UNIVERSIDAD PRIVADA ANTENOR ORREGO

FACULTAD DE INGENIERÍA PROGRAMA DE ESTUDIO DE INGENIERIA INDUSTRIAL

TESIS PARA OPTAR EL TÍTULO PROFESIONAL DE INGENIERO INDUSTRIAL

Propuesta de mejora de la producción agrícola de caña de azúcar para incrementar la productividad de la empresa CASA GRANDE S.A.

Línea de Investigación:

Diseño Manufactura y Mecanización

Sub Línea de Investigación:

Gestión Empresarial

Autores:

Vera Lezama, Dayanna Kristel

Rubio Layza, Guillermo Maico

Jurado Evaluador:

Presidente: Müller Solón, José Antonio

Secretario: León Culquichicón, Jorge Iván

Vocal: De La Rosa Anhuaman, Filiberto

Asesor:

Landeras Pilco, María Isabel

Código Orcid: https://orcid.org/0000-0002-4250-5619

TRUJILLO - PERU

2023

Fecha de sustentación: 2023/06/02

Propuesta de mejora de la producción agrícola de caña de azúcar para incrementar la productividad de la empresa CASA GRANDE S.A.

INFORME	DE ORIGINALIDAD				
1 d	4% DE SIMILITUD	7% FUENTES DE INTERNET	1% PUBLICACIONES	10% TRABAJOS DEL ESTUDIANTE	
FUENTES	PRIMARIAS				
1	Submitte Orrego Trabajo del estu	to Universida	d Privada Ant	enor	9%
2	hdl.hand	(ic fores zon	dus Pita	2%
3	www.ing	enieriadecalida net	id.com		1‰
4	students Fuente de Intern				1%
5	WWW.SCT				1%
6	docplaye				1%

Declaración de Originalidad

Yo, Maria Isabel Landeras Pilco, docente del Programa de Estudio Ingeniería Industrial., de la Universidad Privada Antenor Orrego, asesor de la tesis de investigación titulada: "Propuesta de mejora de la productividad agrícola de caña para incrementar la productividad de la empresa Casa Grande.", autores: Vera Lezama Dayanna y Rubio layza Maico, dejo constancia de lo siguiente:

- El mencionado documento tiene un índice de puntuación de similitud de 14 %.
 Así lo consigna el reporte de similitud emitido por el software Turnitin el día 07,
 Octubre 2023
- He revisado con detalle dicho reporte y la tesis y no se advierte indicios de plagio.
- Las citas a otros autores y sus respectivas referencias cumplen con las normas establecidas por la Universidad.

Lugar y fecha: Pab. G-906 /02 Junio 2023

Landeras Pilco, Maria Isabel Apellidos y nombres del asesor

DNI:18091379

ORCID: https:/orcid.org10000-002-4250-5619

FIRMA

Vera Lezama, Dayanna Kristel Apellidos y nombres del Autor

DNI: 71218464

FIRMA:

Rubio Layza, Maico Apellidos y nombres del Autor

DNI: 72617232

FIRMA:

UNIVERSIDAD PRIVADA ANTENOR ORREGO FACULTAD DE INGENIERÍA

PROGRAMA DE ESTUDIO DE INGENIERIA INDUSTRIAL

TESIS PARA OPTAR EL TÍTULO PROFESIONAL DE INGENIERO INDUSTRIAL

Propuesta de mejora de la producción agrícola de caña de azúcar para incrementar la productividad de la empresa Casa Grande S.A

APROBADA EN CONTENIDA Y ESTILO POR:

PRÉSIDENTE Mulier Solón, José Antonio CIP:41187

SECRETARIO León Culquichicón, Jorge Iván CIP: 52831

VOCAL

De La Rosa Anhuaman, Filiberto CIP:90901

A SESOR Landeras Pilco, María Isabel

CIP:44282

PRESENTACIÓN

Señores miembros del jurado:

De conformidad y en cumplimiento de los requisitos estipulados en el Reglamento

de Grados y Títulos de la Universidad Privada Antenor Orrego y el Reglamento

Interno de la Carrera Profesional de Ingeniería Industrial para obtener el grado de

Bachiller en Ingeniero Industrial, ponemos a vuestra disposición el presente Trabajo

de Tesis titulado: "Propuesta de mejora de la producción agrícola de caña de

azúcar para incrementar la productividad de la empresa CASA GRANDE S.A.

2022."; a fin de ser evaluado.

Este trabajo, es el resultado de la aplicación de los conocimientos adquiridos en la

formación profesional en la Universidad, aplicados para solucionar una

problemática observada en la Empresa CASA GRANDE S.A. 2022.

Confió que el presente trabajo logre cubrir las expectativas que tienen al respecto,

excusándome anticipadamente de los posibles errores involuntarios cometidos en

su desarrollo.

Trujillo, diciembre del 2022.

Vera Lezama Dayanna Kristel

Rubio Layza Maicol.

٧

DEDICATORIA

Quiero dedicar esta tesis, a mi quería hija Jana Sophia. quien ha sido mi principal y fundamental motivo para cumplir unos de mis principales objetivos, a mi madre por su amor incondicional, por creer en mí desde el primer día, por sus sacrificios y su apoyo constante que han sido la clave de este éxito y también a mis hermanos que están el Cielo, que son mis dos Angelitos que me ha mi guía a lo largo de este reto.

Dayanna Vera L.

La presente Tesis esta dedicada a Dios y a mis padres Guillermo y Herlinda por haberme forjado la persona que soy en la actualidad, muchos de mis logros se los debo a ustedes entre los que incluye este, por su incondicional apoyo y paciencia y todo lo que soy es gracias a ellos. A mi hermana Mayumi que mas que mi hermana es una verdadera amiga por todo el apoyo y motivación que me brindo.

Maicol Rubio L.

AGRADECIMIENTOS

Agradecer a Dios, quien me ha forjado en mi camino, me ha ayudado a superar cada óbice y me ha permitido culminar este trabajo de investigación, a mi familia por estar en este largo proceso, han sido una parte integral en mi camino profesional.

Dayanna Vera L.

Agradecer en primer lugar a Dios y mis padres, sobre todo, que siempre me han brindado su apoyo para poder cumplir con mis objetivos personales y académicos, también son los que me han brindado el soporte material y económico para poder concéntrame en los estudios y en esta investigación para nunca abandonarlos. También agradecer a todos mis docentes que han sido parte de mi camino universitario, a todos ellos agradecer por transmitirme los conocimientos necesarios para hoy poder estar aquí.

Maicol Rubio L.

RESUMEN

El presente trabajo de investigación tiene como propósito elaborar una propuesta de mejora en la producción agrícola de caña de azúcar para incrementar la productividad en la empresa Casa Grande S.A., ubicada en Av. Parque Fábrica S/N Casa Grande - Ascope, La Libertad. La investigación fue de tipo aplicada con diseño pre experimental, la cual para la recolección de la información se empleó el análisis documental de la producción agrícola de la empresa Casa Grande S.A. Para la mejorar la productividad se realizó un diagnóstico de la situación actual de la producción agrícola, se diseñó la propuesta de mejora para la producción agrícola de la caña de azúcar, se estimó la variación de la productividad y por último se evaluó económicamente. Los resultados que se obtuvieron fueron que se encontró problemas con los tiempos elevados de para por fallas en máquinas, incomodidades por falta de mangos en las palanas y machetes, por lo que para ello se implementó un plan de mantenimiento, el diseño del mango de las palanas y machetes de acuerdo a las medidas de los trabajadores. La investigación concluye con el incremento de la productividad de la producción agrícola en la empresa Casa Grande S.A. de 10.19%, además se contrastó la hipótesis indicando que la propuesta de mejora genera cambios significativos en la empresa.

Palabras clave: Producción agrícola, productividad, plan de mantenimiento, estandarización de tiempos, diseño de herramientas.

ABSTRACT

The purpose of this research work is to elaborate a proposal to improve the agricultural production of sugar cane in order to increase productivity in the company Casa Grande S.A., located in Av. Parque Fábrica S/N Casa Grande - Ascope, La Libertad. The research was of applied type with pre-experimental design, which for the collection of the information was used the documentary analysis of the agricultural production of the company Casa Grande S.A. For the improvement of the productivity a diagnosis of the current situation of the agricultural production was made, the proposal of improvement for the agricultural production of the sugar cane was designed, the variation of the productivity was estimated and finally it was evaluated economically. The results obtained were that problems were found with the high stoppage times due to machine failures, discomfort due to the lack of handles on the shovels and machetes, so a maintenance plan was implemented, the design of the handles of the shovels and machetes according to the measurements of the workers. The research concludes with an increase of 10.19% in the productivity of agricultural production in the company Casa Grande S.A., and also contrasts the hypothesis indicating that the proposed improvement generates significant changes in the company.

Keywords: Agricultural production, productivity, maintenance plan, time standardisation, tool design.

INDICE

PRES	ENTACIÓN	. iii
DEDICA	.TORIA	.vi
AGRAD	ECIMIENTOS	vii
RESUM	EN	∕iii
ABSTRA	\СТ	.ix
I. INT	RODUCCIÓN	. 1
1.1.	Problema de investigación	. 1
1.2.	Enunciado del problema	. 2
1.3.	Formulación del problema	. 4
1.4.	Objetivos	. 4
1.4.	1. Objetivo general	. 4
1.4.	2. Objetivos específicos	. 4
1.5.	Justificación	. 5
II. MA	RCO DE REFERENCIA	. 6
2.1.	Antecedentes	. 6
2.2.	Marco Teórico	11
2.2.	1. Producción agrícola	11
2.2.	2. Estudio de tiempos	11
2.2.	3. Optimización de procesos	16
2.2. mod	4. Se debe de diseñar accesorios o plantillas para sujetar partes de do que el trabajador pueda usar ambas manos	18
2.2.	5. Diagrama de flujo del proceso	18
2.2.	6. Mantenimiento Total Productivo	19
2.2.	7. Diseño de herramientas	20
2.2.	8. Simulación de sistemas	21
2.2.	9. Productividad	28
2.3.	Marco Conceptual	31
2.4.	Hipótesis	31
2.5.	Variables	32
III. M	ETODOLOGÍA	33
3.1.	Tipo y nivel de investigación	33

	3.2.	Población y Muestra	33
	3.3.	Diseño de investigación	33
	3.4.	Técnicas e Instrumentos de investigación	34
	3.5.	Procesamiento y análisis de datos	36
I۷	/. P	RESENTACIÓN DE RESULTADOS	95
	4.1. de la	Resultados del objetivo 1: "Realizar un diagnóstico de la situación actua producción agrícola en la empresa Casa Grande S.A."	
	4.2. produ	Resultados del objetivo 2: "Diseñar la propuesta de mejora para la ucción agrícola de la caña de azúcar en la empresa Casa Grande S.A."	.99
	4.3. produ	Resultados del objetivo 3 "Realizar la evaluación de la productividad de ucción agrícola de la caña de azúcar en la empresa Casa Grande S.A.". 1	
		Resultados del objetivo 4 " <i>Evaluar económicamente la propuesta de</i> ra para la empresa Casa Grande S.A."1	04
V	. DIS	SCUSIÓN DE RESULTADOS1	06
	5.1. situa	Discusión del resultado del primer objetivo: "Realizar un diagnóstico de l ción actual de la producción agrícola en la empresa Casa Grande S.A." 1	
		Discusión del resultado del segundo objetivo: " <i>Diseñar la propuesta de ra para la producción agrícola de la caña de azúcar en la empresa Casa de S.A.</i> "	06
	•	Discusión del resultado del tercer objetivo: "Realizar la evaluación de la uctividad de la producción agrícola de la caña de azúcar en la empresa Grande S.A."	07
	5.4. propu	Discusión del resultado del cuarto objetivo: "Evaluar económicamente la uesta de mejora para la empresa Casa Grande S.A."	
۷	I. C	ONCLUSIONES 1	09
٧	II. R	ECOMENDACIONES 1	10
R	eferer	ncias 1	11

INDICE DE TABLAS

Tabla 1 Cuadro resumen de Calificación de factor de desempeño	. 14
Tabla 2 Suplementos OIT	. 15
Tabla 3 Operacionalización de las variables	. 32
Tabla 4 Técnicas e instrumentos de recolección de datos	. 34
Tabla 5 N.º de asistencias no planificadas a los diferentes tipos de maquinarias	;
que intervienen en el proceso	. 44
Tabla 6. Parámetro de YEMAS POR METRO LINEAL	. 49
Tabla 7. Parámetro de Altura de Tapado	. 49
Tabla 8. Problemas y propuestas identificados en el Sub - Proceso de siembra.	51
Tabla 9. Muestra piloto de las fallas históricas de las 6 máquinas	. 54
Tabla 10. Cálculo de la muestra estadística	. 54
Tabla 11. Muestra significativa	. 55
Tabla 12. Identificación del tipo de distribución	. 62
Tabla 13. Variables simuladas	. 63
Tabla 14. Sub sistema Hidráulico	. 63
Tabla 15. Subsistema motor, lubricación, refrigeración, tren motriz y sistema	
eléctrico	. 64
Tabla 16. Análisis de los subsistemas críticos	. 65
Tabla 17. Fallas históricas de los elementos del subsistema hidráulico	. 65
Tabla 18. Cálculo del índice trauma acumulativo	. 67
Tabla 19. Muestra piloto del no de veces de movimientos por metro cuadrado	. 69
Tabla 20. Parámetros del cálculo de la muestra	. 69
Tabla 21. Cantidad de movimientos al 95%	. 70
Tabla 22. Medidas para el diseño del mango de la herramienta	. 71
Tabla 23. Propiedades del estudio	. 74
Tabla 24. Unidades	. 74
Tabla 25. Propiedades del modelo	. 83
Tabla 26. Unidades referenciales	. 83
Tabla 27. Propiedades del material	. 83
Tabla 28 Factor de Desempeño del preparado del campo	. 88

Tabla 29.	Factor de Desempeño en la siembra	. 88
Tabla 30.	Factor de desempeño en cosecha	. 89
Tabla 31.	Tiempos por cada proceso y la actividad que se desempeña	. 90
Tabla 32.	Tiempo estándar actual por proceso	. 91
Tabla 33	Costos con la propuesta	. 93
Tabla 34.	Detalle de los costos de evaluación	. 94
Tabla 35.	Costos de mangos ergonómicos	. 94
Tabla 36	Producción por campaña en hectáreas	. 97
Tabla 37	Costo de la producción por campaña	. 97
Tabla 38	Productividad en hectáreas producidas por cada sol invertido	. 98
Tabla 39	Cronograma del plan de mantenimiento predictivo	. 99
Tabla 40	Tiempo estándar en cada proceso en la producción de caña después o	de
la mejora		100
Tabla 41	Variación del tiempo estándar	100
Tabla 42	Productividad en hectáreas producidas por cada sol invertido	101
Tabla 43	Variación de la productividad	102
	Análisis descriptivo de la productividad	
	Análisis inferencial de la productividad	
Tabla 46	Flujo de caja para la propuesta	104
Tahla 47	Evaluación económica	105

