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Abstract
Aims/hypothesis Repeated exposures to insulin-induced hypoglycaemia in people with diabetes progressively impairs the 
counterregulatory response (CRR) that restores normoglycaemia. This defect is characterised by reduced secretion of gluca-
gon and other counterregulatory hormones. Evidence indicates that glucose-responsive neurons located in the hypothalamus 
orchestrate the CRR. Here, we aimed to identify the changes in hypothalamic gene and protein expression that underlie 
impaired CRR in a mouse model of defective CRR.
Methods High-fat-diet fed and low-dose streptozocin-treated C57BL/6N mice were exposed to one (acute hypoglycaemia 
[AH]) or multiple (recurrent hypoglycaemia [RH]) insulin-induced hypoglycaemic episodes and plasma glucagon levels were 
measured. Single-nuclei RNA-seq (snRNA-seq) data were obtained from the hypothalamus and cortex of mice exposed to 
AH and RH. Proteomic data were obtained from hypothalamic synaptosomal fractions.
Results The final insulin injection resulted in similar plasma glucose levels in the RH group and AH groups, but glucagon 
secretion was significantly lower in the RH group (AH: 94.5±9.2 ng/l [n=33]; RH: 59.0±4.8 ng/l [n=37]; p<0.001). Analy-
sis of snRNA-seq data revealed similar proportions of hypothalamic cell subpopulations in the AH- and RH-exposed mice. 
Changes in transcriptional profiles were found in all cell types analysed. In neurons from RH-exposed mice, we observed a 
significant decrease in expression of Avp, Pmch and Pcsk1n, and the most overexpressed gene was Kcnq1ot1, as compared 
with AH-exposed mice. Gene ontology analysis of differentially expressed genes (DEGs) indicated a coordinated decrease 
in many oxidative phosphorylation genes and reduced expression of vacuolar  H+- and  Na+/K+-ATPases; these observations 
were in large part confirmed in the proteomic analysis of synaptosomal fractions. Compared with AH-exposed mice, oli-
godendrocytes from RH-exposed mice had major changes in gene expression that suggested reduced myelin formation. In 
astrocytes from RH-exposed mice, DEGs indicated reduced capacity for neurotransmitters scavenging in tripartite synapses 
as compared with astrocytes from AH-exposed mice. In addition, in neurons and astrocytes, multiple changes in gene expres-
sion suggested increased amyloid beta (Aβ) production and stability. The snRNA-seq analysis of the cortex showed that the 
adaptation to RH involved different biological processes from those seen in the hypothalamus.
Conclusions/interpretation The present study provides a model of defective counterregulation in a mouse model of type 2 
diabetes. It shows that repeated hypoglycaemic episodes induce multiple defects affecting all hypothalamic cell types and 
their interactions, indicative of impaired neuronal network signalling and dysegulated hypoglycaemia sensing, and displaying 
features of neurodegenerative diseases. It also shows that repeated hypoglycaemia leads to specific molecular adaptation in 
the hypothalamus when compared with the cortex.
Data availability The transcriptomic dataset is available via the GEO (http:// www. ncbi. nlm. nih. gov/ geo/), using the acces-
sion no. GSE226277. The proteomic dataset is available via the ProteomeXchange data repository (http:// www. prote omexc 
hange. org), using the accession no. PXD040183.
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Abbreviations
Aβ  Amyloid beta
ADAM22  Disintegrin and metalloproteinase domain-

containing protein 22
AH  Acute hypoglycaemia
ARHGAP25  Rho GTPase-activating protein 25
ARHGEF7  Rho guanine nucleotide exchange factor 7
AVP  Arginine vasopressin
CAMK2D  calcium/calmodulin dependent protein 

kinase II delta
CRR   Counterregulatory response
CTNND2  Catenin delta-2
DEG  Differentially expressed gene
FGD5  FYVE, RhoGEF and PH domain-contain-

ing protein 5
GABA  γ-Aminobutyric acid
GEF  GTP exchange factor
GI  Glucose-inhibited (neurons)

GO  Gene ontology
GO-BP  Gene ontology biological process
GSEA  Gene-set enrichment analysis
HFD  High-fat diet
HPA  Hypothalamic–pituitary–adrenal
HSPG  Heparan sulfate proteoglycan
KEGG  Kyoto Encyclopedia of Genes and 

Genomes
lncRNA  Long non-coding RNA
OXPHOS  Oxidative phosphorylation
PCSK1  Proprotein convertase subtilisin/kexin type 

1
PCKS1N  Proprotein convertase subtilisin/kexin type 

1 inhibitor
QC  Quality control
RAC1  Ras-related C3 botulinum toxin substrate 1
RH  Recurrent hypoglycaemia
snRNA-seq  Single-nuclei RNA-seq
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STZ  Streptozocin
TIAM2  T cell lymphoma invasion and metastasis 2
USP6NL  USP6 N-terminal-like protein
V-ATPase  Vacuolar  H+-ATPase

Introduction
Repeated episodes of insulin-induced hypoglycaemia 
in individuals with type 1 or type 2 diabetes lead to 
defective secretion of glucagon and of the other coun-
terregulatory hormones, adrenaline (epinephrine), 
noradrenaline (norepinephrine), cortisol and growth 
hormone [1]. Secretion of glucagon, which forms the 
first line of defence against hypoglycaemia, is con-
trolled by multiple pancreatic-alpha-cell autonomous 
and non-autonomous mechanisms [2]. The role of 
central hypoglycaemia sensing in triggering glucagon 
secretion is well documented [3]. Neurons present in 
the brainstem, in particular in the dorsovagal complex, 
the parabrachial nucleus and the basolateral medulla, 
have been implicated in hypoglycaemia-induced gluca-
gon secretion [4]. In the hypothalamus, glucose-sensing 
neurons activated by hypoglycaemia have been identi-
fied in the arcuate and in the paraventricular, the lat-
eral and the dorsomedial nuclei. These neurons control 
glucagon secretion through modulation of the activity 
of the sympathetic or parasympathetic nerves and the 
sympatho-adrenal axis [3, 5]. In addition, magnocellular 
neurons of the paraventricular and supraoptic nuclei can 
be activated by hypoglycaemia, leading to secretion of 
arginine vasopressin (AVP) in the blood. AVP can then 
stimulate glucagon secretion by activating the AVP1b 
receptor in pancreatic islet alpha cells [6]. The mecha-
nisms of hypoglycaemia sensing by neurons (referred to 
as glucose-inhibited [GI] neurons) are diverse but they 
share the ability to respond to a decrease in glucose 
metabolism and ATP production. This fall in intracel-
lular energy level activates AMP-dependent protein 
kinase (AMPK), which controls membrane depolarisa-
tion by directly regulating the activity of ion channels 
and the production of reactive oxygen species [7, 8]. 
Alternatively, a reduction in the activity of the  Na+/
K+-ATPase induces membrane depolarisation and neu-
ron firing [9, 10]. Thus, central hypoglycaemia sensing 
relies on a variety of signalling pathways, and there is 
little information about the dysegulations that impair 
the counterregulatory response (CRR) in people with 
diabetes treated with insulin.

