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Abstract. In this paper, we give or improve compression-expansion re-
sults for set contractions in conical domains determined by balls or star
convex sets. In the compression case, we use Potter’s idea of proof,
while the expansion case is reduced to the compression one by means
of a change of variable. Finally, to illustrate the theory, we give an ap-
plication to the initial value problem for a system of implicit first order
differential equations.
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1. Introduction

Krasnosel’skii compression-expansion fixed point theorem is a powerful tool
to prove the existence of positive solutions to several classes of boundary
value problems and also to obtain multiple solutions (see, for example [4],
[5], [8], [11], [15], [16] and [17]).

Krasnosel’skii proved his theorem directly, using only arguments of fixed
point theory, particularly Schauder’s fixed point theorem (see [6] and [7]).
However, it is well-known that this result appears as a consequence of the
topological degree theory (see [3]). Nevertheless, for applications, it is more
convenient to use Krasnosel’skii theorem, because it offers directly the con-
ditions - of compression or expansion - that have to be verified.

Also for the theory, a direct approach without using degree arguments
could be useful when trying to extend the results from compact mappings
to more general ones. Such a possibility is shown in Chapter 10 of [10],
where some compression-expansion results are established for mappings from
a smaller family for which the topological degree has not been developed.
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The direct approach owed to Krasnosel’skii was also followed by Potter
[12], who extended the compression result from compact mappings to set
contractions. Notice that both Krasnosel’skii and Potter obtained a solution
localized in annular conical sets defined using the norm. An expansion type
result for set contractions was proved by Các and Gatica [1], but under a
more restrictive condition on the lower boundary of the annular set.

In this paper, we prove the expansive type result for set contractions
without restrictive conditions on the lower boundary, using the idea of reduc-
ing the expansive case to the compressing one, as shown in [14] for compact
operators. We shall do even more, proving the results on star convex con-
ical sets. The motivation for working with star convex sets is given in the
Introduction of [9]. It comes from the necessity to distinguish between two
solutions in case that they have the same norm.

The difficulty when working with k-set contractions (k ∈ [0, 1)) comes
from the fact that the geometric transformations which are used in the proofs
can change uncontrollably the constant k. As regards the use of star convex
sets, they introduce much more complicated geometric transformations con-
nected to their retro-activity property, which have to be put in accordance
with the constant k, as Lemma 3.1 shows.

The results are presented as follows. First, in Section 2, we give some
preliminary notions and results about α−Lipschitz mappings (set contrac-
tions, in particular) and star convex sets, and we recall Potter’s compression
result for balls.

In Section 3, we first state and prove a technical lemma improving the
corresponding one in [9], which allows us to extend the compression fixed
point theorem in star convex sets given in [9], to general set contractions.
Next, in Subsection 3.2, we improve the expansion result of Các and Gatica
by simplifying the condition on the lower boundary of the conical annular
set. We conclude this section by proving the expansion fixed point theorem
for set contractions and star convex sets.

Finally, in Section 4, as an application, we consider the initial value
problem for a system of implicit first order differential equations, which leads
to a fixed point equation with a non-compact operator. Adding a Lipschitz
condition over the derivative-dependent term, this operator becomes a set
contraction.

2. Preliminaries

We start by briefly giving some notations, definitions and preliminary results,
for details, see [9], [12].

If X is a real vector space and A a subset of X, we denote by co(A) the
convex hull of A, that is

co(A) :=

{
n∑
i=1

λixi : n ∈ N, xi ∈ A, λi ∈ [0, 1] for i = 1, · · ·, n,
n∑
i=1

λi = 1

}
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and, in case that X is a topological vector space, by co(A) the closure of
co(A).

The following concept allows us to relax the compactness hypothesis
assumed in the mentioned classical results owed to Krasnosel’skii. Some of
its principal properties can be found in [12], [9].

Let (X, d) be a metric space and A ⊂ X be a bounded set. The Kura-
towski measure of noncompactness of A is the non negative real number

α(A) := inf{ε > 0 : there exist finitely many sets of diameter at most ε

which cover A}.

The measure of noncompactness can be considered as a tool to determine how
much a particular set differs from being compact. In this way, it is possible
to define a concept close to compact mapping, known as set contraction.

Let X,Y be metric spaces and D ⊂ X. Assume that the mapping
T : D ⊂ X −→ Y is continuous. We say that T is α-Lipschitz (see [2])
if there exists a constant k ≥ 0 such that

α(T (A)) ≤ kα(A), for all bounded A ⊂ D.

When k is important to be mentioned, we say that T is a k-α-Lipschitz
mapping, or that T is an α-Lipschitz mapping with constant k. In case that
k ∈ [0, 1), we say that T is a set contraction or a k-set contraction.

Note that any continuous and compact mapping is a 0-set contraction.

Recall the following properties.

Proposition 2.1. Let (Xi, di) be metric spaces for i = 1, 2, 3, and (X, ‖ · ‖) be
a Banach space.

(i) If T1 : X1 → X2 is a k1-α-Lipschitz mapping and T2 : X2 → X3 is a
k2-α-Lipschitz mapping, then T2 ◦ T1 : X1 → X3 is a k1k2-α-Lipschitz
mapping.

(ii) If T : D ⊂ X → X is a k-α-Lipschitz mapping and λ : D → R+ is a
continuous function such that supx∈D λ(x) = l <∞, then the mapping

T̂ : D ⊂ X → X, T̂ (x) = λ (x)T (x)

is kl-α-Lipschitz.

Now, we give some definitions and results about star convex sets, which
are needed in what follows. For details, see [9].

For a fixed x0 ∈ X, we say that a set E ⊂ X is x0-star convex if

λx0 + (1− λ)x ∈ E, for all λ ∈ [0, 1] and x ∈ E.