INDICE DE FIGURAS

Figura 1. Esquema sugerido para la optimización de los procesos	17
Figura 2. Proceso de cosecha de caña de azúcar	36
Figura 3. Procedimiento para la preparación de la tierra	38
Figura 4. Flujograma del Sub Proceso de Siembra	45
Figura 5. Flujograma del Sub - Proceso de Cosecha	50
Figura 6. Secuencia de pasos para la simulación de mantenimientos predictivos.	53
Figura 7. Análisis del comportamiento de las fallas históricas de la máquina 1	56
Figura 8. Análisis del comportamiento de las fallas históricas de la máquina 2	57
Figura 9. Análisis del comportamiento de las fallas históricas de la máquina 3	58
Figura 10. Análisis del comportamiento de las fallas históricas de la máquina 4	59
Figura 11. Análisis del comportamiento de las fallas históricas de la máquina 5	60
Figura 13. Análisis del comportamiento de las fallas históricas de la máquina 6	61
Figura 13. Diseño del mango del machete	72
Figura 14. Información del modelo	
Figura 15. Propiedades del material	75
Figura 16. Sujeciones. Fuente. SolidWork	76
Figura 17. Prueba de cargas. Fuente. Solidwork	77
Figura 18. Análisis de tensión	78
Figura 19. Análisis de desplazamiento	79
Figura 20. Análisis de las deformaciones	80
Figura 21. Análisis del factor de seguridad	81
Figura 22. Información del modelo	82
Figura 23. Análisis de tensiones	84
Figura 24. Análisis de desplazamientos	85
Figura 25. Análisis de deformaciones	86
Figura 26. Análisis de seguridad	87

INDICE DE ANEXOS

Anexo 1 Diagrama Causa Efecto	115
Anexo 2 Formato de Historial de fallas en las máquinas	116
Anexo 3 Formato de registro de producción	117
Anexo 4 Entrevista	118
Anexo 5 Formato de registro de Productividad	119
Anexo 6 Formato de Propuesta de mejora del método de trabajo	120
Anexo 7 Formato de toma de tempos	121
Anexo 8 Formato de evaluación del desempeño	121
Anexo 9 Formato de evaluación de suplementos	122
Anexo 10 Formato de evaluación de la productividad	123
Anexo 11 Formato de evaluación económica	124
Anexo 12 Rastra 1	125
Anexo 13 Nivelación de la gruesa	125
Anexo 14 Plano de cortes y rellenos	127
Anexo 15 Plano de curvas de nivel	128
Anexo 16 Subsolado 1	129
Anexo 17 Subsolado 2	129
Anexo 18 Rasta 3	130
Anexo 19 Pseudoaleatorios de la máquina 1	131
Anexo 20 Prueba de medias para pseudoaleatorios máquina 1	132
Anexo 21. Prueba de varianza para pseudoaleatorios máquina 1	132
Anexo 22	132
Anexo 23 Prueba de independencia corrida arriba y abajo media para	
pseudoaleatorios máquina 1	133
Anexo 24 Pseudoaleatorios de la máquina 2	134
Anexo 25 Prueba de medias para pseudoaleatorios máquina 2	135
Anexo 26 Prueba de varianza para pseudoaleatorios máquina 2	135
Anexo 27 Prueba de uniformidad para pseudoaleatorios máquina 2	135
Anexo 28 Prueba de independencia corrida arriba y abajo medias para	
pseudoaleatorios máquina 2	136

Anexo 29 Pseudoaleatorios de la máquina 3	136
Anexo 30 Prueba de medias para pseudoaleatorios máquina 3	146
Anexo 31	146
Anexo 32 Prueba de uniformidad para pseudoaleatorios máquina 3	146
Anexo 33 Prueba de independencia corrida arriba y abajo media para	
pseudoaleatorios máquina 3	147
Anexo 34 Pseudoaleatorios de la máquina 4	148
Anexo 35 Prueba de medias para pseudoaleatorios máquina 4	149
Anexo 36 Prueba de varianza para pseudoaleatorios máquina 4	150
Anexo 37 Prueba de uniformidad para pseudoaleatorios máquina 4	150
Anexo 38 Prueba de independencia corrida arriba y abajo media para	
pseudoaleatorios máquina 4	151
Anexo 39 Pseudoaleatorios de la máquina 5	151
Anexo 40 Prueba de medias para pseudoaleatorios máquina 5	153
Anexo 41 Prueba de varianza para pseudoaleatorios máquina 5	153
Anexo 42 Prueba de uniformidad para pseudoaleatorios máquina 5	153
Anexo 43 Prueba de independencia corrida arriba y abajo media para	
pseudoaleatorios máquina 5	154
Anexo 44 Pseudoaleatorios de la máquina 6	154
Anexo 45 Prueba de medias para pseudoaleatorios máquina 6	156
Anexo 46 Prueba de varianza para pseudoaleatorios máquina 6	157
Anexo 47 Prueba de uniformidad para pseudoaleatorios máquina 6	157
Anexo 48 Prueba de independencia corrida arriba y abajo media para	
pseudoaleatorios máquina 6	158

I. INTRODUCCIÓN

1.1. Problema de investigación

El desarrollo de la producción agrícola en los últimos tiempos ha generado grandes cambios económicos en los países subdesarrollados ya que en estos principalmente se trabajan la ganadería y la agricultura, este último ha crecido enormemente con relación a la productividad debido a la explotación que existen de los recursos naturales ya sea en este caso la tierra según un artículo presentado por Sotelsek y Laborda mencionan que el problema de América Latina con relación al desarrollo de la producción agrícola es la medición ello indica que carecen de técnicas para medir la productividad o producción agrícola y también carecen de mediciones medioambientales por lo que la sobreexplotación que existe sobre estos recursos afectan en cierto modo al medio ambiente, Por otro lado, estos realizaron un estudio de 1990 al 2017 en el cual indican que la productividad en la producción agrícola se ha incrementado sustancialmente ello implica también el crecimiento de la población mundial por ende las necesidades de satisfacer este crecimiento han causado que las organizaciones se enfoquen en el aumento de la productividad total de los factores con el fin de aumentar su producción. (Sotelsek & Laborda, 2019)

En Ecuador se realizó una investigación con relación a la productividad agrícola en la que midió el rendimiento por hectárea realizando un análisis en los cultivos de maíz duro y arroz, el informe presenta que para incrementar la productividad por hectárea no sólo es necesario implementar nuevas tecnologías o nuevos tipos de fertilizantes nuevos métodos de trabajo sino también que se debe tomar en cuenta la compra del insumo principal que sería la semilla para el cultivo de los alimentos, estas semillas son de alto rendimiento lo que indica que la probabilidad de que la planta crezca con defectos es mínima Por otro lado también con este plan de semillas de alto rendimiento se puede lograr la optimización de las toneladas por hectárea que se obtienen al momento de realizar un cultivo Por otro lado cabe destacar que estas semillas de alto rendimiento tienen que tener procesos y procedimientos adecuados y estandarizados para que puedan desarrollarse óptimamente sin que se dañen en su proceso de crecimiento. el informe está enfocado el incrementar la productividad por hectárea en la producción agrícola debido al incremento que

existe en la población mundial y a su vez al incremento de la demanda de productos agrícolas a nivel mundial por lo que no solo es necesario comprar las semillas correctas sino también es necesario tener procesos procedimientos y métodos adecuados para el cultivo además de estar dotados de herramientas que permitan facilitar a los colaboradores el trabajo y así contribuir a la disminución del tiempo de proceso por planta al incrementarse las cantidades sembradas o cultivadas por operarios en el mismo tiempo empleado. (Bonilla & Singaña, 2018)

Con relación a la productividad agrícola peruana según el libro tomando en cuenta el impulso en la agricultura peruana, menciona que la productividad en la agricultura peruana ha ido en crecimiento a partir de los años 90 en la cual la tasa de crecimiento anual ha variado del 2% hasta el 3% anual duplicando su productividad pero eso es a nivel macro, a nivel de regiones existe una clara diferencia con relación a la productividad algunas regiones tienen una productividad más elevada que otras por lo que se puede concluir que la productividad en la agricultura peruana no es 100% uniforme y esto depende de las zonas en las cuales se desempeña esta actividad debido a que el país tiene mucha diversidad. Los resultados que se obtuvieron de la productividad total multifactorial con relación a la producción agrícola peruana afirma que existe un crecimiento constante lo cual es beneficioso para el país por lo que la demanda también se ha visto incrementada ya que los productos agrícolas de origen peruano son bastante demandados en el mundo es por eso que es importante tomar en cuenta la productividad en la producción agrícola y mejorarla para aumentar las ventas y producción en las empresas peruanas y lograr el impulso necesario para el sector (Banco Mundial, 2017)

1.2. Enunciado del problema

Dentro de este contexto se encuentra la empresa Casa Grande S.A., la cual es la azucarera más grande del país, cuenta con más de 30 mil hectáreas cultivada, y su producción de azúcar bordea las 10000 toneladas por día; de las indagaciones realizadas, se ha podido evidenciar que existe desorganización en la forma de trabajo en el proceso de preparado de caña, lo que ha conllevado a desfases en el cumplimiento de la programación, dando lugar a sobrecostos para

cumplir con los plazos de entrega, asimismo tiempos improductivos, mermas, reprocesos y tiempos muertos, conllevando a pérdidas de diferente índole tanto en tiempo de trabajo, servicio, calidad y costos, trayendo consigo insatisfacción de las partes interesadas. Con el diagrama de Ishikawa del Anexo 1, se encontró que el método mostrado en el diagrama indica que existen cambios frecuentes en el diseño, realizan un método de trabajo ineficaz ya que realizan movimientos innecesarios debido a que también existe una ausencia del registro de procesos y procedimientos para realizar las actividades que desempeñan esto se debe a que los procesos no son estándar en la producción agrícola en la empresa Casa Grande S.A. esto repercute significativamente en la productividad ya que se desperdicia bastante tiempo por tener un método ineficiente. Con relación a la mano de obra, existe una mala ejecución de los trabajos debido a la distracción que existe generando tiempos ociosos además existe muchos tiempos extra que los operarios piden los cuales se ven reflejados en cansancio y estrés debido a que los movimientos que realizan son repetitivos esto repercute en la calidad del trabajo que desempeñan los colaboradores y se ve afectada la productividad por estos motivos

Los materiales se encuentran alejados de la zona y además no cuentan con equipos de protección personal y herramientas adecuadas para la ejecución de las actividades en el campo por ende se ve reflejado en una ineficiencia en los procesos por estos motivos además existen largos recorridos para poder recoger sus herramientas para realizar sus actividades diarias esto repercute tengo unos elevados tiempos para la producción agrícola y se ve afectada la productividad. Además la maquinaria se encuentra lejos de la zona de trabajo y esto permite que existan demoras al momento de realizar las actividades Por otro lado las herramientas y equipos tienen defectos lo cual hay demoras cuando se realizan mantenimientos o se cambian las herramientas para poder seguir realizando las actividades además existen paradas de las máquinas que no han sido planificadas debido a una falta de mantenimiento en ellas por lo que se ve traducido en una baja productividad.

Las deficiencias en medidas de control son que no existen indicadores metas en la zona agrícola de la empresa Casa Grande S.A. e no están establecidos sus métricas de producción o productividad para lograr los objetivos

planteados. Por otro lado, no miden su producción en campo y esto genera deficiencias en el proceso productivo agrícola disminuyendo la productividad. Por último con relación al medio ambiente en el que se desempeña existe un elevado exceso de calor y también exceso de ruido limitando el trabajo en el campo Por otro lado la mala disposición y utilización del espacio genera largos recorridos al momento de desempeñar sus funciones en el campo por lo que disminuye la productividad en la empresa

Debido a estos motivos la presente investigación se enfocará en mejorar los procesos agrícolas para el incremento de la productividad en la empresa Casa Grande S.A.

1.3. Formulación del problema

¿En qué medida la propuesta de mejora en la producción agrícola de la caña de azúcar permitirá incrementar productividad de la empresa CASA GRANDE S.A.?

1.4. Objetivos

1.4.1. Objetivo general

- Elaborar una propuesta de mejora en la producción agrícola de caña de azúcar para incrementar la productividad

1.4.2. Objetivos específicos

- Realizar un diagnóstico de la situación actual de la producción agrícola en la empresa Casa Grande S.A.
- Diseñar la propuesta de mejora para la producción agrícola de la caña de azúcar en la empresa Casa Grande S.A.
- Realizar la evaluación de la productividad de la producción agrícola de la caña de azúcar en la empresa Casa Grande S.A.
- Evaluar económicamente la propuesta de mejora para la empresa Casa Grande S.A.

1.5. Justificación

El presente proyecto es importante teóricamente puesto que busca emplear los conocimientos aplicados sobre la mejora de la producción agrícola con el fin de optimizar sus procesos con la finalidad de incrementar la productividad demostrando que con la mejora de los procesos agrícolas con herramientas de Ingeniería Industrial se puede demostrar la fiabilidad al incrementarse la productividad de la empresa Casa Grande S.A.

Se justifica prácticamente puesto que en la empresa Casa Grande S.A tiene como objetivo y prioridad incrementar la productividad en base a una propuesta que mejore la producción agrícola empleada actualmente en la empresa Casa Grande S.A. y esto se evaluará económicamente para percibir beneficios en la organización

Después de la aplicación y evaluación de la mejora de la mejora de la producción agrícola en términos de productividad, se justifica metodológicamente puesto que esta investigación podrá ser tomada por otros investigadores que también quieran incrementar la productividad en la producción agrícola y contribuirá con el crecimiento económico de las diferentes empresas del rubro por medio de la presente investigación

la investigación toma un enfoque social ya que al mejorar la producción agrícola se mejora la calidad de trabajo hacia los colaboradores esto beneficiará a aquellos que estén trabajando en el campo y además ayudará a que perciban más ingresos puesto que la productividad será mayor contribuyendo con procesos limpios que ayuden a evitar y mitigar el contagio y propagación del Covid – 19 en la sociedad.

II. MARCO DE REFERENCIA

2.1. Antecedentes

Para la investigación se tomó en cuenta las diversas propuestas de los repositorios a nivel internacional, nacional y local por lo que se tomó en cuenta las siguientes investigaciones:

A Nivel internacional, Gómez, Saldaña y Quintero (2020) realizaron una Propuesta de estandarización de proceso de fabricación de colchones para mejorar la productividad en la empresa Grupo Kasamia S.A.S, en Colombia. En la que definió como objetivo establecer una propuesta en el proceso de fabricación de colchones con el fin de incrementar la productividad en la empresa. La investigación fue aplicada, descriptiva y propositiva, la cual empleó la observación a través de fichas para la toma de tiempos y de procesos, por otro lado también aplicó una revisión documental para definir los procesos que son más importantes para mejorar el proceso productivo actual. Para la investigación se realizó un diagnóstico en la cual descubrieron que no tenían implementada alguna metodología para realizar sus actividades ya que se realiza empíricamente. En la investigación se propuso una mejora en la distribución de planta, por otro lado existían demoras en los procesos por movimientos, para mitigar se aplicó lean Manufacturing enfocándose en los desperdicios encontrados en la empresa. Como mejora propuso la aplicación de las 5S para mantener holgados los procesos en el almacén. La investigación concluye con la reducción de los tiempos en un 35.7% con la distribución de planta, se identificó que el cuello de botella es el 30% del tiempo total de elaboración; en general se aumentó un 31% la productividad. La investigación aporta con la aplicación de la distribución de planta como mejora del proceso productivo que se considerará para la investigación.

