

Forecasting flight prices with

machine learning models: a

comparative analysis between low

and high-cost airlines

Sophia Daly

Dissertation written under the supervision of professor Pedro

Afonso Fernandes

Dissertation submitted in partial fulfilment of requirements for the MSc in

Business Analytics, at the Universidade Católica Portuguesa, September

2023.

Forecasting flight prices with machine learning models:
a comparative analysis between low and high-cost

airlines

Sophia Daly

Abstract

Forecasting ŕight prices is a challenging task due to the complex nature of the

pricing algorithms that airlines use. Apart from the fact that these algorithms

are not public, they have to take into account many different variables that affect

ticket prices. Since the airlines’ demand forecasting may not always hold true as a

result of varying demand, prices need to be adjusted accordingly. This approach is

called dynamic pricing. It is a technique of price discrimination based on temporal

differences mainly, leading to the widely spread assumption that the time of booking

is a crucial determinant of the ticket price. This analysis shows that apart from

days to departure, especially ŕight distance and airline type inŕuence the price

signiőcantly. That is, longer ŕights as well as ŕights operated by full-service carriers,

as opposed to low-cost carriers, are usually more expensive.

This thesis uses a dataset including the ŕight fares and other ŕight-related char-

acteristics of one-way ŕights in the US between April and October 2022, retrieved

from the search engine Expedia.com. The data is used to train and compare the

performance of several supervised learning models aiming to forecast ŕight prices.

Each model is deployed three times, őrst with the entire dataset, and then once

with data only from low-cost-carrier and only from full-service-carriers, respectively.

The most accurate models for all three datasets are the random forests followed by

k-nearest-neighbor. The results of this thesis suggest that a large part of the ŕight

price can be predicted using ŕight-related details such as days to departure and ŕight

duration, yet, it also shows that there remains a certain inexplicable variability that

could be due to external factors that are not included in the present analysis.

Keywords: Price prediction; dynamic pricing; machine learning; airline industry;

random forest.

2

Forecasting flight prices with machine learning models:
a comparative analysis between low and high-cost

airlines

Sophia Daly

Resumo

Prever os preços de voo é uma tarefa desaőante devido à natureza complexa dos

algoritmos de őxação de preços que as companhias aéreas utilizam habitualmente.

Para além da sua natureza privada, estes algoritmos levam em consideração muitas

variáveis diferentes que afetam, por essa via, os preços das passagens aéreas. Uma

vez que a previsão da procura pelas rotas das companhias aéreas nem sempre se

mantém válida devido à sua variabilidade ao longo do tempo, os preços precisam de

ser ajustados continuamente de modo a favorecer a rentabilidade dessas companhias.

Esta prática designa-se por őxação de preços dinâmica, uma técnica de discriminação

de preços baseada principalmente em diferenças temporais, levando à amplamente

difundida perceção de que o momento da reserva é o principal determinante do preço

das passagem aéreas. A presente análise revela que, para além do número de dias

até à data de partida, o tipo de companhia aérea e, sobretudo, a distância de voo

também inŕuenciam signiőcativamente o respetivo preço. Assim, voos mais longos e

operados por companhias de serviço completo, em oposição às companhias de baixo

custo, são geralmente mais caros.

A presente tese utilizou uma base de dados incluindo os preços das passagens

aéreas e outras características relacionadas com voos de ida nos EUA entre abril e

outubro de 2022, obtidas através do motor de busca Expedia.com. Estes dados foram

utilizados para treinar e comparar o desempenho de vários modelos de aprendizagem

automática supervisionada com o objetivo de prever os preços de voo. Cada modelo

foi implementado três vezes, primeiro com a base de dados completa, depois com

os registos relativos às companhias de baixo custo e, őnalmente, apenas com os

dados das companhias de serviço completo. Os modelos mais precisos para os três

conjuntos de dados são as ŕorestas aleatória seguidos pelos modelos de K vizinhanças

próximas. Os resultados deste trabalho sugerem que uma parte signiőcativa do preço

pode ser prevista utilizando detalhes relacionados com o voo, como o número de dias

até a partida e a duração da viagem. Contudo, permanece uma certa variabilidade

não explicada que pode dever-se a fatores externos não incluídos na presente análise.

Palavras chave: Previsão de preços; őxação dinâmica de preços; aprendizagem au-

tomática; setor da aviação; ŕorestas aleatórias.

3

Contents

1 Introduction 7

1.1 Motivation and objectives . 7

1.2 Research question . 7

1.3 Scope of analysis . 8

2 Background and Related Work 9

2.1 Airline types . 9

2.2 Pricing mechanism . 9

2.3 Flight price forecasting . 11

3 Methodology 14

3.1 Proposed Models . 14

3.1.1 OLS . 14

3.1.2 K-Nearest Neighbour . 15

3.1.3 Decision Tree . 16

3.1.4 Gradient Boosting Regression . 17

3.1.5 Random Forest . 17

3.2 Performance measures . 18

3.2.1 MSE and RMSE . 18

3.2.2 MAE . 18

3.2.3 R-Squared . 19

4 Data 20

4.1 Data pre-processing . 20

4.2 Exploratory Data Analysis . 21

5 Modelling 25

6 Discussion 31

6.1 Findings . 31

6.2 Limitations . 32

7 Conclusion 34

A Appendix 37

A.1 Raw dataset . 37

A.2 Data pre-processing in R . 39

A.3 Pre-processed dataset . 44

A.4 Exploratory Data Analysis in Python . 45

4

A.5 Modelling in Python . 50

5

List of Figures

1 Average ŕight price per ŕight day . 22

2 Distribution of total fare with and without log transformation 22

3 Price distribution per airline before log transformation 23

4 Price distribution per airline after log transformation 23

5 Correlation matrices low cost carrier vs legacy carrier 24

6 Average total fare by days to departure . 24

7 Average total fare by number of seats remaining 25

8 Distribution of airlines and airline type . 26

9 Linear Regression: True vs predicted values per dataset 28

10 Feature importance per dataset . 29

11 Decision tree - total dataset . 29

List of Tables

1 Performance Metrics . 27

6

1 Introduction

1.1 Motivation and objectives

Nearly everyone that travels regularly has likely already faced the following decision:

should I book my ŕights early out of fear that prices will rise closer to the travel date and

I will not lose my seat or should I rather wait in the hope that prices decrease as part of

some last-minute offer? Both scenarios are realistic and it is quite difficult to make an

informed decision as a consumer (Groves and Gini, 2015; Rajankar and Sakharkar, 2019).

The common perception when purchasing ŕight tickets is that the earlier the tickets

are bought, the cheaper they are (Lantseva et al., 2015; Groves and Gini, 2013). This

suggests that days to departure is the key predictor for ŕight price. Recent research,

however, has shown that this is not always true in reality (Lantseva et al., 2015; Groves

and Gini, 2013). The days to departure are doubtlessly an important factor in ŕight

pricing, nevertheless, other variables might play an important role as well. Furthermore,

low- and high-cost airlines follow different pricing strategies (Kwoka et al., 2016; Etzioni

et al., 2003), so one could assume that the price determinants differ from one airline type

to the other.

The biggest challenge in predicting ŕight prices is the information asymmetry between

customers and airlines (Gordiievych and Shubin, 2015; Groves and Gini, 2015; Rajankar

and Sakharkar, 2019; Wang, 2020). A customer only has very limited knowledge, namely

publicly available information such as ŕight date and ŕight route, about a certain ŕight of

interest. Yet, airlines determine their prices based on highly complex pricing mechanisms

involving many variables that are not known to the customer, like number of available

seats, for instance. Obviously, these pricing algorithms are not public, making it hardly

possible for consumers to correctly anticipate the price changes. However, analyzing

pricing patterns and determining the most inŕuential predictors can help customers make

more appropriate choices about when to purchase and what price to expect (Groves and

Gini, 2013; Wang et al., 2019).

The objective of this thesis is to investigate whether ŕight prices can be predicted

accurately solely with information regarding the ŕight characteristics. This will be done

by comparing the performance of several different machine learning models with selected

performance measures. To get more detailed insights, each model will be done three times,

őrst for the total dataset, then only for low-cost carriers, and lastly only for full-service

carriers with the goal to őnd the best model for each airline type.

1.2 Research question

To what extent are ŕight details sufficient for predicting ŕight prices? What are the

most inŕuential determinants of ŕight prices and do they differ between airline types?

7

Moreover, what is the best machine learning model to predict airfare prices?

1.3 Scope of analysis

The present thesis intends to identify the most important factors inŕuencing ŕight prices

and compare whether these are the same for low- as well as high-cost airline types. More-

over, different machine learning models will be compared with the ultimate goal of pre-

dicting ŕight fare prices. In terms of scope, the focus lies speciőcally on the comparison

between low- and high-cost airlines operating in the United States.

The remainder of the thesis is divided into the following parts: Section 2 presents an

introduction to the airline industry and the different airline types. Additionally, current

and past literature in the area of ŕight price forecasting is summarized and different

machine learning approaches are discussed. Section 3 provides a summary of the models

used in the course of this work including the chosen measures to compare the models’

performances. After that, the dataset is presented in section 4, while section 5 explains

the modelling process and section 6 and 7 conclude the analysis with the presentation

and discussion of the őndings, as well as the limitations and need for future research.

8

2 Background and Related Work

2.1 Airline types

Airlines can be divided into low-cost carriers (hereafter LCC) and full-service carriers

(hereafter FSC), differentiating themselves by operational characteristics and generic

strategy. While LCC prioritize cost leadership, offering a form of transportation with

inexpensive fares, FSC offer a higher-quality product with superior service level (Rozen-

berg et al., 2014).

LCC manage to offer lower prices, which is their main marketing goal, due to several

reasons. Firstly, they have product homogeneity by only ŕying regular ŕights, not having

charter ŕights and usually only ŕying a single type of aircraft resulting in lower mainte-

nance costs and higher productivity. Additionally, LCC generally do not have connection

ŕights, ŕying only point-to-point, which reduces the time on the ground and allows to

increase the number of ŕights per day. Apart from that, LCC focus merely on leisure

ŕights, they do not offer őrst or business class tickets and usually ŕy to secondary air-

ports where the airport charges are lower. Lastly, the standard fees do not include any

extra services such as food and drink, insurance or baggage. If these services are desired,

then an additional price has to be paid.

The FSC, on the other hand, focus on high quality and differentiation. Services such as

re-booking possibilities, snacks and drinks during the ŕight and more comfortable seating

are usually included in the ticket fare. As opposed to LCC, FSC offer an extensive

route network due to their cooperation with other carriers and the hub and spoke system,

where several primary and secondary airports are connected allowing for further trips

(Coto-Millán et al., 2015).

Given the two distinct business models of LCC and FSC the main competitors of the

airlines are within the same category of airlines. Nevertheless, some scholars suggest that

LCC increasingly become direct competitors across categories as well (Kwoka et al., 2016).

This is due to the fact that as they operate on main routes more and more, and move

from secondary airports to the main airports they become more dominant and with that,

a direct threat to all the other established airlines. With respect to the resulting effect

on the ticket prices, the authors claim that LCC strongly inŕuence other LCC’ prices as

well as FSC, while the latter only marginally affect other airlines in their category and

have no impact on LCC. This outcome suggests taking the number of competitors into

account when analyzing the determining factors of ŕight prices.

2.2 Pricing mechanism

The reason for the complexity in forecasting ŕight prices is the fact that many stake-

holders, such as airlines, competitors, airports, customers, play a role in the őnal price.

9

Varying demand, time of booking, competitors’ moves, time of the year and external fac-

tors such as fuel prices are reasons why prices for tickets are dynamic. Since the airlines’

strategies and forecasts of demand may vary as a result of the interplay of these factors,

it would not make sense for an airline to sell their tickets for a static price, and therefore

dynamic pricing or yield/revenue management (these terms will be used interchangeably

in this thesis) is used as their pricing mechanism.

Dynamic pricing is łthe study of determining optimal selling prices of products or

services, in a setting where prices can easily and frequently be adjusted" (Boer, 2015).

Ultimately, it is a proőt maximization strategy that can be used when certain charac-

teristics are given. Firstly, there exists only a őxed amount of inventory and any unsold

inventory is lost, it cannot be sold at a later point in time and is not replenishable.

Secondly, the product must typically be sold long in advance and demand can ŕuctuate

signiőcantly. Lastly, a further important condition is low marginal sales costs and high

production costs (Kimes, 1989). In the case of airline tickets the inventory is the available

seats in an airplane, that cannot be sold once the ŕight takes off (an empty seat is forever

lost revenue). Tickets are usually available for sale several months before the departure

date and demand can vary largely due to various reasons. Also, the airline industry has

high őxed costs and low, highly variable marginal sales costs. Therefore, revenue manage-

ment can be applied to ŕight ticket sales. In fact, Donaghy et al. (1995) state that revenue

management was developed by the airline industry as a consequence of the deregulation

in 1978 and is a mechanism mainly used in the hotel and airline industry.