Here, we sought to identify cellular and molecular path-
ways that are dysegulated in the hypothalamus of a mouse 
model of diabetes with defective hormonal counterregulation 

owing to exposure to single or repeated hypoglycaemic 
episodes.

Methods

Animals

Seven-week-old C57BL/6N male mice (Charles River  
Laboratories, Saint-Germain-Nuelles, France; http:// www. 
criver. com/ produ cts- servi ces/ find- model/ c57bl6- mouse? 
region= 3616) were housed on a 12 h light/dark cycle. All 
procedures were approved by the Veterinary Office of Can-
ton de Vaud (Switzerland; licence VD 3535) (see Electronic 
supplementary material [ESM] Methods). Blinding was not 
feasible during the generation of the model; however, results 
were analysed in a blinded fashion whenever possible.

High‑fat diet and streptozocin treatment of mice 
and insulin‑induced hypoglycaemia

Mice were fed a high-fat diet (HFD; 15.6% protein,  
44.4% lipids, 40.3% carbohydrates; Diet 235HF, Safe, 
Paris, France) for 7 weeks. Subsequently, every 2 days,  
for approximately 10–14 days, after a 5 h fast, mice 
received i.p. injections of streptozocin (STZ; S0130, 
Sigma Aldrich, St Louis, MO, USA), twice at 35 mg/kg  
and once at 70 mg/kg (see ESM Methods, ‘High- 
fat diet and streptozocin treatment of mice’ section). 
Hypoglycaemia was induced by i.p. injection of insu-
lin (Actrapid, Novo Nordisk, Bagsværd, Denmark). The  
recurrent hypoglycaemia (RH) group received three insu-
lin injections per week for 4 weeks (12 injections in total). 
The acute hypoglycaemia (AH) group received three saline 
(154 mmol/l NaCl) injections per week for 3 weeks, followed 
by two further saline injections in week 4 plus a final injec-
tion of insulin. Plasma glucose was measured from tail-vein 
blood at −60 min, 60 min and 120 min after the final i.p. injec-
tion, using a glucometer (Contour XT, Bayer, Leverkusen,  
Germany). Plasma glucagon was measured from submandibu-
lar vein blood using an ELISA (catalogue no. 10-1271-01;  
Mercodia, Uppsala, Sweden) (see ESM Methods, ‘Insulin-
induced hypoglycaemia and glucagon measurements’ for details).

Nuclei isolation, single‑nuclei RNA‑seq and data 
analysis

Brains were collected and snap frozen 120 min after 
the last insulin i.p. injection. Hypothalamus and cortex 
samples were dissected and nuclei were isolated (see 
ESM Methods, ‘Nuclei isolation’ section for details). 

http://www.criver.com/products-services/find-model/c57bl6-mouse?region=3616
http://www.criver.com/products-services/find-model/c57bl6-mouse?region=3616
http://www.criver.com/products-services/find-model/c57bl6-mouse?region=3616
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For hypothalamus samples, single-nuclei libraries 
were prepared using the Chromium Next GEM Sin-
gle Cell Multiome ATAC + Gene Expression assay 
(PN-1000283; 10x Genomics, Pleasanton, CA, USA), 
whilst, for cortex samples, we used the Chromium Sin-
gle Cell 3′ RNA-seq assay (PN-1000075; 10x Genom-
ics). All libraries were sequenced on the Illumina 
NovaSeq 6000 (Illumina, San Diego, CA, USA) (see 
ESM Methods, ‘Single-nuclei RNA sequencing’ sec-
tion for details). The R package ‘Seurat’ (v4.1.1) [11] 
was used for data normalisation, quality control (QC) 
and clustering analysis (see ESM Methods, ‘Single-
nuclei sequence analysis’ section). Gene ontology 
biological process (GO-BP) analysis and enrichment 
analysis of Kyoto Encyclopedia of Genes and Genomes 
(KEGG) terms were performed using a gene-set enrich-
ment analysis (GSEA) approach using the R pack-
age ClusterProfiler (v4.4.4) [12] (see ESM Methods, 
‘Gene-set enrichment analysis’ section).

Synaptosome proteomic analysis

Hypothalamic synaptosomal fractions were prepared 
following tissue homogenisation by differential cen-
trifugation (see ESM Methods, ‘Synaptosome prepara-
tion’ section). Fractions were digested by trypsin and 
loaded on a TIMS-TOF Pro (Bruker, Bremen, Germany) 
mass spectrometer interfaced through a nanospray ion 
source to an Ultimate 3000 RSLCnano HPLC system 
(Dionex, Sunnyvale, CA, USA) (see ESM Methods, 
‘Proteomics sample preparation’ and ‘LC-MS analyses’ 
sections). Data generation and analysis were performed 
as detailed in the ESM Methods, ‘Proteomics data anal-
ysis’ and ‘Bioinformatic analysis from proteomics data’ 
sections. All raw MS data, together with raw output 
tables, are available via the ProteomeXchange data 
repository (http:// www. prote omexc hange. org) with the 
accession PXD040183.

Statistical analysis

Unless stated otherwise, data are expressed as mean±SEM. 
Statistical analysis was performed using GraphPad Prism 
8.4.0 (GraphPad Software, San Diego, CA, USA), using 
either a mixed-effects analysis followed by Sidak's post hoc 
test, a repeated-measures two-way ANOVA followed by 
Sidak's post hoc test, or an unpaired two-tailed Student's t 
test. Bonferroni and Benjamini–Hochberg corrections were 
applied for multiple comparisons. All p values <0.05 were 
considered to be significant.