Millán, Jeniffer; Lache, Alfonso (2018) en su investigación llamada Rediseño del sistema de gestión de la calidad a través de metodologías de mejora de procesos para incrementar la productividad en una empresa metalmecánica de Bogotá, en Colombia. Tuvo como objetivo principal aplicar la mejora de los procesos para rediseñar el sistema de gestión de calidad con el fin de incrementar la productividad por medio de herramientas de diagnóstico y

metodologías. La investigación fue aplicada, para la recolección de datos se empleó la observación y la revisión documental para medir el cumplimiento de la norma de calidad. La investigación aplicó un diagnóstico inicial en la queencontró las fallas en los productos, procesos y líneas de producción. Para la mejora se aplicaron herramientas de diagnóstico como el análisis DAFO, MEFE,MIFE, se definió los indicadores por medio de la matriz de Stakeholders. Concluye con la propuesta para mitigar los 7 desperdicios encontrados en la empresa (Sobreproducción, producción de piezas defectuosas, transporte de material, inventario, sobre proceso, retraso/espera y movimientos innecesarios). La investigación concluye con el incremento de la productividad con incrementodel cumplimiento de la norma con metodologías de mejora. La investigación aporta con la aplicación de herramientas de calidad para incrementar la productividad que pueden ser empleadas en la presente investigación

A nivel nacional, Polo (2019) en su investigación Aplicación de BPM en la mejora del proceso de producción agrícola de la empresa Choco Real SAC, Lima 2019. En la que tuvo objetivo aplicar la mejora de procesos de producción mediante BPM en una empresa agrícola para la mejora de la productividad. la presente investigación fue de enfoque cuantitativo, además preexperimental y longitudinal. la cual se planteó una hipótesis en la que se evalúe la productividad antes y después para determinar si es que la mejora de procesos cambio significativo en la productividad de la empresa. al momento de realizar la gestión por procesos BPM se mejoró la productividad causando un efecto positivo en la calidad ya que se tuvo un ahorro del 65.44% del tiempo empleado en horas la cual logró incrementar su productividad aprovechando mejor el tiempo del recurso humano estableciendo procesos limpios y estándares para el desarrollo y mejora de la productividad en las actividades de producción agrícola. la presente investigación aporta con la gestión por procesos BPM que también se puede aplicar en la presente investigación para definir los procesos de manera estándar y que los trabajadores puedan desarrollar sus actividades correctamente sin necesidad de pedir orientación en cada momento

López (2018) en su tesis *Propuesta de mejora del proceso de cultivo de limón basado en modelos predictivos de rendimiento agrícola en los valles: alto Piura y San Lorenzo, 2018.* La cual tuvo como objetivo desarrollar una propuesta

de mejora en el proceso de cultivo del limón tomando en cuenta modelos predictivos para el comportamiento de las máquinas para mejorar la productividad. la presente investigación es de tipo aplicada y tomó una muestra de 36 meses para desarrollar la propuesta Por otro lado es cuantitativa y de diseño no experimental de nivel explicativo. Para lograr la mejora del proceso de cultivo se elaboró un modelo a través de la regresión lineal múltiple y un modelo de Cobb Douglas Los cuales se simularon para determinar cuál de las metodologías generaba el mejor rendimiento agrícola en la organización, para la propuesta de mejora se tomó en cuenta la homogeneización de la siembra, cuidado y cosecha de las plantas de limón y para aprovechar sus beneficios la propuesta tuvo una valoración de 2030.82 USD para la implementación en 11.04 hectáreas de terreno agrícola en Piura. La presente investigación aporta con modelos de simulación predictiva para las máquinas con el fin de mejorar la producción agrícola, estos modelos de simulación también se emplearán en la presente investigación con el fin de determinar el comportamiento de fallas en las máquinas.

Rentería (2019) en su investigación titulada *Propuesta de mejora de la* producción mediante el diseño de un sistema automatizado para la línea de retail de la empresa vínculos Agrícolas S.A.C. La cual tuvo como objetivo incrementar la capacidad de producción agrícola haciendo uso de la automatización en la línea de retail, para lograr la automatización de la Liga de retail se realizó un diagnóstico de la situación actual en la cual se planteó realizar un estudio de tiempos con la finalidad de estandarizarlos Y proponer mejoras en el método de trabajo inicialmente se contaba con personal capacitado para poder realizar los procedimientos de envasado la cual sólo llegaba a exportar 6 contenedores por lo que para lograr aumentar su producción se planteó automatizar por medio de una máquina estos procesos que son realizados por los operarios. la investigación concluye con la minimización de los tiempos que tienen los cuellos de botella ya que el trabajo anteriormente se realizaba manualmente, Y ahora que se encuentra automatizado logran exportar como máximo 7 contenedores logrando un incremento del ingreso en un 15%, asimismo la capacidad que tiene la planta, Para percibir los beneficios establecidos por la propuesta se necesitó una inversión de 277,195 soles y con la implementación de este sistema se

recuperará la inversión en un año por lo que los años siguientes serán de mayor beneficio para la organización. la presente investigación aporta con el diseño de una propuesta de mejora que permita automatizar o mejorar los tiempos de las actividades que desempeñan los colaboradores, por lo que se tomara en cuenta para ver si es que se diseña una nueva herramienta o se propone una nueva máquina para el reemplazo de otra para la automatización en la presente investigación.

A nivel Local, en Trujillo, Cueva (2018) en su tesis titulada "Implementación de un modelo de planificación de la producción y presupuestos agrícola en AGROCASAGRANDE S.A.C" trabajo de grado para optar el título de Ingeniero Industrial, Universidad Nacional de Trujillo, Trujillo, Perú. Refiere que su objetivo es diseñar una planificación basada en metodologías sostenibles y establecer el control presupuestal en términos agrícolas para una oportuna toma de decisiones; para ello primero se establecieron las técnicas de planificación a utilizar, la tecnología aplicada e implementación de inteligencia de negocios. Luego se realizó una evaluación e identificación de las desviaciones de los presupuestos; demostrando que no se realizaba un control detallado y que no discriminaba campos, por lo cual no se podía identificar la productividad de cada campo. A partir de este análisis se ha implementado el modelo de planificación de producción y presupuestos agrícola por el equipo de planificación, siguiendo una metodología propuesta, integrando de esta manera de forma detallada los componentes presupuestales en términos agrícolas, con el objetivo de identificar las desviaciones para tener la disponibilidad de datos para la toma de decisión de forma oportuna. Asimismo, este trabajo de investigación aporta con una descripción detallada de cómo funciona cada campo de producción agrícola asociados a los recursos necesarios para permitir el flujo de la operación.

Ruiz (2018) en su investigación titulada *Propuesta de mejora de métodos* de trabajo en el proceso de producción de espárrago verde fresco para incrementar la productividad de la asociación agrícola Compositan Alto, en la presente investigación se planteó una propuesta de mejora de métodos con el objetivo principal de incrementar la productividad en la asociación agrícola a través de una propuesta de mejora, esta propuesta de mejora está asociada con los métodos de trabajos implementados en la organización ya que tuvo

problemas de baja productividad debido a los rendimientos que percibía, Por otro lado también hubo causas principales como la falta de un sistema de trabajo estandarizado y la falta de un proceso estándar para la realización de sus actividades. en el diagnóstico inicial que se plantearon se analizó los porcentajes de rendimiento descarte y tocón con un 79.95%, 2.98% y 13.18% respectivamente y una productividad de la mano de obra de 6 cajas por hora. después de la implementación de la mejora de métodos de trabajos se logró el incremento del rendimiento a un 85.09% y en los procesos de descarte y tocón se redujo a 2 83% y 8.29% respectivamente esto repercutió directamente en la productividad de la organización ya que se elevó a 8 cajas por hora Por otro lado en la presente investigación también se realizó una evaluación económica en la cual determinó que el beneficio costo obtenido es de 1.65 lo que significa que al momento de realizar la mejora de métodos de trabajo por cada sol invertido retornar a 1.65 soles de ingresos. la presente investigación aporta con el diagnóstico que se realizará en la presente investigación para determinar los indicadores clave que se analizarán en la producción agrícola de la empresa Casa Grande S.A.

2.2. Marco Teórico

2.2.1. Producción agrícola

La producción agrícola son todos los bienes que se extraen del cultivo y explotación de las tierras agrícolas para obtener alimentos ya sea tipo cereales o vegetales los cuales sirven para la venta interna y para la exportación de estos bienes. La producción agrícola sirve para extraer productos para el consumo humano o alimentos y también para la producción de materia prima, así como algodón para las prendas textiles. en el Perú la producción agrícola ha ido incrementándose en los últimos años debido a que es un país en el cual está beneficiado por la flora y la fauna aparte posee un ecosistema que permite el desarrollo de muchas variedades de plantas. (Banco Mundial, 2017)

2.2.2. Estudio de tiempos

Un estudio de tiempos es el análisis cronométrico del tiempo de cada proceso involucrado en la producción de un bien o servicio cuando en condiciones normales con un desempeño del colaborador normal y tomando en cuenta los suplementos de fatiga que posee el contexto. Los estudios de tiempo sirven para mantener controlado los procesos productivos además de mitigar tiempos ociosos, así como también la estimación de la producción posible que pudiera lograrse si es que se mejoran ciertos aspectos encontrados en el estudio de tiempos

Para realizar un estudio de tiempos es necesario tomar en cuenta consideraciones de medición como el cronometraje que se aplicará. existen 2 tipos de cronometraje con retorno a cero y cronometraje continuo. El cronometraje continuo es una manera de medir el tiempo partiendo desde una hora establecida y dejando correr el reloj de principio a fin marcando en qué momento acaba una actividad de otra Por otro lado el cronometraje con retorno a cero mide cada estación de trabajo su tiempo y cada vez que vuelve a cambiar de actividad retorna el cronómetro a cero y se vuelve a medir.

- Para el establecimiento de un tiempo estándar es necesario que el investigador está involucrado en el proceso productivo a profundidad.

- es necesario que el proceso de producción este documentado y estandarizado
- los colaboradores en los cuales se les medirá el tiempo deben estar en todo momento informados
- el investigador debe tener todas sus herramientas necesarias para llevar a cabo una correcta medición del trabajo.
- El comportamiento que debe adoptar el investigador tiene que ser de forma tranquila y comprensible de tal forma no se ejerza presión en los colaboradores e influya en el desempeño que estos muestran. (Palacios Acero, 2016)

a) Tiempo Observado:

El tiempo observado es el tiempo que se percibe al realizar la medición del tiempo que dura cada actividad en el estudio del trabajo. el tiempo observado se calcula con el promedio de observaciones realizadas en la toma de tiempos inicial. para calcular el tiempo observado es necesario obtener la sumatoria de todos los tiempos de los n casos analizados y dividiéndolos entre la cantidad de casos observados. (Morales, 2011)

Ecuación 1

Tiempo observado

$$TO = \frac{\sum Tiempos\ medidos}{Tama\~no\ de\ muestra}$$

b) Tiempo Normal:

Es el tiempo observado ya normalizado, para realizar la normalización de los tiempos es necesario realizar la evaluación de desempeño en cada proceso a los colaboradores, la evaluación del desempeño debe estar realizado por un colaborador que esté involucrado directamente en el proceso productivo y conozca a la perfección cómo realizar la producción planificada, por lo que por medio de la evaluación del desempeño de Westinghouse se obtiene una evolución que puede estar por encima o por debajo del 100%. para realizar el cálculo del tiempo normal es necesario multiplicar el tiempo observado por la calificación obtenida en la evaluación del desempeño.

Ecuación 2

Tiempo Normal

TN = TO * Factor de ritmo de trabajo

c) Método de valoración del desempeño Westinghouse

la medición del desempeño de Westinghouse se toma considerando cuatro criterios para la evaluación del desempeño, el esfuerzo, la consistencia, las condiciones y las habilidades que se muestran de los colaboradores. Ver

- La habilidad: es la competencia que posee un colaborador que le permite desarrollar sus actividades de forma rápida y aprovechando los recursos. (Niebel & Freivalds, 2012).
- El esfuerzo: Es la voluntad que tiene un colaborador para ponerle ganas en realizar un trabajo por más que no tenga habilidad u otros factores que afecten la productividad de la empresa. Es necesario que los colaboradores mantengan un esfuerzo entre 100 y 110%, para evitar síndrome de Burnout en los colaboradores.
- Las condiciones: Se refiere a las condiciones en las que fue entregado el producto final o el servicio prestado, este factor evalúa directamente al resultado del trabajo realizado por los colaboradores sin embargo el esfuerzo y la habilidad es una característica propia del colaborador.
- La consistencia: se refiere a la consistencia del producto o del servicio realizado tomando en cuenta los criterios planteados para realizar el producto o servicio presente. (Benjamin W. & Andris, 2009).

Después de realizar la evaluación del desempeño en los colaboradores de la empresa en cada proceso es necesario sumar todos los coeficientes obtenidos y sumarle la unidad, partiendo de esa premisa se obtiene el factor desempeño adecuado según la valoración del desempeño de Westinghouse

Tabla 1

Cuadro resumen de Calificación de factor de desempeño

Factor	Representación	Calif
Habilidad	B2	
Esfuerzo	C2	
Condiciones	E	
Consistencia		
Suma		
Agregar unidad Factor		
Factor		

Nota: La tabla muestra la evaluación de desempeño proporcionado de los estudios de Westinghouse.

d) Tiempos Suplementarios (TS):

Dentro de los estudios de Métodos y Tiempos, el cálculo de los coeficientes de fatiga es un aspecto fundamental por su impacto en la definición de los estándares de trabajo. Sin embargo, no hay un criterio universal al respecto ya que incluso la Organización Internacional del Trabajo (OIT) no llega nunca a definir una norma, sino que plantea unas recomendaciones de manera didáctica para que sean usadas por las partes afectadas si así lo consideran oportuno.

Tabla 2
Suplementos OIT

INGENIERÍA IND	SISTEMA DE SUPLEMENTOS POR DESCANSO				
SUPLEMENTOS CONSTANTES	HOMBRE	MUJER	SUPLEMENTOS VARIABLES	HOMBRE I	MUJER
Necesidades personales	5	7	e) Condiciones atmosféricas		
Básico por fatiga	4	4	Índice de enfriamiento, termómetro		
SUPLEMENTOS VARIABLES	HOMBRE	MUJER	de KATA (milicalorías/cm2/segundo)		
a) Trabajo de pie			16	0	
Trabajo se realiza sentado(a)	0	0	14	0	
Trabajo se realiza de pie	2	4	12	0	
b) Postura normal			10	3	
Ligeramete incómoda	0	1	8	10	
Incómoda (inclinación del cuerpo)	2	3	6	21	
Muy incómoda (Cuerpo estirado)	7	7	5	31	
			4	45	
c) Uso de la fuerza o energía muscular			3	64	
(levantar, tirar o empujar)			2	100	
(revailed), that o empajory			f) Tensión visual		
Peso levantado por kilogramo			Trabajos de cierta precisión	0	0
2,5	0	1	Trabajos de precisión o fatigosos	2	2
5	1	2	Trabajos de gran precisión	5	5
7,5	2	3	g) Ruido		
10	3	4	Sonido continuo	0	0
12,5	4	6	Sonidos intermitentes y fuertes	2	2
15	5	8	Sonidos intermitentes y muy fuertes	5	5
17,5	7	10	Sonidos estridentes	7	7
20	9	13	h) Tensión mental		
22,5	11	16	Proceso algo complejo	1	1
25	13	20 (máx)	Proceso complejo o de atención		
30	17		dividida	4	4
33,5	22		Proceso muy complejo	8	8
d) Iluminación			i) Monotonía mental		
				0	0
Ligeramente por debajo de la potencia calculada	0	0	Trabajo monótono	U	U
Calculada			Trabajo bastante monótono	1	1
Bastante por debajo	2	2	Trabajo muy monótono	4	4
Absolutamente insuficiente	5	5	j) Monotonía física		
			Trabajo algo aburrido	0	0
			Trabajo aburrido	2	2
			Trabajo muy aburrido	5	5

Nota: La imagen fue extraída de IngenieríaIndustrialonline.com (Salazar López, 2016)

e) Tiempo Estándar:

El tiempo estándar es el tiempo ya normalizado y con los suplementos adicionados el cual establece un Tiempo para realizar una cierta cantidad de producción a partir del tiempo estándar es fácil proponer un balance de línea. El cálculo se realiza después de realizar la evaluación de los suplementos presentes en la organización al momento de realizar el trabajo por lo que se calcula con la multiplicación del tiempo normal por uno más el porcentaje de suplementos obtenidos al realizar la evaluación de tolerancias.

