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Abstract 

This work outlines a  methodological proposal to assess Plastic Covered Greenhouses (PCG) 

land cover change from the combination of archival aerial orthoimages and Landsat data. 

Moreover, landscape spatial metrics were semi-automatically derived for applying on the 

analysis of the spatial arrangement of PCG areas. The experimental process consisted of two 

main phases: (i) Mapping PCG through a semi-automatic Object-Based Image Analysis 

(OBIA) approach relying on segmentation plus non-parametric supervised classification; (ii) 

Processing the obtained PCG classified objects to yield different landscape spatial metrics. 

The case study has focused on two high dense PCG sites located in southeastern Spain. To 

analyse PCG land cover evolution, each study site was composed of three multi-temporal 

remote sensed datasets formed by the fusion of orthoimages (O) derived from archival aerial 

photography and temporally corresponding Landsat images (L). In terms of PCG mapping 

performance, the best results were obtained when using O + L datasets as complementary 

data to be used in a data fusion process. In addition, a new feature called "Greenhouse 

Detection Index" has been successfully developed and tested, yielding excellent results at the 

mapping phase. Finally, the semi-automatically extracted PCG land cover metrics, though 

depicting some variability, have reasonably reproduced the behaviour and temporal trend of 

the manually obtained ones (manual digitalization). These results can be translated to an 

exponential reduction of time and cost for analysing long-term PCG land cover change. 
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Nomenclature/Abbreviations 
AREA_MN 

 

Mean Patch Area [m2] 

BRI Browning Reflectance Index 

BSI Bare Soil Index 

ED2 Euclidean Distance 2 

ENN_MN Mean Euclidian Nearest Neighbour Distance [m] 

ETM+ Enhanced Thematic Mapper Plus 

Fβ Accuracy Measure [%] 

FRAC_AM Area Weighted Mean Patch Fractal Dimension 

GDI Greenhouse Detection Index 

GSD Ground Sample Distance 

GT Ground Truth 

KIA Kappa Index of Agreement 

L Landsat Images 

MDI Moment Distance Index 

NDVI Normalized Difference Vegetation Index 

MRS Multi-Resolution Segmentation 

NP Number of Patches [Greenhouses] 

O Orthoimages Aerial 

OA Overall Accuracy [%] 

OBIA Object-Based Image Analysis 

O+L Data Fusion (Orthoimage and Landsat data) 

PA Producer’s Accuracy [%] 

PAN Panchromatic Band 

PCG Plastic Covered Greenhouses 

PD Patch Density [nº/100 ha] 

PGI Plastic Greenhouse Index 

PMLI Plastic-Mulched Landcover Index 

RF Random Forest 

SA Study Area 

SP Scale Parameter 

TM Thematic Mapper 

UA User’s Accuracy [%] 

VHR Very High Resolution 

Vi Index Greenhouse Vegetable Land Extraction 
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1. INTRODUCTION 1 

1.1. Contextualization 2 

Greenhouses area around the world reached a value of 405,000 ha (FAO, 2013) 3 

throughout the first decade of the 21st century, mainly located in Europe (Mediterranean 4 

areas), North Africa, the Middle East and China. In the case of Spain, the surface dedicated to 5 

greenhouses has increased exponentially in the last decades from 546 ha in 1968 to 65,674 ha 6 

in 2016 (MAAMA, 2016). The largest concentration of greenhouses, mainly Plastic Covered 7 

Greenhouses (PCG), is located in the southeastern of Spain (southeastern Andalusia and 8 

Murcia). In 2016, Andalusia region presented up to 74% of the total greenhouse land cover in 9 

Spain (MAAMA, 2016). Focusing on the province of Almeria, where this study has been 10 

undertaken, the PCG area represents approximately 44% of the total area of greenhouses in 11 

Spain (CAPDR, 2016). 12 

The predominant greenhouse in Almeria is the "Parral" type (the traditional 13 

Mediterranean greenhouse), typical of warm regions and characterized by its low height, 14 

plastic cover and wooden or aluminum structure (Valera Martínez, Belmonte Ureña, Molina 15 

Aiz, & López Martínez, 2014). From the landscape point of view, PCC areas are 16 

characterized by a set of very near patches constituting a continuous and shiny mosaic that 17 

has been called “Sea of plastic”, since there is no practically space between adjacent 18 

greenhouse patches (Fig. 1). 19 

Overall, the arrival of this very intensive agricultural model to Almería led to a 20 

significant change in the patterns of land arrangement and landscape perception (Aznar-21 

Sánchez & Sánchez-Picón, 2010). In fact, the aforementioned semi-industrialized agricultural 22 

model is linked to an important anthropic impact (Parra, Aguilar, & Calatrava, 2008) due to 23 

the construction of greenhouses and auxiliary infrastructure (e.g., road network, storage 24 

buildings, electrical network, irrigation network, irrigation ponds...). These activities 25 
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contribute significantly to the modification of the environment (Arcidiacono & Porto, 2010). 26 

In this way, special care is required to carry out land planning and development tasks in these 27 

PCG areas, trying to minimize the environmental and visual impact (Rogge, Nevens, & 28 

Gulinck, 2008). To provide information on this issue, a panel of experts from the agri-food 29 

sector of the Community of Andalusia was consulted in a recent study. More than 50% of the 30 

panel members reported that, to date, there is practically no presence of the design component 31 

in the planning of agri-food facilities such as PCG areas (González-Yebra, Aguilar, & 32 

Aguilar, In press). Therefore, it seems clear that the study and monitoring of the design and 33 

planning of PCG areas is an aspect to be considered, mainly to avoid uncontrolled 34 

development leading to negative social and environmental consequences (Picuno, Tortora, & 35 

Capobianco, 2011; Tarantino & Figorito, 2012; Aguilar et al., 2014). According to Scarascia-36 

Mugnozza, Sica and Picuno (2008) and Lanorte et al. (2017), the agricultural use of plastic 37 

sheet produces a problematic cycle associated with the generation of high volumes of waste 38 

in the rural areas. An interesting research line started in Spain in 1980’s and 1990’s, trying to 39 

link engineering and landscape architecture (García, Hernández, & Ayuga, 2003; Hernández, 40 

García, & Ayuga, 2004) through the study of the visual impact of rural buildings. However, 41 

new tools and methods are required in the particular case of PCG areas to facilitate a real 42 

approach to their land planning issue. In this context, the application of remote sensing 43 

technologies and information processing tools is a growing vector in the field of agricultural 44 

engineering (Alchanatis & Cohen, 2013) and precision agriculture (Mulla, 2013). 45 