Dynamic pricing is essentially a form of price discrimination since different prices are

charged from different people at different points in time. Price discrimination can happen

due to temporal, spatial or income differences between customers. In the case of ŕight

tickets, the temporal difference is the main driving factor, assuming that the customers’

willingness to pay (WTP) increases closer to the ŕight date. This results in a low-before-

high-arrival pattern, meaning people with lower WTP buy their tickets longer in advance

than those who are prepared to spend more (Selcuk and Avs.ar, 2019). This may also be

one of the reasons why airlines charge higher prices closer to the departure day. Carter

(1988, as cited in Donaghy et al., 1995) further explains that (instead of reducing fares

prior to ŕight departures, yield management looks at historical demand patterns and

identiőes seats which have been difficult to sell in the past. These seats are promoted

often through discounting to ensure they are sold in advance, resulting in the last available

seats on a ŕight being available only at full fare). That being said, it can also happen

that prices are decreased shortly before the ŕight to stimulate demand, in case the desired

number of tickets have not been sold yet.

10

2.3 Flight price forecasting

Research around ŕight pricing and optimal purchase timing has been conducted for var-

ious objectives in the past. The topic has been addressed both as regression as well as

classiőcation problem, depending on whether the intended output was a decision such

as buy or wait, for instance, or a continuous outcome like the actual ŕight price. Given

the complexity of airlines’ pricing methods, it is a challenging task and therefore several

approaches have been already tested.

Most importantly, a good forecast relies on the extraction of relevant features in the

data (Groves and Gini, 2013). Although different models use different sets of features, one

of the most commonly mentioned factor inŕuencing the ticket price is the remaining days

to departure (Groves and Gini, 2015; Etzioni et al., 2003; Rajure et al., 2021; Malighetti

et al., 2015), supporting the hypothesis that purchasing as early as possible is the best

way to go. Additionally, the number of remaining seats, ticket class, competitors’ prices

and day of the week have been found to inŕuence ticket prices signiőcantly (Rajure et al.,

2021; Groves and Gini, 2011; Malighetti et al., 2015).

A pilot study investigating two round-trip routes in the US with 12,000 observations

over a time period of 41 days has been conducted by Etzioni et al. (2003). The goal was

to distinguish pricing patterns within the data, compare different models for analyzing

these patterns and eventually őnd out whether it is possible to save money as a consumer

applying the proposed models. The predictors used in the models were ŕight number,

hours to departure, current price, airline and route. In terms of methods, the authors

applied the Ripper Rule Learner, Q-learning, time series and combined each of their

models through stacking. The ensemble model output was a buy or wait decision and led

to correctly indicating possible savings 61.8% of the time.

Apart from that, it was found that there are commonly price changes 7 and 14 days

before departure but also that prices tend to ŕuctuate more during certain times of the

year, e.g. holidays. Moreover, airlines were separated into two categories. The őrst

including FSCs while the latter was made up LCC. The division into the groups was

based on the őnding that airlines of a similar type usually follow similar pricing patters.

That is, FSC airlines sell their tickets for higher prices and ŕuctuate often, whereas the

LCC show less ŕuctuation and lower fares. The main drawback of this pilot study by

Etzioni et al. is the fact that the data used did not have any indication on how many

seats were still left when a certain price was observed.

Similarly, Rajankar and Sakharkar (2019) published a paper aiming to predict ŕight

prices with a dataset considering the features origin, destination, departure date and time,

arrival time, total fare, airline and ŕight date for their models. The authors proposed

various algorithms for predicting ŕight prices including supervised models (Decision Tree,

Random Forest, K-Nearest Neighbour, Support Vector Machine and Gradient Boosting

11

Regression) and a neural network, the Multilayer Perceptron (MLP). The evaluation

metrics used for the paper were R-Squared, Mean Absolute Error (MAE) and Mean

Squared Error (MSE) whereby the random forest outperformed all other models with a

R2 value of 0.67 and a MAE and MSE of 0.08 and 0.04, respectively. The MLP performed

almost equally well resulting in metrics very similar to the random forest. All the other

models fall behind signiőcantly having lower R2 results and higher errors.

Furthermore, the low-cost airline EasyJet, one of the main LCC in Europe, has been

thoroughly studied with regard to their pricing strategy, development and effects on com-

petitors’ prices (Malighetti et al., 2015). The paper states that when LCC were őrstly

introduced, purchase timing was the main differentiating factor between prices and that

up to 90% of the őnal price could be saved when booking at the earliest possible date.

However, concerning price determinants nowadays the authors found out that purchase

timing is not the only important causal factor of price. Day of purchase and departure

time also have an effect on ticket price. The highest prices were registered between Sat-

urday and Monday, while the lowest fares were on Wednesday and Thursday and ŕights

departing in the afternoon were typically the most expensive. Moreover, ŕight distance

also affects the price in the way that the average fare per kilometre is lower and more

stable for longer distances compared to shorter ŕights. An additional point of interest

in this paper is the role of direct and indirect competition on fare prices. The presence

of competition on a certain route directly inŕuences EasyJet’s market share, and conse-

quently affected ticket price as well. The more competitors operating on the same route,

the lower the prices. The results of this study were found by applying a linear regression

model including time-variant and time-invariant predictors.

Groves and Gini (2011) proposed a partial least square regression model for predicting

the best time to purchase airline tickets. Their goal was to predict expected minimum

future prices including an estimate of the risks of price changes. They analyzed data

starting 60 days prior to the departure date, generated an automated optimal feature set

selection and added time-delayed observations to the feature vector. Certain recurring

patterns, and therefore structured price volatility, could be found in the data. Especially

the day of purchase was an inŕuential factor for the quoted price. From Tuesday to

Thursday prices were lower than at the weekends, which is in line with the őnding of the

EasyJet case study described above.

Additionally, price changes varied depending on the route. Apart from the fact that

having more competing airlines inŕuenced prices, the nature of the ŕight, meaning leisure

or business ŕights, affect the pricing patterns. The assumption presented is that ŕights

during the week, in many cases business ŕights, are less price-sensitive, since one speciőc

ŕight at a speciőc time must be taken regardless of the price.

The model was also compared to a similar mechanism by BingTravel, which equally

intends to give recommendations about whether to wait or buy ŕight tickets right away.

12

The model by BingTravel results in a buy decision much more frequently, at least 70%

of the time, than the model by Groves and Gini, which does so under 20% of the days.

Also, it the BingTravel model only considers the following 7 days, therefore not taking

into account longer time frames.

The study concludes by stating that it is possible to predict ticket prices with publicly-

available information and achieve signiőcant savings when purchasing at the right time,

again emphasizing the importance of the right purchase timing, which is not necessarily

the earliest possible date. Also, in a subsequent study the same authors used a another

multivariate regression and classiőcation procedure, and, once again, it appears that it is

not always the cheapest option to purchase tickets as early as possible (Groves and Gini,

2015).

Papadakis (2012) takes a slightly different approach with regard to the feature selection

of his predictive models. He assumes that the ŕight price is made up of two categories of

variables, those affecting the base price, and those affecting price ŕuctuation. In his paper,

he focuses only on the variables inŕuencing ŕuctuation, using only days to departure and

recent price as features, and compares the performance of three models, them being Ripple

Down Rule Learner, Logistic Regression and Linear Support Vector Machine (SVM) with

the goal to predict ŕight price. The Logistic Regression and the Linear SVM had similar

accuracy results (69.9% and 69.4%, respectively), while the Ripple Down Rule Learner

outperformed both with an accuracy of 74.5%. Yet, a major drawback of this study is

the relatively small dataset consisting of only 720 data points.

Flight price forecasting has not only been tackled with machine learning methods,

but also with classical statistical approaches such ARIMA (Auto-regressive Integrated

Moving Average) model (Gordiievych and Shubin, 2015). The authors state that it is not

necessary to consider all the price-determining factors, such as number of seats remaining,

but rather only to focus on predicting the likelihood of price in- or decrease by looking at

a few factors in particular. The paper does not report on the exact results of the model

but state again that buying earliest possible is not always the best strategy.

13

3 Methodology

Forecasting ŕight prices, as the name suggests, aims to predict the price of a speciőc

ŕight, an unknown value (the response or output variable), by analyzing values of known

variables in the data such as ŕight departure and arrival airport and days remaining to

departure. This task will be done with the use of Machine Learning algorithms. Machine

learning is a part of Artiőcial Intelligence (AI) and describes "the collection of methods

for extracting (predictive) models from data" (Provost and Fawcett, 2013).

Machine learning can further be divided into several subcategories depending on the

nature of the data and the problem at hand. The three most important categories are

supervised learning, unsupervised learning and reinforcement learning. Supervised learn-

ing covers all the problems in which the input, the predictors, as well as the output, the

response, are known (labelled data). Based on these inputs and outputs, an algorithm will

learn to relate the output variable to the input variables by continuously minimizing the

difference between the predictions made by the model and the actual value. As opposed

to supervised learning, unsupervised learning would be used in cases in which the output

is not known, i.e. unlabelled data, and the algorithm will try to őnd patterns in the data,

without knowing what exactly to predict (James et al., 2021; Friedman, 2006).

The present dataset contains labelled data, so all the algorithms used for this thesis

are supervised learning algorithms. Furthermore, the output variable, the ŕight price, is

continuous, so it is a regression problem.

That being said, it is important to note that supervised learning is not the only possible

approach to tackle this topic. To give an example, as was mentioned previously, Etzioni

et al. (2003) used Q-Learning, a form of Reinforcement Learning, to predict whether the

price will in- or decrease and consequently supply a buy or wait output.

The models examined in this thesis to forecast ŕight prices are linear regression, KNN

(K-nearest neighbour), Gradient Boosting model, decision tree and random forest.

3.1 Proposed Models

3.1.1 OLS

The őrst proposed model is linear regression, using ordinary least squares (OLS) to őt

the model. Linear regression is a simple, yet widely used method assuming a linear

relationship between the predicting variable(s) x and the response variable y (James et al.,

2021). Mathematically, a linear regressions can be written with the following formula:

yi = β0 + β1xi1 + β2xi2 + · · ·+ βnxin + ϵi (1)

14

where β0 is the model intercept and β1 to βn determine the average effect of a unit increase

in the independent variables x1 to xn on the dependent variable y, under the condition that

all other predictors remain unchanged. In order to estimate the coefficients as accurately

as possible and to őnd the regression line that best represents the relationship between

the predictors and the outcome variable, the ordinary least square approach is applied,

aiming to minimize the residual sum of squares (RSS). RSS represents the sum of all

squared residual errors, that are calculated by the difference between the observed value

and value predicted by the model:

RSS = ϵ21 + ϵ22 · · ·+ ϵ2n =
n∑

i=1

(yi − ŷi)
2 (2)

Since predicting ŕight prices requires the detection of complex patterns in historical

data, linear models might not lead to the more accurate results. Thus, it is necessary to

apply different forms of supervised learning models (Wang et al., 2019).

OLS assumes a certain relationship between the predictors x and the outcome variable

y and őt the models according to these assumptions, known as parametric analysis. In

contrast, the following algorithms are non-parametric, which implies that the relationship

between x and y will be discovered by the algorithm progressively and they are therefore

more ŕexible (James et al., 2021).

3.1.2 K-Nearest Neighbour

The K-Nearest Neighbour (KNN) Regressor is a distance-based algorithm, making pre-

dictions for a speciőc data point depending on the weighted average of the K data points

closest to the desired prediction point x0 in the training data. In other words, instead

of making predictions based on a mathematical function, the algorithm remembers the

training data and applies the patterns to the test set.

f̂(x0) =
1

K

∑

xi∈N0

yi (3)

The selection of the value for K plays an important role in the model’s performance on

the test data. When K takes on small value, the model becomes more versatile in őtting

the data, leading to a low bias but high variance. Conversely, a high K value decreases

variance but increases bias resulting in a less adaptable yet smoother őt. Choosing the

ideal value for K is therefore subject to the variance-bias trade-off (Taddy, 2019).

15

3.1.3 Decision Tree

A decision tree can predict qualitative and quantitative outcomes. As a result, it can be

used for regression, as well as classiőcation problems (James et al., 2021; Taddy, 2019).

