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Comparison of spectral indices extracted from Sentinel-2 images to map plastic 
covered greenhouses through an object-based approach
Manuel A. Aguilar a, Rafael Jiménez-Laoa, Claudio Ladisab, Fernando J. Aguilar a and Eufemia Tarantino b

aDepartment of Engineering and Research Centre CIAIMBITAL, University of Almería, Almería, Spain; bDICATECh, Politecnico di Bari, Bari, Italy

ABSTRACT
One of the most important challenges of agriculture today is increasing its productivity gains, while 
controlling its environmental footprint. Because of that plastic covered greenhouses (PCG) map
ping via remote sensing is receiving a great attention throughout this century. In this study, a fair 
comparison was carried out in four PCG study areas around the world to test 14 spectral indices 
mainly focused on the detection of plastic. To the best knowledge of the authors, this is the first 
research that fairly compares all these spectral indices in such variable number of study sites. The 
applied OBIA approach was based on the combined use of very high-resolution satellite data 
(Deimos-2 pansharpened images) to address the segmentation process and Sentinel-2 time series 
to compute the spectral indices. When dealing with Sentinel-2 single images, the Plastic 
GreenHouse Index (PGHI) stood out among all the indices tested in the study areas dedicated to 
the cultivation of vegetables, such as the cases of Almería (Spain), Agadir (Morocco) and Antalya 
(Turkey). Better Overall Accuracy (OA) values of 94.09%, 92.27%, 92.77% and 92.17% were achieved 
for Almería, Agadir, Bari and Antalya study sites, respectively, when using statistical seasonal 
spectral indices based on Sentinel-2 time series, being the maximum and mean values of PGHI 
(MAX (PGHI) and MEAN (PGHI)) the best ranked. Meanwhile, the PCG area of Bari (Italy), with 
a monoculture in vineyards, presented the worst and most irregular results.
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1. Introduction

The world will require increased crop production in 
order to feed its predicted 9 billion people (The 
Royal Society 2009) by 2050. In fact, one of the 
most important challenges of contemporary agri
culture must be to increase its productivity gains 
while controlling, at the same time, the agricul
ture’s environmental footprint (Foley et al. 2011). 
In this way, since the first use of a plastic film in 
agriculture dated in 1948 (Garnaud 2000), the use 
of these materials as a tool to bring forward the 
first harvest and increase the yield of horticultural 
crops has been steadily increasing throughout the 
world (Espí et al. 2006). Two recent studies focused 
on the estimation of the area of permanent green
houses (low tunnels and row covers or mulching 
are excluded) coincide in indicating a world area of 
around 500,000 ha (RaboResearch 2018; Cuesta 
Roble Consulting 2019). This area corresponds 
mainly to plastic covered greenhouses (PCG), 
although it also includes roughly 40,000 ha of 
glasshouses. The greenhouse area around the 

world is mainly located in China (82,000 ha), 
Spain (70,000 ha), Korea (51,787 ha), Italy (42,800), 
Turkey (42,384 ha), Morocco (20,000 ha) and 
Mexico (20,000 ha) (RaboResearch 2018).

However, this expansive use of plastic film in 
agriculture has several negative environmental 
effects. These include the accumulation of micro
plastics in the environment (Jambeck et al. 2015), 
mainly in soils (FAO 2021), modification of the 
microclimate, alteration of the distribution of polli
nators, aesthetic pollution of the rural landscape 
(Jensen and Malter 1995; Picuno, Tortora, and 
Capobianco 2011), organic waste disposal problem, 
over-exploitation of the water resources and inva
sion of protected natural areas (Agüera, Aguilar, 
and Aguilar 2006).

A recent report by the Food and Agriculture 
Organization (FAO 2021) makes a loud call to coordi
nate good management practices and curb the dis
astrous use of plastics across the agricultural sector. In 
this sense, it is vital to develop efficient monitoring 
and mapping systems to control the spatiotemporal 
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changes of PCG around the world, and remote sen
sing can provide accurate and periodic information of 
this sector (Song et al. 2017).

Remote sensing have been widely applied for map
ping PCG and plastic-mulched areas during the last 
decade, mainly using Landsat 5/7/8 image data (Lu, 
Di, and Ye 2014; Aguilar et al. 2015; Novelli and 
Tarantino 2015; Aguilar et al. 2016; Wu et al. 2016; 
Hasituya, and Chen 2017; Yang et al. 2017; González- 
Yebra et al. 2018; Hasituya et al. 2020; Ji et al. 2020; Ou 
et al. 2020). Other free access optical data widely used 
in PCG mapping in recent years are those provided by 
the twin polar-orbiting European satellites, Sentinel- 
2A and Sentinel-2B, successfully launched in 2015 and 
2017, respectively (Lu, Tao, and Di 2018; Hao et al. 
2019; Perilla and Mas 2019; Balcik, Senel, and Goksel 
2020; Ibrahim and Gobin 2021; Sun et al. 2021). There 
are also works focused on comparing Sentinel-2 and 
Landsat 8 imagery to classify PCG (Novelli et al. 2016; 
Nemmaoui et al. 2018). Moreover, Xiong et al. (2019) 
fused Sentinel-2, Landsat 5/7/8 and MODIS imagery to 
propose a new framework to map plastic-mulched 
farmland over large areas.

New works focused on the detection of PCG from 
the first successfully launched very high-resolution 
(VHR) commercial satellites (IKONOS in 1999 and 
QuickBird in 2001) have been performed by using 
different pixel-based approaches (Agüera, Aguilar, 
and Aguilar 2006, 2008; Carvajal et al. 2010; 
Arcidiacono and Porto 2011). Koc-San (2013) used 
WorldView-2 satellite imagery to carry out a pixel- 
based classification of glass and plastic greenhouses 
in Antalya (Turkey). Aguilar et al. (2014) tested 
GeoEye-1 and WorlView-2 stereo pairs for mapping 
PCG in Almería (Spain) using an object-based image 
analysis (OBIA) approach. China’s high resolution 
Earth Observation System satellites, GaoFen-1 
(Hasituya et al. 2020) and GaoFen-2 (Shi et al. 2020), 
were successfully used to map PCG and plastic- 
mulched farmland. The potential of Pléiades data for 
mapping plastic-mulched farmland using OBIA and 
Random Forest (RF) classifier have been also reported 
(Hasituya et al. 2021). Without any doubt, WorldView- 
3 can be considered the VHR satellite that has shown 
the most impressive capabilities for mapping PCG 
thanks to its global super-spectral (eight VNIR bands 
and eight SWIR bands) observation capabilities 
(Aguilar, Jiménez-Lao, and Aguilar 2021). Finally, the 
deep learning framework has recently been applied 

to classify PCG and mulching films using VHR imagery 
usually downloaded from open-access sites (Feng 
et al. 2021; Jakab, van Leeuwen, and Zalán 2021; Ma 
et al. 2021). Li et al. (2020) and Zhang et al. (2021) also 
used deep learning to extract PCG from GaoFen-1 and 
GaoFen-2 images.

