconstruction; (4) we carried out a series of
ablation studies to verify our proposed training strategies, implementation details, and model
architecture’s effectiveness.
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2. System and data pre-processing

2.1. Introduction of the SSOCT system

Human lips OCT data were collected in-vivo using a laboratory-built swept-source optical
coherence tomography (SSOCT) system (as illustrated in Fig. 1). More details of the system were
described in [43]. The study was approved by the School of Science and Engineering Research
Ethics Committee (SSEREC) of University of Dundee, which also conformed to the tenets of
the Declaration of Helsinki. To develop a comprehensive assessment of the proposed model,
both the normal and abnormal lips sites were included in this study. In the package of healthy lip
sites, 22 health lip OCT data (#1 - #22) were taken from 22 healthy subjects aged between 20
and 30 years old, none of whom had any oral diseases. Three diseased subjects (#23 - #25) were
collected data in this study, including one case (#23) with salivary gland stones and two cases
(#24 - #25) with ulcers. Specifically, #23 consists of two OCT data collected in two continuous
days, #24 consists of three OCT data collected in three continuous days, and #25 consists of five
OCT data in five continuous days.

Fig. 1. System Schematic of the Swept-Source OCT System used in this study. The
swept-source Laser used in this system has a wavelength of 1310 nm and bandwidth of
100 nm, and a 200 kHz swept rate (SL132120, Thorlabs Inc.). The lens used in the sample
arm is LSM03 (Thorlabs Inc.) with a focal length of 35 mm. The theoretical axial resolution
is 7.4 µm in air.

2.2. Data acquisition and pre-processing

OCTA scan from normal lips was used to build the input low-quality OCTA images (ILQ) and
counterpart ground-truth high-quality OCTA images (IHQ) of training datasets due to their easy
accessibility. As for the imaging protocol in normal lips, one OCTA scan consists of 600
B-scans (y-transverse axis), and each B-scan is composed of 600 A-scans (x-transverse axis).
The penetration depth of our SSOCT system is approximately 1.5 mm (z-axial axis). The field of
view (FOV) of OCTA imaging was set as 5.16 mm× 5.16 mm, and the spatial sampling interval
is ∼8.6 µm in this study. The number of repeated OCT scans for OCTA image generation is
four at each fixed position. The scanning time for each completed OCTA scan is ∼ 8 s. To
suppress motion-induced artifacts during the OCT scan, an image registration toolbox Elastix
[44] was performed in each repeated B-scan before vascular extraction. Eigen-decomposition
(ED)-OCTA algorithm was utilized to generate OCTA images due to its good performance in
suppressing static tissue while preserving vascular signals [24]. The flowchart for generating
datasets for training and validation is shown in Fig. 2. The ground-truth high-quality OCTA
images (GT_ED4) were generated based on the four-repeated scans with ED-OCTA, and the
input low-quality OCTA images (M_ED2) were based on two-repeated scans with ED-OCTA.
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Fig. 2. Flow chart of the scanning and processing strategy to create high-quality ground-truth
OCTA results using 4-repeated scan (GT_ED4), and other strategies using 2-repeated scans
(M_ED2 and Models2). M_ED2 is used as the input low-quality OCTA images. Models2
are reconstructed high-quality OCTA images from different neural networks.

The data package in normal lips consists of 22 OCT raw data (#1 - #22), including 13200
cross-section OCTA images (22 data× 600 B-scans). A select box with a size of 200× 200
(x-transverse× z-axial) was used to crop the cross-section images due to the limited memory in
the graphics card in this study. Finally, a total of 39600 images were generated for ground-truth,
input, and reference data. Among them, 28800 pairs of images (#1 - #16 subjects) were selected
as the input and ground truth of the training dataset. The rest of the 10800 pairs of images (#17 -
#22) were used as a validation dataset on the health lip. Regarding the lip data with diseases, 10
OCT raw data (#23× 2, #24× 3, #25× 5) are selected to test the feasibility of the proposed fast
OCTA imaging pipeline. The scanning protocol and data pre-processing methods are the same
as the normal lip data. In total, 18000 cross-section OCTA images were used as a validation
dataset that represents disease lip.

3. Model Training

3.1. U-shaped fusion convolutional transformer

Figure 3 outlines the architecture of the proposed U-shaped Fusion Convolutional Transformer
(UFCT). The UFCT encompasses an encoder, a decoder, a Simple Fusion Network (SFN),
and a bottleneck. In the encoder block, features from the input low-quality OCTA image are
progressively extracted through four downsample operations, including one patch extraction
layer and three convolution layers (blue box in Fig. 3). The first downsample operation non-
overlappingly splits the input image (of dimensions H x W) into patches of size 2× 2, outputting
image patches of dimensions H/2 x W/2× 4. A position embedding layer with C hidden units is
applied to these image patches, transforming their shape to H/2 x W/2 x C. The output from this
layer is passed into the Modified Convolutional Transformer (MCT) layer, maintaining the shape
of the feature maps.