This work aims to propose, develop and evaluate a methodological procedure, constituting 46 

a valuable and efficient tool for the long-term analysis of PCG land cover change and spatial 47 

arrangement. To respond to this proposal, the following objectives are set: 48 
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1) Applying remote sensing techniques and freely access archival aerial orthoimages and 49 

satellite imagery to semi-automatically map PCG areas evolution through using an 50 

Object Based Image Analysis (OBIA). 51 

2) Automatically determining some descriptive spatial metrics, extracted from previously 52 

classified objects (greenhouses), useful for carrying out landscape spatial analysis 53 

studies.  54 

 55 

Figure 1. Left: Spatial arrangement of greenhouses in Almeria. Right: “Parral” greenhouse, the 56 
predominant greenhouse in Almería. 57 

 58 

1.2. Background 59 

1.2.1. Remote Sensing in PCG mapping 60 

The methods for greenhouses automatic extraction from remote sensing is an important 61 

challenge for the scientific-technical community, due to the intrinsic characteristics of the 62 

design of these facilities (Agüera, Aguilar, & Aguilar, 2006; Agüera, Aguilar, & Aguilar, 63 

2008; Tarantino & Figorito, 2012) and other related issues such as the spectral signature of 64 

plastic, season of the year, cleaning and conservation of the roof, greenhouse typology, etc. 65 

The first works aimed at the detection of greenhouses using satellite data were carried out 66 

by using Landsat Thematic Mapper images (e.g., Mesev, Gorte, & Longley, 2000; Zhao, Li, 67 

Li, Yue, & Warner, 2004; Picuno et al., 2011). The main problem related to using Landsat 68 

images is their low geometric resolution. With the launch of the first very high resolution 69 
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(VHR) commercial optical satellites such as IKONOS and QuickBird in 1999 and 2001, 70 

respectively, the problem related to insufficient geometric resolution was properly solved. 71 

Until a few years ago, most of the works on greenhouse detection had employed pixel-72 

based classification techniques (Agüera et al., 2006; Agüera et al., 2008; Carvajal, Agüera, 73 

Aguilar, & Aguilar, 2010; Arcidiacono & Porto, 2011; Arcidiacono, Porto, & Cascone, 74 

2012). However, during the last decade have emerged several works focused on land cover 75 

mapping from applying OBIA approaches, also comprising a wide range of sensors, features 76 

(spectral, textural, geometric, structural), classifiers and other variables of interest, showing 77 

the increasing interest about OBIA paradigm aroused among the scientific community (Ma et 78 

al., 2017). This trend can also be applied to the specific case of PCG mapping. To the best of 79 

our knowledge, the first work in which OBIA techniques were used to undertake greenhouses 80 

mapping from RGB aerial photography was published by Tarantino & Figorito (2012). After 81 

this work, other more recent studies have been contributed from using high resolution 82 

satellite images (Aguilar, Bianconi, Aguilar, & Fernández, 2014; Aguilar, Vallario, Aguilar, 83 

García Lorca, & Parente, 2015). Here it is necessary to highlight the pioneering work recently 84 

published by Aguilar, Nemmaoui, Novelli, Aguilar, & García Lorca (2016) where the 85 

combined use of high resolution image data and Landsat 8 time series was tested using an 86 

OBIA approach headed up to PCG mapping.  87 

 88 

1.2.2. Spatial metrics application 89 

In the last two decades, spatial metrics have emerged as a valuable tool to assess the 90 

territorial characteristics of ecological processes (Gustafson & Parker, 1994). They have been 91 

widely used as indicators for the study of spatial characteristics in urban landscapes 92 

(Geoghegan, Wainger, & Bockstael, 1997; Li, Yang, & Liu, 2008; Franco et al., 2005; 93 

Aguilera, Valenzuela-Montes, & Botequilha-Leitão, 2011). According to Herold, Goldstein, 94 
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& Clarke (2003), these metrics can be defined as a set of aggregate quantitative measures 95 

derived from the digital analysis of thematic maps (digital cartography). The information 96 

provided by these indicators is very valuable in relation to the evolution and changes 97 

undergone in a given landscape. This is the case of several investigations focused on 98 

combining Landsat imagery classification and landscape spatial metrics in urban 99 

environments. For example, Qu, Zhao, & Sun (2014) worked with remote sensing data and 100 

landscape metrics to explore spatio-temporal patterns of urbanization in two major cities in 101 

China, whereas Fenta et al. (2017) evaluated the dynamics and growth pattern in a city 102 

located in northern Ethiopia. Further information about the case of applying spatial metrics in 103 

the analysis of planning activities can be found in Botequilha-Leitão & Ahern (2002). 104 

The aforementioned spatial metrics can be computed from Fragstats (McGarigal & 105 

Marks, 1995), a free software available since 1995 (current version 4.2) which works on 106 

raster image data. Fragstats contains an extensive library of metrics that can be calculated at 107 

class and/or landscape level, being currently the most used application in studies related to 108 

Landscape Ecology. However, there are other tools that work with raster digital data such as 109 

"LFT v2.0" (CLEAR, 2009), although it does not provide numerical values. It is widely 110 

known that raster format can present some limitations (depending on the final application), 111 

such as a high dependence on the pixel size in the results. This can be avoided by introducing 112 

the digital input information in vector format. In this sense, there are several tools that 113 

support vector format such as Patch Analyst (Rempel, Kaukinen, & Carr, 2012), PolyFrag 114 

(Maclean & Congalton, 2013) and IndiFrag (Sapena & Ruiz, 2015). 115 

 116 

2. Study Sites 117 

The two study areas are in the province of Almería (Southern Spain), just in the core of 118 

the greatest concentration of greenhouses in the world (Figure 2). The Study Area 1 (SA1) is 119 
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located south-western Almería province (“Poniente” region). It comprises a rectangle area of 120 

about 2000 ha (4 km per 5 km) centred on the WGS84 geographic coordinates of 121 

36°45'2.06"N and 2°42'20.77"W. The Study Area 2 (SA2) presents a rectangle area of 8000 122 

ha (8 km per 10 km) centred on the WGS84 geographic coordinates of 36°53'44.04"N and 123 