Several spectral indices for mapping PCG and 
mulching films have been proposed in this century. 
All these PCG indices were particularly tested for 
a specific study area with a certain type of PCG. For 
example, Zhao et al. (2004) proposed an index for 
greenhouse vegetable land extraction (Vi) oriented 
to PCG mapping in the Shandong province of China 
using Landsat Thematic Mapper (TM) imagery. Lu, Di, 
and Ye (2014) developed and included the plastic- 
mulched land cover index (PMLI) into a decision tree 
classifier from Landsat 5 TM images. Aguilar et al. 
(2016) tested the spectral metric Moment Distance 
Index (MDI) proposed by Salas and Henebry (2012), 
including its two components (Moment Distance 
from the Left Pivot (MDLP) and to the Right one 
(MDRP)), for mapping PCG in Almería (Spain) using 
an OBIA approach and Landsat 8 time series. Yang 
et al. (2017) developed new spectral indices (Plastic 
Greenhouse Index (PGI) and Retrogressive Plastic 
Greenhouse Index (RPGI)) for detecting PCG in 
Shandong (China) following a pixel-based approach. 
After that, González-Yebra et al. (2018) published the 
Greenhouse Detection Index (GDI) based on MDI 
index, the blue band and the two SWIR bands from 
Landsat images. More recently, Ji et al. (2020) devel
oped a threshold model for mapping PCG from 
Landsat 8 images using an OBIA approach in Xuzhou 
city (Jiangsu Province, China). They proposed the 
Plastic GreenHouse Index (PGHI), to reject bright 
white buildings, and the Color Steel Buildings Index 
(CSBI), to discriminate the color steel buildings, within 
the context of PCG classification. In addition, other 
spectral indices have been derived from medium 
resolution optical satellite images for mapping plastic 
litter in the marine environment, which could be 
interesting to classify PCG. In this way, Biermann 
et al. (2020) proposed the Floating Debris Index 
(FDI), while Themistocleous et al. (2020) developed 
the Plastic Index (PI), both from Sentinel-2 Multi- 
Spectral Instrument (MSI) images.

The goal of this work relies on making a fair com
parison between the aforementioned spectral indices 
by assessing their performance in PCG mapping 
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within the context of an OBIA approach. Obviously, 
these indices don’t work in the same way in all the 
PCG areas around the world, nor at all times of 
the year. Therefore, time series of Sentinel-2 images 
were used in four representative PCG study sites 
located in different countries. The main idea is to 
highlight the most robust index for mapping PCG at 
present. Thus far, and to the best knowledge of the 
authors, this is the first research that compares, using 
the same methodology, the performance of mapping 
PCG in such a large number of countries.

2. Study areas

The four study sites, Spain (SS1), Morocco (SS2), Italy 
(SS3) and Turkey (SS4), used in this work are located in 
relevant and typical agricultural greenhouse areas 
(Figure 1(a)). All the study sites have a rectangular 
shape with an area of ca. 8000 ha (8,000 x 10,000 m), 
being the topography quite flat (Aguilar et al. 2020a).

SS1 study site, centered on the geographic coordi
nates (WGS84) 36.7824°N and 2.6867°W (Figure 1(b)), 
is located in Almería (Spain). This study area has 
already been studied in works focused on mapping 
PCG (e.g. Aguilar et al. 2016; Nemmaoui et al. 2018). 
The under plastic agriculture is the main key eco
nomic driver in the Almería province, being tomato, 
pepper, cucumber, aubergine, melon, and waterme
lon the most representative greenhouse horticultural 
crops. SS1 includes villages such as Cortijos de Marín, 
La Mojonera, Puebla de Vícar and La Venta del Viso. 
PCG plots in SS1 have no crop underneath in July, 
presenting very few areas of isolated vegetation.

SS2 is located in the Souss-Massa plain, in Agadir 
(Morocco) (geographic coordinates (WGS84) 30.1478° 
N and 9.4386°W) (Figure 1(c)). In this area, there are 
more than 10,000 ha of PCG mainly dedicated to 
tomato. This study site does not include any urban 
area. SS2 displays a few agricultural parcels with orch
ards and outdoor crops.

Figure 1. Global location and detailed views of the four study sites based on Near infrared, red, green false-color band combination of 
Deimos-2 images: (a) Global location of the four study sites (SS1: Almería (Spain); SS2: Agadir (Morocco); SS3: Bari (Italy); SS4 Antalya 
(Turkey); (b) SS1; (c) SS2; (d) SS3; (e) SS4. Yellow squared areas for the accuracy assessment are represented.
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SS3 is situated in the Apulia Region (Italy), close to 
Bari (41.0166°N and 16.9119°E) (Figure 1(d)). In this 
study site there is a monoculture in vineyards, where 
it is grown using the traditional grape growing system 
characterized by a supporting structure covered with 
plastic sheets or nets in spring and summer. SS3 pre
sents several villages such as Valenziano Apulia, 
Capurso, Cellamare, Parco dei Principi, Adelfia. In 
addition, it includes a few industrial zones. SS3 has 
a large area covered with vegetation in July, mainly 
agricultural plots with vineyards.

SS4 is located in Kumluca (Turkey), district of 
Antalya Province (36.3622°N and 30.2931°E). SS4 has 
a similar production model as SS1 and SS2, being 
addressed to horticultural crops growing both under 
PCG (80–85%) and glass greenhouses (15–20%). 
Several orange tree and olive tree orchards appear 
in red surrounding the city of Kumluca, together with 
a large quantity of greenhouses without crop 
(Figure 1(e)).

Moreover, three yellow squared areas for each 
study area are represented in Figure 1. They will be 
used later for the accuracy assessment stage.

3. Datasets and pre-processing

3.1. Deimos-2 images

Deimos-2 is a VHR optical satellite operated by 
Deimos Imaging. Deimos-2 was launched on 
19 June 2014. It provides 1 m ground sample distance 
(GSD) panchromatic (PAN) and 4 m multispectral (MS) 
images containing four bands (R, G, B, NIR).