Cálculo del Tiempo Estándar (TE):

Ecuación 3

Tiempo Estándar

 $Tiempo\ Est\'andar(TE_i) = (TN) * (1 + Suplementos\ (\%TS))$

2.2.3. Optimización de procesos

La optimización esta traducido en el ahorro de recursos que se generan en cada de uno de los procesos o de forma parcial; de tal forma que este controlado el flujo de la información; materiales y personas. A continuación; se muestra el modelo conceptual sugerido para realizar una optimización de proceso a través de los elementos mínimos a considerar:

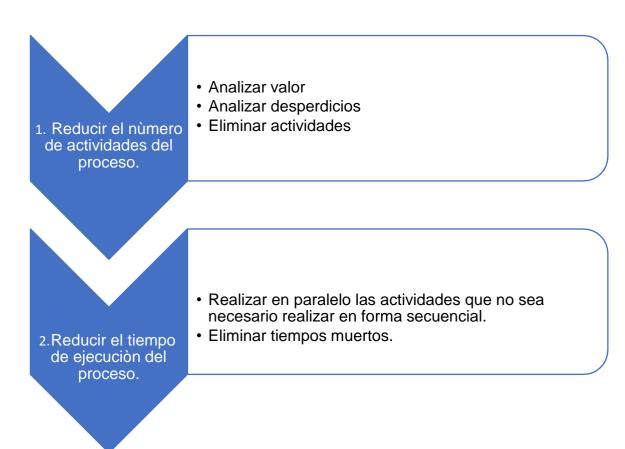


Figura 1. Esquema sugerido para la optimización de los procesos.

Nota. Adaptado de (SFP, 2016)

Requerimientos de espacio para el diseño de los procesos

Los requerimientos de los espacios a considerar están determinados por los siguientes principios (Meyers & Stephens, 2006):

Principio 1: movimientos de la mano

- Se deberá eliminar los movimientos de las manos que son innecesarios.
- Se debe de combinar los movimientos para suprimir los movimientos excesivos.
- Reducir la fuerza requerida en la ejecución de los procedimientos.
- No usar ninguna mano como dispositivo de sujeción.
- Colocar las herramientas y los materiales que se usan con frecuencia cerca del punto de empleo.

Principio 2: tipos básicos de movimiento

- Los movimientos balísticos, son los movimientos rápidos que se crean al poner en movimiento un conjunto de músculos sin tratar de detenerlos con el uso de otros músculos.
- Los movimientos controlados, son lo opuesto de los balísticos, y requieren más control, en especial, al final de cada movimiento; dado que se tiene que considerar la seguridad y calidad de los materiales.

Principio 3: ubicación de las partes y las herramientas

Se debe de tener un lugar fijo para todas las partes y las herramientas; considerando que las distancias con respecto al lugar donde se emplean estas partes o herramientas deberán de ser mínimas.

Principio 4: liberar las manos de tanto trabajo como sea posible

- 2.2.4. Se debe de diseñar accesorios o plantillas para sujetar partes de modo que el trabajador pueda usar ambas manos.
- 2.2.5. Diagrama de flujo del proceso

Es un diagrama a nivel detallado donde también se puede representar gráficamente mediante un diagrama de flujo debido a que especifica las actividades realizadas por cada uno de los actores del proceso, así como los documentos y sistemas empleados. Además, se considera que el diagrama de flujo sea lo más específico y preciso posible, ya que buena parte de las mejoras se sustentan en su análisis.

Para la construcción de un diagrama de flujo se debe de considerar:

- 1. Identificar a los participantes del proceso y como es el proceso de inicio a fin.
- 2. Determinar las actividades que realiza cada participante en el proceso y describir brevemente en qué consisten.
- 3. Unir las distintas actividades, creando una secuencia lógica y temporal de las mismas.

- 4. Alinear todas las actividades con sus respectivos participantes, identificando los distintos sistemas y documentos que intervienen en cada caso.
- 5. Validar el diagrama con los participantes directos del proceso.

2.2.6. Mantenimiento Total Productivo

El objetivo es asegurar que el equipo de producción se encuentre en perfectas condiciones y que continuamente produzca componentes de acuerdo con los estándares de calidad en un tiempo de ciclo adecuado. La idea fundamental es que la mejora y buena conservación de los activos productivos es una tarea de todos, desde los directivos hasta los ayudantes de los operarios. Esta filosofía exige que cada máquina esté lista para empezar a trabajar en cualquier momento en respuesta a los requerimientos de los clientes. Conforme se aproxima al ideal de la producción sin stocks, se intenta asegurar que el equipo sea altamente fiable desde el arranque hasta la parada y con un funcionamiento perfecto y sin averías. Desde una perspectiva estratégica, los objetivos más destacados del TPM son los siguientes:

- Implicar en la implantación del TPM a todos los departamentos que planifican, diseñan, utilizan o mantienen los equipos (Ingeniería y diseño, producción expedición y mantenimiento)
- Promover el TPM mediante actividades autónomas en pequeños grupos, fortaleciendo el trabajo en equipo, el incremento de la moral del trabajador y la creación de un espacio donde cada persona pueda aportar lo mejor de sí, con el fin de conseguir un entorno creativo de trabajo, seguro y agradable.
- Construir en la empresa capacidades competitivas sostenibles en el tiempo gracias a su contribución a la mejora de la efectividad de los sistemas productivos, la flexibilidad y la reducción de los costes operativos

Desde una perspectiva estratégica, los objetivos más destacados del TPM son los siguientes:

- Maximizar la eficacia del equipo y de las instalaciones, eliminando o reduciendo los tiempos muertos debidos a averías, preparaciones y ajustes.
- Desarrollar un sistema de mantenimiento idóneo para toda la vida útil del equipo de producción, que incluya la implicación activa y la participación de todas las personas para conseguir una mayor disponibilidad de las instalaciones.

2.2.7. Diseño de herramientas

El diseño de herramientas está relacionado con la reducción de los índices de incidencia de las lesiones músculo – esqueléticas relacionadas con el trabajo que se desarrollan gradualmente como resultado de micro traumas repetitivos por el uso de herramientas disergonómicos. Cuatro factores principales relacionados con el trabajo son los que provocan este desorden de trauma acumulativo (Benjamin W. & Andris, Ingenieria Industrial - Métodos, estándares y diseño del trabajo, 2009):

- 1. Fuerza excesiva
- 2. Movimientos no naturales o de los extremos de las articulaciones.
- 3. Gran número de repeticiones.
- 4. Duración del trabajo.

Asimismo; se siguen los siguientes principios para el diseño de estas herramientas:

- Utilizar un agarre de fuerza para las tareas que requieran fuerza y agarre de precisión.
- Evite la carga muscular estática durante periodos prolongados.
- Realizar movimientos de torcido con los codos flexionados.
- Mantenga la muñeca estirada.
- Evite la compresión de los tejidos.
- Diseñe las herramientas de tal manera que puedan ser empleadas con cualquier mano por la mayoría de las personas.
- Evitar el movimiento dactilar repetitivo.
- Utilizar los dedos más fuertes para trabajar: el dedo medio y el pulgar.
- Diseñe mangos de 1.5 pulgadas de diámetro para agarres de fuerza.

- Diseñe el largo de los mangos con un mínimo de 4 pulgadas.
- Diseñe un espacio de agarre de 3 pulgadas para las herramientas con dos manos.
- Diseñe los mangos con la forma apropiada.
- Diseñe la superficie de agarre de tal forma que sea comprimible y no conductora.
- Mantenga el peso de la herramienta menor a las 5 libras.
- Utilice los guantes con criterio.

2.2.8. Simulación de sistemas

La simulación es un conjunto de relaciones lógicas, matemáticas y probabilistas que se encuentran dentro del comportamiento que posee un sistema en estudio cuando presencia algún tipo de evento. (García, García, & Cárdenas, 2013). Por otro lado, se entiende por simulación a la esquematización y ejecución de algún cambio en la realidad sin tener que afectar a esta, con la finalidad de tomar decisiones de acuerdo con el comportamiento que posea el sistema al realizar dicho evento.

A. Ventajas y desventajas de la simulación

La simulación es una herramienta poderosa para el análisis, comprensión y mejoramiento de un sistema, pero de acuerdo con el objetivo que se plantee en la organización, dependerá el éxito de la simulación, por lo que a continuación se evidencia las ventajas que genera la aplicación de esta metodología:

- Ayuda a comprender el sistema actual de manera efectiva, pues permite hacer cambios (análisis de sensibilidad) y observar como afectan al objetivo estos cambios.
- Mejora el conocimiento del proceso actual, ya que permite realizar modificaciones en distintos escenarios, por lo que al presenciarlo de manera virtual se comprende mejor el sistema sin necesidad de intervenir en el proceso real.
- Se puede llegar a emplear para la toma de decisiones y como forma para capacitar a los trabajadores.

- El costo es mínimo puesto que no realiza cambios en la realidad.
- Permite encontrar las mejores condiciones de trabajo en el escenario correcto, el cual permita que los objetivos de la organización logren ser cumplidos.
- Cuando se presentan problemas complejos en la organización, la simulación permite dar distintas soluciones optimas al problema evidenciado.
- Los softwares de simulación actualmente son fáciles de comprender y de manera intuitiva, tienen herramientas estadísticas que ayudan a concretar una simulación óptima.
- Con la integración de herramientas gráficas que poseen los simuladores, se puede observar cómo se comporta el mismo proceso que se llevó a la simulación, pero con las mejoras implementadas. (Himmelblau & Bischoff, 2015)

Por otro lado, se encuentran las desventajas que la simulación tiene al momento de su aplicación.

- Por más que existan softwares que te arrojen como resulta el escenario perfecto en el que todas las condiciones del objetivo se cumplan, la simulación no es una herramienta de optimización si no ayuda para la toma de decisiones.
- Las mejoras "Sencillas" que se planteen a raíz de una simulación simple, por lo general son costosas, por lo general en la simulación se esquematizan sistemas que tengan problemas con soluciones analíticas que se han desarrollado para la simulación.
- Para determinar un modelo de simulación precisa, se requiere un tiempo amplio, de aproximadamente meses de estudio, por lo que las empresas por lo general no enfocan sus estudios en estos temas.
- El analista debe ser especializado en simulación para poder interpretar los datos que la simulación arroje, por lo general se emplea conocimientos de estadística para interpretarlos.
- Los dueños del sistema por lo general siempre tienen altas expectativas con el estudio de simulación, de tal manera que cree que los resultados que arroja la simulación ocurrirán exactamente igual en el futuro.

Las ventajas y desventajas son asumidas por la organización que implemente este modelo matemático para la simulación de sus procesos de manera estadística. (García, García, & Cárdenas, 2013)

B. Elementos de una simulación.

1. Sistema

Un sistema es simulación es un conjunto de elementos interrelacionados que en conjunto logran un objetivo en común. Los elementos pueden ser las piezas de manufactura, inventario temporal, colaborador, máquina fresadora, etc.

2. Entidades

En los modelos de simulación se tiene una entidad que es el elemento que pasa por el proceso productivo, es el que representa los flujos de entrada y salida en el sistema propuesto, las entidades pueden ser las piezas que pasan por el proceso productivo de mecanizado y sufre cambios hasta convertirse en producto terminado. Al ingresar una entidad al sistema, es culpa de este que el estado del sistema cambie.

3. Estado del sistema

Es el estado en el que se encuentra el sistema en un determinado de tiempo. Es como una fotografía donde se en un instante de tiempo en el que se muestras variables puntuales como cantidad de entidades en el sistema, y variables acumuladas como tiempo promedio de la entidad en el sistema, o tiempo promedio en cola.

4. Eventos actuales y futuros

Un evento es un suceso en el cual se muestra un cambio en el estado del sistema, ocurre cuando ingresan o salen las entidades, los tipos de eventos pueden ser actuales y futuros, los actuales son los cambios que se están dando en el sistema en un tiempo determinado, y los eventos futuros son los cambios en el estado del sistema que se mostraran después de un tiempo de simulación. Un evento actual puede ser el ingreso a las 8:05 am de una entidad al sistema

de atención al cliente en un banco, luego de 25, a las 8:30 la entidad se encuentra saliendo del sistema.

5. Localizaciones

Son todos los lugares en los que la entidad puede llegar para ser transformada o es un lugar de espera para ser transformada. Las localizaciones más comunes evidenciadas en un sistema de producción son los almacenes, bandas transportadoras, puestos de inspección, máquinas de manufactura, etc.

6. Recursos

Son todos los dispositivos que se encuentran en distintas locaciones que son necesarios para que se realice la actividad demandada. Los recursos pueden ser los montacargas que son necesarios para el traslado de entidades, por otro lado también puede ser un operario que realiza una inspección en una estación de trabajo, la localización es la estación de trabajo pero el trabajador no forma parte de esa localización, si no que el proceso de inspección demanda el recurso humano para llevar a cabo el proceso.

7. Atributos

Es una característica que posee la entidad que se analiza. Si la entidad es una pieza industrial estos atributos serían su color, olor, tipo de pieza, etc.

8. Variables

Las variables son las mediciones matemáticas que se crean y modifican con funciones matemáticas o relaciones lógicas. Estas variables pueden ser continuas como el tiempo de procesamiento por operación y también discretas como la cantidad de piezas que fabrica una planta en un día.

9. Reloj de la simulación

Es el medidor del tiempo de transcurso de la simulación, este reloj tiene por objetivo indicar el tiempo de simulación que se lleva realizando, este reloj sirve para evidenciar los eventos futuros que ocurran. (Barceló, 2015)

10. Procedimientos para desarrollar para la implementación de la propuesta.

Para llevar a cabo una simulación según el Libro Simulación y análisis de sistemas con ProModel (2013) existen una serie de pasos para llevar a cabo una simulación óptima y evitar errores en el proceso.

- C.Pasos para realizar un estudio de simulación
 - i. Definición del sistema bajo estudio

Para concretar este pase se tiene conocer el sistema de análisis, se tiene que estar involucrado el proceso a simular, se determinar el alcance de la simulación, se establece los supuestos que puede presentar el sistema, las variables de análisis y las limitaciones que existen para la simulación. Es importante que se cuente con información necesaria de tal forma se pueda plasmar en un modelo conceptual o mapa mental del sistema que se estudie, debe determinar todos sus elementos e interacciones entre ellos (Recursos, localizaciones, flujos de entidades, personas, variables, etc.)

ii. Generación del modelo de simulación base

Después de realizar el modelo conceptual, se generará el modelo base para la simulación se tiene que esquematizar la interacción de los elementos del sistema y subsistemas, se debe establecer de manera creativa todas las variables que se analizarán en la simulación, este es el primer paso, pues a partir de este se estudiarán las variables y se determinará el tipo de comportamiento estadístico, pero la generación del modelo base es la parte más importante de la simulación pues a partir de este modelo base se tiene que ver reflejado el comportamiento del sistema, por otro lado, se añadirán más variables de acuerdo a como avance el estudio de simulación.

iii. Recolección y análisis de datos

En este paso, después de realizar el modelo base para la simulación se analizan las variables de estudio en base a la distribución de probabilidad que presenten y se determinarán los parámetros del tipo de distribución que estas variables presenten, por ejemplo, si los datos estudiados de la variable tienen una distribución normal, se realizará una prueba de bondad de ajuste para

estimar el tipo de distribución que sigue, además de los parámetros que tiene la distribución que sigue. Con esta información se generarán variables aleatorias para mostrar el comportamiento de las variables.

iv. Generación de modelo preliminar

Se estructura la información del análisis de datos y supuestos del modelo para crear un modelo de simulación que acerque lo más posible a la realidad problemática. En algunos casos se puede incluir algunas variables que no se estudiaron como la intención de compra entre 3 tipos de productos, para ello se puede analizar la información histórica o si no de acuerdo con la experiencia que se tiene y de esa manera se puede acercar el modelo a la realidad ya al momento de hacer la primera simulación, esta tiene que mostrar lo que está ocurriendo en ese momento en la realidad.

v. Verificación del modelo

Luego de realizar la identificación del tipo de distribución se verificará la información que se ingresará a la simulación para comprobar que todos los parámetros que se han establecido sean los correctos y funcionen en la simulación. Si es que los parámetros son mal ingresados, puede que exista un cambio muy evidente con relación a la realidad problemática, pues el error del ingreso de algún parámetro influye directamente en el comportamiento del sistema en estudio para la simulación

vi. Validación del modelo

Para la validación del modelo, usualmente se recurre a establecer condiciones en un escenario que en la realidad y en la simulación el comportamiento sea similar, por lo que se estudia si el comportamiento de la simulación y el comportamiento del sistema en la realidad son casi los mismos. Por otro lado, no es necesario que sea exactamente igual, pero si es necesario que la simulación sea una representación de una realidad que existe, por lo que el analista debe justificar si el modelo de simulación tiene algunos comportamientos que no sean iguales a la experiencia de los que conocen el proceso.

vii. Generación del modelo final

Luego de validar el modelo se establece el modelo raíz, el cual de ese modelo se crean distintos escenarios para la generación de alternativas de solución para la problemática simulada en el escenario planteado.

viii. Determinación de los escenarios para el análisis

Para los escenarios se puede plantear un escenario optimista, uno pesimista y uno medio para poder analizar el comportamiento de las variables en estudio frente a 3 condiciones para dar la mejor solución al problemasimulado. Por otro lado, también se pueden generar distintos escenarios de acuerdo con las realidades posibles, pero es importante recalcar que todas las variables no funcionan igual en otros escenarios. Es importante que el analista ayude a minimizar la cantidad de escenarios para la simulación, pues la prueba de muchos escenarios eleva el costo de la simulación.

ix. Análisis de sensibilidad

Después de establecer los escenarios se puede analizar los resultados obtenidos en los distintos escenarios propuestos, los escenarios que posean resultados similares es importante analizar el comportamiento el intervalo de confianza pues en el que esté más controlado, propiciará mas mejores condiciones para la toma de decisión. Por otro lado, se debe incrementar las réplicas en cada escenario para escoger el mejor según sean las condiciones estudiadas.

x. Documentación del modelo, sugerencias y conclusiones.