To fuse features from the first layer of SFN, a concatenate layer is employed, concatenating the
features from the MCT layer and SFN, yielding an output shape of H/2 x W/2× 2C. To minimize
computational cost while efficiently extracting features from the last MCT layer and SFN, a
convolution layer with a filter size of C and a kernel size of 1 (depicted by the green box in Fig. 3)
reduces the channels of the feature map. For the additional three downsample operations, the
patch extraction layer and position embedding layer are replaced by a convolution layer with a
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Fig. 3. The architecture of the proposed U-shaped Fusion Convolutional Transformer.
The s is the strides of the convolution layer. All convolution layers in the blue box have a
kernel size of 3, and all convolution layers in the green box have a kernel size of 1. Conv:
convolution; Deconv: deconvolution or transpose convolution.

stride of 2, halving the spatial dimensions while doubling the channel depth of the input. The
bottleneck comprises a downsample layer, two MCT layers, and a deconvolution (also known as
transpose convolution) layer for feature map upsampling. In the upsample block, a concatenate
layer first combines features from the preceding downsample and upsample blocks, and SFN. A
convolution layer with a kernel size of 1 is used to reduce the channels of the feature map from
the concatenate layer, which is fed into an MCT layer.

3.1.1. Modified convolutional transformer layer

In Fig. 4, a modified convolutional transformer (MCT) layer is introduced, and it contains a
convolutional projection (CP) layer (Fig. 4 (A)), a multi-head attention (MHA) layer (Fig. 4
(B)), and a feed-forward network (FFN). The conventional convolutional transformer demands
significant computational resources as it employs convolution layers to project the Query (Q),
Key (K), and Value (V) sequences, as indicated by Wu et al. [41]. To reduce the computation
cost of the convolutional transformer, we introduced a convolution layer with a stride of 2 into
the MCT layer to reduce the size of the feature maps, thereby reducing the computation cost.
A deconvolution layer with a stride of 2 is used to upsample the output feature maps to ensure
the output shape is the same as the input shape. Taking X1 as the input of the MCT layer, the
processing of the MCT layer can be written as follows:

ŷ1 = MHA(CP(LN(Convs2(X1)))) + Convs2(X1) (1)

Y = Deconvs2(FFN(LN(ŷ1)) + ŷ1) (2)

where Convs2 is a convolution layer with a stride of 2, and Deconvs2 is a deconvolution layer
with a stride of 2. Y is the output of the MCT layer. FFN contains two dense layers with a GeLU
activation layer. CP is the convolutional projection layer, MHA is the multi-head attention layer,
and LN is layer normalization. Assume the shape of input (X1) is H +W + C, the processing
of Conv(X1) will firstly reduce the shape of the X1 from H +W + C to H/2 +W/2 + C. After
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processing by LN, a convolutional projection (ConvCP) is applied to obtain the Q, K, and V
sequences for multi-heads attention as:

SequencesQ, K, V = Flatten(ConvCP(Convs2(X1))) (3)

The filter size of ConvCP is the same as the channel size (C) of the input X1, with a stride of
1 and a kernel size of 3. After the flatten processing, the shape of each sequence (Q, K, V) is
HW/4 + C. A head split operation is then applied to each sequence to reshape the sequence from
HW/4 + C to M + HW/4 + C/M, where M is the number of heads for multi-head attention. Then,
a standard self-attention layer (Fig. 4 (C)) is operated on each separated head sequence, and the
processing workflow to obtain an attention score can be written as:

Attention Score (Q, K, V) = Softmax
(︃
QKT
√

d

)︃
V (4)

where d is a numerical value of
√︁

dimension of Q and T is the transposing operation of sequence
K. After the attention operation, a reshape layer is used to combine all separated heads into a
matrix with a shape of HW/4 + C. Finally, a fully connected layer with a hidden unit of C is used
to project the matrix as the output of multi-head attention layer.

Fig. 4. The schematic of the modified convolutional transformer (MCT) layer. (A)-(D) are
components of the MCT layer, where (A) is the convolutional projection layer, and (B) is the
multi-head attention layer. (C) is the self-attention mechanism. (D) is the architecture of the
feed-forward network. Conv: convolution; Deconv: deconvolution or transpose convolution.