In this study, four Deimos-2 images (PAN+MS) level 
1B (L1B) were acquired at the study sites in different 
dates: 30 July 2019 for SS1 (Figure 1(b)), 9 July 2020 
for SS2 (Figure 1(c)), 29 July 2020 for SS3 (Figure 1(d)) 
and 17 July 2020 for SS4 (Figure 1(e)). The L1B product 
presents calibration and radiometric correction. This 
basic product includes the sensor camera model 
(RPCs) and the gain and bias values for each band.

The PANSHARP module of Geomatica v. 2018 (PCI 
Geomatics, Richmond Hill, ON, Canada) was used to 
produce the Deimos-2 pansharpened images with 
1 m of GSD, containing the full four-band spectral 
information. According to Aguilar et al. (2020b), 12 
ground control points (GCPs) are required for Deimos- 
2 L1B images, to compute the ideal sensor model 
based on rational functions refined by a first-order 

transformation in the image space (RPC1). For obtain
ing the Deimos orthoimages for each study site, freely 
available ancillary data of Google Earth (GCPs) and the 
Shuttle Radar Topography Mission 30 m digital eleva
tion model (DEM) were used following the recom
mendation by Aguilar et al. (2017).

The final Deimos-2 pansharpened orthoimages 
were atmospherically corrected by using the ATCOR 
module (Berk et al. 1998) implemented in Geomatica 
v. 2018.

3.2. Sentinel-2 images

The widely known Sentinel-2 (S2) mission comprises 
a constellation of two identical satellites, Sentinel-2A 
(S2A) and Sentinel-2B (S2B), launched in 2015 and 
2017, respectively. The images used in this work 
were taken by S2A and S2B MSI over the four study 
sites (Table 1). All the S2 images level 2A (L2A), with 
values expressed in surface reflectance, were freely 
downloaded in 2020 from the European Space 
Agency (ESA)-Copernicus Scientific Data Hub tool. 
Fourteen cloud-free multi-temporal S2 L2A scenes 
were taken at the Almería study site, while 15 were 
obtained for each of the other three study sites 
(Table 1). The goal was to have at least one cloud- 
free image for each month, and that the selected 
images were well distributed throughout the year. 
Moreover, and mainly in summer, we tried to choose 
S2 images taken from the orbits that left the sun on its 
back for minimizing the sun glint effects (Aguilar et al. 
2020a). It resulted to be impossible in some study 
areas and we decided to choose a similar number of 
S2 (14–15) images for each time series. The S2 MSI 
sensor collects up to 13 bands, although only the four 
bands with 10 m GSD (B2-B, B3-G, B4-R and B8-NIR8) 
and the six bands with 20 m GSD (B5-RE1, B6-RE2, B7- 
RE3, B8a-NIR8a, B11-SWIR1 and B12-SWIR2) were used 
in this research.

The original S2 images were clipped according to 
its corresponding study area and co-registered with 
the reference Deimos-2 pansharpened orthoimage. 
The co-registration was performed for each acquisi
tion time and study site using a first order polynomial 
transformation computed on 44 planimetric GCPs 
evenly distributed over each working area and 
extracted from the Deimos-2 orthoimages. Bearing 
in mind that the study sites were areas with a fairly 
flat topography, the co-registration turned out to be 
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excellent. Nemmaoui et al. (2018) used 44 GCPs to 
align a pansharpened WorldView-2 orthoimage and 
S2 images achieving a residual offsets ranged 
between 3.20 m and 4.09 m in terms of planimetric 
root mean square error (RMSExy), similar values to 
those reported by Stumpf, Michéa, and Malet (2018).

4. Methodology

The methodology followed in this research for all the 
study sites is similar to the already applied by Aguilar 
et al. (2016) and Nemmaoui et al. (2018) in Almería. 
A flowchart describing the methodology proposed in 
this work is shown in Figure 2.

4.1 Segmentation

The multi-resolution (MRS) image segmentation 
algorithm implemented in eCognition 9.5 
(Trimble, Sunnyvale, CA, USA) was used in this 
work. MRS is a bottom-up region-merging techni
que that starts with one-pixel objects and, by 
mean of iterative steps, smaller objects are 

merged into larger ones (Baatz and Schäpe 
2000). The MRS is based on three main para
meters: Scale, Shape and Compactness (Tian and 
Chen 2007). The combination of bands and their 
corresponding weights must be also set 
(eCognition 2019).

The segmentation for each study site was carried 
out by using the geometrically and atmospherically 
corrected Deimos-2 pansharpened images. Aguilar 
et al. (2018) performed the MRS segmentation of 
PCG from three orthoimages of WorldView-3 (PAN 
with 0.3 m GSD, MS and atmospherically corrected 
MS using ATCOR with 1.2 m), pointing to the MS 
ATCOR orthoimage as the best choice to obtain the 
best results.

According to Novelli et al. (2016), the bands 
combination for Deimos-2 pansharpened orthoi
mages was set to equally weighted Blue, Green 
and NIR bands. Scale values with increments in 
steps of 1.0 and Shape values ranged from 0.1 to 
0.5 in steps of 0.1 were tested. Compactness was 
fixed to 0.5 in all cases (Nemmaoui et al. 2018). 
Thousands of segmentations from applying MRS 

Table 1. Original Sentinel-2 (S2A and S2B) L2A images used in this study for each study site.

Study Site Date of Acquisition (D/M/Y) Sensor Orbit
ID 

Tile Study Site Date of Acquisition (D/M/Y) Sensor Orbit ID Tile

SS1: Almería (Spain) 1/1/2020 S2A R051 30SWF SS2: Agadir (Morocco) 1/2/2020 S2B R137 29RMP
10/2/2020 S2A R051 6/4/2020 S2B R137
11/3/2020 S2A R051 1/5/2020 S2B R137
30/4/2020 S2A R051 21/5/2020 S2B R137
25/5/2020 S2B R051 31/5/2020 S2B R137
14/6/2020 S2B R051 15/6/2020 S2A R137
24/7/2020 S2B R051 20/6/2020 S2B R137
29/7/2020 S2A R051 10/7/2020 S2B R137
13/8/2020 S2B R051 24/8/2020 S2A R137
27/9/2020 S2A R051 8/9/2020 S2B R137
5/10/2020 S2B R094 23/9/2020 S2A R137

25/10/2020 S2B R094 28/9/2020 S2B R137
11/11/2020 S2B R051 7/11/2020 S2B R137
9/12/2020 S2A R094 22/11/2020 S2A R137

7/12/2020 S2B R137

Study Site Date of Acquisition (D/M/Y) Sensor Orbit ID Tile Study Site Date of Acquisition (D/M/Y) Sensor Orbit ID Tile