In case that x0 = 0, E is simply called a star convex set. Clearly, if E is
x0-star convex, then x0 ∈ E.

We have the following result about the projection mapping on the
boundary of an x0-star convex set.
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Theorem 2.2. Let (X, ‖ · ‖) be a Banach space, x0 ∈ X and E ⊂ X be a
bounded closed x0-star convex set such that its boundary F does not contain
x0, and

for all x ∈ E \ {x0}, there is a unique λx > 0 with λxx+ (1− λx)x0 ∈ F.
(2.1)

Then there exists a continuous mapping ∂ : E \ {x0} → F such that

∂(x) = ∂(λx+ (1− λ)x0), for all x ∈ E \ {x0}, λ ∈ (0, 1],

∂(x) = x, for all x ∈ F.
(2.2)

Proof. As x0 ∈ E \F, there exists γ > 0 such that B := {x ∈ X : ‖x− x0‖ ≤
γ} ⊂ E \F. Let S be the boundary of B, i.e., S := {x ∈ X : ‖x− x0‖ = γ} .
We define the mapping ∂ as the composition η ◦ η0, where η0 is the radial
projection

η0 : E \ {x0} → S, η0 (x) =
γ

‖x− x0‖
(x− x0) ,

and

η : S → F, η (x) = λxx+ (1− λx)x0.

From (2.1), the mapping η is well-defined. Also, it is easy to see that condition
(2.2) is satisfied. Clearly, η0 is continuous. It remains to prove the continuity
of η. To this aim, it suffices to prove the continuity of the function

λ : S −→ R+, λ (x) = λx.

For that purpose, let {yn}n∈N be any sequence in S converging to some
y ∈ S. Since E is bounded and λ(S) ⊂ [0,+∞), we can assert that there
exists m ∈ R+ such that λ(S) ⊂ [0,m]. Then the sequence {λ(yn)}n∈N is
included in the compact interval [0,m], so any of its limit points is finite. Let
l be any limit point of {λ(yn)}n∈N. From

η(yn) = λ(yn)yn + (1− λ(yn))x0 ∈ F,

we find that

ly + (1− l)x0 ∈ F.

This, in view of (2.1), gives l = λ(y). Hence λ (yn) → λ (y) as n → +∞.
Therefore, λ is continuous as wished. �

In the following, we shall consider only star convex sets E which satisfy
the following condition.

Condition 1. E is bounded, closed, 0 /∈ F where F is the boundary of E in
X, and for every x ∈ E \ {0} there exists a unique λx > 0 with λxx ∈ F.

Let us now consider a cone C in X and its intersection with a star
convex set E. Clearly 0 ∈ C ∩ E and we can make the following remark.
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Figure 1. An example of mappings ∂ and ∂C .

Remark 2.3. If E is a star convex set satisfying Condition 1, then the re-
striction of the mapping ∂ to C ∩ (E \ {0}) can be continuously extended to
C \ {0} , as follows

∂C : C \ {0} → F, ∂C (x) =

{
∂ (x) , x ∈ (C ∩ E) \ {0} ,
∂
(
d(0,F )
‖x‖ x

)
, x ∈ C \ E.

Figure 1 illustrates the behavior of ∂C in a particular case.

Proposition 2.4 ([9]). Let E be a star convex set satisfying Condition 1. Then,
for every x ∈ (C ∩E) \ {0}, there exists a unique number βx ∈ [1,+∞) such
that βxx ∈ C ∩ F. Moreover, the mapping

β : (C ∩ E) \ {0} → [1,+∞), β (x) = βx =
d(0, ∂(x))

d(0, x)

is continuous and β(x)→ +∞ as x→ 0.

Remark 2.5. By using ∂C , the map β can be continuously extended to C\{0}
as follows: βC(x) = d(0, ∂C(x))/d(0, x), for x ∈ C\{0}.

For two star convex sets Ei, i = 1, 2, satisfying Condition 1, we let:

• Fi be the boundary of Ei, E̊i be the interior of Ei.
• ∂Ci : C \ {0} −→ Fi be the continuous mapping associated whit Ei

according to Remark 2.3.
• βi : (C ∩Ei)\{0} −→ [1,+∞) be the continuous mapping associated to
Ei as shown in Proposition 2.4, and βCi be the corresponding continuous
extension to C \ {0}.

Assume next that E1 ⊂ E2, F1 ∩F2 = ∅, and let T : C ∩
(
E2

˚\E1

)
→ C

be a continuous mapping.

We say that T is a compression of the set C ∩
(
E2 \ E̊1

)
(see Figure 2

(a)) if:
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(C1) x− T (x) /∈ C, for all x ∈ C ∩ F1,
(C2) T (x)− (1 + ε)x /∈ C, for all ε > 0 and x ∈ C ∩ F2.

We say that T : C∩
(
E2 \ E̊1

)
→ C is an expansion of the set C∩

(
E2 \ E̊1

)
(see Figure 2 (b)) if

(E1) T (x)− (1 + ε)x /∈ C, for all ε > 0 and x ∈ C ∩ F1,
(E2) x− T (x) /∈ C, for all x ∈ C ∩ F2.

(a) (b)

Figure 2. Figures (a) and (b) represent, respectively, the
boundary conditions for a compression and an expansion of

the set C ∩
(
E2\E̊1

)
, where C = {(x, y) ∈ R2 : x, y ≥ 0},

and E1, E2 are star convex sets.

We conclude this section by recalling Potter’s compression result for
balls. Given two real numbers r, R with 0 < r < R, denote

Cr,R = {x ∈ C : r ≤ ‖x‖ ≤ R} ,
Cr = {x ∈ C : ‖x‖ ≤ r} ,
Sr = {x ∈ C : ‖x‖ = r} .