Decision trees use a technique known as recursive binary splitting, meaning that input

data is successively divided into non-overlapping regions R1 to RJ , i.e. nodes (or leaves)

according to certain features/splitting rules, each represented by a branch. These rules

can be represented in the following formula, where j is the predictor at cutpoint s :

R1(j, s) = {X | Xj < s} and R2(j, s) = {X | Xj ≥ s} (4)

For each region a single prediction value/class will be computed, which is the mean

value or mode of the output in the observations in the training data. Similar to the

regression described previously, the splitting is done with the goal to minimize the output’s

RSS in the case of a regression tree:

∑

i:xi∈R1(j,s)

(yi − ŷR1)
2 +

∑

i:xi∈R2(j,s)

(yi − ŷR2)
2 (5)

At the end of each branch, following a number of splits, a certain output value or

class in the case of a regression tree or classiőcation tree, respectively, is estimated, which

will be the forecasting result. There is a variance-bias trade-off between small and large

trees. A decision tree can become very complex if it is split many times, resulting in many

branches and leaves. While this will lead to very accurate results in the training data, it

will most probably not perform as well on testing data, due to overőtting. To reduce the

risk of overőtting, trees can be pruned. Just like pruning a biological tree, pruning a tree

in machine learning essentially means eliminating certain parts, making it less complex

and more generally applicable. This can be done by introducing the cost of complexity, a

tuning parameter, which is typically the number of terminal nodes or leaves. Which parts

are kept or removed is derived from a K-fold cross validation, aiming to minimize the

out-of-sample classiőcation error (Varian, 2014). In this analysis the decision trees will

not be pruned, since the random forest algorithm, as described below, will be applied to

all the dataset as well, which equally reduces the risk of overőtting for tree based models.

A big advantage of the decision tree is its easy interpretability, partly because of the

possibility to visually represent the model in a two-dimensional graphic independently of

the number of the characteristics of the dataset. Additionally they are relatively robust

against irrelevant variables since these will simply not be chosen for splitting and őnally

16

the decision tree can be implemented easily without having to decide on numerous tuning

parameters (Friedman, 2006).

3.1.4 Gradient Boosting Regression

The Gradient Boosting (GB) Regressor belongs to the category of boosting algorithms, a

subset of ensemble learning techniques. Ensemble models are algorithms that combine the

outcomes of several weak models to create a more powerful one. Boosting models are built

by training new models over and over again, where each new model focuses on addressing

and eliminating the residuals of the previous model. This iterative process continues until

a certain criterion is met. The őnal prediction is obtained by combining the predictions

of all the models and weighing each of them by their individual contribution.

The weak learners used in a GB Regressor are usually decision trees. The algorithm

starts with a single leaf which represents the őrst guess for the output variable. If the

intention is to predict a continuous value, which will be the case in this thesis, this őrst

value will be the average value. Based on the errors of the őrst guess, being the differences

between the predicted and the actual target values, a tree is created. Then, another tree

is built intending to optimize the previous tree by reducing the errors. This procedure

continues until either a deőned number of trees has been reached, of any additional trees

do not improve anymore. Also, the size of the trees can be predeőned. According to

Friedman, it typically lies between 4 and 10. To prevent overőtting, the weight of each

tree in the őnal prediction is scaled by the learning rate (or shrinkage factor), a value

between 0 and 1 (Friedman, 2006).

3.1.5 Random Forest

Decision trees typically perform very well on training data due to their ability to create

complex structures with branches. As a result, they easily overőt leading to a good

model őt on the training data but a much poorer performance whenever faced with new

data. To mitigate this issue the random forest algorithm can be applied. Similar to the

GB Regressor, the random forest is an ensemble learning method that combines many

individual decision trees into a "forest". In the case of a regression problem, the algorithm

takes the average of they individual trees’ outcomes to create a őnal prediction. The

random forest minimizes overőtting by selecting a random feature subset for each tree,

therefore ensuring that the individual trees are not correlated with each other. Ultimately

this leads to a more robust and more reliable output of the resulting average of the models

(Taddy, 2019; James et al., 2021; Breiman, 2001).

17

3.2 Performance measures

The performance of the different models is assessed by how close the predictions are

compared to the actual values. In order to compare the respective performances various

metrics can be used.

3.2.1 MSE and RMSE

The őrst performance measure to be introduced is the Mean Squared Error (MSE). The

MSE compares the predicted outcome values with the actual values by averaging the

squared differences of all observations. Squaring the values results in them being positive.

At the same time, large errors boost the value of the MSE, leading to a higher mean error.

The lower the MSE, the better the model’s performance.

MSE =
RSS

n
=

1

n

n∑

i=1

(yi − ŷi)
2 (6)

Typically, the test MSE is higher than the training MSE, since applying least squares

pushes to minimize the RSS. This can lead to overőtting the model to the training data,

which results in a worse performance on the test data. Also, when interpreting the results,

it must not be forgotten that the unit now is also squared.

In order to get the error measure in the original unit, the square root of the MSE

can be calculated. The error values stay positive, yet they match the unit of the target

variable, making them more intuitive to comprehend and interpret.

RMSE =
√
MSE (7)

3.2.2 MAE

As alternative to the MSE and the RMSE, the Mean Absolute Error (MAE) calculates

the mean of the absolute differences between predicted and actual outcomes. As for the

MSE, a lower MAE suggests a good model őt. An advantage of the MAE is that this

measure is not as sensible to large error values as the MSE. Also, as for the RMSE, the

target variable’s unit remain unchanged when calculating the MAE.

MAE =
1

n

n∑

i=1

|yi − ŷi| (8)

18

3.2.3 R-Squared

Lastly, the R-squared statistic is a metric specifying how much variance of the dependent

variable is explained by the independent variables. The values lie between 0 and 1, with

values closer to 1 indicating a better őt. R-squared is calculated by the subtracting the

RSS from the total sum of squares (TSS), and subsequently dividing by the TSS (James

et al., 2021).

R2 =
TSS −RSS

TSS
= 1− RSS

TSS
(9)

19

4 Data

The dataset used in the analysis for this thesis was retrieved from Kaggle 1, which is

eligible for public use according to the Attribution 4.0 international (CC BY 4.0) license.

The data shows the prices listed for one-way ŕights on the travel search engine Expedia.com

between April and October 2022 from and to 16 different airports in the United States.

The original dataset contains 27 attributes including search and ŕight date, ŕight duration,

price with and without tax, departure time, departure and arrival airport and number of

seats remaining, to name a few. Each row represents one ŕight on a speciőc search date.

The full list of features can be found in Appendix A.1.

4.1 Data pre-processing

The data pre-processing was done in RStudio, while the models were implemented in

Python. Given the huge size of the original dataset (31.09 GB), it was őrstly őltered

to only one single search date, namely April 22, 2022. This date was chosen due to the

following reasons: The observations in the dataset start on April 16, 2022, which was just

a few days before Easter. It can be assumed that the observations on the őrst search

days in the dataset do not represent the actual price patterns due to the fact that it

is a long weekend for many people, and therefore airlines might decide to adjust their

prices accordingly (Lantseva et al., 2015; Rozenberg et al., 2014). In order to exclude this

potential distortion of the real pricing patterns, it was decided to use Wednesday after

Easter, supposing that the prices on that day were not affected by any external factors.

After that, ŕights with layover were removed for the simplicity of the analysis.

Subsequently, it was necessary to change several data types and create new variables.

After casting the data types, the variable dtd (days to departure) was created by calcu-

lating the difference between the ŕight date and the search date. Moreover, segmentsDu-

rationInSeconds was turned into ŕightDurationMin in order to display the travel duration

in minutes, which is easier to read and interpret. Additionally, the departure time was

extracted from the column segmentsDepartureTime into the column dep_time. Then, the

departure times were divided into the four categories morning (6-12h), afternoon (12-18h),

evening (18-24h) and night (0-6h).

Furthermore, the dataset was őltered to only include coach as cabin type, as the

comparability was not given due to the low number of observations in the other categories.

For the same reason, the dataset was őltered to exclude basic economy fares.

Based on the literature research conducted for this thesis, there is evidence that the

ŕight prices are inŕuenced by the weekday on which the ŕight is operated (Malighetti

et al., 2015). To őnd out whether this is true in the present dataset, an ANOVA test

1https://www.kaggle.com/datasets/dilwong/flightprices

20

was conducted. ANOVA was the appropriate test as the goal was to őnd out whether

there is a difference in mean total fare between the seven days of the week, that is, a

comparison between several groups. Before conducting the test, a new column, namely

weekday_ŕ was added, indicating on which day of the week the ŕight departs. The result

of the ANOVA test shows that there is a signiőcant difference in means between the

weekdays at a 99% signiőcance level. To get a more detailed insight, the Tukey’s test was

done, which compares all the days in a pairwise manner. The outcome of this comparison

shows a signiőcant difference in means for every pairwise comparison. The only pairs that

show slightly less signiőcant differences are Saturday-Monday, Wednesday-Tuesday and

Thursday-Friday. Based on these results it does not make sense to group the days of the

week into weekend and during the week.

Similarly, the relationship between the different airlines and total fare was tested using

the same procedure. Again, a signiőcant difference between the airlines and total fare was

found. Additionally, the pairwise comparison implies a signiőcant difference between all

the airlines except Delta Airlines and Alaska Airlines.

Next, the dummy variable lcc (low cost carrier) was created indicating whether the

operating airline is considered a low cost carrier or a full service carrier (hereafter LCC

and FSC, respectively). The categorization was based on the grouping by Tsoukalas et al.

(2008) resulting in three LCC (Spirit Airlines, JetBlue Airways and Frontier Airlines)

and four FSC (American Airlines, Delta Airlines, Alaska Airlines and United Airlines).

When comparing the LCC to FSC with regard to total fare, the t-test shows a signiőcant

difference between the two airline types, supporting the assumption that there is a notable

price different between LCC and FSC.

Ultimately, all the unnecessary columns were removed resulting in a őnal dataset with

85 115 observations and 12 features. The pre-processing in R and the full feature list of

the őnal dataset can be found in Appendix A.2 and A.3 respectively.

4.2 Exploratory Data Analysis

After the afore-mentioned pre-processing steps the dataset is ready to be examined in

more depth. To start with, an exploratory data analysis will help to better understand

the characteristics of the data at hand.

Initially, the main variable of interest of this analysis was the ŕight ticket price (total-

Fare). The values range from 23.97 USD to 1665.60 USD. As indicated by the literature

review and conőrmed by the ANOVA test, the departure day signiőcantly inŕuences the

total price. To get a őrst impression of the relationship between weekdays and ŕight

prices, the average price per weekday is plotted in Figure 1. While Tuesday and Wednes-

day appear to be the cheapest ŕight days, ŕying on Sunday costs the most. Notably, this

is true for low-cost, as well as full service carriers.

21

Figure 1: Average ŕight price per ŕight day

When having a look at the distribution of price values, it becomes apparent that they

are positively skewed due to occasional tickets with extremely high prices compared to

the rest. Applying a log transformation results in a more normal distribution (see Figure

2). This step is helpful since some models, such as Linear Regression, assume a linear

relationship between the predictors and the outcome variable, which is is enhanced with

the log transformation.

Figure 2: Distribution of total fare with and without log transformation

Apart from resulting in a more normal distribution of the output variable total fare, the

log transformation leads to a partial elimination of the outliers and consequently reduce

the inŕuence of extreme values. As can be seen in Figure 3, some airlines have various

tickets with fares signiőcantly higher than their median values. Figure 4 shows the price

distribution after the log transformation, due to which the distance between outliers and

the median were notably reduced. Therefore, from now on the variable of interest will no

longer be totalFare, but totalFare_log.

22

Figure 3: Price distribution per airline before log transformation

Figure 4: Price distribution per airline after log transformation

When comparing the two correlation matrices (Figure 5) one can see that, on the

őrst glimpse, the feature correlations vary slightly in their magnitude, yet, the general

directions are the same for both low cost and full service carriers. In both cases, total

fare increases when days to departure decrease. This őnding was to be expected and is

in line with what other researches have found. Interestingly though, it seems that total

fare also increases with a higher number seats remaining. These two features and their

relationship to the total fare will be discussed in more detail below. Within the dataset

totalTravelDuration is the only feature that has NAs. However, since travel distance and

travel duration are closely correlated, the feature ŕightDurationMIN will be used as an

23

indicator for the travel length.

Figure 5: Correlation matrices low cost carrier vs legacy carrier

Figure 6 visualizes the relationship between days to departure and the average total

fare by airline type. It shows that both low-cost and legacy carriers increase their prices

one week before departure and charge the highest price four days before departure. After

that, the prices seem to decrease until the day of the ŕight. This might be because the

airlines want to őll up the planes and prefer selling the tickets for a lower price than not

at all (Donaghy et al., 1995).