3.1.2. Loss function

In neural network training, the combination of VGG19-based content loss and mean-square-error
(MSE) loss function was utilized as a similarity metric between the high-quality ground-truth and
reconstructed images by neural networks, as previous work proposed [32]. The MSE loss has been
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proven that has the capability to reduce noise and increase image contrast of the reconstructed
OCTA images, according to [27]. Moreover, the utilization of the VGG19-based content loss has
proven that can improve the image reconstruction performance of the networks in terms of the
connectivity and texture details of the vasculature images [32]. The loss function of the MSE
loss can be formulated as (5):

LMSE =
1
N

N∑︂
i=1

(yi − ŷi)
2 (5)

where y is the ground-truth OCTA image, and ŷ is the reconstructed OCTA image from the
network. N is the total number of pixels in y and ŷ. A VGG19-based content loss is then
applied to improve the texture details of vasculature based on the calculation of the pixel-by-pixel
difference between the feature maps from VGG19. And the formulation can be written as (6):

Lcontent =
1
N

N∑︂
i=1

(G(yi) − G(ŷi))
2 (6)

where G is the ImageNet2K pretrained VGG19 network for feature map predictions [45]. The
output layer of G is set as the fourth layer of block 5 in the VGG19 network since it can provide
relatively stable training and the highest OCTA image reconstruction performance [32]. The
combined loss for neural networks training is then shown as (7):

Lc = α ∗Lcontent + β ∗LMSE (7)

where α and β are parameters to control the weights of the loss function.

3.2. Definition of deep-learning-based OCTA image reconstruction pipeline

The OCTA image reconstruction pipeline consists of training and testing stages, as illustrated in
Fig. 5. In the training stage, a pre-processing strategy (blue box in Fig. 5, and details in Fig. 2)
and an end-to-end OCTA image reconstruction process based on the model were performed. In
the training stage (i.e., green box in Fig. 5), the low-quality OCTA images, which are used as
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the model input, are first generated based on the two-repeated OCT scan with the ED-OCTA
algorithm. Random noise is utilized to simulate the shot noise from the photo-balance detector
and system noise during the data acquisition. Supervised training is then applied to train
the different models based on the calculated loss between the high-quality OCTA images and
reconstructed OCTA images. In the test stage, the input is the two-repeated OCT volumes. After
applying the volume registration and ED-OCTA method mentioned in Section 2.2, a series of
OCTA images with low image quality in a cross-sectional view is obtained. A reconstructed
OCTA image with high quality is acquired by the trained model. Finally, at the end-task stage,
the en-face vasculature was generated by the maximum intensity projection (MIP) method for
visual comparison in terms of vasculature texture reconstruction.

4. Evaluation

4.1. Evaluation metrics

To quantitatively compare the performance of different algorithms, including conventional OCTA
algorithms (i.e., ED-OCTA) and deep-learning-based methods, two performance metrics are
computed in the experiments: peak-signal-to-noise ratio (PSNR) and structural similarity index
measure (SSIM) [46]. We used the PSNR metric to gauge the model in terms of noise reduction.
Since PSNR is described in decibels (dB) and is calculated as the square of the difference between
the model output and the ground truth image:

PSNR = 20 ∗ log20

(︄
Imax√︁

MSE(y, ŷi)

)︄
(8)

where MSE has the same formula as (5), Imax is the maximum value in image data y and ŷi. The
SSIM evaluates image quality in terms of structural similarity. Higher SSIMs show a better
structural similarity of model outputs to ground truth images.

SSIM =
(2µGT µM + k1)(2σcov + k2)

(µ2
GT + µ

2
M + k1)(σ2GT + σ2M + k2)

(9)

Here, µGT and (σGT ) and µM and (σM) are the mean (variance) of the underlying truth and the
output image using a different strategy, respectively; σcov shows the covariance between these
two data. k1 and k2 are used to stabilize the division with a weak denominator.

4.2. Comparison with other neural networks

In order to verify the effectiveness of the proposed method in this study, we select six models for
comparison, including 3 CNN models: DnCNN [47], SRResNet [48], and U-Net [49], and 3
Transformer-related models: TransUNet [40], Swin-UNet [38], and Lightweight U-shape Swin
Transformer (LUSwin-T) [43]. The training details and training strategies of the compared-used
models are the same as the proposed implementation details mentioned below (Section 5.1), to
reduce the influence of the training details and graphics card utilization.