Theorem 2.6 ([12]). If T : Cr,R → C is a k-set contraction and a compression
of the set Cr,R, i.e.,

x− T (x) /∈ C, for all x ∈ Sr,
T (x)− (1 + ε)x /∈ C, for all ε > 0 and x ∈ SR,

then T has at least one fixed point in Cr,R.

3. Main results

In this section, we first give an extension of the main compression result from
[9]. This extension allows k to be any number with 0 ≤ k < 1, compared to
the more restrictive assumption 0 ≤ k < d(0, F )/L, where L := sup{d(0, x) :
x ∈ F}, considered in [9]. Next, we improve the expansion type result given
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in [1]. This is done by reducing the expansion case to the compression one.
Finally, the expansion result is extended to star convex sets.

3.1. Compression fixed point theorem for set contractions and star convex
sets

In order to accomplish our first aim, we need to improve the technical Lemma
3.16 in [9].

Lemma 3.1. Assume that (X, ‖ · ‖) is a Banach space, C a cone in X and
E a set satisfying Condition 1. Let T : C ∩ F −→ C be α−Lipschitz with
constant k and consider the mapping

T̃ : C ∩ E −→ C

x 7−→ T̃ (x) :=

{
1

β(x)T (β(x)x), x 6= 0,

0, x = 0.

Then T̃ is α−Lipschitz with constant k̃ for every k̃ > k as close to k as we
wish.

Proof. We only need to adapt the part of the proof where we show the exis-
tence of k̃ as close to k as we wish such that

α
(
T̃ (A)

)
≤ k̃α(A), for every A ⊂ C ∩ E, α(A) 6= 0. (3.1)

Thus, let A ⊂ C ∩ E be such that α(A) 6= 0 and k > 0 (if this is not

true, we can consider k̂ > 0 as close to k as we wish). As k, α(A) > 0, there
exists d > 0 such that k α(A)/2 > d > 0. We fix d satisfying these conditions.

To accomplish the aim of proving that (3.1) is satisfied, we proceed as
follows.

Step 1: Cover any set A by a finite number of subsets with the property
that the restrictions of T̃ to each of them is α−Lipschitz for some suitable
constant. To this aim, we start by using the continuity of T̃ proved in [9],
that ensures the existence of δd > 0 such that

T̃ ((C ∩ E) ∩B(0, δd)) ⊂ B(0, d).

Then, we have

T̃ (A ∩B(0, δd)) ⊂ B(0, d). (3.2)

On the other hand, for each natural number n ≥ 1, take εn = δd/n and, for
all natural number m ≥ 1, define

Anm := {x ∈ A : β(x) ∈ [1 + (m− 1)εn, 1 +mεn]}.

For any natural number n ≥ 1, there exists Nn ∈ N, Nn > 1, such that, if
β(x) > 1 +Nnεn, then x ∈ A ∩B(0, δd). Therefore,

A ⊂ (A ∩B(0, δd)) ∪

(
Nn⋃
m=1

Anm

)
. (3.3)
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Step 2: Fix n ∈ N, n > 1, arbitrarily and, for each m ∈ {1, . . . , Nn}, we show

that T̃|An
m

is α−Lipschitz with constant k (1+mεn)/(1+(m−1)εn). For each
m ∈ {1, . . . , Nn}, we have 0 /∈ Anm, so

T̃|An
m

: Anm −→ C

x 7−→ T̃|An
m

(x) =
1

β(x)
T (β(x)x).

Let m ∈ {1, . . . , Nn} and define the following auxiliary mappings:

1

β|An
m

: Anm −→ C, x 7−→ 1

β|An
m

(x) :=
1

β(x)
,

Snm : Anm −→ C, x 7−→ Snm(x) := β(x)x.

Since β is continuous and its image is a subset of [1,∞), we deduce that
1/β|An

m
is a continuous function. Besides, for all x ∈ Anm, it is satisfied that

β(x) ∈ [1 + (m− 1) εn, 1 +mεn] ⇔ 1

β(x)
∈
[

1

1 +mεn
,

1

1 + (m− 1) εn

]
,

hence

sup

{
1

β(x)
: x ∈ Anm

}
≤ 1

1 + (m− 1) εn
.

As T is a k-set contraction, in view of Proposition 2.1, it remains to
prove that Snm is α−Lipschitz with constant (1 +mεn). Let B ⊂ Anm, then B
is bounded and, using the definition of Anm, we have

Snm(B) =
{
β(x)x : x ∈ B

}
⊂
{

[λ(1 + (m− 1)εn) + (1− λ)(1 +mεn)]x : λ ∈ [0, 1], x ∈ B
}

= co
({

[1 + (m− 1)εn]B
}
∪
{

[1 +mεn]B
})
.

Now, by using the properties of the measure of noncompactness, we obtain

α(Snm(B)) ≤ max
{
α
(
[1 + (m− 1)εn]B

)
, α
(
[1 +mεn]B

)}
= (1 +mεn)α(B).

Also, as β is continuous, then Snm is continuous. Therefore Snm is α−Lipschitz
with constant (1 +mεn).

As a consequence, by using the properties of α−Lipschitz mapping
in Proposition 2.1, one has that T̃|An

m
is α−Lipschitz with constant k (1 +

mεn)/(1 + (m− 1)εn).