Results

Repeated hypoglycaemia in mouse models 
of diabetes

C57BL/6N mice were fed an HFD for 7 weeks and then 
received three STZ injections, as described in the methods 
(Fig. 1a), to create a mouse model of chemically induced 
type 2 diabetes. One week after the last STZ injection, the 
mice became hyperglycaemic and displayed lower body 
weight vs pre STZ treatment, although the latter change 
was non-significant (ESM Fig. 1a,b). Mice were divided 
into two groups of identical mean body weight and plasma 
glucose. One group received 11 injections of saline and 
a final injection of insulin over a period of 4 weeks (AH 
group) and the other group received 12 injections of insu-
lin over the same period of time (RH group). The blood 
glucose levels before and after each injection are presented 
in ESM Fig. 1c. Plasma glucagon levels were measured 
1 h after the last insulin injection. Insulin induced a 
deeper hypoglycaemia in the RH group (n=37) than in 
the AH group (n=33) (Fig. 1b; RH: 3.7±0.1 mmol/l; AH: 
4.1±0.1 mmol/l; p=0.05) but a lower plasma glucagon 
response (Fig. 1c; RH: 59.0±4.8 ng/l; AH: 94.5±9.2 ng/l; 
***p<0.001).

Single‑nuclei transcriptional profiling 
of the hypothalamus from AH‑ and RH‑exposed 
diabetic mice

The hypothalami from three mice in the AH group and 
three mice in the RH group were collected 2 h after the 
last insulin injection and were pooled for each group for 
nuclei preparations and single-nuclei RNA-seq (snRNA-
seq). The experiment was repeated once to obtain a bio-
logical replicate. We computed per-cell QC metrics to 
identify and remove low-quality nuclei, resulting in a 
dataset of 14,979 nuclei from the AH group and 14,934 
nuclei from the RH group (ESM Fig. 2a–e). The major 
brain cell types could be identified based on the expres-
sion of their characteristic gene markers (Fig. 2a,b and 
ESM Fig. 3a). The cell type composition was very simi-
lar in the hypothalamus of AH and RH mice (Fig. 2c), 
with neurons being the most abundant, followed by oli-
godendrocytes and astrocytes. Microglia, endothelial 
cells and pericytes were much less represented and will 
not be discussed further.

Differential hypothalamic gene expression analysis

Neurons To delineate transcriptional changes occurring 
in the hypothalamus of mice in the RH vs AH group, we 

http://www.proteomexchange.org
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Fig. 1  Recurrent exposure to hypoglycaemia reduces insulin-induced 
glucagon secretion. (a) Outline of the experiment to generate a model 
of type 2 diabetes and hypoglycaemia-associated autonomic failure 
(HAAF) in C57BL/6N male mice exposed to AH or RH. Created 

with BioRender.com. (b, c) Blood glucose (b) and plasma glucagon 
(c) in HFD-fed/STZ-treated mice exposed to AH or RH 1 h after 
a final i.p. injection of insulin (AH: n=33; RH: n=37). Data are 
means±SEM. ***p<0.001
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compared the transcriptional profiles for all major cell 
types. Analysis of neurons revealed that the majority of 
differentially expressed genes (DEGs) were downregu-
lated after RH vs AH (Fig. 3a, Table 1 and ESM Table 1). 
Among the downregulated genes were Pcsk1n (an inhibi-
tor of the proprotein convertase subtilisin/kexin type 1 
[PCKS1]), Avp (encoding AVP, an inducer of glucagon 
secretion [6]) and Pmch (encoding pro-melanin concen-
trating hormone, an activator of the hypothalamic–pitui-
tary–adrenal [HPA] axis) [13]. Other significantly down-
regulated genes were Resp18 [14], Rtn1 [15], Psap [16], 
Ubb [17], Aplp1 [18], Cst3 [19] and Itm2b [20], which 
are all associated with neurodegenerative diseases. Of 
note, Kcnq1ot1 [21], a long non-coding RNA (lncRNA) 
involved in diabetes susceptibility, was the only overex-
pressed gene.
We next used GSEA to interrogate the GO-BP and 
KEGG databases to identify the biological processes 
regulated by the DEGs. Several GO-BP terms down-
regulated in the RH group were related to ‘oxidative 
phosphorylation’ (OXPHOS) and ‘ion homeostasis’ 
(Fig. 3b). Many OXPHOS genes were core-enriched in 
the ‘oxidative phosphorylation’ term, and genes encod-
ing vacuolar and plasma membrane ATPases were pre-
sent in the ‘ion homeostasis’ term (ESM Table 2). KEGG 
analysis revealed that the most downregulated terms were 
related to ‘neurodegenerative diseases’, which comprise 
OXPHOS genes belonging to Complexes I, III and IV and 
ATPsynthase, and ‘secretion activity’ comprising mostly 
the α and β subunits of the  Na+/K+-ATPase, and several 
subunits of the vacuolar  H+-ATPase (V-ATPase) (Fig. 3c 
and ESM Table 3).

GABAergic vs glutamatergic neurons To gain further 
insight into neuron-specific transcriptional responses to RH, 
we analysed the two primary neuronal classes, GABAer-
gic and glutamatergic neurons, identified by the expression 
of Gad1 and Gad2 genes, encoding γ-aminobutyric acid 
(GABA)-producing enzymes, or of the vesicular glutamate 
transporter-encoding gene Slc17a6, respectively (ESM 

Fig. 3b). Most of the DEGs (ESM Fig. 4a,b, Table 2 and 
ESM Table 1) were common to both neuronal populations. 
However, Avp and Pmch were significantly decreased in 
GABAergic neurons, as were two regulators of synaptic 
activity, Rabac1 [22] and Syt11 [23]. In glutamatergic neu-
rons, there was decreased expression of Aldoa (a regula-
tor of glycolysis [24]), Atp1a3 (encoding the α3 subunit of 
the  Na+/K+-ATPase) and Ptprn (encoding protein tyrosine 
phosphatase N, which controls secretion of neurotransmit-
ters [25]). There was also an increased expression of Dgkb 
(encoding diacylglycerol kinase, a regulator of dendritic 
outgrowth and spine maturation [26]). Thus, RH induced 
dysegulated expression of primarily the same genes in glu-
tamatergic and GABAergic neurons, but with cell-specific 
changes in genes regulating synaptic vesicle secretion.

Oligodendrocytes The volcano plot in Fig. 4a shows that 
there was reduced expression of Plp1, Mal, Scd2, Apoe, 
Ptgds, Cldn11 and Itm2b, which are all involved in various 
aspects of myelin formation [27], whilst the most overex-
pressed genes were Xylt1, Vcan and Zeb1 (ESM Table 1). 
GSEA analysis of DEGs revealed downregulation of GO-BP 
terms related to the ‘lipid biosynthesis’ and ‘myelination’ 
pathways (Fig. 4b, ESM Table 2). KEGG analysis showed 
significant increases in pathways related to various intra-
cellular signalling pathways, including phosphoinositide 
3 (PI3) kinases, protein kinase C and the cAMP pathway 
(Fig. 4c, ESM Table 3).