2°10'26.54"W. It is located south-eastern Almería province (“Levante” region). Since the 124 

concentration of greenhouses is much higher in the “Poniente” than in the “Levante” study 125 

site, different areas were selected for SA1 and SA2 in order to manage a similar number of 126 

greenhouses in both zones during the classification phase. Regarding territorial 127 

characterization, both zones are mainly used for intensive agricultural purposes, presenting an 128 

important dynamism due to the presence of a thriving agri-food industry based on greenhouse 129 

horticulture. Moreover, both study areas include urban zones which could hinder the 130 

automatic extraction of greenhouses due to their similar spectral response.  131 

 132 

3. Dataset 133 

The dataset of this work included archival aerial orthoimages (produced by the Spanish 134 

or Andalusia Governments) and Landsat imagery taken in 1984, 1999 and 2010. Both 135 

products are freely available through the Institute of Statistics and Cartography of Andalusia 136 

region (Spain) and the U.S Landsat archive, respectively.  137 

The archival aerial orthoimages used in each study area and year were taken in 138 

September, 1984, September, 1999 and July, 2010. The orthoimages corresponding to 1985 139 

were taken in B&W (i.e., one PAN band), presenting a geometric resolution of 1 m ground 140 

sample distance (GSD). Three bands RGB orthoimages with 1 m GSD were used in 1999, 141 

while RGB orthoimages with 0.5 m GSD were taken in 2010. It is important to note that their 142 

original geometric and radiometric (8 bits) resolutions, as well as the geolocation, were kept 143 

constant throughout the work. 144 



9 
 

 145 

 146 

 147 

Figure 2. Location of the two study areas in Almería (Spain). Orthoimages taken in 2010. Coordinate 148 
system: ETRS89 UTM Zone 30N. 149 

 150 
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On the other hand, Landsat 5 Thematic Mapper (TM) multispectral images taken on 151 

October 14, 1984 (stage 1), and December 9, 2010 (stage 3), together with an image from 152 

Landsat 7 Enhanced Thematic Mapper Plus (ETM+) acquired on December 3, 1999 (stage 2), 153 

were used for the study area SA1. In the case of the study area SA2, the two used Landsat 5 154 

images were taken on October 23, 1984 (stage 1), and November 16, 2010 (stage 3), whereas 155 

one Landsat 7 image was acquired on November 26, 1999 (stage 2). All Landsat images were 156 

downloaded as Level 1 Terrain Corrected (L1T) products. The temporal capture window 157 

ranged from October to December, just when PCG are not painted white (they have been 158 

whitewashed) to protect plants from excessive radiation and to reduce the heat inside the 159 

greenhouse (Aguilar et al., 2015). Six common MS bands with 30 m GSD from Landsat 5 160 

TM and Landsat 7 ETM+ were analysed in this work: blue (B, 450–520 nm), green (G, 520–161 

600 nm), red (R, 630–690 nm), near infrared (Nir, 765–900 nm), shortwave infrared-1 162 

(Swir1, 1550–1700 nm) and shortwave infrared-2 (Swir2, 2085–2350 nm). The next 163 

processing step consisted of performing atmospheric correction by applying the ATCOR 164 

module, included in Geomatica v. 2016 (PCI Geomatics, Richmond Hill, ON, Canada), to the 165 

six Landsat multispectral images to attain ground reflectance values. It is worth noting that a 166 

proper co-registration between orthoimages and Landsat products was found. 167 

 168 

4. Methodology  169 

4.1. Object-based greenhouse mapping from remote sensing  170 

4.1.1. Segmentation 171 

The first step in the OBIA approach involves image segmentation to produce 172 

homogeneous and discrete objects. Later, these objects, rather than pixels, are used as the 173 

classification unit (Blaschke, 2010). In this work, high geometric resolution historical aerial 174 

orthoimages will be used to automatically obtain the segments corresponding to greenhouses 175 
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in each study area (SA1 and SA2) and stage (1984, 1999 and 2010). For this task, we utilized 176 

the multi-resolution segmentation (MRS) algorithm implemented into the OBIA software 177 

eCognition v. 8.8 (Trimble, Sunnyvale, California, United States), an algorithm widely 178 

known and successfully employed under the context of remote sensing OBIA applications 179 

(Blaschke, 2010). This segmentation approach is a bottom-up region-merging technique 180 

starting with one-pixel objects or seeds. In numerous iterative steps, smaller objects are 181 

merged into larger ones (Baatz & Schäpe, 2000). The outcome of the MRS algorithm is 182 

controlled by three main factors: (1) scale parameter (SP), that determines the maximum 183 

allowed heterogeneity for the resulting segments; (2) the weight of colour and shape criteria 184 

in the segmentation process (Shape); and (3) the weight of the compactness and smoothness 185 

criteria (Compactness). In this way, thousands of segmentations from applying MRS 186 

algorithm were computed by means of a semi-automatic eCognition rule set characterized by 187 

a looping process varying the SP and Shape (from 0.1 to 0.9 with a step of 0.1) MRS tuning 188 

parameters. The Compactness parameter was fixed to 0.5 according to Liu & Xia (2010), 189 

Dragut, Csillik, Eisank, & Tiede (2014) or Kavzoglu & Yildiz (2014). In the context of the 190 

MRS algorithm, the users have to decide the bands combination and their corresponding 191 

weights to be applied in the segmentation process. In our case, the three RGB available bands 192 

were used in 1999 and 2010, while the PAN band was the only one used in 1984. Moreover, 193 

all the bands had the same weight in the MRS computation.  194 

The selection of the best segmentation parameters is often a tedious trial-and-error 195 

process. To avoid this cumbersome task, a new free access command line tool named 196 

AssesSeg, developed by Novelli, Aguilar, Aguilar, Nemmaoui, & Tarantino (2017), was 197 

included in our proposal. AssesSeg implements a modified version of the Euclidean Distance 198 

2 (ED2) supervised discrepancy measure proposed by Liu et al. (2012), which has been 199 

already successfully tested to estimate the best MRS segmentation parameters from Sentinel-200 
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2, Landsat 8 and WorldView-2 imagery (Novelli, Aguilar, Nemmaoui, Aguilar, & Tarantino, 201 

2016; Novelli et al., 2017). As a supervised segmentation quality metric, the modified ED2 202 

works with a set of reference objects to evaluate segmentation goodness (Novelli et al., 203 

2017). Thus, the lowest value of ED2 indicates the best segmentation. In this way, 100 204 

polygons evenly distributed over the six orthoimages were manually digitized as reference 205 

greenhouses. Although in other works only 30 references had been used to compute ED2 206 