Step 3: Taking into account the two previous steps, we can conclude that T̃
is α−Lipschitz with constant k̃ as close to k as we wish. It follows from (3.2),
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(3.3), and the properties of the measure of noncompactness, that

α
(
T̃ (A)

)
=α

(
T̃ (A ∩B(0, δd)) ∪

Nn⋃
m=1

T̃ (Anm)

)
=α

(
T̃ (A ∩B(0, δd)) ∪ T̃ (An1 ) ∪ . . . ∪ T̃ (AnNn

)
)

= max
{
α
(
T̃ (A ∩B(0, δd))

)
, α
(
T̃ (An1 )

)
, . . . , α

(
T̃ (AnNn

)
)}

≤ max
{
α (B(0, d)) , α

(
T̃ (An1 )

)
, . . . , α

(
T̃ (AnNn

)
)}

≤ max

{
2d,

1 + εn
1

kα(An1 ), . . . ,
1 +Nnεn

1 + (Nn − 1)εn
kα(AnNn

)

}
≤ max

{
2d,

1 + εn
1

kα(A), . . . ,
1 +Nnεn

1 + (Nn − 1)εn
kα(A)

}
≤ (1 + εn)kα(A),

where the last inequality holds since 2d < kα(A) and

1 +mεn
1 + (m− 1)εn

≤ 1 + εn
1

for all m ∈ {1, . . . , Nn}.

Since εn → 0 as n→∞, one has that, if n is large enough, the number
k̃ := (1 + εn)k is as close to k as we wish. �

Now, we can state the extension of the compression result from [9], for
any constant 0 ≤ k < 1.

Theorem 3.2. Let (X, ‖ ·‖) be a Banach space, C be a cone in X, and E1, E2

be star convex sets fulfilling Condition 1. Assume that T : C∩
(
E2\E̊1

)
−→ C

is a k-set contraction and a compression of the set C ∩
(
E2\E̊1

)
. Then T

has at least one fixed point in C ∩
(
E2\E̊1

)
.

Proof. The proof follows the one of the corresponding theorem in [9], using
this time the improved Lemma 3.1. �

3.2. Expansion fixed point theorem for set contractions and balls

Our second aim is to improve the expansion result given in [1]. We shall do
this by simplifying the condition on the lower boundary of the conical annular
set.

Theorem 3.3. Let (X, ‖ · ‖) be a Banach space, C be a cone in X, r,R ∈ R,
0 < r < R, and T : Cr,R −→ C be a k−set contraction verifying the following
properties:

Tx− (1 + ε)x /∈ C, for all ε > 0 and all x ∈ C, ‖x‖ = r;

x− Tx /∈ C, for all x ∈ C, ‖x‖ = R.

Then, T has a fixed point in Cr,R.
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Proof. We consider an auxiliary mapping T̃ which we show that satisfies the
hypothesis of the mentioned fixed point theorem due to Potter. Let

T̃ : Cr,R −→ C

x 7−→ T̃ (x) :=
1

θ(x)
T (θ(x)x) ,

where θ(x) = (r +R)/‖x‖ − 1, for every x ∈ Cr,R.
First of all, we have to prove that T̃ is well-defined. We need to show

that θ(x)x ∈ Cr,R for every x ∈ Cr,R. Since θ(x) > 0 and x ∈ C, we can
assert that θ(x)x ∈ C. Therefore, it remains to prove that r ≤ ‖θ(x)x‖ ≤ R.
If x ∈ Cr,R, then r ≤ ‖x‖ ≤ R, whence r ≤ r + R − ‖x‖ ≤ R, that is,
r ≤ θ(x)‖x‖ ≤ R. Due to this, we can assert that θ(x)x ∈ Cr,R and, finally,

T̃ is well-defined.

Secondly, it is easy to prove that, if ‖x‖ = r, then ‖θ(x)x‖ = R and, if
‖x‖ = R, then ‖θ(x)x‖ = r. As a consequence, T verifying (E1) implies that

T̃ verifies (C2) and T verifying (E2) implies that T̃ verifies (C1).

Thirdly, we have to prove that T̃ is a set contraction. It is clear that T̃
is continuous since T, θ are continuous and θ > 0. Therefore, it remains to
prove that, for every A ⊂ Cr,R (A is bounded), we have

α(T̃ (A)) ≤ k̃α (A) , (3.4)

for some constant 0 ≤ k̃ < 1, independent of A. For that purpose, we proceed
in a similar way to the ones in the proof of Lemma 3.1 or Lemma 3.1 in [12].
We begin by distinguishing two cases:

(a) If α(A) = 0, then A is compact. As T̃ is continuous, then T̃ (A) is compact
and, therefore,

α(T̃ (A)) ≤ α(T̃ (A)) = 0 = k̃ α(A), for any k̃ ≥ 0.

(b) If α(A) 6= 0, let us assume that k 6= 0, but, if it is not the case, we consider

0 < k̂ < 1 as close to k as we wish. As 0 < r < R, then δr,R = R
r −

r
R > 0

and, for each n ∈ N, we can consider

εnr,R :=
δr,R
n
.

Let n ∈ N, n ≥ 1, be arbitrarily fixed, for each integer number m ≥ 0, we
define the following sets:

Anm :=
{
x ∈ A : θ(x) ∈

[ r
R

+mεnr,R,
r

R
+ (m+ 1) εnr,R

]}
.

Since A ⊂ Cr,R, we can assert that r
R ≤ θ(x) ≤ R

r . Moreover, noticing that
r
R + 0 εnr,R = r

R and r
R + [(n− 1) + 1] εnr,R = R

r , we get

A ⊂
n−1⋃
m=0

Anm.
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From this, by using properties of the measure of noncompactness, it follows
that

α
(
T̃ (A)

)
= α

(
n−1⋃
m=0

T̃ (Anm)

)
= max
m∈{0,...,n−1}

{
α
(
T̃ (Anm)

)}
.

For each m ∈ {0, . . . , n− 1}, we deal with α
(
T̃ (Anm)

)
and, for that purpose,

we consider

T̃|An
m

: Anm −→ C, x 7−→ T̃|An
m

(x) = T̃ (x).