4.3. Ablation study

As mentioned above, our proposed UFCT consists of feature fusion and a series of MCT layers,
and the neural networks are trained based on supervised learning with the proposed combined
loss function (Eq. (7)). We conduct ablation experiments on feature fusion methods, reduced
size of UFCT, and different training strategies to verify that the designed modules are effective in
terms of improving the OCTA image reconstruction performance.

Effect of feature fusion method: The proposed feature fusion method in this study is to use
the concatenate layer to fuse the features from the SFN with the encoder and decoder blocks.
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To explore the effects of the proposed feature fusion method, we conducted the experiments of
UFCT with different feature fusion methods, including (1) using elementwise adding to replace
the concatenate layer (marked as Exp.1); (2) using concatenate fusion methods in encoder only
(marked as Exp.2); (3) do not use SFN (marked as Exp.3).

Effect of reducing the size of UFCT: In this experiment, the architecture of UFCT is constant
as proposed in Fig. 3; however, different from the implementation details as proposed, the filter
size of the MCT layer and downsample convolution layer is increased from 32, 64, 256, 256 in
encoder block, while reversely decreased in decoder block. The head number of the MCT layer
is increased from 2, 2, 4, and 4 in the encoder block, while reversely decreased in the decoder
block. The MCT layer in the bottleneck has a filter size of 256 and a head number of 4. We
define the name of the model as UFCT-tiny under this implementation details.

Effect of training strategy: Adversarial training is widely used in deep-learning-based image
restoration tasks since it can provide an additional adversarial loss from the discriminator, and
serval studies have shown that adversarial loss can improve the image restoration performance in
terms of visualization and quantitative, according to [28,36,48,50]. Therefore, we explore the
performance of different models that are trained by the adversarial loss [51], MSE loss only, and
combined loss to find the best-match training strategy for the OCTA image reconstruction task.
The definition and parameter setting of the adversarial loss in this ablation study is the same as
the adversarial loss used in [48]. Equation (10) is the adversarial loss (LD) for the discriminator
model (D), and Eq. (11) is the adversarial loss (LG) for the generator model (G) (e.g., UFCT in
this study). The discriminator model has the same architecture as the VGG16 [45], designed to
output a probability with a shape of 1. This probability discerns whether the input image to the
discriminator is a ground-truth OCTA image (real) or a reconstructed OCTA image produced by
the generator model (fake).

LD(IHQ, IR) = EIHQ∼Pdata(IHQ)(log(D(IHQ))) + EIR∼Pdata(IR)(log(1 − D(IR))) (10)

LG(IHQ, IR) = EIR∼Pdata(IR)(1 − D(IR)) (11)

where IHQ is the high-quality ground-truth OCTA images, and IR is the reconstructed OCTA
images by model G. D(IHQ) and D(IR) are the probabilities produced by the discriminator model.
EIHQ and EIR are the expected value over the data distribution Pdata(IHQ) and Pdata(IR). Finally,
the adversarial loss for the model training in this ablation study can be written as (12):

LAdversarial(IHQ, IR) = 0.001 × LG(IHQ, IR) + Lc(IHQ, IR) (12)

5. Experiment and results

5.1. Implementation details

The neural networks used in this study were built and trained based on TensorFlow 2.9.0 [52]. The
Adam optimizer was used in the experiment to optimize the networks, with an initial learning rate
of 1e-4 and a momentum of 0.8 [53]. α=0.01 and β=1 were chosen as the weighting parameters
for the combined loss function in Eq. (7). The number of training epochs was set to 600, and the
batch size was set to 32. An NVIDIA GeForce 3090 graphics card with 24 GB memory was used
to train the neural networks. An early stopping strategy was used to prevent overfitting when the
validation loss is not decreased under 40 epochs.

Regarding the initialization of the proposed neural network, the filter size of the MCT layer
and downsample convolution layer is increased from 64, 128, 256, and 512, while reversely
decreased in the decoder block. The head number of the MCT layer also increased from 2, 4,
8, and 8. The filter size of the bottleneck is 512, and the head number of the MCT layer is 8.
The head number of the MCT layer decreased from 8, 8, 4, and 2. The filter size of the last
convolution layer is 1 which is the same as the channel of the input low-quality OCTA image. In
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terms of the convolution layer in SFN, the filter size setting is similar to downsample block (i.e.,
from 64 to 512), the stride is 2, and the kernel size is set as 3.