SS3: Bari (Italy) 25/1/2020 S2B R036 33TXF SS4: Antalya (Turkey) 22/1/2020 S2A R064 36STF
9/2/2020 S2A R036 9/2/2020 S2B R107

13/3/2020 S2A R079 7/3/2020 S2B R064
17/4/2020 S2B R079 11/4/2020 S2A R064
9/5/2020 S2A R036 6/5/2020 S2B R064

28/6/2020 S2A R036 16/5/2020 S2B R064
3/7/2020 S2B R036 25/6/2020 S2B R064

23/7/2020 S2B R036 10/7/2020 S2A R064
2/8/2020 S2B R036 25/7/2020 S2B R064

12/8/2020 S2B R036 19/8/2020 S2A R064
27/8/2020 S2A R036 3/9/2020 S2B R064
7/9/2020 S2A R036 8/9/2020 S2A R064

6/10/2020 S2A R036 28/9/2020 S2A R064
31/10/2020 S2B R036 12/11/2020 S2A R064
15/11/2020 S2A R036 2/12/2020 S2B R064
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were computed by means of a semi-automatic 
eCognition rule set characterized by a looping 
process varying the aforementioned MRS tuning 
parameters. The selection of the best MRS para
meters for each study site was carried out auto
matically through a free access command line tool 
named AssesSeg (Novelli et al. 2016, 2017). This 
tool is based on a modified version of the super
vised discrepancy measure Euclidean Distance 2 
(ED2) originally proposed by Liu et al. (2012). Four 
hundred reference PCG objects manually deli
neated on the Deimos-2 pansharpened orthoi
mages for each study site were considered to 
compute the modified ED2. Note that a high 
value of the modified ED2 indicates a significant 
geometric discrepancy between the reference and 
segmented PCG polygons. So, for each study site, 
the segmentation presenting the minimum value 
of ED2 was selected as the ideal.

4.2 Features extraction

Fourteen spectral indices, directly or indirectly used for 
mapping PCG, plastic-mulched land cover or plastic litter 
in the marine environment, were tested in this work 
(Table 2). All these indices were extracted from each S2 
single image and every object attained in the segmenta
tion process described in section 4.1. This procedure was 
applied to each study site using eCognition v. 9.5.

In a nutshell, object-based features were extracted 
from single S2 images but working on Deimos-2-based 
segmentation. It is important to note that the original 
spatial resolution of 10 m or 20 m GSD of the S2 bands 
were increased to 1 m by applying a spatial resampling 
without interpolation in order to better match the pre
viously segmented objects on Deimos-2. One different 
eCognition project was conducted for each study site.

Lastly, simple statistical seasonal features correspond
ing to each index shown in Table 2 were also computed 
from the 14 or 15 images of the S2 time series for each 

Figure 2. Flowchart of the methodology proposed in this work.
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study site. Those seasonal features were MAX (maxi
mum), MIN (minimum), DIF (difference between MAX 
and MIN), SD (standard deviation) and MEAN values. In 
that way and for instance, the value of MAX (PGHI) in 
Almeria for a specific object, would be the maximum 
value of the 14 mean PGHI values computed for this 
object and for each S2 image. The use of seasonal fea
tures minimized the influence of the composition of the 
time series (i.e. the number of images and their distribu
tion throughout the year).

4.3. Decision tree modeling

A simple decision tree (DT) classifier based on the 
algorithm proposed by Breiman et al. (1984) was 
used in this work to assign the classes Greenhouse 
(GH) or Non-Greenhouse (Non-GH) to the objects. This 
very simple classifier with a few splits and single 
threshold values is ideal to compare and understand 
the behavior of the indices tested here. It was already 
selected for mapping outdoor crops by 
Peña-Barragan et al. (2011) and Vieira et al. (2012), 
even for plastic-mulched land cover detection (Lu, Di, 
and Ye 2014). For each study site, 1500 GH and 1500 

Non-GH meaningful objects were selected as ground 
truth from the ideal segmentations. It is important to 
note that all the 1500 GH objects selected were 
always PCG. In Antalya (SS4) we were very careful 
not to mistakenly choose any glass greenhouse, 
even using Street View by Google Earth, since the 
detection of glass greenhouses was beyond the 
scope of this work.

STATISTICA v. 10 (StatSoft Inc., Tulsa, OK, USA) and the 
Gini index (Zambon et al. 2006) were used to compute 
DT models through a stratified 10-fold cross-validation 
procedure, being the dependent variable the classes GH 
or Non-GH. This well-kown experimental design led to 
one confusion matrix for each fold (Vieira et al. 2012; 
Peña-Barragán et al. 2014). In 10-fold cross-validation, 
the data is randomly partitioned into 10 equal size sam
ples. Of the 10 samples, a single sample is used to 
validate the model (this sample results independent to 
the others) and the remaining 9 samples are used as to 
train the model. The cross-validation process is then 
repeated 10 times, with each of the 10 samples used 
exactly once as the validation data. A final confusion 
matrix was obtained by summing all of them. It is impor
tant to note that DT also provides an assessment of the 

Table 2. Spectral indices based on Sentinel-2 single images tested for mapping PCG.
Index Description Reference

Normalized Difference Vegetation 
Index (NDVI)

NDVI ¼ NIR8 � Rð Þ

NIR8 þ Rð Þ
Rouse et al. (1973)

Normalized Difference Builtup Index 
(NDBI)

NDBI ¼ SWIR1 � NIR8ð Þ

SWIR1 þ NIR8ð Þ
Zha, Gao, and Ni (2003)

Moment Distance from the 
Right Pivot (MDRP) MDRP ¼

PλLP

i ¼ λRP

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðρ2
i þ λRP � ið Þ

2
Þ

q

λ = wavelength in µm; ρ = reflectance; i = 10 bands
Salas and Henebry 

(2012)

Moment Distance from the 
Left pivot (MDLP) MDLP ¼

PλRP

i ¼ λLP

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðρ2
i þ i � λLPð Þ

2
Þ

q

λ = wavelength in µm; ρ = reflectance; i = 10 bands
Salas and Henebry 

(2012)

Moment Distance Index (MDI) MDI ¼ MDRP � MDLP Salas and Henebry 
(2012)

Plastic-Mulched Landcover 
Index (PMLI)

PMLI ¼ SWIR1 � R
SWIR1þ R

Lu, Di, and Ye (2014)

Index Greenhouse Vegetable 
Land Extraction (Vi)

Vi ¼ SWIR1 � NIR8
SWIR1þNIR8

� �
� NIR8 � R

NIR8þ R

� �
Zhao et al. (2004)

Plastic Greenhouse Index (PGI)
PGI ¼ 100� B� NIR8 � Rð Þ

1� BþGþNIR8ð Þ

3

� �

PGI = 0 when NDVI > 0.73; PGI = 0 when NDBI > 0.005
Yang et al. (2017)

Retrogressive Plastic Greenhouse Index 
(RPGI) PGI ¼ 100� B

1 � BþGþNIR8ð Þ

3

� �
Yang et al. (2017)

Greenhouse Detection Index (GDI)
GDI ¼ MDI

3

� �
�

B� SWIR1þ SWIR2
2ð Þ

Bþ SWIR1þ SWIR2
2ð Þ

� �
González-Yebra et al. 