With the aim of proving that T̃|An
m

is α−Lipschitz with constant k ( rR +(m+
1) εnr,R)/( rR + mεnr,R), we study some properties of the following auxiliary
mappings:

1

θ|An
m

: Anm −→ C, x 7−→ 1

θ(x)
;

Snm : Anm −→ C, x 7−→ Snm(x) := θ(x)x.

On the one hand, for each x ∈ Anm, it is satisfied that 1/θ(x) ≤ 1/( rR+mεnr,R),
then

sup

{
1

θ(x)
: x ∈ Anm

}
≤ 1

r
R +mεnr,R

.

On the other hand, for every B ⊂ Anm, we have

Snm(B) = {θ(x)x : x ∈ B}

⊂
{[
λ
( r
R

+mεnr,R

)
+ (1− λ)

( r
R

+ (m+ 1) εnr,R

)]
x : λ ∈ [0, 1], x ∈ B

}
= co

({[ r
R

+mεnr,R

]
B
}
∪
{[ r
R

+ (m+ 1) εnr,R

]
B
})

.

Now, by using properties of the measure of noncompactness, we can assert

α (Snm(B)) ≤ α
({[ r

R
+mεnr,R

]
B
}
∪
{[ r
R

+ (m+ 1) εnr,R

]
B
})

=
( r
R

+ (m+ 1) εnr,R

)
α(B).

Consequently, Snm is α−Lipschitz with constant r/R+ (m+ 1) εnr,R.

As T is a k−set contraction and T̃|An
m

= (T ◦ Snm)/θ|An
m

, we finally get

that T̃|An
m

is α−Lipschitz with constant k ( rR + (m+ 1) εnr,R)/( rR +mεnr,R).

Moreover, for each m ∈ {1, . . . , n− 1}, it follows that

r
R + (m+ 1) εnr,R

r
R +mεnr,R

<
r
R + εnr,R

r
R

.
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Finally, taking into account the different statements which have been proved,
we have

α
(
T̃ (A)

)
= max

m∈{0,...,n−1}

{
α
(
T̃ (Anm)

)}
≤ max

m∈{0,...,n−1}

{
r
R + (m+ 1) εnr,R

r
R +mεnr,R

α(Anm)

}

=
r
R + εnr,R

r
R

k α(A).

Since εnr,R → 0 as n→∞, one has that, if n is large enough, the number

k̃ :=
r
R + εnr,R

r
R

k

is as close to k as we wish. Therefore, we can guarantee that k̃ ∈ (0, 1).

To finish the proof, we apply Theorem 2.6 to the operator T̃ . Hence, T̃
has a fixed point in x̃ ∈ Cr,R, then

x̃ = T̃ (x̃) =
1

θ(x̃)
T (θ(x̃)x̃),

or, equivalently,
θ(x̃)x̃ = T (θ(x̃)x̃).

This shows that the point x := θ(x̃)x̃ is a fixed point of T in Cr,R. �

3.3. Expansion fixed point theorem for set contractions and star convex sets

The last goal is to extend Theorem 3.3 for star convex sets.

Theorem 3.4. Let (X, ‖ ·‖) be a Banach space, C be a cone in X, and E1, E2

be star convex sets fulfilling Condition 1. If T : C ∩
(
E2\E̊1

)
−→ C is a

k−set contraction and an expansion of the set C ∩
(
E2\E̊1

)
, then T has a

fixed point in C ∩
(
E2\E̊1

)
.

Proof. The idea of the proof is the same as the one for balls, we consider the
auxiliary mapping

T̃ : C ∩
(
E2\E̊1

)
−→ C

x 7−→ T̃ (x) :=
1

θ(x)
T (θ(x)x),

where θ(x) = βC1 (x) + β2(x)− 1, for x ∈ C ∩
(
E2\E̊1

)
.

As in Theorem 3.3, we begin by proving that T̃ is well-defined. We

need to show that θ(x)x ∈ C ∩
(
E2\E̊1

)
, for every x ∈ C ∩

(
E2\E̊1

)
. Since

θ(x) > 0 and x ∈ C, we clearly have θ(x)x ∈ C. To prove that θ(x)x ∈
E2\E̊1, let us note the equivalence between λx ∈ E2\E̊1 and the inequality

βC1 (x) ≤ λ ≤ β2(x). Now, if x ∈ E2\E̊1, then βC1 (x) ≤ 1 ≤ β2(x), whence



Krasnosel’skii fixed point theorem for set contractions 13

βC1 (x) ≤ βC1 (x) + β2(x) − 1 ≤ β2(x), that is, βC1 (x) ≤ θ(x) ≤ β2(x), which

shows that θ(x)x ∈ E2\E̊1. Therefore, we conclude that T̃ is well-defined.

Next, we show that T̃ is a compression of the set C ∩
(
E2\E̊1

)
. For

that purpose, we prove that, if x ∈ F1, then θ(x)x ∈ F2, and, if x ∈ F2,

then θ(x)x ∈ F1. Consequently, if T fulfills (E1) then T̃ fulfills (C2), and if

T fulfills (E2) then T̃ fulfills (C1). This way, T̃ is a compression of the set

C ∩
(
E2\E̊1

)
. Indeed, if x ∈ F1, then βC1 (x) = 1 and so θ(x) = β2(x). Hence,

according to Proposition 2.4, θ(x)x ∈ F2. Similarly, if x ∈ F2, then β2(x) = 1
and so θ(x) = βC1 (x). Thus, by using the definition of βC1 , θ(x)x ∈ F1.