Astrocytes GSEA analysis of DEGs (ESM Fig.  5a, 
Table 1 and ESM Table 1) showed repression of GO-BP 
terms related to ‘lipid biosynthesis’, ‘metabolism of 
amyloid beta protein’ and ‘ion transport’ (ESM Fig. 5b, 
ESM Table 2). Worth noting is the significant down-
expression of Cst3, Apoe Itm2b, Clu and Atp6v0c (ESM 
Fig.  5a, Table  1), all involved in protecting against 
neurodegenerative diseases [19, 20, 28–30]. Similarly, 
a KEGG functional analysis showed decreased enrich-
ment in pathways related to ‘neurodegenerative diseases’ 
and increased expression of ‘signalling pathways’ (ESM 
Fig. 5c, ESM Table 3).

Comparative analysis of transcriptomics 
and proteomic analysis

We performed proteomic analysis of synaptosomal fractions 
as our transcriptomic analysis indicated that several DEGs 
were related to synaptic structure and activity. Proteomic 
profiling of synaptosomal fractions from the hypothala-
mus of AH- and RH-exposed mice detected 7328 proteins 
in total, of which 6803 had their mRNAs detected in the 

Fig. 2  Clustering and annotation of hypothalamic snRNA-seq in 
HFD-/STZ-treated mice exposed to RH and AH. (a) Two-dimen-
sional Uniform Manifold Approximation and Projection (UMAP-1 
and UMAP-2) representation of 14,979 and 14,934 nuclei isolated 
from the hypothalamus of AH- and RH-exposed mice, respectively. 
The cells are coloured based on the annotated cell type. (b) Violin 
plots of combined data from the RH and AH groups showing the 
expression of cellular-specific gene markers in each of the identi-
fied cell types. (c) Bar plot depicting the percentages of the differ-
ent hypothalamic cell types per condition. Samples from n=3 mice 
were pooled for each group and the experiment was repeated once to 
obtain a biological replicate (n=2 integrated datasets per condition)

◂
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Fig. 3  Transcriptional analysis 
of neurons from hypothalami 
of HFD-/STZ-treated mice 
exposed to AH or RH. Samples 
from n=3 mice were pooled for 
each group and the experiment 
was repeated once to obtain 
a biological replicate (n=2 
integrated datasets per condi-
tion). (a) Volcano plot depicting 
differential expression of 14,909 
genes from hypothalamic neu-
rons of mice subjected to RH as 
compared with AH. The red dot 
outlines the upregulated DEG 
and blue dots outline down-
regulated DEGs (fold change 
>1.2 or <−1.2 and Bonferroni 
adjusted p value [padj]<0.05). 
(b, c) Network visualisation of 
the top enriched GO-BP (b) or 
KEGG (c) terms in DEGs in the 
RH vs AH group. Node colour 
indicates the normalised enrich-
ment score (NES); node size 
indicates the number of core-
enriched genes; edges (grey 
lines) represent the pairwise 
similarity between terms
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Table 1  DEGs with │fold change (FC)│ >1.2 identified in cells of the hypothalamus of RH- vs AH-exposed mice (Bonferroni adjusted p value 
[padj]<0.05)

Neurons Oligodendrocytes Astrocytes

Upregulated
 (n= 1)

Downregulated
 (n=38 )

Upregulated
 (n= 61)

Downregulated
 (n= 25)

Upregulated
 (n= 16)

Downregulated
 (n= 12)

Kcnq1ot1a,b AC149090.1a,b Adarb2 AC149090.1b,c Arap2 AC149090.1a,c

Aplp1a Adgrl3 Aplp1c Atad2b Apoe
Atp1b1 Arhgap24 Apod Gulp1 Atp6v0cc

Atp6v0b Brinp3 Apoe Hdac4 Cd63
Atp6v0cb Chst11 Cd81b,c Hdac8 Cd81a,c

Avp Cntn4 Cldn11 Jmjd1c Clu
Bsg Cobl Cmtm5 Kank1 Cst3c

Caly Cpq Degs1 Kcnq1ot1a,c Grcc10
Cd81a,b) Csmd2 Evi2a Magi1 Itm2ba,c

Cst3b) Ctnnd2 Fth1 Meis1 Pcsk1na,c

Ctsb Dcc Gapdhc Pitpnc1 Scd2
Gapdha Dgkb Hsp90aa1 Prex2 Scg2c

Hcrt Dlgap Itm2bb,c Rgs20
Hspa5 Dpyd Lamp1 Spire1
Hspa8 Dscam Mag Tom1l1
Itm2ba,b Fbxl7 Mal Ttc28
Itm2c Fchsd2 Pcsk1nb,c

Ly6h Fut9 Plp1c

Meis2 Gfra1 Ptgds
Oxt Gm4876 Scd2
Pcsk1na,b Gpc5 Serinc1
Pgrmc1 Itga9 Sgk1
Plp1a Itpr2 St6 galnac3
Pmch Kcnd2 Syt11
Ppia Kcnq1ot1b,c Trf
Prnp Kif12
Psap Lhfpl3
Rabac1 Lsamp
Resp18 Luzp2
Rnasek Maml2
Rtn1 Map2
Slc22a17 Mmp16
Scg2b Nav2
Sst Nav3
Syt4 Ndufs4
Tecr Nmnat2
Tmem59l Npas3
Ubb Nrxn1

Ntm
Opcml
Pcdh15
Pde7b
Ppp2r2b
Ptprt
Ptprz1
Ralyl
Robo1
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snRNA-seq analysis (Fig. 5a). Comparative proteomics and 
transcriptomics GO-BP analysis identified several common 
terms related to ‘oxidative phosphorylation’ and ‘ion homeo-
stasis’ (Fig. 5b, ESM Table 4). In these GO-BP terms, many 
proteins displayed changes in expression that correlated with 
changes in their mRNA expression (Fig. 5c). This indicates 
that transcript profiling is in large part predictive of changes 
in protein expression.