Una vez realizado el análisis de sensibilidad, la información proveniente de la simulación se procede a documentarla pues este reporte servirá para futuros estudios que se realicen en la organización, por otro lado, es importante actualizar la información de la simulación cuando exista el mínimo cambio, pues estos cambios pequeños pueden alterar el comportamiento del sistema en sí. Luego de documentar el reporte obtenido de la simulación el analista da sugerencias para la mejora del sistema analizado en la simulación y da las conclusiones que obtuvo en la simulación del sistema estudiado (Candelaria, y otros, 2011)

Para la simulación de sistemas se presenta la esquematización del proceso de elaboración de un proyecto de simulación en el que se muestra el cronograma de Gantt que se emplea para la elaboración de un proyecto de simulación. (García, García, & Cárdenas, 2013)

2.2.9. Productividad

La productividad es la forma de manejar óptimamente los recursos de una organización con el fin de mantener una producción eficiente. Es la relación que existe entre la producción y el recurso empleado, este recurso puede ser capital, mano de obra, materia prima o su mezcla en general. (Chase, Jacobs, & Aquilano, 2006)

Tipos de productividad

La productividad tiene varios tipos, se encuentra:

Productividad de un factor: Es la relación entre la producción y un solo factor, puede ser mano de obra (en horas hombre, cantidad de trabajadores o cantidad de dinero invertido en mano de obra), también está con relación y la materia prima (que puede ser en kilogramos de material principal o inversión en material).

El cálculo de la productividad de un factor es:

Ecuación 4

Productividad de la mano de obra

$$Productividad\ M.\ O. = \frac{Producción}{Horas\ Hombre\ o\ N^{\circ}\ Trabajadores\ o\ \$MO}$$

Ecuación 5

Productividad de la materia prima

$$Productividad\ M.P. = \frac{Producción}{Kilos\ de\ MP\ principal\ o\ \$\ en\ MP}$$

 Productividad multifactorial: es cuando en lugar de tomar un solo recurso para la producción, se evalúa con dos o más factores a conveniencia, puede ser Mano de obra y materia prima, materia prima y energía o mano de obra y energía.

Ecuación 6

Productividad de la mano de obra y energía

$$Productividad = \frac{Producción}{\$MO + \$E}$$

Ecuación 7

Productividad de la materia prima y energía

$$Productividad = \frac{Producción}{\$MP + \$E}$$

Ecuación 8

Productividad de la materia prima y la mano de obra

$$Productividad = \frac{Producción}{\$MP + \$MO}$$

Ecuación 9

Productividad de la materia prima, mano de obra y energía.

$$Productividad = \frac{Producción}{\$MP + \$MO + \$E}$$

Existen muchos tipos de productividades pero los más importantes y los más empleados son las productividades de la mano de obra y la productividad de la materia prima puesto que es más sencillo realizar un análisis de la de la cadena productiva o sino un análisis de la cadena logística con la finalidad de obtener los mínimos precios para aumentar lo que es la productividad ya sea de la mano de obra y de la productividad es importante también trabajarlos en conjunto por medio de una productividad multifactorial considerando los 2 factores de materia prima y recurso humano

- Productividad total: es la relación entre la producción y todos los recursos que emplea la organización para llegar a la producción indicada, se calcula:

Ecuación 10

Productividad total

$$Productividad = \frac{Producción}{\$MP + \$MO + \$E + \$Capital + \$Gastos, otros}$$

1.1.1. Producción

 PRODUCCIÓN: Es la capacidad de artículos fabricados en un periodo de tiempo determinado, y se representa de la siguiente forma (NIEBEL, 2012):

Ecuación 11 *Producción*

$$Producci\'on = \frac{Tiempo\ base}{Ciclo}$$

Donde:

- Tiempo base: Tiempo que se demora para producir un artículo, puede ser una hora, una semana, un mes.
- Ciclo o velocidad: Representa el "cuello de botella" de la línea de producción y prácticamente viene a ser la estación de trabajo que más tiempo se demora.

2.3. Marco Conceptual

A continuación, se presentan algunas definiciones según (Benjamin W. & Andris, Ingenieria Industrial - Métodos, estándares y diseño del trabajo, 2009):

- Desempeño: Razón de la producción real del operario entre la producción estándar.
- Elemento: División del trabajo que se puede medir con un cronómetro y que tiene puntos terminales o de quiebre fácilmente identificables.
- Proceso: Serie de operaciones que logran el avance del producto hacia su tamaño, forma y especificaciones.
- Muestreo del trabajo: Método para analizar el trabajo tomando un número grande de observaciones a intervalos aleatorios, para establecer estándares y mejorar los métodos.
- Tiempo de ciclo promedio: Suma de todos los tiempos elementales divididos entre el número de observaciones que se hicieron durante el ciclo.
- Tiempo de inicio: Tiempo de reloj en el que comienza un estudio de tiempos.
- Demora: Cualquier interrupción de la rutina de trabajo que no ocurre en el ciclo de trabajo típico.
- Método: técnica que se emplea para realizar una operación.
- Observación: Recolección y registro del tiempo que se requiere para ejecutar un elemento, o una lectura del reloj.
- Operario calificado: Operario que puede lograr el estándar de desempeño establecido cuando aplica el método prescrito y trabaja a un ritmo estándar.
- Holgura: Tiempo que se agrega al tiempo normal para permitir demoras personales, inevitables y por fatiga.

2.4. Hipótesis

La propuesta de mejora de la producción agrícola de la caña de azúcar permitirá incrementar la productividad de la empresa Casa Grande SA.

2.5. Variables

Tabla 3

Operacionalización de las variables

Variable	Definición Conceptual	Definición operacional	Dimensiones	Indicadores	Tipo variable
		Es la forma de aprovechamiento con la mínima utilización de recursos que puede ser en tiempo o materia prima.	Tiempo estándar	TE=TN*(1+sup)	Razón
<u>Mejora de la</u> <u>producción</u> <u>Agrícola</u>	Es el ahorro de los recursos utilizados en una empresa para el desarrollo de sus actividades en el campo agrícola (Banco Mundial, 2017)		Diagrama de análisis del proceso	% actividades productivas	Razón
			Mantenimiento predictivo	Comportamiento estadístico de las fallas	Razón
			Diseño de herramientas	Análisis de fuerzas	Razón
			Gestión de Procesos BPM	Procesos documentados/ total de procesos	Razón
<u>Productividad</u>	Es la relación que existe entre los	Es la relación que existe entre la producción	Productividad de mano de obra en cantidad de trabajadores	Producción / #trabajadores	Razón
	recursos empleados y los resultados	obtenida y los recursos empleados para el abastecimiento de la materia prima principal de la caña de azúcar.	Productividad de la mano de obra en horas hombre	Producción / # horas hombre	Razón
			Variación de la productividad	(P1-P2) / P1*100	Razón

III. METODOLOGÍA

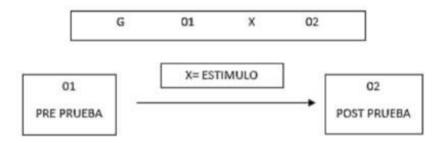
3.1. Tipo y nivel de investigación.

La investigación fue de tipo aplicada cuantitativa, ya que según Risco (2020) indica que las investigaciones aplicadas son aquellas que tienen como finalidad dar solución a alguna problemática empleada, además es cuantitativa debido que los datos que se obtuvieron serán procesados estadísticamente.

El nivel de la investigación es descriptivo debido a que Ariste et. Al. (2020) mencionaron que estas investigaciones tienen como propósito, detallar los hallazgos encontrados de tal forma se pueda interpretar las causas que ocasionan los problemas encontrados.

3.2. Población y Muestra

3.2.1. Población


Para el presente proyecto la población está constituida por producción agrícola de caña de azúcar de todas las administraciones o anexos que pertenecen a la empresa Casa Grande S.A: Lache / la chica con 40 trabajadores; Facalá con 80 trabajadores; Sta. Clara con 65 trabajadores y Mocan con 60 Trabajadores.

3.2.2. Muestra

Se está tomando como muestra de estudio la producción agrícola de la caña de azúcar de la administración de mocan con 2681.565 Hrs con 60 trabajadores en el campo.

3.3. Diseño de investigación

La investigación presenta un diseño preexperimental ya que según Ramos (2021), se caracteriza por la manipular intencionadamente de la variable independiente para observar cual es el impacto que genera sobre una variable dependiente la investigación preexperimental tiene una interacción mínima en la variable independiente con el propósito de conseguir los objetivos planteados para la variable dependiente. Para la presente investigación el diseño se muestra:

- G = Grupo o muestra.
- O1: Observación de la productividad inicial.
- O2: Observación de la productividad después de la propuesta
- X: Aplicación de la propuesta de mejora

3.4. Técnicas e Instrumentos de investigación

Tabla 4 *Técnicas e instrumentos de recolección de datos*

Objections	T (:	l t	Danidada
Objetivos	Técnica	Instrumento / Herramienta	Resultado
Objetivee	1 0011104	mondification / mondification	rtocaitaac

Realizar un diagnóstico de la situación actual de la producción agrícola en la empresa Casa Grande S.A.	Análisis documental Encuesta	Formato de registro de fallas en máquinas (Anexo 2) Formato de producción agrícola (Anexo 3 y Anexo 5) Cuestionario (Anexo 4)	Se espera realizar un diagnóstico de la situación actual de la organización
Diseñar la propuesta de mejora para la producción agrícola de la caña de azúcar en la empresa Casa Grande S.A.	Análisis de la	Formato para propuesta de mejora (Anexo 6) Formato de toma de tempo (Anexo 7) Evaluación del desempeño (Anexo 8) Evaluación de suplementos (Anexo 9)	Se espera obtener una propuesta de mejora que permita el incremento de la productividad.
Realizar la evaluación de la productividad de la producción agrícola de la caña de azúcar en la empresa Casa Grande S.A.		Formato de evaluación de la productividad (Anexo 10)	Se espera obtener la evaluación de la productividad antes y después de la mejora
Evaluar económicamente la propuesta de mejorapara la empresa Casa Grande S.A.		Formato para la evaluación económica de la propuesta (Anexo 11)	

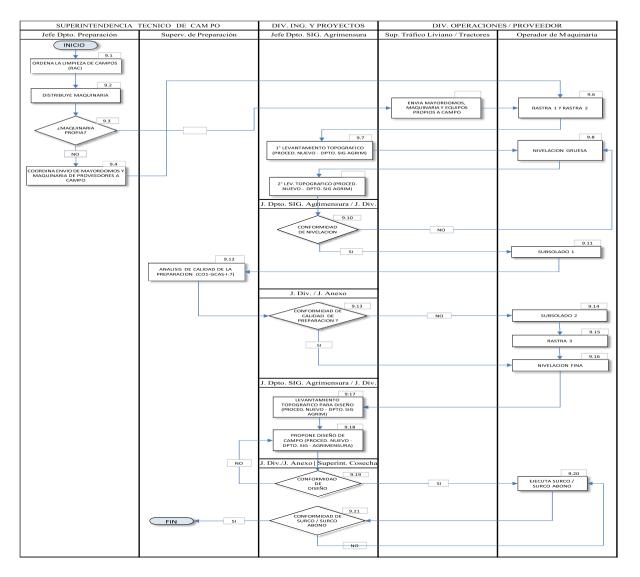
3.5. Procesamiento y análisis de datos.

Herramientas para el análisis y procesamiento de la información que extraeremos a partir de las técnicas de recolección de datos que se empleará para el desarrollo de la investigación son: Aura Portal, Excel, MiniTab, SolidWorks y SPSS.

3.5.1. Procedimiento para el objetivo 1: Realizar un diagnóstico de la situación actual de la producción agrícola en la empresa Casa Grande S.A.

Para realizar el diagnóstico de la situación actual de la empresa Casa Grande S.A. según los datos registrados por la empresa, se conoce que Casa Grande cubre una extensión aproximada de 30 mil hectáreas y se hayan contenidas en siete distritos de la provincia de Ascope. Asimismo; los procesos de preparación de caña son los mismos en cada distrito siguiendo el siguiente orden

Figura 2. Proceso de cosecha de caña de azúcar



Para el análisis de las deficiencias se describió cada proceso de manera detallada; identificando las deficiencias con sus respectivas propuestas de solución, como se muestra a continuación:

a. Preparación de terreno

En la siguiente figura se registró el procedimiento que se debe de considerar para la preparación del terreno y su descripción respectiva:

Figura 3. Procedimiento para la preparación de la tierra.

Nota: La figura fue extraída del análisis de la información.

A continuación, se describe los procedimientos según el flujograma de la figura 3:

- (9.1) El jefe del Dpto. de Preparación ordena la limpieza de los campos a renovar, de manera que se elimine los Residuos Agrícolas de Cosecha (RAC) y no haya obstáculos para el buen desarrollo de las labores. Esta actividad se desarrolla con personal propio, y de ser necesario también con el apoyo del personal de la Administración. (9.2) El jefe de Preparación distribuye la maquinaria en los campos que se encuentren limpios, y según el Programa de Preparación Mensual o prioridades. De acuerdo con la distribución hecha, el jefe de Preparación decide a que campo es enviada la maquinaria propia y la maquinaria particular. *Observación:* El jefe de preparación demora en los cálculos para designación del recurso maquinaria por lo que a veces solo designa estos recursos según su nivel de experiencia; en muchas veces es exacto o están por defecto; sin embargo, hay registros históricos que indican que la empresa genera sobre costos por la mala asignación de maquinaria por exceso; generando una deficiente utilidad operacional.
- (9.3) En caso de ser maquinaria propia se continúa con el paso 9.5, de lo contrario pasamos al punto 9.4. (9.4) Si es maquinaria particular, el jefe del Dpto. de Preparación coordina con el representante de la empresa proveedora el traslado de la maquinaria e implementos hacia el campo que tengan designado e iniciar con las labores programadas. (9.5) Si es maquinaria propia, el jefe del Dpto. de Preparación coordina con el jefe de la Div. Operaciones el traslado de la maquinaria e implementos hacia el campo que tengan designado e iniciar con las labores programadas; así mismo, se coordina con el Supervisor de Tráfico Liviano el transporte de los mayordomos a los diferentes frentes de preparación. (9.6) Según las indicaciones del jefe del Dpto. de Preparación, los mayordomos ordenan el inicio de las labores.