Finally, it remains to prove that there exists 0 ≤ k̃ < 1 such that T̃ is
a k̃−set contraction. On the one hand, as βC1 , β2 and T are continuous and

θ(x) 6= 0, for all x ∈ C ∩
(
E2\E̊1

)
, one has that T̃ is continuous. On the

other hand, for every A ⊂ C ∩
(
E2\E̊1

)
, we have to prove that

α
(
T̃ (A)

)
≤ k̃α(A), (3.5)

for some constant 0 ≤ k̃ < 1, independent of A.
The proof of (3.5) is identical to that of formula (3.4) in the proof of

Theorem 3.3, once we have shown the existence of two positive numbers r
and R with r < R such that

r

R
≤ θ(x) ≤ R

r
, (3.6)

for every x ∈ C ∩
(
E2\E̊1

)
.

Indeed, as 0 ∈ E1\F1, there exists r > 0 such that Br = B(0, r) ⊂
E̊1. As E1 ⊂ E2 and E2 is bounded, there exists R > r such that E2 ⊂
BR = B(0, R). Therefore, C ∩

(
E2\E̊1

)
⊂ C ∩ (BR\B̊r). Hence, for any

x ∈ C ∩
(
E2\E̊1

)
, we have

x, θ(x)x ∈ C ∩ (BR\B̊r),

implying

r ≤ ‖x‖, θ(x)‖x‖ ≤ R,
which immediately yield (3.6).

To finish the proof, we apply Theorem 3.2 to the operator T̃ . Thus, T̃

has a fixed point x̃ ∈ C ∩
(
E2\E̊1

)
. Then

x̃ = T̃ (x̃) =
1

θ(x̃)
T (θ(x̃)x̃),

or, equivalently,

θ(x̃)x̃ = T (θ(x̃)x̃).

This shows that the point x := θ(x)x is a fixed point of T in C∩
(
E2\E̊1

)
. �
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4. Application

Let us consider the following initial value problem for a first order implicit
differential system,{

x′(t) = f(t, x(t)) + g(t, x′(t)), t ∈ [0, 1],

x(0) = 0,
(4.1)

where f, g : [0, 1]×Rn −→ Rn. We search for solutions x ∈ C1([0, 1],Rn). For
that purpose, with the substitution y = x′, the initial value problem (4.1)
becomes

y(t) = f

(
t,

∫ t

0

y(s)ds

)
+ g(t, y(t)), t ∈ [0, 1], (4.2)

with
∫ t
0
y(s)ds =

(∫ t
0
y1(s)ds, . . . ,

∫ t
0
yn(s)ds

)
. Denote by T the operator as-

sociated to the right-hand side of (4.2), namely, T : C([0, 1],Rn)→ C([0, 1],Rn),

T (y) (t) = f

(
t,

∫ t

0

y(s)ds

)
+ g(t, y(t)).

Thus, the solutions to (4.1) are the fixed points in C([0, 1],Rn) of the operator
T . To localize the fixed points of T, we use Theorem 3.2 in the Banach space
(C([0, 1],Rn), ‖ · ‖∞), with

||y||∞ = max{||y1||∞, . . . , ||yn||∞}, for y = (y1, . . . , yn).

First, we state some conditions on the mappings f and g to guarantee
that the operator T : C([0, 1],Rn) −→ C([0, 1],Rn) is well-defined and a set
contraction:

(H1) f, g : [0, 1]× Rn → Rn are continuous.
(H2) For each t ∈ [0, 1], there exists L(t) ∈ R+ such that

|gi(t, u)− gi(t, v)| ≤ L(t) max{|uj − vj | , j = 1, . . . , n},
for all u, v ∈ Rn, i ∈ {1, . . . , n}, and

sup
t∈[0,1]

L(t) =: k < 1. (4.3)

Under conditions (H1) and (H2), the operator T is a sum of a compact
operator and a k-set contraction. Indeed, T = A + B, where the operators
A,B : C([0, 1],Rn)→ C([0, 1],Rn) are given by

A(y)(t) = f

(
t,

∫ t

0

y(s)ds

)
, B(y)(t) = g(t, y(t)).

The operatorA is compact as a composition of three continuous bounded
operators J, i and Nf , such that one of them is compact. In fact, A = Nf ◦i◦J,
where

J : C([0, 1],Rn)→ C1([0, 1],Rn), J (y) (t) =

∫ t

0

y (s) ds,

i : C1([0, 1],Rn)→ C([0, 1],Rn), i (y) = y,

Nf : C([0, 1],Rn)→ C([0, 1],Rn), Nf (y) (t) = f (t, y (t)) .
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All these operators are continuous and bounded (map bounded sets into
bounded sets), while i is compact as a consequence of the Arzelà–Ascoli
theorem (see, e.g., Section 1.2 in [13]).

The operator B is a contraction with the Lipschitz constant k given by
(4.3). Indeed, for any y, y ∈ C([0, 1],Rn), and every t ∈ [0, 1], one has

|Bi(y)(t)−Bi(y)(t)| = |gi(t, y(t))− gi(t, y(t))|
≤ L(t) max{

∣∣yj(t)− yj(t)∣∣ , j = 1, . . . , n}
≤ k ‖y − y‖∞ ,

for each i ∈ {1, . . . , n}, whence

‖B(y)−B(y)‖∞ ≤ k ‖y − y‖∞ .