5.2. Quantitative comparison of different methods

Table 1 is the quantitative comparison between different models, and Table 2 represents the
computational cost of each model in terms of floating point operations (FLOPs), parameters,
and latency time for OCTA image reconstruction. It should be noticed that the quantitative
comparisons are based on the cross-sectional images, and the details of data pre-processing
are available in Section 2.2. Compared with the input low-quality OCTA images, all trainable
model-based methods have achieved a better performance in PSNR and SSIM. In quantitative
comparison results, the transformer-type models (i.e., TransUNet, LUSwin-T, Swin-UNet, and
UFCT) have better SSIM and PSNR performances than the CNN models (i.e., DnCNN, SRResNet,
and U-Net). Among the transformer-type models, the proposed UFCT has the best performance
in terms of SSIM performance for the normal set (SSIM: 0.608), salivary gland stone set
(SSIM: 0.406), lip ulcer 1 (SSIM: 0.320), and lip ulcer 2 (SSIM: 0.325). Regarding the PSNR
performance, Swin-UNet has the best performance in normal set (PSNR: 20.71), TransUNet has
the best performance in salivary gland stone set (PSNR: 18.75), UFCT has the best performance
in lip ulcer 1 set (PSNR: 18.36), and LUSwin-T has the best performance in lip ulcer 2 set
(PSNR: 18.44). Nevertheless, all CNN models have a lower latency time than all transformer-type
models, according to Table 2. In Swin-based transformer models, the LUSwin-T (FLOPs: 3.93 G;
Parameters: 11.92 M) and Swin-UNet (FLOPs: 16.12 G; Parameters: 50.28 M) have lower
FLOPs and parameters but require more time for OCTA image reconstruction. We suggest that it
is because of large amounts of reshaping operation in Swin-transformer operation, also according
to [54].

Table 1. Quantitative Comparison (mean±standard deviation) with State-of-the-art Methods for
OCTA Image Reconstruction based on Two-Repeated OCT Scansa

Method

Normal Set (Cases
#17-#22)

Salivary Gland Stone
(Case #23) Lip Ulcer 1 (Case #24) Lip Ulcer 2 (Case #25)

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Input 16.85± 0.65 0.506± 0.039 16.28± 0.73 0.343± 0.034 15.82± 0.55 0.284± 0.025 15.88± 0.60 0.289± 0.023

DnCNN [47] 19.96± 0.87 0.575± 0.041 18.46± 0.72 0.384± 0.039 17.99± 0.60 0.308± 0.029 18.19± 0.65 0.319± 0.028

SRResNet [48] 20.11± 0.84 0.572± 0.041 18.58± 0.69 0.384± 0.039 18.13± 0.59 0.308± 0.029 18.39± 0.62 0.318± 0.028

UNet [49] 20.09± 0.94 0.566± 0.049 18.55± 0.63 0.376± 0.038 17.83± 0.58 0.298± 0.028 18.11± 0.59 0.308± 0.028

TransUNet [40] 20.45± 0.95 0.580± 0.050 18.75± 0.75 0.393± 0.040 18.14± 0.59 0.307± 0.032 18.39± 0.61 0.318± 0.031

LUSwin-T [43] 20.62± 0.96 0.597± 0.045 18.74± 0.92 0.397± 0.040 18.23± 0.52 0.314± 0.030 18.44± 0.60 0.322± 0.029

Swin-UNet [38] 20.71± 1.01 0.599± 0.046 18.71± 0.86 0.395± 0.039 18.10± 0.50 0.312± 0.030 18.32± 0.53 0.322± 0.028

UFCT (ours) 20.62± 0.74 0.608± 0.038 18.64± 0.99 0.406± 0.042 18.36± 0.58 0.320± 0.032 18.39± 0.64 0.325± 0.030

a*The results marked with bold in SSIM and PSNR mean the best mean performance among different methods.

5.3. Visual comparison of different methods

To better visualize and evaluate the vasculature details of OCTA reconstruction results from
different methods, the maximum intensity en-face projection (MIP) method was used in this
section, which was mentioned in Fig. 5. It should be noted that the quantitative comparison
between the enface OCTA images that generated from different methods are calculated based on
the enface OCTA images presents in figure. In appendix, Figs. 10 and 11 are additional visual
results of two different lip ulcers cases.