Analysis of the synaptosomal proteins that showed 
highest differential expression between RH- and AH-
exposed mice (Fig.  5d, Table 3), and for which their 
mRNA was not differentially expressed, revealed a 
relatively large group of proteins involved in synaptic 
remodelling [31, 32]. These included the downregulated 
proteins calcium/calmodulin dependent protein kinase 
II delta (CAMK2D), Rho guanine nucleotide exchange 
factor 7 (ARHGEF7), FYVE, also known as RhoGTP 
exchange factor and PH domain-containing protein 5 
(FGD5), disintegrin and metalloproteinase domain-
containing protein 22 (ADAM22) and Vang-like planar 
cell polarity protein 1 (VANGL1), and the upregulated 
proteins catenin delta-2 (CTNND2), Rho GTPase-acti-
vating protein 25 (ARHGAP25), USP6 N-terminal-like 
protein (USP6NL) and T cell lymphoma invasion and 
metastasis 2 (TIAM2) [31–36]. Other proteins found to 
be significantly differentially expressed are involved in 
mRNA splicing and export from the nucleus, including 
THO complex subunit 2 (THOC2), THO complex subunit 

6 (THOC6) [37] and crooked neck pre-mRNA splicing 
factor 1 (CRNKL1) (all downregulated) and splicing 
factor, SR-related C-terminal domain associated factor 
1 (SCAF1) (upregulated). Other upregulated proteins 
include the transcription factors double plant homeodo-
main fingers 2 (DPF2) and transducin-like enhancer fam-
ily member 3, transcriptional corepressor (TLE3), and 
the signalling proteins segment polarity protein dishev-
elled segment polarity protein 2 (DVL2), protein phos-
phatase 1 regulatory inhibitor subunit 1B (PPP1R1B) and 
vasohibin 1 (VASH1). Since the mRNAs for these pro-
teins were not found in the DEGs, this suggests that their 
expression is regulated at the post-translational level.

Single‑nuclei transcriptional profiling of the cortex 
from AH and RH mice

To determine whether the impact of RH on the hypothala-
mus was specific for this brain structure, we repeated the 
snRNA-seq analysis in duplicate using nuclei from the 
cortex of RH- and AH-exposed mice. A total of 4650 and 
9088 nuclei were obtained from the AH and RH groups, 
respectively (ESM Fig. 6a), and QC analysis was per-
formed as for the hypothalamus (ESM Fig. 6b-e). Cluster 
annotation led to the identification of the same six cell 
types and similar relative distribution of these cells to 
that observed in the hypothalamus (ESM Fig. 7 and ESM 
Fig. 8a–c).

Table 1  (continued)

Neurons Oligodendrocytes Astrocytes

Upregulated
 (n= 1)

Downregulated
 (n=38 )

Upregulated
 (n= 61)

Downregulated
 (n= 25)

Upregulated
 (n= 16)

Downregulated
 (n= 12)

Rora
Sema3d
Sntg1
Sox2ot
Sox5
Sox6
Spon1
Tafa1
Tmem132d
Tnr
Vcan
Xylt1
Zeb1
Zup1

a Also found in oligodendrocytes
b Also found in astrocytes
c Also found in neurons
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GO-BP analysis of DEGs in cortical neurons identified 
only a few enriched terms (ESM Fig. 9a,b, Table 4 and ESM 
Table 5). These were mostly related to ‘synapse organisa-
tion’ (ESM Fig. 9b, ESM Table 6) and only a few corre-
sponded to those identified in the hypothalamus (Fig. 6a,b, 
and ESM Fig. 9) and often changed in the opposite direc-
tion in the two brain structures (Fig. 6b). Thus, RH induced 
different changes in gene expression in the hypothalamus 
and cortex, with more pronounced gene dysregulation in 
the hypothalamus.

Discussion

In this study, we investigated the modifications in hypo-
thalamic gene and protein expression induced by repeated 
bouts of hypoglycaemia in a mouse model of diabetes with 
defective glucagon secretion. Using snRNA-seq analysis, we 

found that RH leads to important changes in gene expression 
in all the cell types discussed, with sufficient information 
obtained from neurons, oligodendrocytes and astrocytes for 
reliable differential gene expression analysis. Salient findings 
regarding the effect of RH include the reduced expression of 
Avp and Pmch, two neuropeptides involved in the CRR [6, 
13]. In addition, there were changes suggestive of general 
defects in hypoglycaemia sensing, in synaptic activity and in 
neuron myelination; these changes are also associated with 
features of neurodegenerative diseases. Proteomic analysis 
of hypothalamic synaptosomal fractions further indicated 
that defects in synaptic activity were induced by RH. These 
results are summarised in Fig. 7. Finally, the hypothalamus 
appears much more sensitive to RH than the cortex.

Neurons

Repeated hypoglycaemia mostly induced a reduction in 
gene expression. Among the most downregulated genes 
was Pcsk1n, an inhibitor of the protein convertase, 
PCSK1. This enzyme controls the functional maturation 
of several hormones and neuropeptides, including AVP, 
and the orexigenic and anorexigenic neuropeptides of the 
hypothalamic melanocortin pathway. By inactivating the 
proconvertase, the PCKS1 inhibitor (PCSK1N) regulates 
neuroendocrine secretory activity and has been associ-
ated with the development of diabetes [38]. PCSK1N is 
also considered as a potential target for the treatment 
of Alzheimer’s disease due to its anti-aggregant proper-
ties [39]. Thus, downregulation of Pcsk1n may have an 
impact on various aspects of the CRR through alterations 
of neuropeptide production and synaptic communication.

We also observed a strong decrease in the expression 
of Avp, which encodes the precursor of AVP, a hormone 
produced by magnocellular neurons of the paraventricu-
lar and supraoptic nuclei of the hypothalamus [6, 40]. It 
is secreted in response to hypoglycaemia and stimulates 
glucagon secretion. Reduced AVP secretion in individuals 
with type 1 diabetes explains part of their defective CRR 
[6]. Thus, AVP-producing neurons represent an important, 
yet vulnerable node in the integrated neuronal circuits that 
control the CRR.

In neurons, a single gene was upregulated by RH, Kcn-
q1ot1, an lncRNA, the overexpression of which inhibits the 
expression of various genes, and which has been linked to 
numerous complications of diabetes [21]. Whether Kcnq1ot1 
overexpression is directly induced by hypoglycaemia and 
whether it contributes to the global changes in gene expres-
sion observed in our experiments will be interesting to fur-
ther explore.

GO analysis of the differentially expressed neu-
ronal genes revealed downregulation of the ‘oxidative 

Table 2  DEGs with │fold change (FC)│ >1.2 that are commonly 
or exclusively identified in the different neuron types in the hypo-
thalamus of RH- vs AH-exposed mice (Bonferroni adjusted p value 
[padj]<0.05)

Common Exclusive
 GABAergic

Exclusive   
glutamatergic

Up (1) Down (25) Up (0) Down (11) Up (2) Down (7)