Next, we consider, in C([0, 1],Rn), the cone of non-negative functions
C := C([0, 1],Rn+), and we add the following positivity condition in order to
guarantee the invariance condition T (C) ⊂ C :

(H3) f([0, 1]× Rn+) ⊂ Rn+, and g([0, 1]× Rn+) ⊂ Rn+.
Finally, we define two star convex sets E1, E2 ⊂ C([0, 1],Rn) satisfying

Condition 1, such that T : C ∩ (E2 \ E̊1) −→ C is a compression of the set

C ∩ (E2 \ E̊1). For their definition, we use the norm ‖·‖∞ and the functional

ϕi : C([0, 1],R)→ R+, ϕi (z) = ai min
t∈[0,1]

|z (t)|+ bi ‖z‖∞ ,

where ai, bi ∈ R+ and bi 6= 0, i ∈ {1, . . . , n}. Notice the relationship between
the functional ϕi and the norm,

bi ‖z‖∞ ≤ ϕi (z) ≤ (ai + bi) ‖z‖∞ ,

or, equivalently,
ϕi (z)

ai + bi
≤ ‖z‖∞ ≤

ϕi (z)

bi
. (4.4)

Let r,R ∈ (0,∞)n be two vectors with (ai + bi) ri < Ri, for i = 1, . . . , n,
and take

E1 := {y ∈ C([0, 1],Rn) : ‖yi‖∞ ≤ ri, i = 1, . . . , n} ,
E2 := {y ∈ C([0, 1],Rn) : ϕi(yi) ≤ Ri, i = 1, . . . , n} .

Clearly, E1 and E2 are star convex sets satisfying Condition 1.
For each i ∈ {1, . . . , n}, denote

f
i

:= min {fi(t, y) : t ∈ [0, 1], yj ∈ [0, rj ], j = 1, . . . , n} ,

g
i

:= min

{
gi(t, y) : t ∈ [0, 1], yj ∈

[
0,
Rj
bj

]
, j = 1, . . . , n, j 6= i, yi = ri

}
,

f i := max

{
fi(t, y) : t ∈ [0, 1], yj ∈

[
0,
Rj
bj

]
, j = 1, . . . , n

}
,

gi := max

{
gi(t, y) : t ∈ [0, 1], yj ∈

[
rj ,

Rj
bj

]
, j = 1, . . . , n, j 6= i,

yi ∈
[

Ri
ai + bi

,
Ri
bi

]}
,
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and assume that the following conditions are satisfied:

(H4,C) For each i ∈ {1, . . . , n},
f
i
+ g

i
> ri, (4.5)

f i + gi ≤
Ri

ai + bi
. (4.6)

Under these conditions, E1 ⊂ E̊2, and (C1), (C2) hold, that is, the

operator T is a compression of the set C ∩ (E2 \ E̊1).

First, using the inequalities (ai + bi) ri < Ri, we have E1 ⊂ E̊2. Indeed,
if y ∈ E1, then, for every i ∈ {1, . . . , n}, one has

ϕi(yi) = ai min
t∈[0,1]

|yi(t)|+ bi ‖yi‖∞ ≤ (ai + bi) ‖yi‖∞ ≤ (ai + bi)ri < Ri,

which gives y ∈ E̊2.
Next, we show that (4.5) guarantees that condition (C1) is fulfilled.

Indeed, if we assume the contrary, then there exists y ∈ C with ‖yj‖∞ ≤ rj ,
for all j ∈ {1, . . . , n}, and ‖yk‖∞ = rk for some k ∈ {1, . . . , n}, such that

y(t) ≥ T (y)(t), for every t ∈ [0, 1].

Let t0 ∈ [0, 1] be such that yk(t0) = ‖yk‖∞ = rk. From the previous inequal-
ity, by using the definition of T, we obtain

rk = yk(t0) ≥ Tk(y)(t0) = fk

(
t0,

∫ t0

0

y(s)ds

)
+ gk(t0, y(t0)) ≥ f

k
+ g

k
,

which contradicts (4.5). Hence, (C1) holds.
Finally, we prove that (C2) is also satisfied by using (4.6). If we assume

the contrary, then there exist ε > 0 and y ∈ C with ϕj(yj) ≤ Rj for all
j ∈ {1, . . . , n}, and ϕk(yk) = Rk for some k ∈ {1, . . . , n}, such that

T (y)(t) ≥ (1 + ε)y(t), for any t ∈ [0, 1].

Let t0 ∈ [0, 1] be such that yk(t0) = ‖yk‖∞. Then, using the last inequality,
the expression of T , and (4.4), we obtain

fk + gk ≥ fk
(
t0,

∫ t0

0

y(s)ds

)
+ gk (t0, y(t0)) > yk(t0) ≥ Rk

ak + bk
,

which contradicts (4.6). Hence, (C2) holds.
Therefore, since all the assumptions of Theorem 3.2 are fulfilled, we

have the following existence and localization result.

Theorem 4.1. Under conditions (H1) − (H4,C), problem (4.1) has a non-
negative and increasing solution x ∈ C1([0, 1],Rn) such that

rk ≤ ‖x′k‖∞ , for at least one k ∈ {1, . . . , n}, and

ϕi(x
′
i) ≤ Ri, for all i ∈ {1, . . . , n}.

(4.7)

In particular, if we assume that n = 1, and the monotonicity of f and
g, more exactly:

(H5) For each t ∈ [0, 1], the functions f(t, ·) and g(t, ·) are increasing in R+,
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then conditions (4.5) and (4.6) in (H4,C), with r1, R1, a1, b1 simply denoted
by r,R, a, b, turn into

f(t, 0) + g(t, r) > r, for every t ∈ [0, 1], (4.8)

f

(
t,
R

b

)
+ g

(
t,
R

b

)
≤ R

a+ b
, for every t ∈ [0, 1]. (4.9)

Let us present two examples. The first one, which in fact is a solvable
equation, is given to test the compression conditions.

Example 1. Let

f(s) = λs and g(s) = αs+ β (s ∈ R) ,

where λ, α ≥ 0, β > 0 and λ+ α < b
a+b . If

r <
β

1− α
and R

(
1

a+ b
− λ+ α

b

)
≥ β, (4.10)

then the assumptions of Theorem 4.1 are fulfilled.
For example, condition (4.10) is satisfied for a = b = 1, r = 1, R = 6,

β = 1 and λ = α = 1/6. In this case, the exact solution of the problem is

x(t) = 6
(
e

t
5 − 1

)
, for t ∈ [0, 1], and x′(t) = 6

5e
t
5 , for t ∈ [0, 1], then

‖x′‖∞ =
6

5
e

1
5 and ϕ(x′) =

6

5

(
1 + e

1
5

)
,

and it is easy to see that conditions (4.7) hold.