Figure 6 is the visual comparison based on independent data from a normal set. Compared
with input low-quality OCTA image (B), the reconstructed results from deep-learning-based
models have better quantitative (i.e., PSNR and SSIM) and visual performances. Among
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Table 2. Computational Cost of Different Methods (Latency Time is evaluated on RTX3050)

Method Type FLOPs (G) Parameters (M) Latency Time

DnCNN CNN 40.92 0.557 0.10 s/frame

SRResNet CNN 41.68 0.567 0.10 s/frame

UNet CNN 59.88 34.56 0.11 s/frame

TransUNet Transformer 23.01 52.35 0.17 s/frame

LUSwin-T Swin-Transformer 3.93 11.92 0.30 s/frame

Swin-UNet Swin-Transformer 16.12 50.28 0.51 s/frame

UFCT Conv-Transformer 25.15 82.73 0.29 s/frame

them, the proposed UFCT has achieved the best SSIM (0.722) and PSNR (21.03) performance.
Furthermore, the reconstructed results by models (i.e., (C)-(I)) can provide a better vasculature
connection and higher contrast (e.g., red and blue zoom in box) than the ground-truth image
(A) and input low-quality image (B). In addition, the results from deep-learning-based methods
efficiently reduce the motion artifacts and reconstruct the hidden vasculature textures, compared
with the input low-quality image (B).

(A) Ground-Truth (SSIM: 1.00; PSNR: inf) (B) Input (SSIM: 0.548; PSNR: 18.22) (C) DnCNN (SSIM: 0.677; PSNR: 20.24)

(D) SRResNet (SSIM: 0.684; PSNR: 19.92) (E) U-Net (SSIM: 0.650; PSNR: 19.76) (F) TransUNet (SSIM: 0.666; PSNR: 20.39)

(G) LUSwin-T (SSIM: 0.676; PSNR: 19.11) (H) Swin-UNet (SSIM: 0.656; PSNR: 18.82) (I) UFCT (SSIM: 0.722; PSNR: 21.03)

1mm500μm

500μm

Text is not SVG - cannot display

Fig. 6. Visual comparison of the OCTA image reconstruction based on normal lip OCT
data. (A) is ground-truth image obtained by ED-OCTA with four-repeated OCT scan. (B)
is input low-quality OCTA image obtained by ED-OCTA with two-repeated OCT scans.
(C)-(I) are reconstructed OCTA images by different trained models. The white scale bar is
used in (A).

Figure 7 is a visual comparison result based on a disease subject (salivary gland stone in lip).
Compared with the input low-quality image (B), the results from the model have higher SSIM and
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PSNR performance and visual performance. The proposed UFCT has the highest PSNR (18.31)
and SSIM (0.674). Moreover, the reconstrued results by models (i.e., (C)-(I)) can provide better
vasculature texture details and connection than input low-quality OCTA images (B). However, in
terms of visual comparison, all results from neural networks have lower contrast and vasculature
details than the ground-truth OCTA image (A), which is different from the visual comparison in
Fig. 6.

Fig. 7. Visual comparison of the OCTA image reconstruction based on lip OCT data with
salivary gland stone. (A) is a ground-truth image obtained by the ED-OCTA algorithm
with a four-repeated OCT scan. (B) is input low-quality OCTA image obtained by ED-
OCTA algorithm with two-repeated OCT scan. (C)-(I) are reconstructed OCTA images by
different deep-learning-based models, including (C) DnCNN, (D) SRResNet, (E) U-Net, (F)
TransUNet, (G) LUSwin-T, (H) Swin-UNet, and (I) UFCT. The white scale bar is used in
(A).

5.4. Comparison in ablation study

5.4.1. Effect of the feature fusion method

Figure 8 is the error bar of the UFCT under different feature fusion methods, and the details
of the ablation study setup are mentioned in Section 4.3. Among them, the proposed UFCT
(i.e., control) architecture can provide the best SSIM and PSNR results in four various validation
datasets. Table 3 is the computational cost of the different UFCTs under different feature fusion
methods. Although the proposed UFCT has a similar latency time as other feature fusion methods
set up, it has the highest FLOPs (25.15) and parameters (82.73 M).
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Fig. 8. Error bar of the results between different feature fusion methods (from exp.1 to
exp.3). The results are shown in mean± standard deviation. Control is the same as the
proposed method.

Table 3. Computational Cost of Different Methods in Ablation Study
(Latency Time is evaluated on RTX3050)

Method FLOPs (G) Parameters (M) Latency Time

UFCT (Exp.1) 18.81 75.41 0.29 s/frame

UFCT (Exp.2) 19.71 76.46 0.29 s/frame

UFCT (Exp.3) 17.77 73.85 0.29 s/frame

UFCT (Control) 25.15 82.73 0.29 s/frame

UFCT-tiny 7.189 20.70 0.23 s/frame

5.4.2. Effect of the size of the UFCT

Table 3 shows the computational cost between the UFCT and UFCT-tiny. Table 4 shows the
quantitative comparison between the UFCT and the UFCT-tiny. Compared with the UFCT, the
UFCT-tiny model has lower FLOPs (7.189 G< 25.15 G) and parameters (20.70 M< 82.73 M);
however, the performance of UFCT-tiny is lower than the proposed UFCT. We therefore suggest
that utilize the UFCT with proposed implementation details as mentioned above.