Kcnq1ot1 AC149090.1 Avp Dgkb Aldoa
Aplp1 Cd81 Sfta3-ps Atp1a3
Atp1b1 Hspa5 Hspa90ab1
Atp6v0b Meis2 Plp1
Atp6v0c Ndn Ppia
Bsg Pmch Ptprn
Caly Prnp Rtn1
Cst3 Rabac1
Ctsb Serinc1
Gapdh Syt11
Hspa8 Tuba1a
Itm2b
Itm2c
Ly6h
Pcsk1n
Pgrmc1
Psap
Resp18
Rnasek
Sgc2
Slc22a17
Syt4
Tecr
Tmem59l
Ubb
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Fig. 4  Transcriptional analysis 
of oligodendrocytes from hypo-
thalami of HFD-/STZ-treated 
mice exposed to AH or RH. 
Samples from n=3 mice were 
pooled for each group and the 
experiment was repeated once 
to obtain a biological replicate 
(n=2 integrated datasets per 
condition). (a) Volcano plot 
depicting differential expres-
sion of 10,814 genes from 
hypothalamic oligodendrocytes 
of mice subjected to RH as 
compared with AH. Red dots 
outline upregulated DEGs and 
blue dots outline downregulated 
DEGs (fold change >1.2 or 
<−1.2 and Bonferroni adjusted 
p value [padj]<0.05); only genes 
with  log2 fold change >0.5 or 
l<−0.5 have been labelled. 
(b, c) Network visualisation 
of the enriched GO-BP (b) or 
KEGG (c) terms in DEGs in 
RH- vs AH-exposed mice. Node 
colour indicates the normalised 
enrichment score (NES); node 
size indicates the number of 
core-enriched genes overlapping 
gene count; edges (grey lines) 
represent the pairwise similarity 
between terms. TRP, transient 
receptor potential
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phosphorylation’ pathway, with several genes associated 
with Complex I, Complex III, Complex IV and the ATP 
synthase being affected. These changes suggest a reduced 
capability to produce ATP following RH exposure. This 
will directly and negatively impact synaptic activity, a pro-
cess that consumes a very large part of the ATP produced 
by mitochondria [41]. Defective mitochondrial function is 
also causally associated with dysregulated  Ca2+ homeo-
stasis and neurodegenerative diseases [42]. Several genes 
involved in amyloid production were also found to be dys-
regulated by RH, including Aplp [18], Rtn1 [15] and Itm2b 
[20], all of which have been associated with amyloid beta 
(Aβ) protein formation, and Resp18 [14], Psap [16], Ubb 
[17] and Cst3 [19], all of which are associated with neuro-
degenerative diseases.

In the ‘ion homeostasis’ GO terms, the most down-
regulated genes include Rnasek, Atp6v0b and Atp6v0c, 
which encode subunits of the V-ATPase, and Atp1b1, 
which encodes the β1 subunit of the  Na+/K+-ATPase. 
The V-ATPase is required for synaptic vesicle acidifi-
cation and trafficking and the  Na+/K+-ATPase controls 
membrane potential [43]; both functions are essential 
for sustaining normal synaptic activity. Thus, repeated 
episodes of decreased energy availability caused by RH 
induce an energy-sparing state in neurons that is sugges-
tive of reduced ATP production and decreased expression 
of ATPases. Collectively, these changes induce general 
impairment of synaptic activity.

Proteomic analysis of synaptosomal fractions

GO-BP analysis of proteomic data showed that the same 
‘oxidative phosphorylation’ and ‘ion homeostasis’ terms that 
were identified in the transcriptomic analysis were down-
regulated by RH at the protein level. Many of the same 
genes and proteins associated with the OXPHOS Complex 
I, Complex III, Complex IV and the ATP synthase were 
downregulated by RH, as were those associated with the β 
subunit of the  Na+/K+-ATPase. This indicates that a large 
number of the dysregulations observed at the mRNA level 
were reflected at the protein level. Functionally, this con-
firms that RH is likely to induce defective synaptic activity 
due to reduced OXPHOS activity and dysregulated control 
of membrane potential.

Among the proteins that were most differentially 
expressed in the synaptosomal fractions is a group of 
proteins involved in the control of synapse dynamics (see 
Fig. 5d). These included CAMK2D, a kinase activated by 
 Ca2+ at excitatory synapses, which was downregulated by 
RH. CAMK2D activates ras-related C3 botulinum toxin 
substrate 1 (RAC1), a Rho-GTPase that triggers actin pol-
ymerisation, a critical process in the control of formation 
and function of spines and synapses [33]. This action of 

CAMK2D is mediated by phosphorylation of Rho-GTP 
exchange factors (GEFs) [34], which trigger the forma-
tion of active RAC1-GTP. Two of these Rho-GEFs, ARH-
GEF7 [44] and FGD5 [35], were downregulated in the RH 
mice and another, TIAM2, was upregulated. In contrast, 
among the proteins overexpressed after RH exposure 
are three Rho-GTPase-activating proteins (Rho-GAPs), 
CTNND2, ARHGAP25 and USP6NL, which increase 
GTP hydrolysis and RAC1 inactivation. These obser-
vations indicate important changes leading to reduced 
RAC1 activity. Interestingly, there was also decreased 
expression of ADAM22, a receptor for leucine-rich gli-
oma-inactivated protein 1 beta (LGI1ß), which regulates 
synaptic maturation and activity [45]. Together, these 
observations indicate that RH leads to reduced formation 
of spines and synapses.

Oligodendrocytes

In oligodendrocytes, the major changes in gene expression 
induced by RH were related to ‘lipid biosynthesis’ and 
‘myelination’, with decreased expression of the follow-
ing: Plp1, the major constituent of myelin; Mal, which is 
associated with myelin formation; Scd2, which is the main 
stearoyl-CoA desaturase (SCD) isoform in the brain, the 
dysregulation of which is associated with impaired mye-
lin formation and neurodegenerative diseases [46]; Apoe, 
implicated in brain lipid metabolism and neurodegeneration 
[28]; Ptgds which catalyses the formation of prostaglan-
din D2 (PGD2), a promoter of oligodendrocyte develop-
ment and myelination [47]; and Cldn11, which is specifi-
cally required for the formation of myelin-associated tight 
junctions and the absence of which leads to major defects 
in neuron myelination [48]. Among the few upregulated 
mRNAs in oligodendrocytes from RH-exposed mice were 
Xylt1, required for heparan sulfate proteoglycan (HSPG) 
biosynthesis. HSPGs increase uptake of monomeric Tau 
protein, which induces an inflammatory response in neurons 
and astrocytes [49] and also blocks axon growth [50]. The 
other upregulated genes were Vcan, encoding a chondroitin 
sulfate proteoglycan that inhibits myelination of oligoden-
drocyte precursors [51], and Zeb1, a zinc finger transcrip-
tion factor that induces neuroinflammation [52]. Together, 
these changes in oligodendrocyte gene expression indicate 
a generalised defect in myelin formation and the induction 
of local inflammation.