(2018)

Plastic GreenHouse Index (PGHI) PGHI ¼ B
SWIR2

Ji et al. (2020)

Color Steel Buildings Index (CSBI) CSBI ¼ SWIR2
SWIR1

Ji et al. (2020)

Plastic Index (PI) PI ¼ NIR8
NIR8þ R

Themistocleous et al. 
(2020)

Floating Debris Index (FDI) FDI ¼ NIR8 � RE2þ SWIR1 � RE2ð Þ � λNIR � λRED
λSWIR1 � λRED

� �
� 10

� �
λNIR =833 nm; λRED =665 nm;  

λSWIR1 =1613 nm

Biermann et al. (2020)
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relative importance of the different features considered 
to carry out the classification process, which will help us 
to rank the tested spectral indices according to their 
capability to classify PCG.

For each study site, a DT was individually com
puted for each S2 single image, considering two 
classes (GH and Non-GH) and a feature vector com
posed of 14 features (spectral indices). In addition, 
a new DT was attained exclusively using the afore
mentioned five statistical seasonal features (14 × 5 = 
70 features for each study site). These computed DTs 
were implemented in eCognition by means of rule 
sets to classify the objects previously obtained in the 
segmentation step.

4.4. Classification accuracy assessment

All the computed DT models (based on single image 
or statistical features) resulted in the corresponding 
confusion matrices based on the 3000 aforemen
tioned objects (see section 4.3). These first accuracy 
results can be considered as an object-based accuracy 
assessment.

In addition, and for each study area, three 
squared ground truth areas of 2000 m per 2000 m 
were manually digitized as vector files over the 
Deimos-2 pansharpened orthoimage containing 
the two class objects (see yellow squares in 
Figure 1). It should be noted that a farmland was 
digitized as GH in the ground truth if it was inter
preted as GH in at least one of the S2 images of the 
time series. In fact, there were some agricultural 
parcels included in the GH class that only appeared 
covered in plastic in one or two images of the time 
series. These squared areas were exported as raster 
files with 1 m GSD and finally uploaded as TTA (Test 
and Training Area) mask into the corresponding 
eCognition project to be considered as reference 
(ground truth). This procedure was only carried out 
for the strategy that used statistical seasonal fea
tures. In this way, several pixel-based sets of confu
sion matrices were attained to perform a more real 
classification accuracy assessment (Aguilar et al. 
2016; Nemmaoui et al. 2018; Aguilar, Jiménez-Lao, 
and Aguilar 2021).

For the two accuracy assessments performed, 
user’s accuracy for both GH and Non-GH classes (UA 
GH and UA Non-GH), producer’s accuracy for both GH 

and Non-GH classes (PA GH and PA Non-GH), overall 
accuracy (OA), and kappa coefficient (Kappa) were 
measured (Congalton 1991). In the case of the accu
racy based on TTA mask (pixel-based approach), an 
analysis of variance (ANOVA) was carried out to detect 
statistical significant differences. The Tukey’s post hoc 
test with 95% confidence level was applied for means 
separation.

5. Results

5.1 Segmentation

The optimal setting parameters achieved for MRS 
segmentations (i.e. SP and Shape because 
Compactness was set at 0.5) carried out on equally 
weighted Blue-Green-NIR bands from Deimos-2 
pansharpened orthoimages were the following: (i) 
237, 0.4 for SS1, (ii) 192, 0.5 for SS2, (iii) 162, 0.5 for 
SS3, and (iv) 134, 0.5 for SS4. The modified ED2 
metric (Novelli et al. 2016) used to find the optimal 
setting on each study site presented values of 
0.299, 0.372, 0.122 and 0.213 for SS1, SS2, SS3 
and SS4, respectively. The optimal MRS yielded 
11,383 (SS1), 7,290 (SS2), 12,997 (SS3) and 18,489 
(SS4) objects in each study area. Figure 3 shows 
detailed views of the ideal segmentations obtained 
using zone 1 (the northernmost yellow squared 
areas in Figure 1) of each study area (Deimos-2 
pansharpened orthoimages) as a reference. All 
these segmentations presented a very good visual 
agreement with PCG shapes.

It is important to highlight that a few PCG in 
each study area were changing the plastic roof 
when Deimos-2 images were taken in July. In 
these cases, we verified that the agricultural 
plots were still well represented by MRS segmen
tations, since the terrain resulted to be quite 
homogeneous.

5.2 Relative importance of the tested spectral 
indices

The relative importance values of the 14 spectral 
indices tested on S2 single images (Table 2) derived 
from the DT models are shown in Table 3. These 
values, computed for each of the four study sites, 
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Figure 3. Detailed views (zone 1 areas) of ideal segmentations achieved on Deimos-2 pansharpened orthoimages using MRS and the 
modified Euclidean Distance 2 (ED2) for the four study sites: (a) SS1, Almería; (b) SS2, Agadir; (c) SS3, Bari); (d) SS4, Antalya.

Table 3. Relative importance of the spectral indices tested on S2 single images for each study site. The mean value for the four study 
sites is depicted in the last column.

Index

SS1 (Almería) SS2 (Agadir) SS3 (Bari) SS4 (Antalya) Mean value

Relative importance

PGHI 1.00 1.00 0.56 1.00 0.89
GDI 0.94 0.92 0.51 0.99 0.84
MDI 0.82 0.70 0.54 0.91 0.74
PMLI 0.84 0.72 0.41 0.93 0.72
RPGI 0.82 0.69 0.41 0.94 0.72
FDI 0.84 0.65 0.73 0.58 0.70
CSBI 0.55 0.84 0.91 0.27 0.64
NDBI 0.80 0.82 0.72 0.22 0.64
MDLP 0.69 0.44 0.48 0.83 0.61
Vi 0.51 0.81 0.75 0.25 0.58
PGI 0.54 0.37 0.73 0.42 0.51
NDVI 0.40 0.20 0.62 0.75 0.49
PI 0.40 0.20 0.62 0.75 0.49
MDRP 0.39 0.26 0.31 0.59 0.39
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were obtained by averaging the relative importance 
of each spectral index through the 14 or 15 single 
images. Note that the ranking is ordered according to 
the mean values for all study sites showing in the last 
column.