Figure 6: Average total fare by days to departure

Depending on the aircraft type, planes have different capacities with regard to how

many passengers they can accommodate. One of most used aircrafts in the US in 2022

24

was the Boeing 737-800, which can hold 162-189 passengers 2. The present dataset only

includes observations with ten or less seats remaining. In contrast to almost 200 available

seats, having only 10 remaining seats means the ŕight is almost fully booked. Looking

at Figure 7, it seems like legacy carriers are not inŕuenced a lot by the number of seats

remaining. The average fare stays relatively constant while the number of seats remaining

decreases. Low-cost carriers, on the other hand, ŕuctuate much more. While their average

price for ŕights with 10 seats remaining is very low compared to the legacy carriers, it

increases the fewer available seats there are. With one seat remaining the LCC even ask

for a higher price than the legacy carriers. Lastly, and at őrst sight surprisingly, there

seem to be observations with zero seats remaining that still have a price. A possible

explanation might be overbooking.

Figure 7: Average total fare by number of seats remaining

With respect to the allocation of observations between LCC and FSC, the two pie

charts provided in Figure 8 illustrate that the majority (77%) of the observations represent

full service carriers, whereas the remaining portion, 23%, belong to low-cost carriers. This

distribution is relatively close to the real-word scenario where LCC made up around 30%

of air traffic in 2016 (Kwoka et al., 2016).

5 Modelling

This section outlines the process of implementing several predictive models, including

the necessary pre-processing steps involved and comparing their individual performances.

2https://www.boeing.com/commercial/737ng/

25

Figure 8: Distribution of airlines and airline type

The primary objective is to get a clearer understanding of the underlying patterns within

the data and identify the most signiőcant factors inŕuencing ŕight price.

To start with, two further data sets were created in addition to the total dataset, one

for low-cost carriers (lcc = 1) and another one for full-service carriers (lcc = 0) consisting

of 19 606 and 65 506 observations, respectively. Then, all three data sets were split into

training and test data using an 80/20 split ratio, separating the predictive features from

the target variable totalFare_log.

In section 4.2 the advantages of the log transformation of the variable totalFare was

already discussed. Apart from totalFare, the distribution of the feature ŕightDuration-

MIN also showed an improvement from a log transformation and was closer to a normal

distribution. For the remaining numerical variables no meaningful improvements could

be observed, hence, the log transformation was not applied to any further features.

Subsequently, the categorical variables were one-hot encoded, converting them into

dummy variables that represent all the different categories in each variable. In other

words, non-numerical data was transformed into a numerical format that algorithms can

deal with more effectively. The categorical variables that were one-hot encoded are week-

day_ŕ, segmentsAirlineName, day_time, startingAirport and destinationAirport.

Following the one-hot encoding, some variables were scaled. Scaling (or data normal-

ization) transforms the values of numerical features into a similar scale, in order for each

variable to have the same weight in the model. Feature scaling is especially helpful for

algorithms that do not assume a speciőc distribution of the data and are distance-based,

such as KNN. There are several different scaling methods, which one is applicable de-

pends on the characteristics of the data. For the present dataset, the MinMaxScaler was

chosen. This method converts all the values into a range between 0 and 1 by applying

the following formula:

26

Xscaled =
(X −Xmin)

(Xmax −Xmin)
(10)

After the above-mentioned procedures, the different models were constructed. Each

algorithm was trained and evaluated three times: once with the entire dataset, once with

only LCC data, and once only with FSC data. By doing so, the models can effectively

be compared based on their predictive performance not only with other models, but also

their own performance with different datasets. The table below lists each model and the

respective performance measures and computational time for each dataset.

Model Dataset MSE MAE RMSE R-squared Comp. Time (s)

LR Total 0.1333 0.2811 0.3651 0.5695 0.57

LR LCC 0.1885 0.3341 0.4341 0.5337 0.04

LR FSC 0.1117 0.2603 0.3342 0.5076 0.13

KNN Total 0.0831 0.2125 0.2882 0.7180 14.12

KNN LCC 0.1203 0.2443 0.3468 0.7024 0.70

KNN FSC 0.0742 0.2045 0.2723 0.6732 6.85

GB Total 0.1062 0.2521 0.3258 0.6397 18.91

GB LCC 0.1283 0.2705 0.3581 0.6827 2.80

GB FSC 0.0877 0.2314 0.2961 0.6135 17.48

DT Total 0.0913 0.1916 0.3038 0.6867 1.84

DT LCC 0.1339 0.2183 0.3660 0.6686 0.26

DT FSC 0.0844 0.1880 0.2904 0.6282 1.06

RF Total 0.0500 0.1553 0.2236 0.8303 148.06

RF LCC 0.0733 0.1796 0.2708 0.8186 25.12

RF FSC 0.0441 0.1500 0.2100 0.8057 97.40

Table 1: Performance Metrics

The őrst model that was tested is the linear regression. As mentioned before in this

thesis, the linear regression has a rather straight-forward way of predicting, which is

also relatively simple to interpret. However, due to the simplicity of the model and the

assumption that the predictors and the target variable share a linear relationship, the

predictive performance is usually poorer than other, more sophisticated, algorithms. The

performance of the present linear regression model is illustrated in Figure 9, showing

scatterplots plotting the predicted versus the actual values for ŕight price (with log trans-

formation). It looks like the linear regression model performs better on the LCC than the

27

FSC dataset, since the majority of the data points are situated closer to the regression

line than for the FSC data. Overall, the plots reveal that the general pattern is captured

by the models, yet, there are still numerous predictions that deviate signiőcantly from

the true values.

Figure 9: Linear Regression: True vs predicted values per dataset

With regard to the error metrics, the R2 values range between 0.51 and 0.57 indicating

moderate predicting power. The highest value is observed for the total dataset, whereas

the model performed poorest on the FSC dataset. This is in line with what Figure 9

revealed. For all three variations of the linear regression model the computational time is

very low.

Next, the results of the KNN models show an overall good performance. The R2 values

lie between 0.67 and 0.72. Notably, the computational time is extremely short for the

LCC dataset (0.70 seconds), whereas it is 6.85 seconds for the FSC data and over the

double for the total dataset (14.12 seconds). The set default value for K is 5. The model

was additionally tested on all three datasets with K = 3 and K = 7, however, the R2

values decreased in both scenarios, resulting in K = 5 for all the KNN models used in this

thesis.

The Gradient Boosting models show slightly poorer results than the KNN model

described before. Additionally, the computational time is signiőcantly higher. After

deploying the Gradient Boosting Regressor for all the datasets, their respective feature

importance was plotted, visualizing how inŕuential each of the features are. Feature

importance gives an insight into how valuable each of the predictors is relative to the

others. The higher the importance, the more inŕuential the feature towards to output

variable. Figure 9 shows the eight most prominent features that the algorithm detected

in each dataset. Comparing the outcomes, it becomes obvious that ŕight duration is the

key driver for ŕight price for LCC, FSC, as well as the combined dataset. After that, days

to departure play the second most important role for both the LCC and the FSC data.

For the combined dataset, days to departure ranks as the third most signiőcant predictor,

while the classiőcation between LCC and non-LCC holds the second place in terms of

28

importance. Based on these plots, it can be understood that the most inŕuential factors

for the ŕight price seem to be relatively similar across the datasets. Moreover, it is worth

noting that Sunday as ŕight days is within the top 5 features in all the datasets. As was

illustrated in Figure 1 in section 4 of this thesis, Sunday seems to be the most expensive

day to ŕy. However, when looking at the features ranked below the most important ones,

larger discrepancies become apparent, listing different airlines and airports as signiőcant

characteristics.

(a) Total (b) LCC (c) FSC

Figure 10: Feature importance per dataset

The Decision Tree models, on the other hand, have similar results to the GB models

but way lower computational time. Figure 11 shows the őrst three layers of the model’s

output for the total dataset. The root node, situated at the top, represents the starting

point of the data splitting process. One can see that ŕight duration again is the most

important feature, determining the initial data split.

Figure 11: Decision tree - total dataset

-

Lastly, the Random Forest models outperform all the previous models materially.

They show the highest R2 for all three datasets, ranging from 0.81 for the FSC dataset

to 0.83 for the total dataset. Yet, the computational time is also remarkably higher for

these algorithms.

29

Overall, the computational time for the LCC dataset is always the shortest. Similarly,

the error rates are consistently higher for the LCC dataset. This might be due to the fact

that the LCC dataset has considerably less observations than the other two datasets and

therefore the algorithms have fewer data points from which they can learn. This might

be the reason for poorer results. Additionally, as demonstrated in Figure 7 in section 4.2,

the LCC dataset shows higher volatility, which could also explain the higher error rates.

All in all, the Random Forest models show the best results but are also computation-

ally the most expensive. The decision trees and KNN algorithms have a slightly lower

performance but are computationally more efficient. Finding a balance between predic-

tive performance and computational efficiency is a trade-off that is always present when

evaluating different machine learning models. Which model is the best őt depends on the

computational resources available.

The complete code in Python can be found in Appendix A.4.

30

6 Discussion

This chapter includes the interpretation of the obtained results throughout this study and

aims to answer the research questions. Moreover, the limitations are discussed.

6.1 Findings

The goal of this thesis was őnd out to what extent ŕight details are sufficient to predict

ŕight prices, what the most inŕuential determinants of ticket prices are and whether they

differ between low-cost and legacy carriers. Ultimately, the aim was to identify which

machine learning algorithm could best forecast ŕight fares.

In terms of the sufficiency of ŕight details as input for price forecasting, the analysis

reveals that a big part of the price is determined by ŕight details such as days to departure

and ŕight duration. At the same time, this thesis’ best performing model, the Random

Forest of the total dataset, reached a R2-value of 0.83. While this is a fairly decent result,

it still leaves almost 20% of the variability in the dataset unexplained. This indicates

that other external factors also inŕuence ticket prices. These might be fuel prices, travel

restrictions and geopolitical events, to name a few.

With regard to the most inŕuential determinants of ŕight prices ŕight duration is, as

expected, the most important feature. The longer the ŕight distance, the higher the price.

This is true for LCC and FSC. Following ŕight duration, airline type plays the second

most important role for the mixed dataset. LCC do show lower prices than FSC almost

throughout the entire analysis. The only time average LCC prices exceed those of FSC

is when 0-3 seats are left in a speciőc ŕight.

For both the LCC and the FSC dataset days to departure are the next most inŕuential

features after ŕight duration. By examining the relationship between average total fare

and days to departure it became evident that the prices increase considerably around 9

days to departure and peak at 4 days remaining, after which they decrease steadily until

the departure day. This is most probably because the airlines want to sell the remaining

seats so they lower the prices (Groves and Gini, 2011).

With respect to seats remaining and their impact towards the ŕight price, it was

found that their inŕuence is not as clear as was expected. The connection between the

two variables was examined in section 4, which already gave an idea of their importance

in the models created subsequently. The plot (Figure 7) showed that the average price for

FSC hardly changes when the number of seats remaining decrease. For LCC the prices

ŕuctuate more depending on the seats remaining. While they start comparable low at

10 seats remaining they increase considerably, with an exception at four days remaining,

and reach the highest values when only one seat is left. This contradicts the őnding of

the study conducted by Etzioni et al. (Etzioni et al., 2003), namely that LCC ŕuctuate

31

less than FSC.

Similarly, the models did not identify the number of seats remaining as very inŕuential

factor. The feature importance from the Gradient Boosting Regressor lists seats remaining

on the 12th place for the combined dataset and FSC separately, and only on 24th place

for LCC. The Decision Tree also only shows the seats remaining on the 5th depth level.

This őnding indicates that the number of seats remaining only becomes relevant further

down in the feature selection.

Relating to ŕight day the analysis reveals that both LCC and FSC have a very similar

price movement with relation to the day of the week. In both datasets, Sunday turns out

to be the most expensive ŕight day, whereas the ŕight fares fall at the beginning of the

week, reaching the lowest point on Wednesday. After that, the prices increase towards

the weekend, decrease a little on Saturday and rise sharply on Sunday. This observations

aligns with the őndings of Malighetti et al. (Malighetti et al., 2015) who also concluded

that prices tend to peak around Sunday and are cheapest on Wednesday and Thursday.