Table 4. Quantitative Comparison in Ablation Study (Size of UFCT)

Size of UFCT

Normal Set (Cases
#17-#22)

Salivary Gland Stone
(Case #23) Lip Ulcer 1 (Case #24) Lip Ulcer 2 (Case #25)

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

UFCT (Control) 20.62± 0.74 0.608± 0.038 18.64± 0.99 0.406± 0.042 18.36± 0.58 0.320± 0.032 18.39± 0.63 0.325± 0.030

UFCT-tiny 20.45± 0.90 0.586± 0.049 18.52± 0.92 0.391± 0.040 18.23± 0.55 0.313± 0.031 18.34± 0.58 0.318± 0.029

5.4.3. Effect of training strategy

Figure 9 represents how the training loss function can influence the performance of different
models. In normal sets (A, B), the models trained with the proposed combined loss can provide
better PSNR and SSIM performances, except for the U-Net. In disease subjects (i.e., (D),
(F), and (H)) SSIM results, most of the models trained with combined loss function (Eq. (7))
can provide better performance than the models trained with MSE-loss and adversarial loss.
Moreover, we found that the models trained with adversarial loss will seriously degrade the
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PSNR performance in PSNR performance. In normal set (A, B), the comparison between MSE
loss and combined loss shows that all transformer-type model trained with the combined loss
(Eq. (7)) have better PSNR and SSIM results than the models trained with MSE loss. In case #23
(C, D), all transformer-type models trained with the combined loss can provide a higher PSNR
performance than the models trained with the MSE loss. However, LUSwin-T and Swin-UNet
will have a slight decrease on SSIM performance when trained with the combined loss, compared
to the MSE loss. While UFCT can obtain a better SSIM performance when trained with the
combined loss, compared to MSE loss. In case #24 and #25 (E-H), the UFCT trained with
combined loss can provide a higher PSNR performance than the model trained with MSE loss.
However, the SSIM performances are similar in terms of SSIM results.

Fig. 9. Error bar of the results between different training strategies.
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6. Discussion and conclusions

In this study, we proposed a U-shaped fusion convolutional transformer (UFCT) model-based
workflow to generate high-quality lip OCTA images based on a fast two-repeated OCT scan.
The traditional vascular extraction method, the ED-OCTA algorithm, is not able to give micro-
vasculature images with acceptable quality using two repeated scans. With the UFCT model, the
proposed workflow can reconstruct an OCTA image with more vasculature texture details and
higher contrast based on a fast two-repeated scan (∼3.5 s), while presenting a similar visual quality
as a four-repeated high-quality OCTA image in normal lip OCT data (Fig. 6). By combining the
advantages of convolution operation and self-attention mechanism, a feature fusion method and
convolutional transformer are introduced into the UFCT to enhance the capabilities of OCTA
image reconstruction. Finally, we also provide the proposed feature fusion method and the
optimal setup of the UFCT to obtain the best OCTA image reconstruction performance.

Due to having more accessibility than the pathological data, we built the training database
in normal lip data from various subjects. To verify the performance of the proposed UFCT,
we conducted a full comparison with a series of state-of-the-art models in Table 1, including
CNN-type, transformer-type, and Swin-transformer-type. The experiment results show that our
UFCT has the best SSIM and visual performances among the four independent validation sets
(i.e., one normal set, two ulcer sets, and one salivary gland stone). Based on visual comparison
in Fig. 6 and Fig. 7, the proposed UFCT model has the best performance to adapt to other lip
conditions (e.g., salivary gland stone) with training samples based on the normal lip.

Furthermore, we conduct an ablation study (Fig. 8) to show that the proposed fusion feature
method can mostly increase the SSIM and PSNR performance of the proposed UFCT model,
compared with the UFCT model that does not consist of a simple fusion network (SFN). While
the latency time increased by SFN slightly (Table 3). In terms of the training strategy, our results
(Fig. 9) show that the proposed combined loss can have a higher PSNR and SSIM than the
models trained with adversarial loss and MSE loss. We attribute the observed performance
degradation of models using the adversarial loss function, as shown in Fig. 9, to the inherent
instability of adversarial training. Such instability often culminates in suboptimal OCTA image
reconstruction, as supported by Refs. [55,56]. Moreover, our study discerned a tendency for
the discriminator model to develop premature confidence during adversarial training, further
contributing to reduced OCTA image reconstruction performance.