The results regarding the relative importance of 
the tested spectral indices turned out to be quite 
similar in the three study sites devoted to growing 
vegetables (i.e. SS1, SS2 and SS4), PGHI and GDI 
being the most prominent indices, closely followed 

Figure 4. The top six global indices for S2 single images ranked according to their relative importance: (a) SS1, Almería; (b) SS2, Agadir; 
(c) SS3, Bari; (d) SS4, Antalya.

Table 4. Relative importance of the best 14 statistical indices tested on the time series of S2 images for each study site. The mean 
value for the four study sites is depicted in the last column.

Index

SS1 (Almería) SS2 (Agadir) SS3 (Bari) SS4 (Antalya) Mean value

Relative importance

SD (PGI) 1.00 0.90 1.00 0.92 0.96
DIF (PGI) 0.99 0.90 0.99 0.83 0.93
MAX (PGHI) 0.97 0.99 0.66 1.00 0.90
DIF (PGHI) 0.92 0.91 0.89 0.86 0.89
SD (PGHI) 0.92 0.92 0.89 0.77 0.87
MIN (GDI) 0.95 0.95 0.57 1.00 0.87
SD (CSBI) 0.93 0.80 0.93 0.79 0.86
DIF (CSBI) 0.91 0.80 0.93 0.78 0.86
MIN (MDI) 0.91 0.82 0.69 0.99 0.85
MEAN (PGHI) 0.98 1.00 0.40 1.00 0.84
MIN (PGI) 0.73 0.81 0.98 0.83 0.84
MIN (PMLI) 0.93 0.94 0.37 0.99 0.81
DIF (MDI) 0.60 0.78 0.85 0.98 0.80
DIF (MDLP) 0.85 0.70 0.69 0.96 0.80
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by PMLI, RPGI and MDI. The technique of vineyard 
monoculture in Bari (SS3) changed the ranking of 
spectral indices, now pointing to CSBI, Vi, FDI, PGI 
and NDBI as the most relevant.

Changes in the relative importance of the top 
six global indices (last column in Table 3) are 
depicted in Figure 4 over time for SS1 (Figure 4 
(a)), SS2 (Figure 4(b)), SS3 (Figure 4(c)) and SS4 
(Figure 4(d)). PGHI was the PCG detection index 
that had the best relative importance for all the 
recorded dates in SS1, SS2 and SS4. In the case of 
SS3, the relative importance of the tested indices 
was much more changeable and irregular.

Table 4 depicts the 14 most relevant statistical 
seasonal indices extracted from S2 time series for 
each study site. Again, their relative importance 
values are ordered in the last column according 

to the mean values for the four study sites. In 
this case, two statistical indices based on PGI (SD 
(PGI) and DIF (PGI)) and MAX (PGHI) stood out over 
the rest. MEAN (PGHI) presented very good relative 
importance values for all the study sites except for 
the case of SS3, which, as we indicated above, 
presents cultivation characteristics (monoculture 
vineyard) very different from those of the other 
study areas.

5.3 Object-based accuracy assessment

Figure 5 depicts the accuracy based on the 3000 
selected objects (1500 GH and 1500 Non-GH) from 
the segmentations carried out for all the study sites. 
The accuracy figures were derived from DT models 

Figure 5. Object-based accuracy assessment based on 3000 objects (1500 GH and 1500 Non-GH): (a) SS1, Almería; (b) SS2, Agadir; (c) 
SS3, Bari; (d) SS4, Antalya. User’s accuracy for Greenhouse class (UA GH). Producer’s accuracy for Greenhouse class (PA GH). Kappa for 
each single image (Kappa (SI)). Kappa for time series using statistical features by objects (Kappa (TS-O)).
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computed on S2 single images (UA GH, PA GH, Kappa 
for each single image (Kappa (SI)) and Kappa for time 
series by objects (Kappa (TS-O)).

Figure 6 shows the four very simple DT models for 
PCG detection proposed for S2 time series based only 
on statistical indices for each study site. The first splits 
of these DT models used the following statistical fea
tures: MEAN (PGHI) in SS1 (Figure 6(a)), SD (PGI) in SS3 
(Figure 6(c)), and MAX (PGHI) for SS2 and SS4. Only 
SS1 and SS2 presented secondary splits related to 
vegetation (e.g. SD (NDVI) and DIF (NDVI)) or other 
PCG indices (e.g. MIN (Vi)).

Looking again Figure 5, the accuracy values based 
on statistical seasonal features (Kappa (TS-O)) were 
higher than Kappa (SI) ones for all the study sites. 
The Kappa (TS-O) and OA time series values were 
0.993 (OA = 99.63%), 0.995 (OA = 99.77%), 0.982 
(OA = 99.10%) and 0.999 (OA = 99.93%) for SS1 
(Figure 5(a)), SS2 (Figure 5(b)), SS3 (Figure 5(c)) and 
SS4 (Figure 5(d)), respectively.

Regarding the accuracy computed from S2 sin
gle images, Kappa (SI) values were varying over 
time. In Almería (SS1) and Agadir (SS2) the worst 

results were achieved in summer. Something simi
lar, but much less marked, took place in Antalya 
(SS4), where the best accuracy values of Kappa 
(SI) were yielded. Just the opposite happened in 
Bari (SS3), where the best accuracy values were 
achieved in summer. It is worth noting that the 
greenhouses in Bari are covered with plastic 
sheets mainly in spring and summer. The omis
sion error (PA GH) and commission error (UA GH) 
for the Greenhouse class achieved very good 
results, showing similar changes over time that 
Kappa.

5.4 Pixel-based accuracy assessment

Figure 7, Figure 8, Figure 9 and Figure 10 present both 
the manually digitized reference (ground truth zones) 
and the pixel-by-pixel (1 m GSD) comparison with the 
OBIA classification attained from applying the pre
viously trained DT models (Figure 6) for each zone 
and study site. The Deimos-2 RGB orthoimages are 
also depicted in these figures for a better understand
ing the accuracy assessment.