As for the performance of machine learning models to forecast ŕight prices various

algorithms were tested throughout this thesis. Each was deployed three times, with the

combined dataset, only for full service carriers, and lastly only for low cost carriers. While,

as expected, the linear Regression performed the worst for all datasets, the Random Forest

had the best predictive performance in all three cases ranging from a R2 value from 0.81 for

the FSC data to 0.82 and 0.83 for the LCC and the combined dataset, respectively. That

being said, the superior performance comes with a higher computational cost as well. The

Random Forest models all show longer computational times than any other models. This

trade-off is a common consideration when deciding between different models. Whether

a more complex model with higher computational cost or a simpler model with slightly

poorer prediction accuracy is preferred depends on the speciőc problem and requirements

at hand. In this case, despite the Random Forest having the longest running time, it still

is the preferred choice since the duration is manageable especially considering the huge

dataset used in this analysis. For this reason the Random Forest is selected as the best

model to forecast ŕight prices for all the three scenarios, being LCC, FSC and both airline

types combined, analysed throughout the thesis.

6.2 Limitations

Lastly, it is important to acknowledge the limitations and scope of this research to inter-

pret the results appropriately and get an understanding of how well the őndings can be

generalized. Three main constraints were identiőed throughout this thesis.

Firstly, the maximum number of days to departure in the dataset is limited to 39. In

reality, it is possible to book ŕights much further in advance already. Depending on the

nature of the trip, such as business or leisure, tickets are booked earlier or later. Still, by

32

only having a maximum of 39 days to departure, the price dynamics for tickets purchased

well in advance might not be captured in this thesis.

Similarly, the range of the number of seats remaining in the dataset spans from zero to

ten. Since the typical commercial airplane accommodates signiőcantly passengers, having

only 10 seats remaining indicates that the ŕight is nearly fully booked, hence, comparably

higher prices are expected.

Furthermore, only one search date is considered in the present analysis, meaning the

price development over time for individual ŕights could not be examined. Additionally,

the dataset includes observations from the year 2022. Consequently, it can be assumed

that the aviation industry has not yet fully recovered from the impact of the COVID-19

pandemic. As a results, the prices listed in this dataset might still be inŕuenced by the

repercussions of the travel restrictions the preceding years.

These identiőed constraints must be kept in mind when generalizing the results of this

study while at the same time presenting opportunities for further investigations in this

area.

33

7 Conclusion

To conclude, this thesis analysed that ŕight prices can be predicted pretty accurately using

only ŕight details such as ŕight duration and days to departure. The best performing

machine learning model is the Random Forest, which for each of the datasets, them

being LCC, FSC and both combined, reached R2 values of 0.81, 0.82 and 0.83. Even

though these models also have the highest computational time, their higher predictive

performance outweigh the higher computational cost. Nevertheless, it is important to

mention that almost 20% of the variability in the data remains unexplained, meaning

that other external factors are necessary to reach a higher accuracy.

Concerning the most important features, it was found that ŕight duration and days to

departure play a signiőcant role in determining the ŕight price. This is true for all three

datasets and is in line with what previous literature covering this topic have pointed out.

The number of seats remaining, on the other hand, seems to only inŕuence the price on

a deeper level, after having considered various features beforehand. This became evident

during the feature importance analysis of the Gradient Boosting Regressor as well as the

Random Forest. This őnding was somewhat surprising since intuitively and according to

other studies this factor plays an important role in price determination. However, this

result might be attributed to the fact that the dataset only had up to 10 seats remaining,

thus, limited variation and therefore the feature’s potential relevance may not have been

effectively demonstrated.

As mentioned previously, certain limitations of this study need to be taken into careful

consideration when generalizing the results. At the same time, these constraints present

opportunities for further research in this őeld. First of all, extending the dataset to include

more than ten seats remaining as well as over 39 days to departure would allow to study

the price developments over a longer period of time and get an insight into the price

changes from when the plane is still empty to when it is almost fully booked. Apart from

including longer time horizons in the analysis, it would make sense to include a time series

component, by investigating the price developments of speciőc ŕights to understand the

individual pricing patterns and developments of the ŕight. This would effectively allow

researchers to get a more detailed insight into a speciőc price evolution. Furthermore,

the present dataset only includes national ŕights within in the USA. A possible next step

would be to enlarge the analysis for international ŕights. Also, the approach of using

machine learning models to forecast ŕight prices could be enhanced by experimenting

with deep learning algorithms that might convince with a higher predictive accuracy.

Lastly, instead of forecasting ŕight prices, one could build on existing literature aiming

to supply a buy or wait decision, depending whether the prices are expected to increase

or decrease after the search date.

34

References

Boer, A. V. D. (2015, 6). Dynamic pricing and learning: Historical origins, current

research, and new directions. Surveys in Operations Research and Management Sci-

ence 20, 1ś18.

Breiman, L. (2001). Random forests. Machine Learning 45, 5ś32.

Coto-Millán, P., X. L. Fernández, P. Casares-Hontañón, V. Inglada, and M. Ángel Pes-

quera (2015). Assessing two airline models: Legacy vs. low cost carriers. International

Journal of Transport Economics 42, 487ś506.

Donaghy, K., U. Mcmahon, and D. Mcdowell (1995). Yield management: an overview.

International journal of hospitality management 14, 139ś150.

Etzioni, O., C. A. Knoblock, R. Tuchinda, and A. Yates (2003). To buy or not to buy:

Mining airfare data to minimize ticket purchase price. pp. 119ś128. Proceedings of

the ninth ACM SIGKDD international conference on Knowledge discovery and data

mining.

Friedman, J. H. (2006, 9). Recent advances in predictive (machine) learning. Journal of

Classiőcation 23, 175ś197.

Gordiievych, A. and I. Shubin (2015, 10). Forecasting of airfare prices using time series.

pp. 68ś71. IEEE.

Groves, W. and M. Gini (2011). A regression model for predicting optimal purchase

timing for airline tickets.

Groves, W. and M. Gini (2013). An agent for optimizing airline ticket purchasing. pp.

1341ś1342.

Groves, W. and M. Gini (2015, 9). On optimizing airline ticket purchase timing. ACM

Transactions on Intelligent Systems and Technology 7, 1ś28.

James, G., D. Witten, T. Hastie, and R. Tibshirani (2021). An Introduction to Statistical

Learning with Applications in R Second Edition (2 ed.). Springer Publication.

Kimes, S. E. (1989). The basics of yield management. Cornell Hotel and Restaurant

Administration Quarterly 30, 14ś19.

Kwoka, J., K. Hearle, and P. Alepin (2016, 5). From the fringe to the forefront: Low cost

carriers and airline price determination. Review of Industrial Organization 48, 247ś268.

Lantseva, A., K. Mukhina, A. Nikishova, S. Ivanov, and K. Knyazkov (2015). Data-driven

modeling of airlines pricing. Volume 66, pp. 267ś276.

35

Malighetti, P., S. Paleari, and R. Redondi (2015, 9). Easyjet pricing strategy: determi-

nants and developments. Transportmetrica A: Transport Science 11, 686ś701.

Papadakis, M. (2012). Predicting airfare prices.

Provost, F. and T. Fawcett (2013). Data Science for Business: What you need to know

about data mining and data-analytic thinking. O’Reilly Media, Inc.

Rajankar, S. and N. Sakharkar (2019). A survey on ŕight pricing prediction using machine

learning. Internatıonal Journal Of Engıneerıng Research Technology (Ijert) 8, 1281ś

1284.

Rajure, P., S. Bankar, H. Bakshi, and B. Patil (2021). Prediction of domestic airline

tickets using machine learning. International Journal for Research in Applied Science

and Engineering Technology 9, 666ś674.

Rozenberg, R., S. Szabo, and I. Šebeščáková (2014). Comparison of fsc and lcc and their

market share in aviation. International Review of Aerospace Engeneering (IREASE) 7,

149ś154.

Selcuk, A. M. and Z. M. Avs.ar (2019, 10). Dynamic pricing in airline revenue management.

Journal of Mathematical Analysis and Applications 478, 1191ś1217.

Taddy, M. (2019). Business data science: Combining machine learning and economics to

optimize, automate, and accelerate business decisions. McGraw-Hill Education.

Tsoukalas, G., P. Belobaba, and W. Swelbar (2008). Cost convergence in the us airline in-

dustry: An analysis of unit costs 1995ś2006. Journal of Air Transport Manegement 14,

179ś187.

Varian, H. R. (2014). Big data: New tricks for econometrics. Journal of Economic

Perspectives 28, 3ś28.

Wang, T., S. Pouyanfar, H. Tian, Y. Toa, M. Alonso, S. Luis, and S.-C. Chen (2019). A

framework for airfare price prediction: a machine learning approach. pp. 200ś207.

Wang, Z. (2020). Rwa: A regression-based scheme for ŕight price prediction.

36

A Appendix

A.1 Raw dataset

Variable Description

legID An identiőer for the ŕight

searchDate The date (YYYY-MM-DD) on which this

entry was taken from Expedia

ŕightDate The date (YYYY-MM-DD) of the ŕight

startingAirport Three-character IATA airport code for the

initial location

destinationAirport Three-character IATA airport code for the

arrival location

fareBasisCode The fare basis code

travelDuration The travel duration in hours and minutes

elapsedDays The number of elapsed days

isBasicEconomy Boolean for whether the ticket is for basic

economy

isRefundable Boolean for whether the ticket is refundable

isNonStop Boolean for whether the ŕight is non-stop

baseFare The price of the ticket (in USD)

totalFare The price of the ticket (in USD) including

taxes and other fees

seatsRemaining Integer for the number of seats remaining

totalTravelDistance The total travel distance in miles. This data

is sometimes missing

segmentsDepartureTimeEpochSeconds String containing the departure time (Unix

time) for each leg of the trip. The entries for

each of the legs are separated by ’||’

segmentsDepartureTimeRaw String containing the departure time (ISO

8601 format: YYYY-MM-DDThh:mm:ss.

000±[hh]:00) for each leg of the trip. The

entries for each of the legs are

separated by ’||’

segmentsArrivalTimeEpochSeconds String containing the arrival time (Unix time)

for each leg of the trip. The entries for each

of the legs are separated by ’||’

37

Variable Description

segmentsArrivalTimeRaw String containing the arrival time (ISO 8601

format: YYYY-MM-DDThh:mm:ss.000±[hh]:00)

for each leg of the trip. The entries for each of

the legs are separated by ’||’

segmentsArrivalAirportCode String containing the IATA airport code for the

arrival location for each leg of the trip. The

entries for each of the legs are separated by ’||’

segmentsDepartureAirportCode String containing the IATA airport code for the

departure location for each leg of the trip. The

entries for each of the legs are separated by ’||’

segmentsAirlineName String containing the name of the airline that

services each leg of the trip. The entries for each of

the legs are separated by ’||’

segmentsAirlineCode String containing the two-letter airline code that

services each leg of the trip. The entries for each

of the legs are separated by ’||’

segmentsEquipmentDescription String containing the type of airplane used for

each leg of the trip (e.g. "Airbus A321" or

"Boeing 737-800"). The entries for each of the legs

are separated by ’||’

segmentsDurationInSeconds String containing the duration of the ŕight (in

seconds) for each leg of the trip. The entries for

each of the legs are separated by ’||’

segmentsDistance String containing the distance traveled (in miles)

for each leg of the trip. The entries for each of

the legs are separated by ’||’

segmentsCabinCode String containing the cabin for each leg of the trip

(e.g. "coach"). The entries for each of the legs

are separated by ’||’

38

A.2 Data pre-processing in R

#i n s t a l l . packages (" c o r r p l o t ")

#i n s t a l l . packages (" car ")

#i n s t a l l . packages (" Metr ics ")

#i n s t a l l . packages ("GGally ")

#load packages

l ibrary (dplyr)

l ibrary (data . table)

l ibrary (ggp lot2)

l ibrary (pwr)

l ibrary (broom)

l ibrary (l ub r i d a t e)

l ibrary (s c a l e s)

l ibrary (t i dyv e r s e)

l ibrary (g g f o r t i f y)

l ibrary (powerMediation)

l ibrary (skimr)

l ibrary (s t a r g a z e r)

l ibrary (lmtes t)

l ibrary (readr)

l ibrary (vip)

l ibrary (t idymodels)

l ibrary (themis)

l ibrary (c o r r p l o t)

l ibrary (car)

l ibrary (Metr ics)

l ibrary (GGally)

#empty environment

rm(l i s t = l s ())

#check f i l e s in wd

getwd ()

setwd ("C: /Users/ sophi/OneDrive/Dokumente/Cato l i ca/Master␣ t h e s i s /Data")

l i s t . f i l e s ()

39

#load data

#dt <− read . csv (" i t i n_2M. csv ")

#t a b l e (d t$searchDate)

#data pre−proce s s ing

#f i l t e r f o r on ly 2022−02−22 − Wednesday

data <− dt %>% f i l t e r (searchDate == "2022−04−20")