The second example deals with equations that can not be explicitly
solved.

Example 2. Consider the equation

x′(t) = λx(t) + αx′(t) + β + γ sin(x′(t)), t ∈ [0, 1]. (4.11)

In this case,

f(s) = λs and g(s) = αs+ β + γ sin s (s ∈ R),

where we assume that α, β, γ and λ are non-negative.
Now, we explain how to fulfill the conditions of Theorem 4.1. Clearly,

condition (H1) holds. Next, if α < 1−γ, then |g′(s)| = |α+γ cos s| ≤ α+γ <
1. Therefore, (H2) is satisfied for k = α+γ < 1. To guarantee condition (H3),
we need g(R+) ⊂ R+, which takes place if β ≥ γ. Furthermore, condition (H5)
is fulfilled if g is increasing in R+, and this happens if α ≥ γ. This condition,
together with α < 1 − γ, gives γ ≤ α < 1 − γ. Then, obviously, γ has to
satisfy 0 ≤ γ < 1

2 . Finally, we have to check conditions (4.8) and (4.9). For
the first, we need r > 0 such that g(r) > r, that is, αr+ β+ γ sin r > r. This

clearly happens if αr + β − γ > r, or, equivalently, r < β−γ
1−α , which requires

β > γ since r has to be positive. Condition (4.9) reads as

λ
R

b
+ α

R

b
+ β + γ sin

R

b
≤ R

a+ b
. (4.12)
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We show that there exists R large enough that satisfies this inequality. Indeed,
if we divide by R

b , we obtain

λ+ α+
βb

R
+ γ

sinRb
R
b

≤ b

a+ b
.

The limit of the left hand side, when R tends to ∞, being λ+ α guarantees
the existence of R provided that λ+ α < b

a+b or, equivalently, λ < b
a+b − α.

In view of λ ≥ 0, it requires that α < b
a+b .

Therefore, the conditions of Theorem 4.1 are fulfilled if the non-negative
parameters α, β, γ and λ satisfy:

γ ≤ α < 1− γ,

λ+ α <
b

a+ b
,

γ < min

{
1

2
,

b

a+ b
, β

}
.

Under these conditions, for every

r <
β − γ
1− α

,

there exists a solution x ∈ C1([0, 1],R) of equation (4.11) with x(0) = 0 that
is non-negative, increasing and with ‖x′‖∞ ≥ r.

If, in addition, a number R is chosen such that inequality (4.12) holds,
then the solution x also satisfies

a min
t∈[0,1]

x′(t) + b max
t∈[0,1]

x′(t) ≤ R.

Notice that, if γ = 0, Example 2 reduces to Example 1 and also our
sufficient conditions on parameters α, β and λ required in Example 2 become
those in Example 1.

To conclude this paper, we claim that a similar approach with expansion
type conditions does not work, that is, Theorem 3.4 does not apply for the
initial value problem (4.1).

Indeed, if we take

E1 = {y ∈ C([0, 1],R) : ϕ(y) ≤ r} , E2 = {y ∈ C([0, 1],R) : ‖y‖∞ ≤ R} ,

where r,R are positive numbers with r < bR, and we proceed similarly to the
compression case, we arrive to the following sufficient conditions of expansion:

(H4,E)

max
t∈[0,1], y∈[0, rb ]

f(t, y) + max
t∈[0,1], y∈[ r

a+b ,
r
b ]
g(t, y) ≤ r

a+ b
, (4.13)

min
t∈[0,1], y∈[0,R]

f(t, y) + min
t∈[0,1]

g(t, R) > R. (4.14)
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These conditions ensure that E1 ⊂ E̊2 and (E1), (E2) are fulfilled but,
unfortunately, they are not compatible with hypothesis (H2), and thus The-
orem 3.4 can not be applied. We shall prove this incompatibility in the au-
tonomous case, that is, when f and g do not depend on t, and conditions
(4.13), (4.14) are

max
y∈[0, rb ]

f(y) + max
y∈[ r

a+b ,
r
b ]
g(y) ≤ r

a+ b
,

min
y∈[0,R]

f(y) + g(R) > R.

Subtracting the two inequalities yields

g (R)− max
y∈[ r

a+b ,
r
b ]
g(y) > R− r

a+ b
+ max
y∈[0, rb ]

f(y)− min
y∈[0,R]

f(y). (4.15)

From r < bR, we have [0, r/b] ⊂ [0, R] , whence

min
y∈[0,R]

f(y) ≤ min
y∈[0, r

b ]
f (y) ≤ max

y∈[0, r
b ]
f (y) .

Hence, the right-hand side in (4.15) is greater than or equal to R− r/ (a+ b)
and, so,

g (R)− max
y∈[ r

a+b ,
r
b ]
g(y) > R− r

a+ b
. (4.16)

On the other hand, if ŷ ∈ [r/ (a+ b) , r/b] is such that g(ŷ) = max
y∈[r/(a+b), r/b]

g(y),

then, also using (H2), we find

g (R)− max
y∈[ r

a+b ,
r
b ]
g(y) = g (R)− g (ŷ) ≤ k (R− ŷ)

≤ k
(
R− r

a+ b

)
< R− r

a+ b
.

This together with (4.16) clearly yields a contradiction, proving our claim.

Nevertheless, expansion conditions are possible for many other problems
involving compact operators, as shown by lots of papers in the literature.
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