Figure 6. DT models proposed for GH and Non-GH classification based on statistical spectral indices from S2 time series: (a) SS1, 
Almería; (b) SS2, Agadir; (c) SS3, Bari; (d) SS4, Antalya.
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The comparison maps between OBIA classification 
and ground truth show GH class in brown and Non- 
GH class in green. Moreover, dark green and orange 
colors highlight the misclassification errors. Pixels that 
are GH in the reference maps, but are classified as 
Non-GH in the classification maps, appear orange. On 
the other hand, pixels representing Non-GH in the 
reference maps, but are classified as GH, appear dark 
green in the classification maps. The accuracy 

measures for each zone and study area (OA and 
Kappa values) are also presented in Figure 7, Figure 
8, Figure 9 and Figure 10.

Table 5 presents the statistical separation of mean 
values for the three zones of each study site corre
sponding to the accuracy measures of OA, Kappa, UA 
GH, PA GH, UA Non-GH and PA Non-GH. The accuracy 
results depicted in Table 5 did not show statistical 
significant differences between study sites (p < 0.05), 
with the only exception of UA GH. In this case, the best 
UA GH value was achieved in SS1, followed by SS2 and 
SS4 (statistically similar results), and placing last SS3.

6. Discussions

As already mentioned, several spectral indices for 
extraction of PCG, plastic-mulched areas or plastic 
litter in the marine environment have been 

Figure 7. Pixel-based accuracy assessment for the DT models derived from S2 time series over the manually digitized Zones for SS1 
(Almería).

Table 5. Comparison of mean values of accuracy measures for 
the three zones and study sites regarding the pixel-based accu
racy assessment. Values in the same column followed by differ
ent superscript letters indicate significant differences at 
a significance level p < 0.05.

Study Site OA Kappa UA GH PA GH UA Non-GH PA Non-GH

SS1 94.09 0.879 94.34 a 94.23 94.03 93.34
SS2 92.27 0.840 87.16 b 94.93 96.17 90.27
SS3 92.77 0.809 80.33 c 94.15 95.89 92.39
SS4 92.17 0.834 85.08 b 97.19 97.98 87.94
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developed in the last 20 years, all of them provid
ing good results for the classification of a wide 
variety of plastic elements located in different 
areas of the world. Hence, the idea of compare 
all of these indices for mapping PCG by applying 
the same methodology and in different PCG areas 
worldwide can be of great help for future research 
in this field.

Almost all the spectral indices tested in this 
work have already been tested for PCG detection, 
although the methodology followed was not 
always the same and, of course, the study sites 
and the type of PCG varied significantly. In that 
sense, Nemmaoui et al. (2018) tested basic spec
tral information features and several indices from 
S2 and Landsat 8 time series for mapping PCG in 
Almería (SS1) following a methodology very simi
lar to that used in this work. They also worked 
with statistical features. Among these indices 
extracted from S2 images, there were ten out of 
the fourteen indices that have been also tested in 
this work (i.e. NDVI, NDBI, MDRP, MDLP, MDI, 
PMLI, Vi, PGI, RPGI and GDI). More recently, Ji 
et al. (2020) proposed the PGHI and CSBI indices 
to map PCG from Landsat 8 images using a similar 
OBIA approach in China. Aguilar, Jiménez-Lao, and 
Aguilar (2021) also applied the PI index in SS1 for 
detecting PCG from a single WorldView-3 image, 
resulting in a well-ranked index based on its rela
tive importance in the classification when only the 
visible and near-infrared (VNIR) bands were used.

The accuracy values for the object-based assess
ment based on 3000 selected objects yielded impress
ive values, presenting OA values always higher than 
99% from using statistical seasonal indices computed 
for each time series. Importantly, the accuracy of the 
classification was significantly improved by these sta
tistical indices for all study sites (Figure 5). In this 
regards, Zillmann et al. (2014) had already used sea
sonal features successfully for mapping grassland, 
and Aguilar et al. (2016) and Nemmaoui et al. (2018) 
to map PCG. These works reported that seasonal sta
tistics were more robust over time than snapshot 
values derived from single images.

The classification accuracy values achieved in the 
S2 single images resulted to be very variable, being 
generally worse in summer for the three study sites 
devoted to growing vegetables (SS1, SS2 and SS4). 

Note that PCG are whitewashed in the summer sea
son due to the excessive radiation. Moreover, some 
indices, such as PGI proposed by Yang et al. (2017), 
are very sensitive to the vegetation beneath plastic 
cover and, when PCG are often empty in summer, 
they are more ineffective. It is important to note that 
greenhouses in Bari are usually covered with plastic 
sheets mainly in spring and summer. Because of that, 
the spectral indices for mapping PCG worked better in 
this period. Plastic film covers are used in viticulture to 
anticipate the ripening period of early and very early 
grape varieties (early-covering) or to delay the ripen
ing period (late-covering) on medium-late or late vari
eties. In the first case, both vineyard top and laterals 
are protected with plastic films from the end of winter 
until the harvest. In the late-covering, the covering 
period coincides with the veraison phase (before the 
rains of late summer) and, in this case, the plastic film 
is applied only on the top (Novello and de Palma 
2008). Furthermore, some vineyards are only covered 
with hail nets to protect them from the weather 
(Tarantino and Figorito 2012). In that sense, the vari
ety of plastic materials used (mainly nets and plastic 
sheets) as well as the heterogeneity of periods in 
which vineyards are covered throughout the year 
can explain the high variability and inconsistency of 
the classification accuracy values and the rank of 
relative importance for the indices tested in SS3. It is 
important to point out that the DT models computed 
from S2 single images only presented two or three 
terminal nodes in SS1, SS2 and SS4, but this number 
increased to 7 for SS3 in some winter months.

Leaving aside SS3, PGHI can be qualified the best 
spectral index for mapping PCG when using S2 single 
images. In fact, that index had the maximum relative 
importance for all the single images and study sites 
(Table 3). In the threshold model built by Ji et al. (2020), 
the split values for PGHI were ranging from 0.43 to 0.68 
in four cases (two different regions and two years). In 
the DT models computed in this work for S2 single 
images, the first split presented mean values of 1.12, 
0.52 and 0.71 for SS1, SS2 and SS4, respectively. 
Definitely, the cutoff value of this index depended on 
the study area where it was applied, so it should be 
calculated in a supervised way for each case.

Also in Table 3, and looking at the vegetation cover 
of different study sites in Figure 1, it is easy to under
stand why NDVI index resulted to be most important 

GISCIENCE & REMOTE SENSING 835



for SS3 and SS4 which included most green areas, 
while least important for SS1 and SS2 with least vege
tation. Regarding CSBI index, proposed to discrimi
nate the color steel buildings, its importance was 
the highest working on SS3, which presented the 
highest proportion of urban areas.