#only non−s top f l i g h t s

data_nonstop_raw <− data %>% f i l t e r (isNonStop == 1)

view (data_nonstop)

#check d i s t i n c t IDs to make sure every f l i g h t appears on ly once

#n_d i s t i n c t (data_nonstop$ l e g I d)

#remove o ther da t a s e t s

rm(dt)

rm(data)

#crea t e csv wi th raw non−s top data f o r Apr i l 22 2022

#wr i t e . csv (data_nonstop_raw , " data_nonstop_raw_20220422. csv ")

data_nonstop_raw <− read . csv ("data_nonstop_raw_20220422. csv ")

#check da ta t ype s

s t r (data_nonstop_raw)

#change da ta t ype s

data_nonstop <− data_nonstop_raw %>%

mutate (isBasicEconomy = as .numeric (isBasicEconomy) ,

i sRe fundab le = as .numeric (i sRe fundab le) ,

f l i g h tDa t e = as . Date (f l i g h tDa t e) ,

searchDate = as . Date (searchDate) ,

segmentsDurationInSeconds =

as .numeric (segmentsDurationInSeconds))

#check da ta t ype s a f t e r c a s t i n g

#sapp l y (data_nonstop [, c (" f l i g h tDa t e " ," searchDate " ,

" i sRe fundab l e ")] , c l a s s)

40

#s t r (data_nonstop)

#crea t e v a r i a b l e days to depar ture

#conver t seconds in t o minutes

data_nonstop <− data_nonstop %>% mutate (

dtd = as .numeric (f l i g h tDa t e − searchDate) ,

f l ightDurationMIN = segmentsDurationInSeconds/60)

#ex t r a c t depar ture time

data_nonstop <− data_nonstop %>%

mutate (dep_time = substr (segmentsDepartureTimeRaw , 12 , 16))

#s p l i t t ime o f day in 4 c a t e g o r i e s

data_nonstop <− data_nonstop %>%

mutate (day_time = case_when(

between (hour (as . POSIXlt (dep_time , format = "%H:%M")) , 0 , 5) ~

"Night" ,

between (hour (as . POSIXlt (dep_time , format = "%H:%M")) , 6 , 11) ~

"Morning" ,

between (hour (as . POSIXlt (dep_time , format = "%H:%M")) , 12 , 17) ~

"Afternoon" ,

between (hour (as . POSIXlt (dep_time , format = "%H:%M")) , 18 , 23) ~

"Evening"

))

#f i l t e r f o r on ly coach

#t a b l e (data_nonstop_raw$segmentsCabinCode)

data_nonstop <− data_nonstop %>% f i l t e r (segmentsCabinCode == "coach")

#isbas iceconomy

table (data_nonstop_raw$ isBasicEconomy)

data_nonstop <− data_nonstop %>% f i l t e r (isBasicEconomy == ’ 0 ’)

#r e l a t i o n s h i p between weekday and pr i c e

#add the weekdays f o r the f l i g h t da te s

data_nonstop <− data_nonstop %>% mutate (weekday_f l = weekdays (f l i g h tDa t e))

Perform ANOVA t e s t bec mu l t i p l e groups (7 days)

weekday_p r i c e <− aov (t o ta lFa r e ~ weekday_f l , data = data_nonstop)

41

weekday_p r i c e_r e s u l t <− summary(weekday_p r i c e)

print (weekday_p r i c e_r e s u l t)

#Tukey ’ s t e s t f o r pa i rw i s e comparison o f means

weekday_p r i c e_tukey <− TukeyHSD(weekday_p r i c e)

print (weekday_p r i c e_tukey)

#r e l a t i o n s h i p between a i r l i n e name and pr i c e

Perform ANOVA t e s t bec mu l t i p l e groups (7 a i r l i n e names)

table (data_nonstop$segmentsAirl ineName)

a i r l i n e_p r i c e <− aov (t o ta lFa r e ~ segmentsAir l ineCode , data = data_nonstop)

a i r l i n e_p r i c e_r e s u l t <− summary(a i r l i n e_p r i c e)

print (a i r l i n e_p r i c e_r e s u l t)

#r e s u l t : s i g n i f i c a n t d i f f e r e n c e between groups bec very sma l l p−va lue

#Tukey ’ s t e s t f o r pa i rw i s e comparison o f means

a i r l i n e_p r i c e_tukey <− TukeyHSD(a i r l i n e_p r i c e)

print (a i r l i n e_p r i c e_tukey)

#crea t e dummy fo r low co s t a i r l i n e s

#t a b l e (data_nonstop$ segmentsAir l ineCode)

data_nonstop <− data_nonstop %>% mutate (

l c c = i f e l s e (segmentsAir l ineCode == ’B6 ’ | segmentsAir l ineCode == ’F9 ’ |

segmentsAir l ineCode == ’NK’ , 1 , 0))

table (data_nonstop$ l c a)

#d i f f between l c c and l e gacy c a r r i e r s

t t e s t_l c c <− t . t e s t (p r i c e_min ~ l c c , data = data_nonstop)

print (t t e s t_l c c)

#a l l v a l u e s in i sRe fundab l e are 0 so t ha t column can be removed

unique (data_nonstop_raw$ i sRe fundab le)

#remove e lapseddays column bec t r a v e l d u r a t i o n and dep time s u f f i c i e n t

table (data_nonstop_raw$elapsedDays)

42

#de l e t e unnecessary columns

data_nonstop <− data_nonstop %>% s e l e c t (−X, −X.1 , −l eg Id , −searchDate ,

−isNonStop , −fareBasisCode ,

−i sRefundable , −t rave lDurat ion ,

−elapsedDays ,

−segmentsDurationInSeconds ,

−baseFare , −segmentsDistance ,

−segmentsCabinCode ,

−segmentsAir l ineCode ,

−segmentsEquipmentDescription ,

−segmentsArr ivalAirportCode ,

−segmentsDepartureAirportCode ,

−isBasicEconomy ,

−segmentsArrivalTimeEpochSeconds ,

−segmentsArrivalTimeRaw ,

−segmentsDepartureTimeEpochSeconds ,

−segmentsDepartureTimeRaw ,

−f l i g h tDa t e)

#crea t e csv

write . csv (data_nonstop , "data_nonstop_preproce s s ed . csv ")

43

A.3 Pre-processed dataset

Variable Description

startingAirport String containing the IATA airport code for the

departure location

destinationAirport String containing the IATA airport code for the

arrival location

totalFare The price of the ticket (in USD) including taxes and

other fees

seatsRemaining The number of seats remaining

totalTravelDistance The total travel distance in miles

segmentsAirlineName String containing the name of the airline that services

the trip

dtd The number of days to departure calculated by the

difference between search date and ŕight date

ŕightDurationMIN The ŕight duration in minutes calculated by dividing the

variable segmentsDurationInSeconds by 60

dep_time String containing the departure time of the ŕight

(format: hh:mm) extracted from the variable

segmentsDepartureTimeRaw

day_time String containing whether the ŕight is in the morning,

afternoon, evening or during the night

weekday_ŕ String containing the day of the week on which the

ŕight departs

lcc Dummy for whether the airline is a low-cost-carrier or not

44

A.4 Exploratory Data Analysis in Python

!/ usr / b in /env python3

−∗− coding : u t f −8 −∗−

imports

import os as os , numpy as np , pandas as pd

import matp lo t l i b . pyplot as p l t

from mpl_toolk i ts . mplot3d import Axes3D

import s ta t smode l s . ap i as sm

from s k l e a rn . p r ep ro c e s s i ng import OneHotEncoder

from s k l e a rn . compose import ColumnTransformer

from s k l e a rn . l inear_model import LinearRegre s s i on

from s k l e a rn . ensemble import GradientBoost ingRegressor

from s k l e a rn . ne ighbors import KNeighborsRegressor

from s k l e a rn . t r e e import Dec i s ionTreeRegres sor

from s k l e a rn . mode l_se lect ion import GridSearchCV

from s k l e a rn . ensemble import RandomForestRegressor

from s k l e a rn import svm

from s k l e a rn import t r e e

from s k l e a rn . l inear_model import Lasso

from s k l e a rn . p r ep ro c e s s i ng import StandardSca ler

from s k l e a rn . mode l_se lect ion import l earn ing_curve

from s k l e a rn . mode l_se lect ion import t r a i n_te s t_sp l i t

from s k l e a rn . mode l_se lect ion import cross_val_score

from s k l e a rn . met r i c s import mean_squared_error , r2_score ,

mean_absolute_error

import warnings

import seaborn as sns

import time

warnings . f i l t e rw a r n i n g s (" i gnor e ")

#import data

import_data_raw = pd . read_csv (’ . . / Data/data_nonstop_preprocessed . csv ’ ,

d e l im i t e r=’ , ’)

import_data_raw . shape

import_data_raw . dtypes

Numerical Var i ab l e s

import_data . d e s c r i b e ()

45

#Price per weekday

weekday_order = [’Monday ’ , ’ Tuesday ’ , ’Wednesday ’ , ’ Thursday ’ ,

’ Friday ’ , ’ Saturday ’ , ’ Sunday ’]

Price per weekday f o r low−co s t a i r l i n e s

average_price_lcc = import_data [import_data [’ l c c ’] == 1] . groupby

(’ weekday_fl ’) [’ t o t a lFa r e ’] . mean ()

average_price_lcc = average_price_lcc . r e index (weekday_order)

Price per weekday f o r l e gacy a i r l i n e s

average_price_legacy = import_data [import_data [’ l c c ’] == 0] . groupby

(’ weekday_fl ’) [’ t o t a lFa r e ’] . mean ()

average_price_legacy = average_price_legacy . r e index (weekday_order)

Plot the average p r i c e per weekday f o r both a i r l i n e type

price_weekday = p l t . f i g u r e (f i g s i z e =(9 , 4))

sns . l i n e p l o t (data=average_price_lcc , c o l o r=’ blue ’ ,

l a b e l=’Low−Cost␣ A i r l i n e s ’)

sns . l i n e p l o t (data=average_price_legacy , c o l o r=’ red ’ ,

l a b e l=’ Legacy␣ A i r l i n e s ’)

p l t . x l ab e l (’Weekday ’)

p l t . y l ab e l (’ Average␣ Pr i ce ␣ (USD) ’)

#p l t . t i t l e (’ Average Price Per F l i g h t Day ’)

p l t . x t i c k s (r o t a t i on =45)

p l t . t ight_layout ()

p l t . l egend ()

p l t . show ()

#price_weekday . s a v e f i g (’ price_weekday . j pg ’ , format=’ jpg ’ ,

bbox_inches=’ t i g h t ’)

Di s t r i b u t i o n o f t o t a l f a r e wi th and wi thou t l o g t rans format ion

f i g , axes = p l t . subp lo t s (1 , 2 , f i g s i z e =(16 , 6))

Plot wi thou t l o g t rans format ion

sns . h i s t p l o t (import_data [’ t o ta lFa r e ’] , kde=True , ax=axes [0])

axes [0] . s e t_x labe l (’ Total ␣Fare ’)

axes [0] . s e t_y labe l (’ Frequency ’)

46

axes [0] . s e t_ t i t l e (’ D i s t r i bu t i on ␣ o f ␣Total ␣Fare

␣␣␣␣ (Without␣Log␣Transformation) ’)

Plot wi th l o g t rans format ion

sns . h i s t p l o t (np . log1p (import_data [’ t o ta lFa r e ’]) , kde=True , ax=axes [1])

axes [1] . s e t_x labe l (’ Log␣Transformed␣Total ␣Fare ’)

axes [1] . s e t_y labe l (’ Frequency ’)

axes [1] . s e t_ t i t l e (’ D i s t r i bu t i on ␣ o f ␣Total ␣Fare

␣␣␣␣ (With␣Log␣Transformation) ’)

Adjust spac ing between s u b p l o t s

p l t . t ight_layout ()

Show the p l o t

p l t . show ()

#f i g . s a v e f i g (’ t o t a l f a r e_ l o g . j pg ’ , format=’ jpg ’)

#pr i c e d i s t r i b u t i o n per a i r l i n e

f i g_ t o t a l = p l t . f i g u r e (f i g s i z e =(16 , 8))

sns . set (s t y l e=" darkgr id ")

sns . boxplot (x=’ segmentsAirl ineName ’ , y=’ to ta lFa r e ’ , data=import_data)

p l t . x l ab e l (’ A i r l i n e ’)

p l t . y l ab e l (’ Total ␣ F l i gh t ␣ Pr i ce ’)

p l t . t i t l e (’ Pr i c e ␣ D i s t r i bu t i on ␣per ␣ A i r l i n e ’)

p l t . x t i c k s (r o t a t i on =45)

p l t . show ()