Rastra 1: Esta labor se realiza utilizando un implemento Rastra descepad ora con discos que van de 34" a 36" de diámetro, a una profundidad de corte de 20 a 25 cm dependiendo del tipo de suelo y a una velocidad de 4.8 km/hr (1950 rpm). El objetivo es

destruir las cepas del cultivo anterior e incorporar este material vegetal al suelo con el fin de facilitar la preparación del terreno. La labor se inicia con el marcado de las melgas a 45° aprox. respecto a la dirección del surco; estas melgas se marcan cada 40 m. y permite mantener la alineación de la maquinaria al momento de realizar esta labor. Observación: Se registran datos históricos de paradas no planificadas. En el

Anexo 12 se muestra la rastra.

Rastra 2: Esta labor se realiza utilizando un implemento Rastra con discos que van desde 32" a 34" de diámetro, a una profundidad de corte 20 a 25 cm y a una velocidad de 5.0 km/hr (1950 rpm). El objetivo es terminar de destruir las cepas, ayudar a des compactar el suelo dejándolo libre de terrones, además de dar las condiciones al terreno para un buen traslado de material en el movimiento de tierras. La labor se realiza con un ángulo de 30° aprox. respecto al primer pase de Rastra. Observación: Se registran datos históricos de paradas no planificadas.

- (9.7) A solicitud del jefe de Preparación, el jefe Dpto. SIG Agrimensura, ordena el 1° levantamiento topográfico con la finalidad de elaborar el plano de movimiento de tierras (cortes y rellenos Anexo 14), y que servirá como guía a los mayordomos en la ejecución de la labor de Nivelación Gruesa. (PROCEDIMIENTO NUEVO - DPTO. SIG Y AGRIMENSURA). (9.8) El Jefe del Dpto. Preparación, revisa el plano de movimiento de tierras alcanzado por Agrimensura y determina el tipo de maquinaria e implementos a utilizar para iniciar la labor de Nivelación Gruesa, en la que se realiza con tractores de llanta e implemento Rufa de 7m3 de capacidad a una velocidad de 4.8 km/hr con carga (1950 rpm) y 5.4 km/hr sin carga (1950 rpm). Esta actividad consiste en realizar movimientos de tierra efectuando cortes y rellenos, principalmente en cabeceras, calles y jirones. De existir campos con topografía accidentada, entradas de agua muy sedimentadas, acequias madres profundas y erosionadas, se hará uso de tractores oruga (D7 o D8) para ayudar a realizar cortes más profundos, dejando "venas" de tierra que la rufa se encarga de distribuir en el terreno. El objetivo de la labor es dar al terreno una pendiente que permita un eficiente riego por gravedad y conseguir en el nuevo diseño de campo cuarteles con surcos colineales, que faciliten la cosecha mecanizada. Observación: Se registran datos históricos de paradas no planificadas.
- (9.9) El jefe Dpto. SIG Agrimensura, realiza el 2° levantamiento topográfico con la finalidad de revisar el nuevo estado de las curvas de nivel después del movimiento de tierras y dar el V°B° para continuar con la siguiente labor, o de lo contrario, se efectuarán las correcciones debidas en las zonas observadas.

(PROCEDIMIENTO NUEVO – DPTO. SIG Y AGRIMENSURA). (9.10) El jefe Dpto. de SIG Agrimensura, emite el plano con el estado de las curvas de nivel después de la Nivelación Gruesa para la conformidad del jefe de División. De no haber conformidad, se procede a realizar las correcciones en las partes observadas en coordinación con el Dpto. de SIG Agrimensura, retornando al punto 9.8 del procedimiento; de lo contrario continuamos con el punto 9.11. (9.11) Subsolado 1: Dada la conformidad de la Nivelación Gruesa por parte del Jefe de Dpto. SIG Agrimensura y Jefe de División, se procede a la ejecución de esta labor con un implemento Subsolador o "Killifer" de 5 vástagos, con un espaciamiento entre vástagos de 65 a 80 cm, profundidad mayor a 60cm y a una velocidad de 2 km/hr (1950 rpm). El objetivo es roturar y des compactar el suelo para mejorar sus condiciones físicas y de aireación. Anexo 16.

Observación: Se registran datos históricos de paradas no planificadas.

(9.12) El Supervisor de Preparación con participación y V.B° del Jefe de Anexo y/o División u otro personal designado por la Administración, realiza la Evaluación de Calidad de la Preparación mediante el "Método de las Zarandas", código CO1-GCAS-1-7. Observación: No existe una metodología e instructivo estandarizada para el análisis de la calidad de tierra. (9.13) De los resultados obtenidos en la evaluación, el jefe de Anexo y/o División o personal designado por la Administración, darán su conformidad. Si se ha obtenido un índice "Bueno", el jefe de Preparación ordenará pasar al procedimiento 9.16; de lo contrario da la orden para continuar con el punto 9.14. (9.14) Subsolado 2: Esta labor se efectúa teniendo en cuenta la futura dirección del surco a un ángulo de 30° aprox. con respecto al Subsolado 1 y a una velocidad de 2.5 km/hr (1950 rpm). Alcanza una profundidad mayor a 60cm. para permitir la filtración vertical del agua en el momento del riego. Se debe señalizar en el terreno la distancia de las melgas por laborar, de manera que se efectúe una labor uniforme. Así mismo, se revisa periódicamente con una baqueta" graduada que las profundidades sean las correctas y los pases del implemento sea homogéneo.

- (9.15) Rastra 3 (opcional): Esta labor se realiza con el implemento Rastra de 28x32" o 28x30", principalmente en las zonas donde ha existido mayor movimiento de tierras (cortes), así como en calles y jirones donde se presentan problemas de compactación, donde a pesar de haber ya ejecutado las labores de Rastra 1 y 2, Subsolado 1 y 2 y haber hecho los análisis granulométricos respectivos, se obtuvieron Índices de Calidad por debajo de los permitidos. Anexo 18. Es en estos casos que se efectúa esta labor también llamada "desmanche", permitiendo así disminuir la presencia de terrones (bloques mayores a 20cm de diámetro) y ayudando a mejorar la calidad de la preparación. (9.17) El jefe de SIG Agrimensura, da la orden para realizar el levantamiento topográfico con la finalidad de elaborar el nuevo diseño de campo (PROCEDIMIENTO NUEVO DPTO. SIG Y AGRIMENSURA)
- (9.18) El Jefe de SIG Agrimensura elabora el nuevo diseño del campo y convoca al Jefe de División, Superintendente de Producción y Superintendente de Cosecha para el VB° del nuevo diseño. Este nuevo diseño deberá incluir las direcciones de surco y rutas de cosecha (PROCEDIMIENTO NUEVO DPTO. SIG Y AGRIMENSURA). (9.19) De no existir conformidad con el diseño propuesto, se retornará al punto 9.18 para elaborar una nueva propuesta de diseño. De si existir conformidad, y previo a pasar al punto 9.20, el Jefe de División, Superintendente de Producción y Superintendente de Cosecha, deberán firmar en plano impreso, el nuevo diseño aprobado.
- (9.20) El jefe del Dpto. Preparación, solicita al jefe de Div. Operaciones programar un tractor con sistema RTK e implemento para la ejecución de la labor de surco o surco/abono. (9.21) El Jefe del Dpto. Preparación, solicita el acta de conformidad del servicio de surco o surco-abono a los Jefes de Anexo y/o Jefe de División, quien firmará si el surcado le parece satisfactorio, de lo contrario solicitará se realice las actividades opcionales correctivas necesarias. El jefe del Dpto. Preparación recibe el acta del servicio del Surcado que realizó debidamente firmada, dando por finalizado el servicio de preparación.

Según el análisis que se realizó de los procedimientos de la empresa CASA GRANDE S.A. se pudo identificar que uno de los principales problemas que tiene la empresa es el deficiente desempeño de calidad de operación la maquinaria porque en muchos casos inciden en un tercer reproceso que podría evitarse la programación además de las paradas no planificadas en las diferentes campañas históricas de producción; como se muestra a continuación:

Tabla 5

N.º de asistencias no planificadas a los diferentes tipos de maquinarias que intervienen en el proceso

ACTIVIDAD	MAQUINA	2020		2021		2022
ACTIVIDAD	WAQUINA	1º 2º			20	1º
	Implemento marca BIG - ROME, jalado					
Rotura de Cepas y	por un tractor	1		1		
borradura de surcos	CATERPILLAR, MODELO D8	0	4	2	9	4
Nivelación Pesada o	BULLDOZER accionado mediante un	1	1		1	
gruesa	tractor D8 de orugas	3	8	8	1	7
			1	2	1	
Subsolado	KILLIFER	8	6	1	5	14
		1			1	
Nivelación fina	Niveladora LAND PLANE	2	7	6	2	10
	Implementador surcador accionado por		1	1		
Surcado	una tractor oruga D-4	9	1	0	9	6

Nota. En la actividad subsolado se registra mayor número de asistencia correctivas o preventivas del recurso maquinaria propia.

b. Sub Proceso - Siembra

A continuación, se evidencia el flujograma de siembra con su descripción respectiva:

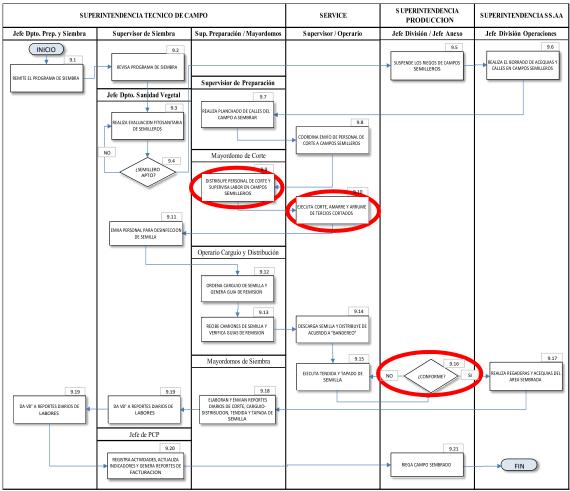


Figura 4. Flujograma del SProceso de Siembra

Nota. Adatado de la empresa CASA GRANDE S.A.

9.1. El Jefe de Preparación y Siembra alcanza al Supervisor de Siembra el Programa de Siembra, el cual deberá incluir los campos que servirán como semilleros para el cumplimiento del programa. Asimismo, deberá estar incluido el programa de instalación de semilleros. 9.2. El Supervisor de Siembra revisará el Programa de Siembra, y hará reconocimiento de campos a sembrar y los campos que servirán como semilleros, para luego solicitar al Jefe Dpto. de Sanidad Vegetal programar la Evaluación Fitosanitaria del campo semillero. 9.3. El Jefe Dpto. de

Sanidad Vegetal realiza la Evaluación Fitosanitaria del campo semillero y alcanzará informe con los resultados obtenidos en el formato CO1-GCAFS-R-10.1, en el cual indicará la calificación del estado del semillero y si es apto para su propagación.

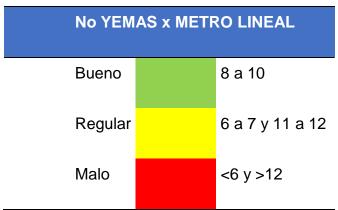
- 9.4. De acuerdo con la calificación obtenida del semillero, si no es apto para su propagación regresamos al punto 9.3 y solicitamos la evaluación de un semillero alternativo. De ser un semillero apto para ser propagado, pasamos al punto 9.5. 9.5. El Supervisor de Siembra solicita al Jefe de División / Jefe de Anexo la suspensión de los riegos del campo semillero, con la finalidad de dar las facilidades en las labores al personal de corte y transporte de semilla. 9.6. El Supervisor de Siembra solicita al jefe de Div. Operaciones la maquinaria e implemento adecuado para el borrado de acequias y calles en el campo semillero, con la intención de facilitar el acceso a los camiones que transportarán la semilla al campo a sembrar.
- 9.7. El Supervisor de Siembra verificará que el Supervisor de Preparación haya realizado la nivelación o "planchado" de calles del campo a sembrar, con el objetivo de dar las facilidades en:
 - Bandereo o "pateo" del campo, la cual deberá realizarse de acuerdo con la densidad de siembra programada
 - Ingreso y salida de los camiones que distribuirán la semilla.

NOTA: Para el planchado de calles, deberá utilizarse un tractor con sistema RTK y deberá realizarse después del surcado del campo.

9.8. El Supervisor de Siembra/Mayordomo de Corte, coordina un día antes con el representante de la Service el envío del personal necesario para el corte; indicándole el nombre y la ubicación del campo semillero. Observación: El jefe a cargo realiza los cálculos de forma manual o mecanizada por experiencia; resultando a veces cálculos erróneos que podrían convertirse en sobrecostos para la empresa. 9.9. ΕI mayordomo de corte en coordinación con Supervisor/Mayordomo de la Service, distribuyen el personal para la ejecución de la labor de corte de semilla en los cuarteles designados del campo semillero. Asimismo, el mayordomo de corte controlará la desinfección de los machetes al

inicio de la labor para disminuir el riesgo de contagio de enfermedades. Para esta desinfección se colocará recipientes en el cuartel de corte conteniendo una solución de Vanodine a razón de 2 ml / 20 lt de agua. 9.10. El operario ejecuta el corte, amarre y arrume de semilla. Posterior a ello, el Mayordomo de corte certificará que el operario o cortador obtenga los esquejes de caña con las siguientes características:

- Esquejes de 50 a 55 cm de largo (conteniendo dos entrenudos como mínimo)
- El corte debe ser transversal (no a bisel)
- Eliminar los esquejes delgados (< a 2cm diámetro), y muy picados por barreno.
- Los tercios deben estar conformados por 30 esquejes cada uno, prestando especial cuidado a su amarre; agrupándolos de a 10 tercios para facilitar el conteo y control.


El Mayordomo de corte de semilla de la Empresa, deberá supervisar que la labor realizada por la Service cumpla con las características de corte anteriormente mencionadas, de lo contrario exigir las correcciones del caso. De ser necesario, informará al Supervisor de Siembra para su intervención inmediata. **Observación:** Los operarios inexpertos tienen paradas imprevistas por presentar heridas en las manos a causa de los micro traumas acumulativos. Algunos ya no regresan a trabajar, pero otros regresan con bajo rendimiento; ya que el mango del machete no tiene un diseño ergonómico.

- 9.11. El Supervisor de Siembra programará y enviará personal para la desinfección de la semilla cortada y enterciada del día, labor que se deberá realizar antes del carguío de la semilla y deberá ser supervisada por el Mayordomo de Corte. Para ello se hará uso de:
 - Fungicida agrícola "Vertical (Tebuconazole + Aditivos") con una concentración de 2 ml /20 lt de agua.