Regarding the importance of statistical indices, SD 
(PGI) achieved the best global results. Nemmaoui 
et al. (2018) reported SD (PGI) as the most significant 
statistical seasonal index (first split in the DT model) 
for time series from S2 and Landsat 8. In this work, and 
working with S2 single images, PGI was not among 
the top six indices (Figure 4), although SD (PGI) 
showed a very good performance when the entire 
time series and statistical indices were considered. It 
is likely due to its high range of variability over time to 
discriminate between GH and Non-GH classes 
(Nemmaoui et al. 2018). Finally, SD (PGI) appeared 

only in the DT model for Bari (Figure 6(c)) showing 
a threshold value of 2.115. Nemmaoui et al. (2018) 
reported different thresholds for S2 (2.0) and for 
Landsat 8 (0.8). Statistical indices based on PGHI 
were located in the first split of SS1 (MEAN (PGHI)), 
and SS2 and SS4 (MAX (PGHI)), although none of 
these thresholds provided robust results (Figure 6).

When performing the OBIA classification using the 
DT models shown in Figure 6, the accuracy assess
ments based on pixels (Figure 7, Figure 8, Figure 9, 
Figure 10 and Table 5) were quite worse than those 
based on objects (Figure 5). In fact, the misclassifica
tion problems due to errors in the segmentation step 
were avoided in the object-based accuracy assess
ment, where 3000 meaningful objects were selected 
as ground truth. In that sense, the OA mean values 
using the pixel-based accuracy assessment of 94.09%, 
92.27%, 92.77% and 92.17% computed for SS1, SS2, 

Figure 8. Pixel-based accuracy assessment for the DT models derived from S2 time series over the manually digitized Zones for SS2 
(Agadir).
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SS3 and SS4, respectively, turns out to be more realis
tic accuracy results than those calculated using pre
viously selected objects as reference. Following 
a similar methodology, OA values in SS1 of 93.97% 
and 92.65% were achieved by Nemmaoui et al. (2018) 
using S2 and Landsat 8 time series, respectively. 
Moreover, Aguilar et al. (2016) achieved OA of 92.3% 
(2014) and 92.42% (2015) for two annual time series, 
of pansharpened Landsat 8 images, also in SS1. In 
other studies, very changeable values of OA were 
reported depending on the methodology followed. 
For instance, OA values of 89.6% and 92.6% were 
reported by Feng et al. (2021) mapping PCG and 
mulching films from VHR remote sensing imagery 
based on a dilated and non-local convolutional neural 
network in China and Saudi Arabia. Sun et al. (2021) 

reported an OA of 91.38% using two-temporal S2 
images and 1D-CNN deep learning approach in 
China for mapping PCG. Ji et al. (2020) reached an 
impressive OA values of 98.49% and 99.93% working 
on Landsat 8 images and using an OBIA approach and 
a threshold model for detecting PCG. In this last work, 
18,000 points were randomly created for accuracy 
assessment.

Looking at Figure 7, Figure 8, Figure 9 and 
Figure 10, a reduced number of objects were 
misclassified showing orange or dark green colors 
in the classification maps of the different study 
sites. For instance, in Figure 8 and highlighted by 
blue ellipses, it can be seen an area without PCG 
over the Deimos-2 orthoimage, although in the 
ground truth this group of agricultural parcels 

Figure 9. Pixel-based accuracy assessment for the DT models derived from S2 time series over the manually digitized Zones for SS3 
(Bari).
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appeared as GH. Really, new PCG were covered in 
plastic only in the two last S2 images of the time 
series in Agadir. Therefore, statistical seasonal fea
tures computed for each index and object were 
not very robust.

However, there were many pixels badly classi
fied due to some errors made in the segmentation 
stage. We can also see that another important 
source of error in dark green was located at narrow 
streets between greenhouses, where Non-GH 
objects were classified as GH due to the presence 
of mixed pixels (Wu et al. 2016). In this context, Ji 

et al. (2020) included two shape indices in their 
threshold model to reject irregular and elongated 
objects as PCG.

One of the main problems for mapping PCG is 
usually related to distinguish PCG from bright white 
buildings. For that, Ji et al. (2020) proposed PGHI. This 
index is based on the low reflectance values of SWIR2 
band relative to Blue band in PCG, while in white 
buildings the values of SWIR2 are higher than the 
Blue ones. In addition, the variation of NDVI due to 
the crops that are growing underneath the plastic 
films over time is other useful tool to discriminate 

Figure 10. Pixel-based accuracy assessment for the DT models derived from S2 time series over the manually digitized Zones for SS4 
(Antalya).
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PCG and buildings. In this regard, SD (NDVI) was one 
of the seasonal indices that was presented in the DT 
for the SS1 in Figure 6.

7. Conclusions

In this study, a fair comparison between 14 spec
tral indices was carried out in four PCG study sites 
around the world, and over an entire year. The 
OBIA approach was based on the combined use 
of VHR satellite data (Deimos-2 pansharpened 
images) to address the segmentation process and 
S2 time series to compute the tested spectral 
indices.

Deimos-2 pansharpened images were used to get 
the optimal segmentation for individual PCG by using 
MRS algorithm and the modified ED2 metric. The 
attained segmentations had a very good visual quality 
with respect to PCG.

Using the previously attained objects, DT models 
were used to determine the best object-based indices 
for PCG mapping in Almería, Agadir, Bari and Antalya, 
working on both S2 single images (testing single 
spectral indices over time) and S2 time series (using 
statistical seasonal indices). The test with S2 single 
images provided information about the variation of 
the importance of the 14 indices tested and their 
accuracy over time in each study site. Furthermore, 
the statistical indices for each S2 time series achieved 
the best OA values of 94.09%, 92.27%, 92.77% and 
92.17% for Almería, Agadir, Bari and Antalya, 
respectively.

PGHI stood out among all the indices tested in the 
study areas dedicated to growing vegetables (i.e. 
Almería, Agadir and Antalya), being the first split of 
all the individual DT models computed for each S2 
single image. It is important to note that the two 
indices related to classify marine plastic debris (PI 
and FDI) did not give good results working on PCG. 
Regarding the statistical indices, MAX (PGHI), MEAN 
(PGHI) and SD (PGI) were the most discriminating 
indices.

To the best knowledge of the authors, this is the first 
work that deals with the classification of PCG from S2 
time series in several countries. Although each study site 
presented unique characteristics, many of them pre
sented some similarities when they were put through 

these tests. In this way, Bari, with a monoculture in 
vineyard, presented the worst and the most irregular 
results. On the other hand, Almería, Agadir and Antalya, 
the three study sites dedicated to the cultivation of 
vegetables, achieved better and more similar results.
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