It is worth noting that the human pathological datasets used in the current study were from
patients with ulcers and salivary gland stones. Besides, the contrast of the reconstructed OCTA
images in salivary gland stones (Fig. 7 (C-I)) is lower than ground-truth image (Fig. 7 (A))
in visual observation. We postulate this contrast discrepancy arises due to our models being
primarily trained on normal lip datasets. This potentially hinders the models from accurately
capturing the distinct features inherent to diseased lip data. Therefore, we will collect more lip
disease OCT datasets in the future for the model training, ensuring that the proposed OCTA image
reconstruction pipeline can perform better in lip disease subjects. Additionally, further work
is required to examine the performance of the proposed method in cases of other lip disorders,
which may have lower capillary flow speed and cause lower contrast of vascular images. Although
we have achieved excellent results in the lip data, they are obtained by the same scanners, system,
and scan mode. Further validation work should include performance in different commercial
OCTA scanners.

This study has opened up a number of directions for future possible studies. For instance,
the fast OCTA imaging workflow proposed in this study can be used for skin cancer diagnosis,
providing in-depth information on the skin tissue non-invasively and rapidly. Furthermore, we
observed that few operators looked at soft tissue such as oral tissue. It would be interesting to
acquire OCTA images utilizing a lower-repeated scan and use the methodology reported in this
paper to assist in understanding the standardization of the first oral OCTA scanner. The further
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direction of the study might utilize the current knowledge obtained from this study to provide
the justification for, and subsequent evaluation of assistive tools for deep-learning-based image
reconstruction for other domains such as photoacoustic, and 3D ultrasound.

In conclusion, we have demonstrated the ability of a vascular enhancement UFCT-based
workflow to generate high-quality OCTA images in the lip using two repeated B-scans. Further
follow-up studies will include expanding the disease incidence and demonstrating the external
validity of the model using images from other institutions.

Appendix

(A) Ground-Truth (SSIM: 1.00; PSNR: inf) (B) Input (SSIM: 0.651; PSNR: 18.48) (C) DnCNN (SSIM: 0.724; PSNR: 19.47)

(D) SRResNet (SSIM: 0.727; PSNR: 19.81) (E) U-Net (SSIM: 0.702; PSNR: 19.11) (F) TransUNet (SSIM: 0.730; PSNR: 19.74)

(G) LUSwin-T (SSIM: 0.740; PSNR: 19.36) (H) Swin-UNet (SSIM: 0.733; PSNR: 18.99) (I) UFCT (SSIM: 0.745; PSNR: 19.95)
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Fig. 10. Visual comparison of the OCTA image reconstruction based on lip OCT data with
ulcers. (A) is a ground-truth image obtained by the ED-OCTA algorithm with a four-repeated
OCT scan. (B) is input low-quality OCTA image obtained by ED-OCTA algorithm with two-
repeated OCT scan. (C)-(I) are reconstructed OCTA images by different deep-learning-based
models, including (C) DnCNN, (D) SRResNet, (E) U-Net, (F) TransUNet, (G) LUSwin-T,
(H) Swin-UNet, and (I) UFCT. The white scale bar is used in (A).
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(A) Ground-Truth (SSIM: 1.00; PSNR: inf) (B) Input (SSIM: 0.497; PSNR: 16.09) (C) DnCNN (SSIM: 0.608; PSNR: 18.17)

(D) SRResNet (SSIM: 0.611; PSNR: 18.16) (E) U-Net (SSIM: 0.553; PSNR: 17.44) (F) TransUNet (SSIM: 0.593; PSNR: 18.02)

(G) LUSwin-T (SSIM: 0.593; PSNR: 17.12) (H) Swin-UNet (SSIM: 0.589; PSNR: 17.35) (I) UFCT (SSIM: 0.614; PSNR: 18.38)

Lip Ulcers

500μm

1mm500μm
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Fig. 11. Visual comparison of the OCTA image reconstruction based on lip OCT data with
ulcers. (A) is a ground-truth image obtained by the ED-OCTA algorithm with a four-repeated
OCT scan. (B) is input low-quality OCTA image obtained by ED-OCTA algorithm with two-
repeated OCT scan. (C)-(I) are reconstructed OCTA images by different deep-learning-based
models, including (C) DnCNN, (D) SRResNet, (E) U-Net, (F) TransUNet, (G) LUSwin-T,
(H) Swin-UNet, and (I) UFCT. The white scale bar is used in (A).
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