- Marcador de aplicaciones de uso agrícola "Rodafield (Rodamina + Ingredientes inertes)" con una concentración de 5gr / 20 lt de agua.
- 9.12. El Mayordomo de Corte de semilla ordena al Operario de Carguío el inicio del carguío, y controlará la cantidad de tercios que se cargará a los camiones; estos camiones, deberán tener una cuadrilla de 6 cargadores, que en forma ordenada realizarán sus actividades, evitando maltratar las yemas y no dañar las amarras. Asimismo, el Mayordomo de Corte hará el llenado de las Guías de Remisión correspondientes antes de que los camiones salgan cargados del semillero. 9.13. El Operario de Distribución, recibe a los camiones en el campo a sembrar. Asimismo, recibe y verifica la cantidad de semilla que indica la Guía de Remisión enviada por el Mayordomo de Corte. Además, controlará la completa y uniforme distribución de tercios de semilla en el campo a sembrar. 9.14. El Operario de la Service realiza descarga de semilla y la distribuye de acuerdo con el "pateo" o "bandereo" señalado en el campo. 9.15. El Supervisor de Siembra y Mayordomo de Siembra, coordinan un día antes con los representantes de las Services el envío del personal y/o maquinaria necesaria para la tendida y tapado de semilla del campo en siembra. Asimismo, el día de la labor, coordinarán con el Supervisor/Mayordomo de las Services la distribución del personal y/o maquinaria dependiendo del tipo de siembra:
 - Siembra Manual: Se verificará que haya una distribución uniforme de semilla a lo largo del surco, para posteriormente proceder al tapado con la ayuda de una palana.
 - Siembra Semi Mecanizado: Se verificará que haya una distribución uniforme de semilla a lo largo del surco, para posteriormente proceder al tapado con la ayuda de implemento tapador de semilla.

Respecto a la tendida de semilla, se deberá tener en cuenta el siguiente parámetro:

Tabla 6. Parámetro de YEMAS POR METRO LINEAL

Nota. El parámetro aceptable se encuentra regular y bueno.

Para el tipo de siembra que fuere, el Mayordomo de Siembra y operarios de siembra, deberán asegurar los siguientes parámetros de tapado:

Tabla 7. Parámetro de Altura de Tapado

Nota. El parámetro aceptable se encuentra regular y bueno.

9.16. El jefe de División / Jefe de Anexo en coordinación con el Mayordomo de Siembra, deberán corroborar que la semilla haya sido correctamente tapada, que, de estar de acuerdo, ambas partes firmarán la conformidad del servicio mediante el formato con código CO1-GC-R.1.12 y pasarán al punto 9.17. De lo contrario, se regresará al punto 9.15 y se tomarán las medidas correctivas. **Observación:** El jefe a cargo solo toma como referencia algunas muestras por lo que se considera que la calidad esperada o es significativa. 9.17. El Supervisor de Siembra solicitará al jefe de Div. Operaciones realizar actividades de regaderas y

acequiado del área o campo sembrado, con el objetivo de dar las facilidades para el inicio del riego.

c. Sub – Proceso de Cosecha:

En la siguiente figura se evidencia el flujograma del subproceso de cosecha:

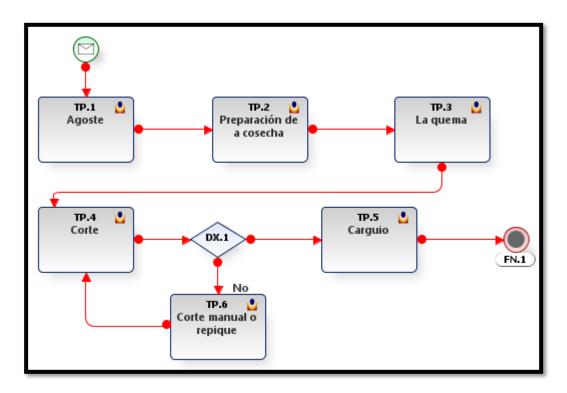


Figura 5. Flujograma del Sub - Proceso de Cosecha

Nota. Adaptado de la empresa CASA GRANDE S.A

TP1. Consiste en la supresión del agua de riego, durante 90 o 120 días; para contribuir al drenaje programado con la finalidad de aumentar la pureza de los jugos y reducir la cantidad de hijas verdes antes de la cosecha; de modo que el proceso de quemado sea óptimo y se lleve menos basura a la fábrica.

TP2. Es el acondicionamiento de caminos, construcción de entradas al campo, borradura de acequias y borde de todas las calles para facilitar las operaciones de carguío y de transporte.

TP3. Se hace normalmente entre las dos y las 3 de la tarde para aprovechar el calor y el viento del día.

TP4. El corte de la caña se hace con máquina o machete.

TP5. Si el corte esta conforme se procede al carguío de la caña de azúcar.

TP6. Siempre y cuando la máquina no ejecute correctamente el corte de la caña se deberá realizar un proceso de repique (corte manual) para poder completar la tarea designada.

Tabla 8.

Problemas y propuestas identificados en el Sub - Proceso de siembra

PROBLEMAS PROPUESTAS Elevado tiempo en horas perdidas por Realizar plan de mantenimiento paradas en alguna de las 6 máquinas de predictivo de tal forma se reduzca las cuales se tiene historial de fallo las horas paradas y los costos elevados. Mangos de machetes Disergonómicos Se diseñará mangos de machetes ergonómicos; considerando la fuerza de aplicación en la tarea eiecutada. Se debe marcar la medida en la La inspección del correcto tapado es una actividad improductiva porque la palana para poder realizar una calidad depende del muestreo aleatorio operación combinada de inspección del jefe a cargo. Además, se registran y operación; además de diseñar un traumas micro acumulativos por el uso mango ergonómico para las del mango disergonómico de la palana. disminuciones de lesiones al utilizar dicha herramienta. Los operarios tienen dolencias por los La propuesta sería realizar un análisis del índice de micro trauma micro traumas acumulativos por el uso de machetes mangos acumulativo para evaluar el nivel de con disergonómicos. impacto que tendría si utilizarán un machete ergonómico.

Los tiempos en los procesos productivos no se encuentran estandarizados con las mejoras que se implementarán

Se estimará el tiempo estándar al igual que la productividad después de aplicar las mejoras encontradas.

Nota. Elaboración propia

3.5.2. Procedimiento para el objetivo 2: Diseñar la propuesta de mejora para la producción agrícola de la caña de azúcar en la empresa Casa Grande S.A.

Para el diseño de la propuesta se planteó una mejora del plan de mantenimiento de tal forma se pueda disminuir los tiempos de para en los procesos que dependen de las 6 máquinas, se realizó el diseño del mango de la palana para mejorar los procesos de cultivo al igual que se diseñó el mango del machete que permitirá realizar las actividades de forma más eficiente adaptándose a las medidas del usuario esperado en la empresa Casa Grande S.A. y por último se realizó la estandarización de los tiempos para verificar la mejora de la productividad:

A. Elaboración del plan de mantenimiento predictivo.

El mantenimiento predictivo se obtuvo a raíz de la aplicación de la simulación de los procesos para identificar el comportamiento de la demanda y para ello sigue la siguiente secuencia.

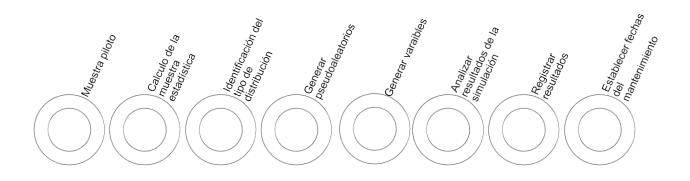


Figura 6. Secuencia de pasos para la simulación de mantenimientos predictivos.

Muestra Piloto

Para el registro de la muestra piloto se tomó datos históricos de las fallas registradas por cada máquina propia BULLDOZER del área de maestranza de la administración en estudio como se muestra a continuación:

Tabla 9.

Muestra piloto de las fallas históricas de las 6 máquinas

Muestras			Muestr	a Piloto		
maoonao	ξ	M	M 3	₹	M5	M6
Observación 1	220.77	473.01	374.24	638.9	473.5	506.59
Observación 2	301.69	473.78	253.65	572.05	375.15	374.15
Observación 3	287.55	451.46	375.66	421.74	374.4	319.8
Observación 4	275.98	440.75	301.33	528.1	350.74	484.93
Observación 5	251.84	375.01	407.21	473.29	339.46	374.85
Observación 6	363.02	473.7	407.38	605.96	319.66	375.99
Observación 7	385.07	352.3	451.68	660.53	395.66	451.58
Observación 8	294.69	396.04	350.36	528.75	541.02	495.65
Observación 9	242.89	364.82	345.69	528.68	385.5	429.62
Observación 10	295.36	494.06	385.7	495.68	375.52	451.34

Nota. El tiempo está en horas registradas después del mantenimiento realizado.

- Cálculo de la muestra estadística

Se utilizó la fórmula para una población desconocida al 95 % de confianza; obteniendo los siguientes resultados:

Tabla 10. Cálculo de la muestra estadística

Descripción/Medida	Promedio	Desviación	Error (%)	Error	Valor z	Muestra
Máquina 1	291.88	50.76	5%	14.59	1.96	46
Máquina 2	429.49	52.51	5%	21.47	1.96	23
Máquina 3	365.29	56.52	5%	18.26	1.96	37
Máquina 4	545.36	74.68	5%	27.26	1.96	29
Máquina 5	393.06	66.21	5%	19.65	1.96	44
Máquina 6	426.45	62.54	5%	21.32	1.96	33

Nota. Las muestras significativas son independientes para cada máquina.

- Muestra significativa

En la siguiente tabla se registra los datos que deberán ser analizados:

Tabla 11.

Muestra significativa

Muestras			Mu	iestra		
	Z	M2	M 3	⊼	M5	W e
Observación 1	220.77	473.01	374.24	638.9	473.5	506.59
Observación 2	301.69	473.78	253.65	572.05	375.15	374.15
Observación 3	287.55	451.46	375.66	421.74	374.4	319.8
Observación 4	275.98	440.75	301.33	528.1	350.74	484.93
Observación 5	251.84	375.01	407.21	473.29	339.46	374.85
Observación 6	363.02	473.7	407.38	605.96	319.66	375.99
Observación 7	385.07	352.3	451.68	660.53	395.66	451.58
Observación 8	294.69	396.04	350.36	528.75	541.02	495.65
Observación 9	242.89	364.82	345.69	528.68	385.5	429.62
Observación 10	295.36	494.06	385.7	495.68	375.52	451.34
Observación 11	401.23	363.03	166	660.75	484.29	363.05
Observación 12	319.71	528.48	341.75	605.33	330.24	462.91
Observación 13	220.76	517	220.85	499.36	231.42	363.85
Observación 14	363.46	396.86	462.04	506.63	473.23	385.08
Observación 15	308.97	451.3	209.96	594.12	231.98	418.82
Observación 16	440.53	451.8	297.78	638.99	425.55	517.38
Observación 17	440.5	484.02	242.17	433.36	242.96	484.88
Observación 18	385.36	418.38	363.38	539.91	308.19	550.88
Observación 19	330.66	528.54	330.63	473.17	352.33	297.71
Observación 20	319.75	506.47	297.14	495.69	484.68	451.93

Nota. El tiempo está en horas registradas después del mantenimiento realizado, los datos siguen en el procesamiento

- Identificar el tipo de distribución que tienen los datos

Se aplicó la prueba de Kolmogorov Smirnoff para determinar mediante una prueba de hipótesis estadística, el tipo de distribución que tiene el comportamiento de los datos de cada máquina analizada.

Prueba de Kolmogorov Smirnoff								
n	46	media	323.37	desviación	63.69			
Intervalos	7	Rango	220.35	Amplitud	31.48			
Límite inferio	Límite superior	Oi	Poia	Peia	C			
220.18	251.66	7	0.15	0.14	0.01			
251.66	283.14	6	0.28	0.29	0.00			
283.14	314.62	8	0.46	0.43	0.03			
314.62	346.09	8	0.63	0.57	0.06			
346.09	377.57	7	0.78	0.71	0.07			
377.57	409.05	5	0.89	0.86	0.03			
409.05	440.53	5	1.00	1.00	0.00			
1	otal	46.00	Estadís	tico de Prueba	0.07			
Nivel de s	significancia	0.05	Valor en t	abla kolmogorov	0.20			
Conclusión:	H1: Los datos tomados siguen otra distribución Conclusión: Se acepta con un 95% de confianza que los datos siguen una distribución uniforme continua con parámetros: valor máximo=220.18 y valor mínimo=440.53							
Distribución Uniforme Continua								
0 1	2	3	4 5	5 6	7			

Figura 7. Análisis del comportamiento de las fallas históricas de la máquina 1.

Prueba de Kolmogorov Smirnoff					
n	23	media	447.14	desviación	59.102784
Intervalos	5	Rango	186.75	Amplitud	37.35
Límite inferior	Límite superior	Oi	Poia	Peia	C
352.3	389,65	5	0.2174	0.2	0.0174
389.65	427	3	0.3478	0.4	0.0522
427	464.35	5	0.5652	0.6	0.0348
464.35	501.7	5	0.7826	0.8	0.0174
501.7	539.05	5	1,0000	1	0.0000
To	23	Estadístico de Prueba		0.0522	
Nivel de si	gnificancia	0.05	Valor en ta	bla kolmogorov	0.2836

HO: Los datos tomados siguen una distribución uniforme continua

H1: Los datos tomados siguen otra distribución

Conclusión: Se acepta con un 95% de confianza que los datos siguen una distribución uniforme continua con parámetros: valor máximo=352.3 y valor mínimo=539.05

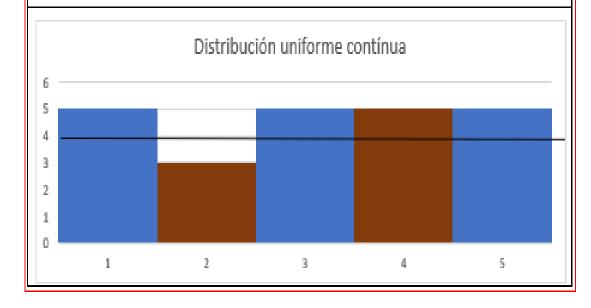


Figura 8. Análisis del comportamiento de las fallas históricas de la máquina 2.

Prueba de Kolmogorov Smirnoff					
n	37	Media	334.2664865	Desviación	79.22221
Intervalos	6	Rango	307.93	Amplitud	51.321667
Límite inferior	Límite superior	Oi	Poia	Peia	C
166.00	217.32	3	0.08	0.07	0.01
217.32	268.64	7	0.27	0.20	0.07
268.64	319.97	5	0.41	0.43	0.02
319.97	371.29	9	0.65	0.68	0.03
371.29	422.61	8	0.86	0.87	0.00
422.61	473.93	5	1.00	0.96	0.04
To	otal	37.00	Estadístico	o de Prueba	0.07
Nivel de si	gnificancia	0.05	Valor en tabl	a kolmogorov	0.22

HO: Los datos tomados siguen una distribución Normal

H1: Los datos tomados siguen otra distribución

Conclusión: Se acepta con un 95% de confianza que los datos siguen una distribución normal con parámetros: media=334.27 deviación estándar=79.22

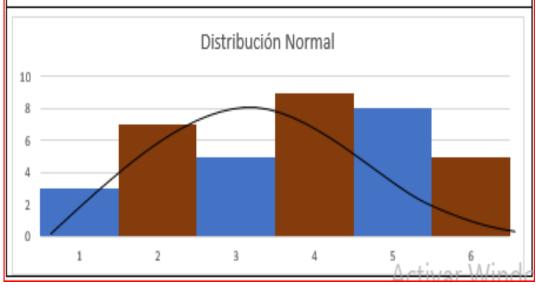


Figura 9. Análisis del comportamiento de las fallas históricas de la máquina 3.