#f i g_ t o t a l . s a v e f i g (’ a i r l i n e s_ t o t a l . j pg ’ , format=’ jpg ’)

#l o g t rans format ion o f t o t a l f a r e and f l i g h t d u r a t i o n

import_data [[’ tota lFare_log ’ ,

’ f l ightDurationMIN_log ’]] = import_data [[’ t o t a lFa r e ’ ,

’ f l ightDurat ionMIN ’]] . apply (np . l og)

#pr i c e d i s t r i b u t i o n per a i r l i n e wi th l o g

f i g_ log = p l t . f i g u r e (f i g s i z e =(16 , 8))

sns . set (s t y l e=" darkgr id ")

sns . boxplot (x=’ segmentsAirl ineName ’ , y=’ tota lFare_log ’ ,

data=import_data)

p l t . x l ab e l (’ A i r l i n e ’)

p l t . y l ab e l (’ Total ␣ F l i gh t ␣ Pr i ce ’)

47

p l t . t i t l e (’ Pr i c e ␣ D i s t r i bu t i on ␣per ␣ A i r l i n e ␣ a f t e r ␣ l og ␣ t rans fo rmat ion ’)

p l t . x t i c k s (r o t a t i on =45)

p l t . show ()

#f i g_ l o g . s a v e f i g (’ a i r l i n e s_ l o g . j pg ’ , format=’ jpg ’)

#corr matr ices

data_lcc_1 = import_data [import_data [’ l c c ’] == 1] . drop (columns=[’ l c c ’])

data_lcc_0 = import_data [import_data [’ l c c ’] == 0] . drop (columns=[’ l c c ’])

corr_matrix_lcc_1 = data_lcc_1 . co r r ()

corr_matrix_lcc_0 = data_lcc_0 . co r r ()

f i g , (ax1 , ax2) = p l t . subp lo t s (1 , 2 , f i g s i z e =(20 , 8))

sns . heatmap (corr_matrix_lcc_1 , annot=True , cmap=’ coolwarm ’ ,

square=True , ax=ax1)

sns . heatmap (corr_matrix_lcc_0 , annot=True , cmap=’ coolwarm ’ ,

square=True , ax=ax2)

ax1 . s e t_ t i t l e (’Low␣Cost␣ Car r i e r ’)

ax2 . s e t_ t i t l e (’ Fu l l ␣ S e rv i c e ␣ Car r i e r ’)

p l t . t ight_layout ()

p l t . show ()

f i g . s a v e f i g (’ corr_matr ices . jpg ’ , format=’ jpg ’)

#columns wi th NAs

cols_with_nas = import_data . columns [import_data . i sna () . any ()] . t o l i s t ()

print (cols_with_nas)

Average Tota l Fare by Days to Departure

grouped_data = import_data . groupby ([’ l c c ’ , ’ dtd ’])

[’ t o t a lFa r e ’] . mean () . reset_index ()

#sor t unique dtd va lue in desced ing order

sorted_dtd = sorted (grouped_data [’ dtd ’] . unique () , r e v e r s e = True)

f ig_dtd = p l t . f i g u r e (f i g s i z e =(16 , 8))

sns . barp lo t (data=grouped_data , x=’ dtd ’ , y=’ to ta lFa r e ’ , hue=’ l c c ’ ,

o rder = sorted_dtd)

Set the x−ax i s and y−ax i s l a b e l s

p l t . x l ab e l (’Days␣ to ␣Departure ’)

p l t . y l ab e l (’ Average␣Total ␣Fare ’)

p l t . t i t l e (’ Average␣Total ␣Fare␣by␣Days␣ to ␣Departure ’)

p l t . l egend (t i t l e=’LCC ’)

p l t . show ()

48

f ig_dtd . s a v e f i g (’ avgfare_dtd . jpg ’ , format=’ jpg ’)

Average Tota l Fare by Number o f Seats Remaining

grouped_data = import_data . groupby ([’ l c c ’ , ’ seatsRemaining ’])

[’ t o t a lFa r e ’] . mean () . reset_index ()

Sort the unique va l u e s o f dtd in descending order

sor ted_seats = sorted (grouped_data [’ seatsRemaining ’] . unique () ,

r e v e r s e=True)

f i g 2 = p l t . f i g u r e (f i g s i z e =(16 , 8))

sns . barp lo t (data=grouped_data , x=’ seatsRemaining ’ , y=’ to ta lFa r e ’ ,

hue=’ l c c ’ , o rder=sor ted_seats)

Set the x−ax i s and y−ax i s l a b e l s

p l t . x l ab e l (’Number␣ o f ␣ Seats ␣Remaining ’)

p l t . y l ab e l (’ Average␣Total ␣Fare ’)

p l t . t i t l e (’ Average␣Total ␣Fare␣by␣Number␣ o f ␣ Seats ␣Remaining ’)

p l t . l egend (t i t l e=’LCC ’)

p l t . show ()

#f i g 2 . s a v e f i g (’ avg fare_sea t s . j pg ’ , format=’ jpg ’)>

Numerical Var i ab l e s

import_data . d e s c r i b e (i n c lude=’O’)

Di s t r i b u t i o n o f a i r l i n e s

ov e r a l l_d i s t r i b u t i o n = import_data [’ segmentsAirl ineName ’] . value_counts ()

Group the data by l c c and c a l c u l a t e the count f o r each group

grouped_data = import_data [’ l c c ’] . value_counts ()

f i g , axes = p l t . subp lo t s (1 , 2 , f i g s i z e =(16 , 6))

axes [0] . p i e (ov e r a l l_d i s t r i bu t i on , l a b e l s=ov e r a l l_d i s t r i b u t i o n . index ,

autopct=’%1.1 f%%’)

axes [0] . s e t_ t i t l e (’ D i s t r i bu t i on ␣ o f ␣ A i r l i n e s ’)

axes [1] . p i e (grouped_data , l a b e l s=grouped_data . index , autopct=’%1.1 f%%’)

axes [1] . s e t_ t i t l e (’ D i s t r i bu t i on ␣ o f ␣ A i r l i n e ␣ type ’)

axes [1] . l egend (l a b e l s =[’FSC ’ , ’LCC ’] , l o c=’ upper␣ r i g h t ’)

p l t . t ight_layout ()

p l t . show ()

f i g . s a v e f i g (’ a i r l i n e s_d i s t r . jpg ’ , format=’ jpg ’)

49

A.5 Modelling in Python

Normal i s ing

num_cols = [’ t o ta lFa r e ’ , ’ seatsRemaining ’ , ’ dtd ’ , ’ f l ightDurationMIN ’]

import_data_raw [num_cols] . h i s t () ;

import_data_raw [num_cols] . h i s t (f i g s i z e =(10 ,11)) ;

#Di s t r i b u t i o n o f f l l i g h t dura t ion wi th and wi thout l o g t rans format ion

f i g , axes = p l t . subp lo t s (1 , 2 , f i g s i z e =(16 , 6))

Plot wi thou t l o g t rans format ion

sns . h i s t p l o t (import_data [’ f l ightDurationMIN ’] , kde=True , ax=axes [0])

axes [0] . s e t_x labe l (’ F l i gh t ␣Duration ’)

axes [0] . s e t_y labe l (’ Frequency ’)

axes [0] . s e t_ t i t l e (’ D i s t r i bu t i on ␣ o f ␣ F l i gh t ␣Duration

␣␣␣␣ (Without␣Log␣Transformation) ’)

Plot wi th l o g t rans format ion

sns . h i s t p l o t (np . log1p (import_data [’ f l ightDurationMIN_log ’]) ,

kde=True , ax=axes [1])

axes [1] . s e t_x labe l (’ Log␣Transformed␣ F l i gh t ␣Duration ’)

axes [1] . s e t_y labe l (’ Frequency ’)

axes [1] . s e t_ t i t l e (’ D i s t r i bu t i on ␣ o f ␣ F l i gh t ␣Duration

␣␣␣␣ (With␣Log␣Transformation) ’)

p l t . t ight_layout ()

p l t . show ()

#f i g . s a v e f i g (’ f l i g h t d u r_ l o g . j pg ’ , format=’ jpg ’)

Sca l i ng

from s k l e a rn . p r ep ro c e s s i ng import MinMaxScaler

Create MinMaxScaler

s c a l e r = MinMaxScaler ()

#choose columns

s c a l e_co l s = [’ dtd ’ , ’ seatsRemaining ’ , ’ f l ightDurationMIN_log ’]

import_data [s c a l e_co l s] = s c a l e r . f i t_trans fo rm (import_data [s c a l e_co l s])

#checke whether v a a r i a b l e s were s ca l e d

import_data . d e s c r i b e ()

Model l ing

#crea t e s e rpa ra t e da t a s e t f o r l c c and f s c

data_lcc = import_data [import_data [’ l c c ’] == 1]

50

data_fsc = import_data [import_data [’ l c c ’] == 0]

S p l i t in t r a i n and t e s t data

#t o t a l d a t a s e t

X_train_total , X_test_total , y_train_total ,

y_test_total = t r a i n_t e s t_sp l i t (

import_data [[’ weekday_fl ’ , ’ seatsRemaining ’ , ’ dtd ’ , ’ l c c ’ ,

’ segmentsAirl ineName ’ , ’ s t a r t i n gA i r po r t ’ ,

’ d e s t i n a t i onA i rpo r t ’ , ’ day_time ’ ,

’ f l ightDurationMIN_log ’]] , import_data [[’ tota lFare_log ’]] ,

t e s t_s i z e =0.2 , random_state=42

)

l c c

X_train_lcc , X_test_lcc , y_train_lcc , y_test_lcc = t r a i n_t e s t_sp l i t (

data_lcc [[’ weekday_fl ’ , ’ seatsRemaining ’ , ’ dtd ’ ,

’ segmentsAirl ineName ’ , ’ s t a r t i n gA i r po r t ’ ,

’ d e s t i n a t i onA i rpo r t ’ , ’ day_time ’ ,

’ f l ightDurationMIN_log ’]] , data_lcc [[’ tota lFare_log ’]] ,

t e s t_s i z e =0.2 , random_state=42)

f s c

X_train_fsc , X_test_fsc , y_train_fsc , y_test_fsc = t r a i n_te s t_sp l i t (

data_fsc [[’ weekday_fl ’ , ’ seatsRemaining ’ , ’ dtd ’ ,

’ segmentsAirl ineName ’ , ’ s t a r t i n gA i r po r t ’ ,

’ d e s t i n a t i onA i rpo r t ’ , ’ day_time ’ ,

’ f l ightDurationMIN_log ’]] , data_fsc [[’ to ta lFare_log ’]] ,

t e s t_s i z e =0.2 , random_state=42)

One−hot encode c a t e g o r i c a l v a r i a b l e s

c a t e g o r i c a l_co l s = [’ weekday_fl ’ , ’ segmentsAirl ineName ’ , ’ day_time ’ ,

’ s t a r t i n gA i r po r t ’ , ’ d e s t i na t i onA i rpo r t ’]

def onehotencode_data (train_data , test_data , c a t e g o r i c a l_ co l s) :

c a t ego r i ca l_encode r s = OneHotEncoder (spar s e=False)

p r ep ro c e s s o r = ColumnTransformer (t rans f o rmer s =[(’ cat ’ ,

ca tegor i ca l_encoder s , c a t e g o r i c a l_co l s)] , remainder=’ passthrough ’)

Preprocess the t r a i n i n g data

X_train_preprocessed = prep roc e s s o r . f i t_trans fo rm (train_data)

51

Preprocess the t e s t data

X_test_preprocessed = prep roc e s s o r . t rans form (test_data)

Get the f e a t u r e names

feature_names = prep ro c e s s o r . get_feature_names_out ()

return X_train_preprocessed , X_test_preprocessed , feature_names

Preprocess the t o t a l d a t a s e t

X_train_total_preprocessed , X_test_total_preprocessed ,

feature_names_total = onehotencode_data (X_train_total ,

X_test_total , c a t e g o r i c a l_co l s)

Preprocess l c c da t a s e t

X_train_lcc_preprocessed , X_test_lcc_preprocessed , feature_names_lcc =

onehotencode_data (X_train_lcc , X_test_lcc , c a t e g o r i c a l_co l s)

Preprocess f s c da t a s e t

X_train_fsc_preprocessed , X_test_fsc_preprocessed , feature_names_fsc =

onehotencode_data (X_train_fsc , X_test_fsc , c a t e g o r i c a l_co l s)