(e.g., Liu et al., 2012; Witharana & Civco, 2014), Novelli et al. (2017) reported the 207 

importance of increasing the number of reference greenhouses to diminish the uncertainty in 208 

assessing the segmentation quality through the ED2 modified metric.  209 

 210 

4.1.2. Features applied to OBIA classification 211 

The features used to carry out the OBIA classification were extracted from both 212 

orthoimages and Landsat scenes by using eCognition v. 8.8. In the case of the orthoimages, 213 

object-based features such as mean values, standard deviation, shape index and brightness 214 

(only in coloured orthoimages) were used (further details about these features can be found in 215 

Trimble (2010)). Note that these object features were computed using three bands (RGB) in 216 

the case of the coloured orthoimages (8 features in total), while only one band (PAN) was 217 

employed from B&W orthoimages (3 features). Regarding Landsat 5 and 7 images, several 218 

spectral and vegetation indices depicted in Table 1 were computed from the six bands used. 219 

Most of these indices have already been tested for plastic cover detection such as Index 220 

Greenhouse Vegetable Land Extraction (Vi) (Zhao et al., 2004), Plastic-Mulched Landcover 221 

Index (PMLI) (Lu, Di, & Ye, 2014), Plastic Greenhouse Index (PGI) (Yang et al., 2017) and 222 

Moment Distance Index (MDI), originally proposed by Salas & Henebry (2012) and recently 223 

applied to greenhouse classification by Aguilar et al. (2016). Furthermore, a new index called 224 

Greenhouse Detection Index (GDI) has been proposed in this work (Table 1). 225 
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For the extraction of the aforementioned object-based features, the best segmentation 226 

attained for each study area and temporal stage (six cases) from using AssesSeg and the 227 

orthoimages was transferred to the correspondent Landsat image through the chessboard 228 

segmentation algorithm included in eCognition. In other words, object-based techniques were 229 

applied on Landsat 30 m GSD imagery but working on the orthoimage-based segmentation 230 

(from 0.5 m to 1 m GSD). It is important to highlight that the original 30 m GSD of the 231 

Landsat 5 and 7 images was increased to 1.875 m GSD by halving four times the original 232 

pixel size. This method to combine the segmentation produced by very high-resolution 233 

images with features extracted from medium resolution images using an OBIA approach has 234 

been already reported by Aguilar et al. (2015). 235 

 236 
Table 1. Landsat indices tested in this work. 237 

 238 

Abbrev. Tested Indices Formulation Reference 

    

NDVI 

Normalized 

Difference 

Vegetation Index 

 
𝑁𝑖𝑟 − 𝑅

𝑁𝑖𝑟 + 𝑅
 

(Rouse, Haas, Schell, & 

Deering, 1973) 

    

BSI Bare Soil Index 
(𝑆𝑤𝑖𝑟1 + 𝑅) − (𝑁𝑖𝑟 + 𝐵)

(𝑆𝑤𝑖𝑟1 + 𝑅) + (𝑁𝑖𝑟 + 𝐵) 
 

(Roy, Sharma, & Jain, 

1996) 

    

BRI 

Browning 

Reflectance 

Index 

(
1
𝐺

) − (
1
𝑅

)

𝑁𝑖𝑟
 

 

(Merzlyak, Gitelson, 

Chivkunova, Solovchenko, 

& Pogosyan, 2003) 

    

Vi 

Index 

Greenhouse 

Vegetable Land 

Extraction  

(
𝑆𝑤𝑖𝑟1– 𝑁𝑖𝑟

𝑆𝑤𝑖𝑟1 + 𝑁𝑖𝑟 
) × (

𝑁𝑖𝑟 – 𝑅

𝑁𝑖𝑟 + 𝑅
) (Zhao et al., 2004) 

    

MDI 
Moment 

Distance Index 

 

𝑀𝐷𝑅𝑃 − 𝑀𝐷𝐿𝑃 ; For: 
 

(Salas & Henebry, 2012) 

  
𝑀𝐷𝑅𝑃 = ∑ √(𝜌𝑖

2 + (𝜆𝑅𝑃 − 𝑖)2)

𝜆𝐿𝑃

𝑖=𝜆𝑅𝑃

 

 

 

  𝑀𝐷𝐿𝑃 = ∑ √(𝜌𝑖
2 + (𝑖 − 𝜆𝐿𝑃)2)

𝜆𝑅𝑃

𝑖=𝜆𝐿𝑃

  

    

PMLI 
Plastic-Mulched 

Landcover Index 

𝑆𝑤𝑖𝑟1 − 𝑅

𝑆𝑤𝑖𝑟1 + 𝑅
 (Lu et al., 2014) 
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PGI 

Plastic 

Greenhouse 

Index 

100 × (
𝐵 × (𝑁𝑖𝑟 − 𝑅)

1 − (
𝐵 + 𝐺 + 𝑁𝑖𝑟

3
)

) (Yang et al., 2017) 

    

GDI 
Greenhouse 

Detection Index 
(

𝑀𝐷𝐼

3
) − ( 

𝐵 − (
𝑆𝑤𝑖𝑟1 + 𝑆𝑤𝑖𝑟2

2
)

𝐵 + (
𝑆𝑤𝑖𝑟1 + 𝑆𝑤𝑖𝑟2

2
)

) 
This study. University of 

Almería (UAL) 

    

 239 

4.1.3. Random Forest classifier and classification accuracy assessment 240 

Random Forest (RF) was selected to undertake the binary classification (Greenhouse and 241 

Others) of all the objects previously segmented for each study area and stage. RF is an 242 

ensemble, supervised and non-parametric classifier in which a majority vote over several 243 

bootstrapped decision trees is carried out. RF has performed good classification accuracies in 244 

several remote sensing studies (Breiman, 2001; Rodriguez-Galiano, Ghimire, Rogan, Chica-245 

Olmo, & Rigol-Sanchez, 2012; Smith, 2010) and agricultural engineering applications (Gao 246 

et al., 2018; Khanchi, Birrell, & Mitchell, 2018), proving to be relatively robust to training 247 

size reduction and noise. Furthermore, RF can estimate the importance of features for the 248 

general classification of the land-cover categories and for the classification of each category 249 

(Rodriguez-Galiano et al., 2012). The reader can find further information on the 250 

mathematical formulation and the tuning parameters of RF classifier in Breiman (2001) and 251 