Astrocytes

In astrocytes, the most downregulated genes were Apoe, 
Itm2b, Itm2c, Cst3, Clu and Atp6v0c. Both Itm2b and Itm2c 
(a paralogue of Itm2b) are negative regulators of Aβ pro-
duction, and Cst3 and Clu prevent aggregation of amyloid 
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fibrils. Together, Itm2b, Itm2c, Cst3 and Clu potentially ame-
liorate Alzheimer’s disease [29, 53]. In addition, Atp6v0c 
encodes the pore-forming subunit of the V-ATPase, which 
is required to acidify lysosomes in which Aβ fibrils can be 
degraded [54].

The downregulated ‘ion transport’ GO-BP term is 
enriched in genes that encode voltage-gated  K+ chan-
nels (Kcnj10, Kcnj2, Kcnh8), GABA receptors (Gabrg3, 
Gabbr1), the GABA transporter Slc6a1, and the glutamate 
transporter Slc1a1. These genes are required in astrocytes to 
clear neuronal synapses from excess neurotransmitters [55]. 
These changes in gene expression further suggest a gen-
eralised defect in tripartite synaptic activity and increased 
tendency to form Aβ peptides.

Cortex

Cortical neurons also displayed marked changes in gene 
expression in RH- vs AH-exposed mice. These were related 
mainly to presynapse organisation, with dysregulation in 

the synaptic regulators Nlgn1, Magi2, Il1rapl1, Nrxn1, Sli-
trk1, Lrfn5 and Mdga2 [56, 57]. However, the dysregulated 
genes observed in the cortex were very different than those 
observed in the hypothalamus of the same mice. Together, 
these findings indicate that the cortex is less and differently 
sensitive to RH than the hypothalamus.

Defective counterregulation

Defective counterregulation involves not only impaired 
glucagon secretion but also reduced secretion of adren-
aline, noradrenaline, cortisol and growth hormones. 
These defects are thought to be caused by the progres-
sive loss of central hypoglycaemia sensing and reduced 
activation of the autonomic nervous system, the HPA 
axis and AVP secretion. Mechanistically, activation of 
GI neurons by hypoglycaemia is triggered by a fall in 
intracellular ATP levels, which reduces the activity of 

Fig. 5  Comparison of neuronal transcriptomic and synaptosomal 
proteomic data from HFD-/STZ-treated mice exposed to AH or RH. 
Proteomics data originated from the analysis of the hypothalami of 
n=4 mice/group. (a) Venn diagram illustrating the number of features 
analysed in the proteomics analysis of synaptosomal fractions and in 
the transcriptomics analysis of neuronal nuclei from the hypothalamus 
of mice exposed to RH vs AH. (b) Hierarchical clustering of GO-BP 
terms enriched in both synaptosomal fractions and neuron transcrip-
tomes of hypothalamus from RH- vs AH-exposed mice (|normalised 
enrichment score [NES]| >1.5 and Benjamini–Hochberg adjusted p 
value [padj]<0.05). Colour of cells indicates the NES. Corresponding 
padj are also indicated (*p<0.05, **p<0.01, ***p<0.001). (c) Heat-
map depicting  log2 fold change in expression and p values (*p<0.05, 
**p<0.01, ***p<0.001) of selected features linked to OXPHOS or 
ion homeostasis. (d) Volcano plot depicting differential expression of 
7328 proteins detected in hypothalamic synaptosomes from mice sub-
jected to RH as compared with AH. Red and blue dots indicate pro-
teins that are significantly differentially expressed (fold change >2 or 
<−2 and p<0.05). ATP1B2, sodium/potassium-transporting ATPase 
subunit beta-2; ATP5A1/ATP5B/ATP5D/ATP5E/ATP5H/ATP5K/
ATP5O, mitochondrial ATP synthase subunit alpha/beta/delta/
epsilon/d/e/O; ATP5J, ATP synthase-coupling factor 6, mitochon-
drial; CORO1A, Coronin-1A; GRIN1, glutamate receptor; COX4I1/
COX5B/COX7A2, mitochondrial cytochrome c oxidase subunit 4 
isoform 1/subunit 5B/subunit 7A2; CYC1, cytochrome c1, heme 
protein, mitochondrial; NDUFA7/NDUFA8, NADH dehydrogenase 
[ubiquinone] 1 alpha subcomplex subunit 8; NDUFB8, mitochon-
drial NADH dehydrogenase [ubiquinone] 1 beta subcomplex subunit 
8; NDUFB9, NADH dehydrogenase [ubiquinone] 1 beta subcomplex 
subunit 9; NDUFC2, NADH dehydrogenase [ubiquinone] 1 subunit 
C2; NDUFS2/NDUFS7/NDUFS8, mitochondrial NADH dehydroge-
nase [ubiquinone] iron-sulfur protein 2/7/8; PRNP, major prion pro-
tein; SCO2, mitochondrial protein SCO2 homologue; SLC30A1, sol-
ute carrier family 30, member 1; SLC39A7, solute carrier family 39, 
member 7; SMDT1, single-pass membrane protein with aspartate rich 
tail 1; TMBIM6, Bax inhibitor motif containing 6; UQCC2, ubiqui-
nol-cytochrome-c reductase complex assembly factor 2; UQCR10/
UQCRB/QCRC1, cytochrome b-c1 complex subunit 9/7/1

◂ Table 3  Differentially expressed proteins with │fold change (FC)│ 
>2 identified in the synaptosomal fractions of the hypothalamus of 
RH- vs AH-exposed mice (p<0.05)

B3GLCT, beta-1,3-glucosyltransferase; CHMP1B, charged multive-
sicular body protein 1B; CNOT10, Ccr4–Not transcription complex 
subunit 10; CPSF4, cleavage and polyadenylation specific factor 4; 
CRNKL1, crooked neck pre-mRNA splicing factor 1; DPF2, double 
plant homeodomain fingers 2; DVL2, dishevelled segment polarity 
protein 2; JUP, junction plakoglobin; KRT1/KRT76, keratin 1 /76; 
PBRM1, polybromo 1; PPP1R1B, protein phosphatase 1 regula-
tory inhibitor subunit 1B; RBM34, RNA binding motif protein 34; 
RNF113A2, ring finger protein 113A2; SCAF1, SR-related C-termi-
nal domain associated factor 1; SELPLG, selectin P ligand; SMIM19, 
small integral membrane protein 19; THOC2/THOC6, THO com-
plex subunit 2/6; TLE3, transducin-like enhancer family member 3, 
transcriptional corepressor; TMBIM6, transmembrane Bax inhibitor 
motif containing 6; VANGL1, Vang-like planar cell polarity protein 
1; VASH1, vasohibin 1

Upregulated (n=16) Downregulated (n=16)