Define the da t a s e t s and t h e i r corresponding v a r i a b l e s f o r the models

data s e t s = {

’ Total ’ : {

’ X_train ’ : X_train_total_preprocessed ,

’ X_test ’ : X_test_total_preprocessed ,

’ y_train ’ : y_train_total ,

’ y_test ’ : y_test_total

} ,

’LCC ’ : {

’ X_train ’ : X_train_lcc_preprocessed ,

’ X_test ’ : X_test_lcc_preprocessed ,

’ y_train ’ : y_train_lcc ,

’ y_test ’ : y_test_lcc

} ,

’FSC ’ : {

’ X_train ’ : X_train_fsc_preprocessed ,

’ X_test ’ : X_test_fsc_preprocessed ,

’ y_train ’ : y_train_fsc ,

’ y_test ’ : y_test_fsc

}

52

}

Linear Regres s ion

Create an empty d i c t i ona r y to s t o r e the r e s u l t s

r e s u l t s_ l r = {}

Train and eva l ua t e the l i n e a r r e g r e s s i on model f o r each da ta s e t

for dataset_name , datase t in data s e t s . i tems () :

model_lr = LinearRegre s s i on ()

Sta r t the t imer

start_time_lr = time . time ()

Train the model

model_lr . f i t (datase t [’ X_train ’] , da ta se t [’ y_train ’])

Pred ic t the t a r g e t v a r i a b l e f o r the t e s t data

y_pred_lr = model_lr . p r ed i c t (datase t [’ X_test ’])

Stop the t imer

end_time_lr = time . time ()

Ca l cu l a t e the t o t a l time

tota l_time_lr = round ((end_time_lr − start_time_lr) , 5)

Evaluate the model

mse = mean_squared_error (datase t [’ y_test ’] , y_pred_lr)

rmse = np . sq r t (mse)

mae = mean_absolute_error (datase t [’ y_test ’] , y_pred_lr)

r2 = r2_score (datase t [’ y_test ’] , y_pred_lr)

Store the r e s u l t s

r e s u l t s_ l r [dataset_name] = {

’Model ’ : model_lr ,

’MSE’ : mse ,

’MAE’ : mae ,

’RMSE’ : rmse ,

’R−squared ’ : r2 ,

’ Computational ␣Time ’ : tota l_time_lr

}

Print the r e s u l t s

for dataset_name , r e s u l t in r e s u l t s_ l r . i tems () :

print (f " Resu l t s ␣ f o r ␣{dataset_name}␣ datase t : ")

print ("MSE: " , r e s u l t [’MSE’])

print ("MAE: " , r e s u l t [’MAE’])

53

print ("RMSE: " , r e s u l t [’RMSE’])

print ("R−squared : " , r e s u l t [’R−squared ’])

print ("Computational ␣Time : " , r e s u l t [’ Computational ␣Time ’] ,

" seconds ")

print ()

#s c a t t e r p l o t o f r e s i d u a l s wi th r e g r e s s i on l i n e

f i g , axes = p l t . subp lo t s (1 , 3 , f i g s i z e =(24 , 8))

Plot the s c a t t e r p l o t f o r each da t a s e t in a separa t e s u b p l o t

for i , (dataset_name , r e s u l t) in enumerate (r e s u l t s_ l r . i tems ()) :

ax = axes [i]

y_true = data s e t s [dataset_name] [’ y_test ’]

y_pred = r e s u l t [’Model ’] . p r ed i c t (da ta s e t s [dataset_name] [’ X_test ’])

ax . s c a t t e r (y_true , y_pred , alpha =0.2 , c o l o r=’ green ’)

ax . s e t_x labe l ("True␣Values ")

ax . s e t_y labe l (" Pred ic ted ␣Values ")

ax . s e t_ t i t l e (f "{dataset_name}")

Convert y_true and y_pred to 1D arrays

y_true = y_true . va lue s . r av e l ()

y_pred = y_pred . r av e l ()

Add r e g r e s s i on l i n e

s lope , i n t e r c e p t = np . p o l y f i t (y_true , y_pred , 1)

ax . p l o t (y_true , s l ope ∗ y_true + in t e r c ep t , c o l o r=’ b lack ’ ,

l i n ew id th=2)

p l t . t ight_layout ()

p l t . show ()

f i g . s a v e f i g (’ pred_vs_true_lr . jpg ’ , format=’ jpg ’ , bbox_inches=’ t i g h t ’)

KNN

Create an empty d i c t i ona r y to s t o r e the r e s u l t s

results_knn = {}

for dataset_name , datase t in data s e t s . i tems () :

model_knn = KNeighborsRegressor (n_neighbors = 5)

start_time_knn = time . time ()

model_knn . f i t (datase t [’ X_train ’] , data se t [’ y_train ’])

y_pred_knn = model_knn . p r ed i c t (datase t [’ X_test ’])

end_time_knn = time . time ()

total_time_knn = round ((end_time_knn − start_time_knn) , 5)

54

mse = mean_squared_error (datase t [’ y_test ’] , y_pred_knn)

rmse = np . sq r t (mse)

mae = mean_absolute_error (datase t [’ y_test ’] , y_pred_knn)

r2 = r2_score (datase t [’ y_test ’] , y_pred_knn)

results_knn [dataset_name] = {

’Model ’ : model_knn ,

’MSE’ : mse ,

’MAE’ : mae ,

’RMSE’ : rmse ,

’R−squared ’ : r2 ,

’ Computational ␣Time ’ : total_time_knn

}

for dataset_name , r e s u l t in results_knn . items () :

print (f " Resu l t s ␣ f o r ␣{dataset_name}␣ datase t : ")

print ("MSE: " , r e s u l t [’MSE’])

print ("MAE: " , r e s u l t [’MAE’])

print ("RMSE: " , r e s u l t [’RMSE’])

print ("R−squared : " , r e s u l t [’R−squared ’])

print ("Computational ␣Time : " , r e s u l t [’ Computational ␣Time ’] ,

" seconds ")

print ()

Gradient Boost ing Model

Create an empty d i c t i ona r y to s t o r e the r e s u l t s

resu l t s_gb = {}

for dataset_name , datase t in data s e t s . i tems () :

model_gb = GradientBoost ingRegressor ()

start_time_gb = time . time ()

model_gb . f i t (datase t [’ X_train ’] , da ta se t [’ y_train ’])

y_pred_gb = model_gb . p r ed i c t (datase t [’ X_test ’])

end_time_gb = time . time ()

total_time_gb = round ((end_time_gb − start_time_gb) , 5)

mse = mean_squared_error (datase t [’ y_test ’] , y_pred_gb)

rmse = np . sq r t (mse)

mae = mean_absolute_error (datase t [’ y_test ’] , y_pred_gb)

r2 = r2_score (datase t [’ y_test ’] , y_pred_gb)

resu l t s_gb [dataset_name] = {

’Model ’ : model_gb ,

55

’MSE’ : mse ,

’MAE’ : mae ,

’RMSE’ : rmse ,

’R−squared ’ : r2 ,

’ Computational ␣Time ’ : total_time_gb

}

for dataset_name , r e s u l t in resu l t s_gb . i tems () :

print (f " Resu l t s ␣ f o r ␣{dataset_name}␣ datase t : ")

print ("MSE: " , r e s u l t [’MSE’])

print ("MAE: " , r e s u l t [’MAE’])

print ("RMSE: " , r e s u l t [’RMSE’])

print ("R−squared : " , r e s u l t [’R−squared ’])

print ("Computational ␣Time : " , r e s u l t [’ Computational ␣Time ’] ,

" seconds ")

print ()

model_total_gb = resu l t s_gb [’ Total ’] [’Model ’]

model_lcc_gb = resu l t s_gb [’LCC ’] [’Model ’]

model_fsc_gb = resu l t s_gb [’FSC ’] [’Model ’]

#fea t u r e importances f o r each da t a s e t

importances = model_total_gb . feature_importances_

i nd i c e s = np . a r g s o r t (importances) [: : − 1]

top_features_ind ice s = i nd i c e s [: 8]

Define a colormap

colormap = p l t . cm . get_cmap (’ Blues ’)

Plot f e a t u r e importances

f e a t_ l c c = p l t . f i g u r e (f i g s i z e =(8 , 6))

bars = p l t . barh (range (len (top_features_ind ice s)) ,

importances [top_features_ind ice s] [: : − 1])

Set the co l o r o f each bar based on i t s importance va lue

for i , bar in enumerate (bars) :

bar . s e t_co lo r (colormap (i / len (top_features_ind ice s)))

p l t . y t i c k s (range (len (top_features_ind ice s)) , [feature_names_total [i]

for i in top_features_ind ice s] [: : − 1])

p l t . x l ab e l (" Importance ")

p l t . y l ab e l ("Feature ")

p l t . t i t l e ("Top␣8␣Most␣ Important ␣Features ␣−␣Total ")

56

p l t . show ()

f e a t_to ta l . s a v e f i g (’ f e a t_to ta l . jpg ’ , format=’ jpg ’ , bbox_inches=’ t i g h t ’)

Dec i s i on t r e e

Create an empty d i c t i ona r y to s t o r e the r e s u l t s

r e su l t s_dt = {}

for dataset_name , datase t in data s e t s . i tems () :

model_dt = Dec i s i onTreeRegres sor ()

start_time_dt = time . time ()

model_dt . f i t (datase t [’ X_train ’] , data se t [’ y_train ’])

y_pred_dt = model_dt . p r ed i c t (datase t [’ X_test ’]

end_time_dt = time . time ()

total_time_dt = round ((end_time_dt − start_time_dt) , 5)

mse = mean_squared_error (datase t [’ y_test ’] , y_pred_dt)

rmse = np . sq r t (mse)

mae = mean_absolute_error (datase t [’ y_test ’] , y_pred_dt)

r2 = r2_score (datase t [’ y_test ’] , y_pred_dt)

r e su l t s_dt [dataset_name] = {

’Model ’ : model_dt ,

’MSE’ : mse ,

’MAE’ : mae ,

’RMSE’ : rmse ,

’R−squared ’ : r2 ,

’ Computational ␣Time ’ : total_time_dt

}

for dataset_name , r e s u l t in r e su l t s_dt . i tems () :

print (f " Resu l t s ␣ f o r ␣{dataset_name}␣ datase t : ")

print ("MSE: " , r e s u l t [’MSE’])

print ("MAE: " , r e s u l t [’MAE’])

print ("RMSE: " , r e s u l t [’RMSE’])

print ("R−squared : " , r e s u l t [’R−squared ’])

print ("Computational ␣Time : " , r e s u l t [’ Computational ␣Time ’] ,

" seconds ")

print ()

model_total_dt = resu l t s_dt [’ Total ’] [’Model ’]

model_lcc_dt = re su l t s_dt [’LCC ’] [’Model ’]

57

model_fsc_dt = re su l t s_dt [’FSC ’] [’Model ’]

Vi sua l i z e the d e c i s i on t r e e

feature_names = feature_names_total . t o l i s t ()

dt_tota l = p l t . f i g u r e (f i g s i z e =(30 , 8))

t r e e . p lo t_tree (model_total_dt , feature_names=feature_names ,

f i l l e d=True , f o n t s i z e =10, max_depth = 4 , impurity=False ,

rounded=True , propor t ion=False , p r e c i s i o n =2,

node_ids=False , class_names=None)

p l t . show ()

#dt_to t a l . s a v e f i g (’ d t_ to t a l . j pg ’ , format=’ jpg ’ , bbox_inches=’ t i g h t ’)

Random f o r e s t

Create an empty d i c t i ona r y to s t o r e the r e s u l t s

r e s u l t s_ r f = {}

for dataset_name , datase t in data s e t s . i tems () :

model_rf = RandomForestRegressor ()

start_time_rf = time . time ()

model_rf . f i t (datase t [’ X_train ’] , da tase t [’ y_train ’])

y_pred_rf = model_rf . p r ed i c t (datase t [’ X_test ’])

end_time_rf = time . time ()

total_time_rf = round ((end_time_rf − start_time_rf) , 5)

mse = mean_squared_error (datase t [’ y_test ’] , y_pred_rf)

rmse = np . sq r t (mse)

mae = mean_absolute_error (datase t [’ y_test ’] , y_pred_rf)

r2 = r2_score (datase t [’ y_test ’] , y_pred_rf)

r e s u l t s_ r f [dataset_name] = {

’Model ’ : model_rf ,

’MSE’ : mse ,

’MAE’ : mae ,

’RMSE’ : rmse ,

’R−squared ’ : r2 ,

’ Computational ␣Time ’ : tota l_time_rf

}

for dataset_name , r e s u l t in r e s u l t s_ r f . i tems () :

print (f " Resu l t s ␣ f o r ␣{dataset_name}␣ datase t : ")

print ("MSE: " , r e s u l t [’MSE’])

58