Dietterich (2000).  252 

Six training sets, each one composed of 300 segments, were selected from the six best 253 

estimated segmentations (section 4.1.1) over each study area and temporal dataset. For each 254 

training set, one half of the objects were related to the “Greenhouse” class and the other half 255 

to the class labelled as “Other”. They were manually selected and considered as “pseudo-256 

invariant” objects with similar geometry and same class for all the configurations tested. In a 257 

similar classification approach, Novelli et al. (2016) reported good results by using from 90 258 

to 120 training objects. Approximately 2/3 of the available data were used to train the 259 
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classifier and the remaining ones to estimate classifier accuracy. Then the selected RF 260 

classification was applied to the corresponding whole study area. 261 

Three classification strategies were considered in this work: (i) using only the object-262 

features extracted from the aerial orthoimage (O), (ii) using only the Landsat derived features 263 

(L), and, (iii) using all the available features from orthoimage and Landsat (O+L).  264 

With regards to the accuracy assessment, six ground truths (GTs), consisting of shp 265 

format vector files, were manually digitized onto each of the orthoimages used in this work 266 

(Figures 4 and 5). These GTs were finally exported as raster files with 1 m pixel size. At this 267 

point, the classification results were compared with the corresponding GT by means of a 268 

pixel-based accuracy assessment to perform a real classification accuracy assessment. 269 

Confusion matrices were computed to provide a more reliable and complete accuracy 270 

indicator over the whole study areas (Aguilar et al., 2016). Note that if the accuracy 271 

assessment had been based on objects more than pixels, the error associated to the 272 

segmentation stage would not have been considered. The accuracy measures finally 273 

computed from the pixel-based confusion matrices were user’s accuracy (UA), producer’s 274 

accuracy (PA), overall accuracy (OA) and kappa coefficient (KIA) (Congalton, 1991). 275 

Finally, the Fβ measure (Aksoy, Akcay, & Wassenaar, 2010; Longbotham et al, 2012), which 276 

provides a way of combining UA and PA into a single measure, was also computed according 277 

to the Equation (1), where the parameter β determines the weight given to the user’s and 278 

producer’s accuracies. The value used in this study (β = 1) weighs UA equal to PA. 279 

 280 

𝐹𝛽 =
(𝛽2+ 1)×𝑃𝐴×𝑈𝐴

𝛽2×𝑃𝐴×𝑈𝐴
           (1) 281 

  282 

4.2. Greenhouse landscape spatial metrics 283 

The last stage of the proposed workflow consisted of a practical application headed up to 284 

analyse the PCG landscape fragmentation and spatial distribution. IndiFrag (Sapena & Ruiz, 285 
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2015) was the software tool used to compute some metrics related to landscape fragmentation 286 

from each classification data in vector format (Shapefile). Unlike other raster-based software 287 

tools, the vector data managed by IndiFrag allows working with topological relationships 288 

without losing the meaning of object or the relationship between contiguous objects of the 289 

same class. For the evaluation of the different inputs (vector files) provided by both OBIA 290 

classification strategies (i.e., O, L and O+L) and GTs, a set of metrics widely used in 291 

multitemporal landscape analysis have been selected. To facilitate later comparative analyses, 292 

the SA2 study area has been reduced to dimensions similar to SA1 within the context of this 293 

last stage, finally comprising a rectangle of 4 km by 5 km that can be observed in Figure 2 as 294 

"SA2 -2"(blue rectangle).  295 

 296 
Table 2. Selected set of metrics for the evaluation of the input products. Ai = area of object i (m2); n = 297 

total number of objects in the class; At = total area formed by all classes (m2); Pi = perimeter of the 298 
object i (m); Hij = distance from object i to nearest object j (from contour to contour) of the same class 299 

(m). 300 
 301 

Abbrev. Tested Metric Formulation Reference 

    

AREA_MN 
Mean Patch Area 

(m2) 

∑ 𝐴𝑖
𝑛
𝑖=1

𝑛
 

Frenkel & Ashkenazi, 

2008; Irwin & Bockstael, 

2007; McGarigal, 

Cushman, & Ene, 2012 

    

PD 
Patch Density 

(nº/100 ha) 

𝑛

𝐴𝑡
× 10000 × 100 

Herold, Scepan, & Clarke, 

2002; Irwin & Bockstael, 

2007; McGarigal et al., 

2012; Gong, Yu, Joesting, 

& Chen, 2013 

    

FRAC_AM 

Area Weighted 

Mean Patch Fractal 

Dimension 

(dimensionless) 

∑ [(
2 × ln(0,25 × 𝑃𝑖)

ln(𝐴𝑖)
) × (

𝐴𝑖

∑ 𝐴𝑖
𝑛
𝑖=1

)]

𝑛

𝑖=1

 

 

Herold et al., 2002; 

McGarigal et al., 2012; 

Gong et al., 2013 

    

ENN_MN 

Mean Euclidian 

nearest neighbor 

distance (m) 

∑ (𝐻𝑖𝑗)𝑛
𝑖=1

𝑛
 

McGarigal et al., 2012; 

Gong et al., 2013 

    
 302 

Since this work is focused on the spatial analysis of PCG landscape, the selected spatial 303 

metrics presented in Table 2 were calculated at class level (greenhouse class). The first step 304 

consisted of computing the Number of Patches "NP" or extracted greenhouses, a simple but 305 
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essential measure for the purpose of this study because NP is needed to compute the rest of 306 

the metrics presented in Table 2. Note that the metrics listed in Table 2 are also provided by 307 

Fragstats, a raster-based software tool widely known and used in both scientific and technical 308 

publications in this field. In fact, the same Fragstats nomenclature has been followed in order 309 

to facilitate the reader's access to information, although the units and formulation are referred 310 

to those programmed in IndiFrag tool. 311 

Some of the selected metrics have been already used in urban areas (Aguilera et al., 312 

2011) to study processes of aggregation/fragmentation, elongation and dispersion. These 313 

metrics have been computed for the two study areas (SA1 and SA2), three years (1984, 1999 314 

and 2010), and four methods tested in this work (GT, O, L and O+L), resulting in 24 study 315 

cases. Furthermore, the relative errors attained from the comparison of the metrics extracted 316 

from the GTs and their corresponding semi-automatic OBIA classification were taken as a 317 

direct estimate of the goodness of the remote sensing approach tested in this work.  318 

 319 

5. Results and discussion  320 

5.1. Segmentation stage 321 

Table 3 presents the characteristics of the optimal segmentations attained from using 322 