ARHGAP25 ADAM22
B3GLCT ARHGEF7
CD180 CAMK2D
CHMP1B CNOT10
CTNND2 CPSF4
DPF2 CRNKL1
DVL2 FGD5
PPP1R1B JUP
RNF113A2 KRT1
SCAF1 KRT76
SELPLG PBRM1
SMIM19 RBM34
TIAM2 THOC2
TLE3 THOC6
USP6NL TMBIM6
VASH1 VANGL1
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the  Na+/K+-ATPase, leading to membrane depolarisation 
and neuron firing [10]. For instance, a specific role of 
this signalling pathway in linking the activation of arcu-
ate nucleus agouti-related peptide (AgRP) GI neurons 
to vagal nerve activity and glucagon secretion has been 
recently reported [58]. Thus, the observed decrease in 
neuronal expression of OXPHOS and  Na+/K+-ATPase 
genes suggests over-activation of GI neurons in RH-
exposed mice, which may also lead to their desensitisa-
tion to subsequent hypoglycaemic challenges. In addi-
tion, we observed decreased expression of Avp and of 
Pmch, which control glucagon [7] and corticosterone 
[13] secretion, respectively. Collectively, these changes 
in gene expression may not only explain basal hyperglu-
cagonaemia in RH-exposed mice, but also the impaired 
response to subsequent hypoglycaemic episodes in ani-
mals with defective counterregulation.

Neurodegenerative diseases

Our data showed that several hypothalamic gene expres-
sion changes in RH- vs AH-exposed mice involved pro-
cesses associated with neurodegenerative diseases, in 
particular Alzheimer’s disease, which is characterised 
by defects in energy homeostasis, synaptic and neuronal 
network dysfunction, and increased propensity for Aβ 
production (see Fig.  7) [59]. It is worth noting that 
snRNA-seq data showed that different modifications in 
gene expression was induced by RH in the cortex of 
the same mice. These were mostly related to synaptic 
activity and less so related to neurodegenerative path-
ways. These findings further indicate the specific, high 

Table 4  DEGs with │fold change (FC)│ >1.2 identified in neurons 
from the cortex of RH- vs AH-exposed mice (Bonferroni adjusted p 
value [padj]<0.05)

Upregulated (n=61) Downregulated (n=32)

4921511C10Rik 5730522E02Rik
9630028H03Rik Akt3
Agrp Ankrd17
Arglu1 Brinp3
Armc9 Cnksr2
Atp1a1 Cntnap2
B230216N24Rik Dmd
Brd9 Fgf14
C1ql3 Gm15155
Calm2 Gm38393
Celf4 Gpm6a
Clk1 Grik2
Cnot3 Gtdc1
Cpt1c Hcn1
Ctnna3 Herc1
Dalrd3 Ilrapl1
Ddx5 Kcnj3
Dync1i2 Lingo2
Fgf1 Lrrc4c
Fgfr2 Nav3
Fndc9 Ncam2
Glp2r Nptn
Gm15398 Nrg1
Gm16183 Nrg3
Gm16599 Nrxn1
Gm20642 Pcdh9
Gm29587 Ptprd
Gm34544 Sgcz
Gm35188 Snhg14
Gm36975 Syt14
Gm42439 Tafa2
Gm47423 Unc5d
Gm48678
Gm49003
Gsdme
Hdac7
Hsp90ab1
Lmo4
Malat1
Mast3
Meg3
Myo18a
Nisch
Nme7
Nmt1
Nrn1
P2ry14
Pabpc4

Table 4  (continued)

Upregulated (n=61) Downregulated (n=32)

Pcsk2
Pigk
Ppia
Prpf4b
Ptprn
Ring1
Slc25a3
Slc38a2
Snrnp70
Snx32
Syt7
Timm44
Zcchc9
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sensitivity of the hypothalamus to the metabolic chal-
lenges imposed by RH.

Limitations of the study

The mouse model used has several limitations. First, our 
model of type 2 diabetes, with a degree of insulinopaenia, 
is more characteristic of long-term type 2 diabetes and 
does not fully represent the human condition. Second, our 
analysis did not identify whether the observed changes 
were specific to selected hypothalamic nuclei, or to GI 
neurons or neurons activated by high glucose (glucose-
excited [GE] neurons). Also, our snRNA-seq analysis did 
not yield sufficient information on all hypothalamic cell 
types, therefore impairing the detection of potential rele-
vant dysregulation in other cell types. Finally, whether the 
modifications in gene expression and glucagon secretion 

are reversible upon extended therapeutic restoration of 
normoglycaemia is not known.

In summary, we show that RH has an impact on all 
major hypothalamic cell types (Fig. 7). In neurons, it 
decreases the expression of OXPHOS genes and of plasma 
membrane and vacuolar ATPases that regulate synaptic 
activity, whilst in oligodendrocytes, RH downregulates 
the expression of genes controlling myelin formation 
and, in astrocytes, several genes controlling neurotrans-
mitters scavenging at the synapse. In addition, many of 
the changes observed in neurons, oligodendrocytes and 
astrocytes suggest increased propensity for Aβ formation 
and accumulation. Importantly, defective CRR could be 
explained by the specific downregulation of Pcsk1, Avp 
and Pmch, and by the decreased expression of OXPHOS 
and  Na+/K+-ATPase genes that may lead, not only to 
over-activation of hypoglycaemia-sensing neurons and 
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Fig. 6  Comparison of transcriptomic analysis from the hypothala-
mus and cortex of HFD-/STZ-treated mice exposed to AH or RH. 
For the hypothalamus, samples from n=3 mice were pooled for each 
group and the experiment was repeated once to obtain a biological 
replicate (n=2 integrated datasets per condition); a dataset of 14,979 
nuclei from the AH group and 14,934 nuclei from the RH group was 
obtained. For the cortex, snRNA-seq analysis was conducted in dupli-

cate using nuclei from the cortex of AH- and RH-exposed mice (sam-
ples from n=3 mice were pooled for each group) and a total of 4650 
and 9088 nuclei were obtained, respectively. (a) Diagram represent-
ing the strategy followed. (b) Hierarchical clustering of GO-BP terms 
enriched in neuron transcriptomes (⎸normalised enrichment score 
[NES]⎹ >1.7) in the cortex and hypothalamus. Corresponding p val-
ues are also indicated (*p<0.05, **p<0.01, ***p<0.001)
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increased basal hyperglucagonaemia, but also to impaired 
activation of these neurons during subsequent hypogly-
caemic episodes. Together, our findings illustrate the very 
high sensitivity of the hypothalamus and its constituent 
cells to RH. They provide a framework to design novel 
experimental approaches to test the role of the identified 
pathways in defective counterregulation.
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