MRS and AssesSeg over the six historical aerial orthoimages and considering that 323 

segmentation was focused on greenhouses. Although the minimum value of ED2 metric for 324 

each study area (SA1 and SA2) was obtained from B&W aerial orthoimage taken in 1984, all 325 

the six segmentations showed a very good visual correspondence with the individual 326 

greenhouses. In this way, the visual quality of a couple of ideal segmentations for SA1 and 327 

SA2 study areas can be seen in Figure 3. 328 

It is important to highlight that the modified ED2 values computed in Table 3 were very 329 

similar to those reported in literature. For instance, Aguilar et al. (2018) reached a modified 330 
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ED2 value of 0.112 working on greenhouses by using 1.2 m GSD WorldView-3 MS 331 

orthoimages and 100 reference geometries. Slightly worse modified ED2 metric of 0.198 was 332 

achieved by Novelli et al. (2016) on the same greenhouse landscape working on 2 m GSD 333 

WorldView-2 MS orthoimage. 334 

 335 
Table 3. Main parameters corresponding to optimal segmentation estimated from AssesSeg. 336 

 337 

Area / Year Minimum ED2 Scale Shape Compactness Segmented Objects 

      SA1 / 1984 0.053 136 0.5 0.5 3143 

      SA2 / 1984 0.112 144 0.5 0.5 12621 

      SA1 / 1999 0.138 104 0.5 0.5 3125 

      SA2 / 1999 0.167 122 0.3 0.5 12059 

      SA1 / 2010 0.093 266 0.4 0.5 3060 

      SA2 / 2010 0.160 216 0.2 0.5 15436 

 338 

 339 
 340 

Figure 3. Visual quality of the segmentation results: (a) SA1, segmentation from B & W orthoimage 341 
taken in 1984, and (b) SA2, segmentation from coloured orthoimage taken in 2010. 342 

 343 

The Scale parameter turned out to be very variable since it highly depends on the number 344 

of bands considered in MRS as well as the GSD of the input orthoimage. Regarding the 345 
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Shape parameter, it ranged from 0.5 to 0.2, which is consistent with the results reported by 346 

Aguilar et al. (2018). Finally, the ideal segmentations had a similar number of objects per 347 

area. At this point, it is important to remember that the SA1 study area was four times smaller 348 

than SA2. 349 

 350 

5.2. OBIA classification stage 351 

 352 

A summary of the results regarding the accuracy assessment is presented in Table 4. The 353 

best accuracy assessment results were achieved when the data fusion strategy O+L, involving 354 

both orthoimage and Landsat object features, was applied. In this case the values of OA were 355 

ranging from 92.05% (SA1 in 1999) to 98.58% (SA2 in 1984). Those results can be qualified 356 

as very good since the OA was always higher than 85%, which has been established as the 357 

minimum acceptable value for the classification results (Congalton & Green, 2008). 358 

Moreover, OA values of around 93% were reported by Aguilar et al. (2016) working on 359 

WorldView-2/3 and Landsat 8 optical images following a similar methodology. 90.25% OA 360 

was reported by Tarantino & Figorito (2012) working on digital true colour aerial data 361 

characterized by a GSD of 0.2 m, also following an OBIA approach. Celik & Koc-San (2018) 362 

achieved better OA (96.15%) by using RGB stereo aerial images with 0.3 m GSD, in this 363 

case also including a Digital Surface Model layer as complementary information to carry out 364 

the final classification. 365 

Regarding the KIA values, the worst classification following the O+L strategy was 366 

yielded for SA2 in 1984 (KIA=0.79), precisely the dataset presenting the best OA. It is 367 

important to note that the percentage of area corresponding to the class “Others” resulted to 368 

be much higher in SA2 than in SA1. In this regards, bearing in mind that our target is focused 369 

on greenhouse mapping, the Fβ measure for the class “Greenhouse” turned out to be the most 370 

valuable classification accuracy statistic. The Fβ measures were ranging from 79.27% to 371 
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94.51%, values that do not differ from those achieved by Aguilar et al. (2014), who worked 372 

on mapping greenhouses from very high resolution satellite stereo pairs. The Fβ statistic 373 

reached the worst values for both study areas in 1984. Note that in 1984 the aerial orthoimage 374 

only provided the PAN band with 1 m GSD. In fact, the visual discrimination between some 375 

greenhouses and other agricultural plots on these B&W orthoimages turned out to be very 376 

difficult, so likely incurring in some errors when accomplishing the manual digitizing for 377 

obtaining the GTs. The accuracy assessment based on the pixel-based confusion matrices 378 

showed that the most important contribution of adding Landsat object-based features to the 379 

orthoimage ones was just achieved in 1984. This positive contribution was decreasing when 380 

better orthoimages in terms of spectral and geometric quality were used (1999 and especially 381 

2010). It is important to underline that the aerial orthoimage and Landsat scenes for each 382 

stage and study area were acquired at different dates (in some cases differing in several 383 

months), and the GTs were manually extracted from the orthoimages, which indicates that the 384 

Landsat classification might contain little mistakes. 385 

 386 
Table 4. Pixel-based classification accuracy assessment for the class “Greenhouse” expressed as 387 

Overall Accuracy (OA), Kappa Index of Agreement (KIA) and Fβ measure. 388 
  389 

 Orthoimage Landsat Ortho+Landsat 

Area / Year OA (%) KIA Fβ (%) OA (%) KIA Fβ (%) OA (%) KIA Fβ (%) 

          SA1 / 1984 90.28 0.73 79.66 91.67 0.79 84.91 94.05 0.85 88.61 

          SA2 / 1984 97.33 0.58 59.33 97.36 0.68 69.31 98.58 0.79 79.27 

          SA1 / 1999 89.70 0.79 91.37 89.67 0.79 91.26 92.05 0.83 93.39 

          SA2 / 1999 93.96 0.78 81.24 92.21 0.77 81.45 96.31 0.87 89.44 

          SA1 / 2010 93.46 0.86 94.55 91.15 0.81 92.74 93.38 0.86 94.51 

          SA2 / 2010 94.07 0.84 87.67 93.42 0.83 87.84 95.83 0.89 91.41 

           390 

Figures 4 and 5 show the manually digitized GTs and the OBIA classification results 391 

attained by using the best strategy (O+L) for SA1 and SA2, respectively. These figures depict 392 

the evolution over time of the PCG landscape in both study areas, allowing a visual quality 393 
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assessment. The OBIA workflow proposed in this work yielded very good visual quality 394 

compared to the GTs in all the cases studied.  395 

 396 

 397 
 398 

Figure 4. Visual classification quality for SA1 study area. First row, with greenhouses in blue color, 399 
shows the manually digitized ground truths for each stage (1) 1984, (2) 1999 and (3) 2010. Second 400 

row, with greenhouses in green color, depicts the OBIA classification from O+L strategy. 401 
 402 

The relative importance for the classification of the main object-based features extracted 403 

from O+L strategy, according to RF classification and the Gini index, is depicted in Table 5. 404 

To the best knowledge of the authors, this is the first work comparing all the indices available 405 

in literature to detect PCG land cover by using remote sensing techniques. 406 

 407 
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 408 
 409 

Figure 5. Visual classification quality for SA2 study area. First row, with greenhouses in blue color, 410 
shows the manually digitized ground truths for each stage (1) 1984, (2) 1999 and (3) 2010. Second 411 
row, with greenhouses in green  color, shows the OBIA classification from O+L strategy . 412 

 413 

The new index proposed in this work (GDI) was the feature ranked with the best score 414 

(94.2%) from considering all cases (relative mean importance of the three stages, Table 5). 415 

GDI was partially overcome by Brightness in 1999 and PMLI in 2010, anyway showing a 416 

relative importance higher than 92% in all cases. The inclusion of MDI index in the 417 

formulation of GDI can partially explain these remarkable results, since MDI has been 418 

successfully tested for PCG mapping working on Landsat 8 pansharpened images (Aguilar et 419 

al., 2016).  420 

 421 
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Table 5. Relative importance of the main object-based features used in O+L strategy provided by 422 
Random Forest procedure. For each studied stage (1984, 1999 and 2010), the mean values between 423 

the two study areas (SA1 and SA2) are depicted. The Brightness values of the images in B&W (1984) 424 
correspond exactly with the mean of its PAN band. All results are expressed in percentage. 425 

 426 

Object-based Features Image Source 1984 1999 2010 
 Relative Mean 

Importance 

GDI Landsat 95.5 95 92 94.2 

Brightness Orthoimage 79 97.5 92.5 89.7 

PMLI Landsat 80.5 80 94 84.8 

MDI Landsat 77.5 76 80 77.8 

Vi Landsat 74.5 77 77 76.2 

Shape Index Orthoimage 90 43 72.5 68.5 

BSI Landsat 67 61.5 65 64.5 

PGI Landsat 38 63 56.5 52.5 

BRI Landsat 54.5 37 47.5 46.3 

NDVI Landsat 32 33 38 34.3 

 427 

Regarding the standard deviation feature derived from the aerial orthoimages, which may 428 

be considered as a first order texture feature, it presented an unstable behaviour, overall 429 

playing a minor role.  430 

Finally, the shape index, a feature based on object geometry, took the highest importance 431 

in 1984, coinciding with the temporal dataset in which the spectral information, based on 432 

B&W images, would be qualified as poorer. 433 

 434 

5.3. PCG landscape spatial metrics 435 

Table 6 shows the results related to the selected spatial metrics provided by IndiFrag. 436 

Overall, the data fusion approach (O+L) extracted metrics presented the highest degree of 437 

similarity with the metrics computed from the GT. In the same way, the worst results were 438 

generally achieved from applying the L strategy. In the case of the data fusion approach 439 

(O+L) applied on the SA1 study area, relative errors below 10% were attained for all metrics 440 

except for EMM_MN. This trend was also maintained in the case of the SA2 study area, but 441 

here presenting more variable relative errors ranging from 3% to 22%. In general, a 442 

correlation was appreciated between the classification accuracy scores in the semi-443 
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automatically obtained vector maps (OBIA approach) and the goodness of their 444 

corresponding spatial metrics. This finding was also pointed out by Mas, Gao, & Navarrete 445 

Pacheco (2010) working on Landsat imagery classification. 446 

 447 
Table 6. Different metrics to characterize PCG landscape fragmentation computed from different 448 

input products: Ground Truth (GT), aerial orthoimage classification strategy (O), Landsat 449 
classification strategy (L) and orthoimage plus Landsat data fusion classification strategy (O+L). 450 

Relative error, expressed in percentage with respect to the GT values, is presented in brackets, 451 
indicating overestimation/underestimation of the GT values by means of the positive/negative signs. 452 

 453 

Input Area Year 
NP 

(Greenhouses) 

AREA_MN 

(m2) 

PD 

(nº/100 ha) 

FRAC_AM 

(dimensionless) 

ENN_MN 

(m) 

        

GT 

SA1 

1984 919 5835 46.0 1.026 3.3 

      1999 1461 8173 73.1 1.022 1.6 

      2010 1540 7942 77.0 1.022 1.3 

       

SA2 

1984 173 4860 8.7 1.026 41.1 

      1999 730 5352 36.5 1.027 6.4 

      2010 880 5891 44.0 1.025 4.5 

                

O 

SA1 

1984 744 (-19) 5582 (-4) 37.2 (-19) 1.081 (5) 11.9 (266) 

      1999 1349 (-8) 8805 (8) 67.5 (-8) 1.087 (6) 1.5 (-7) 

      2010 1596 (4) 7357 (-7) 79.8 (4) 1.088 (6) 1.6 (19) 

       

SA2 

1984 151 (-13) 3395 (-30) 7.6 (-13) 1.125 (10) 91.2 (122) 

      1999 739 (1) 4366 (-18) 37.0 (1) 1.130 (10) 10.6 (67) 

      2010 1139 (29) 4294 (-27) 57.0 (29) 1.149 (12) 6.2 (38) 

                

L 

SA1 

1984 1026 (12) 5288 (-9) 51.3 (12) 1.132 (10) 2.6 (-21) 

      1999 1557 (7) 7478 (-9) 77.9 (7) 1.102 (8) 0.6 (-62) 

      2010 1719 (12) 7021 (-12) 86.0 (12) 1.103 (8) 0.7 (-49) 

       

SA2 

1984 231 (34) 4550 (-6) 11.6 (34) 1.151 (12) 24.1 (-41) 

      1999 1071 (47) 4335 (-19) 53.6 (47) 1.174 (14) 1.4 (-77) 

      2010 1530 (74) 3730 (-37) 76.5 (74) 1.197 (17) 1.3 (-70) 

                

O+L 

SA1 

1984 1002 (9) 5368 (-8) 50.1 (9) 1.122 (9) 3.7 (14) 

      1999 1529 (5) 7896 (-3) 76.5 (5) 1.103 (8) 0.51 (-68) 

      2010 1620 (5) 7313 (-8) 81.0 (5) 1.100 (8) 0.8 (-38) 

       

SA2 

1984 167 (-3) 4317 (-11) 8.4 (-3) 1.141 (11) 32.7 (-20) 

      1999 822 (13) 4519 (-16) 41.1 (-13) 1.150 (12) 3.9 (-38) 

      2010 1053 (20) 4619 (-22) 52.7 (20) 1.147 (12) 3.3 (-26) 

         454 

Figure 6 presents the results obtained from both the manually digitized maps (GT) and 455 

those semi-automatically extracted by OBIA classification using the O+L strategy. It can be 456 

observed that, although there were some mistakes, in the main, the fragmentation indices 457 

computed through remote sensing O+L strategy and GT had a very similar trend over time 458 
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for the two study areas. To the best of our knowledge, this is the first time that these spatial 459 

metrics have been applied to PCG landscape, so there are no reference data in literature. 460 

Nonetheless, it has been demonstrated that spatial metrics or landscape indices are very 461 

sensitive to some aspects related to the remote sensing images analysis, especially geometric 462 

resolution (Wickham & Riiters 1995; Baldwin, Weaver, Schnekenburger, & Perera,2004). 463 

Although good segmentations were obtained, they still presented some errors in 464 

greenhouse delineation (e.g., in many cases a greenhouse is segmented into several objects). 465 

These segmentation mistakes could explain some discrepancies found in the number of 466 

patches (NP), the density of objects (PD) and the average size (AREA_MN). In addition, the 467 

segmentation process produced zigzag edges on the polygon border as a result of the 468 

adaptation to the input raster orthoimages (Figure 3). This fact artificially increased the 469 

FRAC_AM metric, which provides information on the objects complexity, although the 470 

general trend of the FRAC_AM values were maintained over time. In the case of the 471 

EMM_MN metric, that gives a measure of the separation between adjacent objects belonging 472 

to the same class, it showed an important sensitivity to the misclassification of some objects 473 

as greenhouses. These classification errors, already reported by Aguilar et al. (2016), are 474 

usually found in the streets between two adjacent greenhouses (an example can be seen in 475 

Figure 1- Left). 476 

The uncertainty associated with the analysis of satellite imagery data is extremely 477 

difficult to avoid. In this regards, Shao, Liu, & Zhao (2001) reported a great variation in the 478 

landscape metrics calculated from 23 maps with similar classification accuracy. However, it 479 

should be taken into account that the semi-automatic production of digital cartography from 480 

remote sensing techniques exponentially reduces exponentially the time and cost of 481 

production. 482 
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From the analysis of the metrics depicted in Table 6 and Figure 5, we can observe growth 483 

patterns similar to those provided in Aguilera et al. (2011) for urban areas. For example, NP, 484 

AREA_MN and PD metrics allowed characterizing the SA1 study area as an intensive 485 

agricultural zone with higher greenhouse density than the SA2 study site. In the same way, 486 

the FRAC_AM metric can be considered a compaction measure of the greenhouse shape, 487 

resulting very similar for both study areas. Finally, the dispersion of greenhouses, measured 488 

through ENN_MN metric, was much higher in SA2 than in SA1. In this way, spatial metrics 489 

were found to be very useful for the evaluation of PCG landscape analysis and planning. 490 

 491 

 492 

Figure 6. Comparison of the multitemporal evolution of some PCG landscape metrics obtained from 493 
manual digitizing (Ground Truth) and semiautomatic OBIA approach (Orthoimage+Landsat) for the 494 

two study areas. 495 
 496 

The computed spatial metrics allow monitoring landscape changes and detecting growth 497 

patterns, what is extremely relevant for planners and decision makers. For example, in Figure 498 

6 can be seen that the temporal evolution of the Levante region (SA2) shows a greater 499 

number of greenhouses (PD) with a higher average size (AREA_MN), together with a steady 500 
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increment of PCG area over time, the latter revealed by the decrease in the average distance 501 

between neighbouring greenhouses (ENN_MN metric). This change in the PCG landscape is 502 

more sharpen between 1984 and 1999. According to the literature analysed, this scenario 503 

presents characteristics comparable to those typical of urbanization processes. A similar 504 

pattern occurs is detected in the western region (SA1), but this area has not undergone 505 

significant changes between 1999 and 2010 according to the low quantitative changes 506 

provided by the spatial metrics computed on the corresponding datasets.  507 

 508 

6. Conclusions and Final Remarks 509 

The findings obtained throughout this work allow concluding that the outlined semi-510 

automatic OBIA approach based on remote sensing data fusion can be recommended for a 511 

timely and cost-effective way to carry out PCG landscape evolution studies where historical 512 

data are required. In fact, in terms of PCG mapping performance, the best results were 513 

obtained from using orthoimage and Landsat imagery datasets as complementary data to be 514 

entered in an OBIA data fusion process. This recommendation could be easily extended to 515 

other fields such as urban landscape and planning analysis.  516 

Another novel contribution of this work has relied on the definition and validation of a 517 

new index for PCG mapping called Greenhouse Detection Index (GDI). GDI has 518 

demonstrated its valuable contribution to the OBIA classification process through applying 519 

Random Forest classifier, since it clearly exceeded the rest of the tested indices proposed in 520 

literature for detecting PCG land cover. Further research has to be made in order to check 521 

GDI performance on other remote sensing data sources (e.g., WorldView-3 or Sentinel-2 522 

satellite imagery).  523 

The semi-automatically extracted PCG landscape metrics, though depicting some 524 

variability, have reasonably reproduced the behaviour and temporal trend of the manually 525 
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obtained ones (manual digitizing). At this point, it is necessary to take into account the 526 

inherent limitations of this study. In fact, as a pioneering work devoted to semi-automatically 527 

extracting PCG landscape spatial metrics, we strongly recommend testing and exploring the 528 

behaviour of other different spatial metrics which could also contribute excellent results for 529 

PCG landscape analysis and planning. These results could be translated to an exponential 530 

reduction of time and cost for carrying out this kind of landscape analysis studies without 531 

losing their required accuracy. 532 

In summary, the approach devised and tested in this work can provide a very valuable 533 

tool for landscape designers and planners, thus contributing to the sustainable development of 534 

these very intensive agricultural models. 535 
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