	Prueb	<u>a de Kolmog</u>	jorov Smirnoff		
n	29	media	525.71	desviación	69.40
Intervalos	5	Rango	239.01	Amplitud	47.80
_ímite inferior	Límite superior	Oi	Poia	Peia	C
421.74	469.54	5	0.17	0.10	0.07
469.54	517.34	10	0.52	0.40	0.12
517.34	565.15	6	0.72	0.73	0.01
565.15	612.95	4	0.86	0.93	0.07
612.95	660.75	4	1.00	1.00	0.00
T	otal	29	Estadístic	o de Prueba	0.12
Nivel de s	ignificancia	0.05	Valor en tab	la kolmogorov	0.25
	421.74	Ь	517.344	С	660.75
<mark>11: Los datos</mark> (Conclusión: Se	tomados siguen u comados siguen o e acepta con un 95% valor máximo=660.75	tra distribuc	ión Triangular ión que los datos sign	uen una distribució	in triangul
10: Los datos 11: Los datos (Conclusión: Se	tomados siguen o comados siguen o e acepta con un 95% valor máximo=660.75	tra distribuc de confianza 5 , valor mínimo	i ón Triangular i ón que los datos sigu =421.74 y valor m	uen una distribució	in triangul
10: Los datos 11: Los datos Conclusión: Se con parámetros: v	tomados siguen o comados siguen o e acepta con un 95% valor máximo=660.75	tra distribuc	i ón Triangular i ón que los datos sigu =421.74 y valor m	uen una distribució	in triangul
10: Los datos 11: Los datos Conclusión: Se on parámetros:	tomados siguen o comados siguen o e acepta con un 95% valor máximo=660.75	tra distribuc de confianza 5 , valor mínimo	i ón Triangular i ón que los datos sigu =421.74 y valor m	uen una distribució	in triangul
10: Los datos 11: Los datos Conclusión: Se on parámetros: 1	tomados siguen o comados siguen o e acepta con un 95% valor máximo=660.75	tra distribuc de confianza 5 , valor mínimo	i ón Triangular i ón que los datos sigu =421.74 y valor m	uen una distribució	in triangul
10: Los datos 11: Los datos Conclusión: Se on parámetros:	tomados siguen o comados siguen o e acepta con un 95% valor máximo=660.75	tra distribuc de confianza 5 , valor mínimo	i ón Triangular i ón que los datos sigu =421.74 y valor m	uen una distribució	in triangul
10: Los datos 11: Los datos Conclusión: Se on parámetros: 1	tomados siguen o comados siguen o e acepta con un 95% valor máximo=660.75	tra distribuc de confianza 5 , valor mínimo	i ón Triangular i ón que los datos sigu =421.74 y valor m	uen una distribució	in triangul
10: Los datos 11: Los datos Conclusión: Se on parámetros: v	tomados siguen o comados siguen o e acepta con un 95% valor máximo=660.75	tra distribuc de confianza 5 , valor mínimo	i ón Triangular i ón que los datos sigu =421.74 y valor m	uen una distribució	in triangul

Figura 10. Análisis del comportamiento de las fallas históricas de la máquina 4.

Prueba de Kolmogorov Smirnoff						
n	44	media	407.313864	desviación	104.96318	
Intervalos	7	Rango	417.9	Amplitud	59.7	
Límite inferior	Límite superior	Oi	Poia	Peia	С	
220.18	279.88	4	0.09	0.05	0.04	
279.88	339.58	7	0.25	0.19	0.06	
339.58	399.28	12	0.52	0.43	0.09	
399.28	458.98	8	0.70	0.68	0.03	
458.98	518.68	6	0.84	0.86	0.02	
518.68	578.38	4	0.93	0.96	0.03	
578.38	638.08	3	1.00	1.00	0.00	
Total 44 Estadístico de Prueba			0.09			
Nivel de significancia		0.05	Valor en tabla kolmogorov		0.21	
a	220.18	Ь	399.28	c	638.08	

HO: Los datos tomados siguen una distribución Triangular

H1: Los datos tomados siguen otra distribución

Conclusión: Se acepta con un 95% de confianza que los datos siguen una distribución triangular con parámetros: valor máximo=638.56, valor mínimo=220.18 y valor más probable=399.48

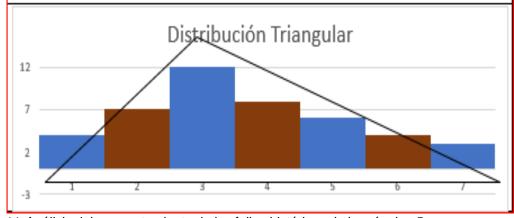


Figura 11. Análisis del comportamiento de las fallas históricas de la máquina 5

Prueba de Kolmogorov Smirnoff						
n	33	media	438.6160606	desviación	68.2363678	
Intervalos	6	Rango	253.17	Amplitud	42.195	
Límite inferior	Límite superior	Oi	Poia	Peia	С	
297.71	339.91	3	0.09	0.04	0.05	
339.91	382.10	5	0.24	0.17	0.08	
382.10	424.30	4	0.36	0.38	0.01	
424.30	466.49	11	0.70	0.67	0.03	
466.49	508.69	5	0.85	0.92	0.07	
508.69	550.88	5	1.00	1.00	0.00	
Total		33	Estadístico de Prueba		0.0758	
Nivel de si	gnificancia	0.05	Valor en tabla kolmogorov		0.2367	
a	297.71	Ь	466.49	С	550.88	

HO: Los datos tomados siguen una distribución Triangular

H1: Los datos tomados siguen otra distribución

Conclusión: Se acepta con un 95% de confianza que los datos siguen una distribución triangular con parámetros: valor máximo=550.88 , valor mínimo=297.71 y valor más probable=466.49

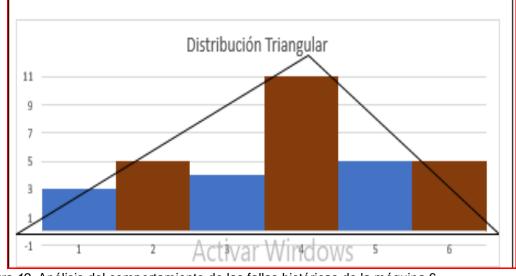


Figura 12. Análisis del comportamiento de las fallas históricas de la máquina 6.

- Generar pseudoaleatorios y realizar las pruebas respectivas

Para generar los pseudoaleatorios; se consideró el método lineal y la cantidad de muestra significativa de cada máquina. El procedimiento es primero generar los pseudoaleatorios y realizar las pruebas correspondientes con respecto a la media, varianza, uniformidad e independencia, con ello se generó los pseudoaleatorios para generar variables aleatorias en días de fallo, ver anexos desde el 18 al 48, el cual se determinó los pseudoaleatorios para cada una de las variables

Generar variables

En esta etapa se generó las variables de predicción para cada una de las máquinas considerando el comportamiento independiente de cada una de estas.

Tabla 12. *Identificación del tipo de distribución*

Identificación del tipo de distribución						
Máquina	s estimados p imulación	ara la				
Máquina 1	Uniforme continuo	220.18	440.53			
Máquina 2	Uniforme continuo	352.3	589.39			
Máquina 3	normal	334.27	79.22			
Máquina 4	Triangular	421.74	517.34	660.75		
Máquina 5	Triangular	220.18	399.48	638.08		
Máquina 6	Triangular	297.71	466.49	550.88		

Nota: La tabla muestra el tipo de distribución y los parámetros para su aplicación o estimación.

La variable aleatoria como se estudió inicialmente en días se simuló los fallos y se obtuvo los fallos futuros los cuales se determinarán las fechas para realizar el mantenimiento en cada una de las unidades.

Tabla 13.

Variables simuladas

Días maquina 1	Días maquina 2	Días maquina 3	Días maquina 4	Días maquina 5	Días maquina 6
36	41	35	40	52	44
37	36	31	35	24	36
22	43	26	50	17	49
32	42	41	35	18	35
27	39	27	36	50	41
27	33	25	34	23	36
32	46	29	50	46	42
22		24		16	
38		18		39	
38		40			

Nota: Los datos se obtuvieron con la simulación con relación a los anexos 49 al 54

- Acciones preventivas para el plan de mantenimiento:

BULLDOZER/ D8 ORUGAS

Antes de diseñar el modelo de mantenimiento preventivo se debe tener en cuenta las generalidades de diseño de los subsistemas que comprende la máquina.

Tabla 14.
Sub sistema Hidráulico

Subsistema	Componente	Función
	Tanque	Almacena el aceite
	Filtro	Retiene impurezas
	Aceite Hidráulico	Transmite presión en los actuadores
	Mangueras de alta presión	Distribuye el aceite
IIDRÁULICO	Bomba	Genera la presión requerida
IIDINAULIOO	Caja de mandos	Controla la distribución de la presión
	Válvula de seguridad	Bloqueo del sistema
	Válvula de alivio	Bloqueo por sobrepresiones
	Sellos hidráulicos	Evitar fugas de presión
	Cilindros	Fijan la posición de la pala

Tabla 15.
Subsistema motor, lubricación, refrigeración, tren motriz y sistema eléctrico

Subsistema	Componente	Función		
	Bloque motor	Bastidor para elementos móviles de combustión		
MOTOR	Cabezote	Batidor para elementos móviles de alimentación		
	Tren alternativo	Elementos móviles de transformación de energía térmica		
	Distribución	Controla el ingreso a la combustión		
	Alimentación de aire	Acondicionamiento del aire		
	Alimentación baja presión	Alimenta el sistema de baja presión		
	Alimentación alta presión	Alimenta el sistema de alta presión		
	Alimentación combustible	Alimento el sistema de combustible		
	Depósito	Almacenamiento del lubricante		
_	Filtro	Retención de impurezas		
LUBRICACIÓN	Boma de lubricante	Genera presión		
	Conductores/Cañerías	Distribución de lubricante		
	Lubricante	Reduce la fricción		
	Radiador	Disipación del calor		
_	Bomba de refrigerante Válvula reguladora de	Impulsar el refrigerante		
REFRIGERACIÓN	presión	Control de la presión		
	Mangueras/Conductos	Distribución del refrigerante al motor		
	Refrigerante	Asimilar el calor del motor		
	Caja diferencial	Transmite la potencia del motor		
TREN MOTRIZ	Freno	Detiene el movimiento		
	Embrague	Reduce los cambios bruscos		
	Engrane final	Genera el desplazamiento		
	Baterías	Proporción de energía eléctrica		
SISTEMA	Motor de arranque	Controla el encendido del motor		
ELÉCTRICO	Alternador	Recargo de energía		
Nota Flahoración n	Componentes eléctricos	Conjunto de relés		

Por otro lado, se realizó un análisis de las fallas históricas por cada subsistema del equipo crítico de la producción:

Tabla 16. *Análisis de los subsistemas críticos.*

		%			REGLA
SUB SISTEMA	FALLAS	ACUMULADO	ACUMULADO	LÍMITE	PARETO
HIDRÁULICO	73	72%	73	80%	80%
SISTEMA					
ELÉCTRICO	12	83%	85	80%	20%
LUBRICACIÓN	7	90%	92	80%	20%
MOTOR	5	95%	97	80%	20%
REGRIGERACIÓN	3	98%	100	80%	20%
TREN MOTRIZ	2	100%	102	80%	20%

Nota. Elaboración propia.

Después de conocer el subsistema de mayor prioridad del equipo en estudio se procedió a realizar un análisis de las fallas por elementos críticos del subsistema hidráulico para determinar las acciones preventivas de estos mismos, obteniendo los siguientes resultados:

Tabla 17.

Fallas históricas de los elementos del subsistema hidráulico

Componente	No Fallas	% Acumulado	Acumulado	Límite	Límite Pareto
Filtro	21	27%	21	0.8	20%
Tanque	15	46%	36	0.8	20%
Mangueras de alta					
presión	11	59%	47	8.0	20%
Aceite Hidráulico	9	71%	56	0.8	20%
Bomba	7	80%	63	0.8	20%
Caja de mandos	6	87%	69	8.0	80%
Sellos hidráulicos	5	94%	74	8.0	80%
Válvula de seguridad	2	96%	76	8.0	80%
Válvula de alivio	2	99%	78	0.8	80%
Cilindros	1	100%	79	0.8	80%

El 20% de los elementos críticos que provocan el 80% de las fallas en el subsistema hidráulico del equipo BULLDOZER son: filtro, tanque, mangueras de alta presión, aceite hidráulico y bomba.

B. Diseño del mango del Machete

La empresa Casa Grande tiene alta rotación de personal; dado que el trabajo está bajo condiciones de las variaciones de la temperatura ambiente; quedando en el campo solo aquellos personales que pueden acoplarse al ritmo de trabajo con menor fatiga. Muchos de los operarios terminan su jornada laboral con heridas en las manos que son ocasionados por los desórdenes de trauma acumulativo que son causados por movimientos repetitivos sobre todo en el uso de los machetes y palanas. En muchos casos la consecuencia es tener tendonitis (Consiste en la inflamación de las capas de los tendones y se debe al uso exagerado de las herramientas o a la falta de costumbre en el uso de herramientas diseñadas inadecuadamente y si la inflamación se esparce hacia los tendones, se convierte en una tendonitis) o síndrome de túnel carpal (Es un desorden de la mano provocada por una lesión del nervio medio dentro de la muñeca. La flexión y extensión repetitiva de la muñeca en condiciones de estrés puede causar inflamación en las capas de los tendones, dichas capas, al detectar una fricción elevada, segregan más fluido para lubricar las capas y facilitar el movimiento de los tendones. la acumulación de fluido resultante aumenta la presión en el túnel carpal, la cual a suvez comprime el nervio medio).

El uso del machete se realiza en el proceso de la cosecha; si bien es cierto la cosecha se hace manual y mecanizada; porque el corte principal se realiza con una máquina cortadora industrial y el repique que es el repaso después de la máquina es una labor realizada por 6 macheteros quienes van cortando la caña que queda en el campo; realizándose simultáneamente con la máquina. Por otro lado, se pueden identificar 4 factores principales en la labor: fuerza excesiva; movimientos no naturales o de los extremos de las articulaciones; gran número de repeticiones y duración del trabajo; es por lo que se analizó el índice de desórdenes trauma acumulativos; considerando los factores de trabajo.

Tabla 18.

Cálculo del índice trauma acumulativo

Título de trabajo	Corte de caña	Contador de VCR Núm.		Fecha			
Descripción del trabajo	Cortar la caña con el machete	Departamento	Producción	Analista			
Tiempo de ciclo							

Número de ciclos/día:

2666.67

Número de movimientos de la mano/Ciclo

3

Número de movimientos de la mano/Día

8000.01

FACTOR DE I	FRECUENCIA				0.800001
			Punto	s	
Pintar de color amarillo la condición adecuada	0		1	2	3
Postura de trabajo	Sentado	Parado			
Postura de las manos 1: Presión de pulpo	No	Si			
Postura de las manos 2: Presión en el costado	No	Si			
Postura de las manos 3: Presión sobre la palma	No	Si			
Postura de las manos 4: Presión sobre el dedo	No	Si			
Posturas de las manos 5: Agarre con fuerza	Si	No			
Tipo de alcance	Horizontal	Arriba/Abajo			
Desviación de la mano1: Flexión	No	Si			
Desviación de la mano 2: Extensión	No	Si			
Desviación de la mano 3: Desviación radial	No	Si			

Desviación de la mano 4: Desviación cubital	No	Si			
Rotación del antebrazo	Neutral	Hacia adentro/Hacia afuera			
Ángulos de los codos	Igual a 90°	Diferente a 90°			
Abducción de los hombros	0	<45°	<90°	>90°	
Flexión de los hombros	0	<90°	<180°	>180°	
Angulo de la espalda/cuello	0	<45°	<90°	>90°	
Equilibrio	Si	No			
Total de puntos de las condici	ones encerrad	as en un círculo			14
FACTOR DI	E POSTURA				1.4
Fuerza de agarre o de presión que	se utiliza en la	tarea		91	
Máximo agarre o fuerza	de presión			89.9	
FACTOR DE FUEI	RZA			6.75	
		Pun	tos		
Pintar de color amarillo la condición adecuada	0	1		2	3
Orilla puntiaguda	No	Si			
Guante	No	Si			
Vibración	No	Si			
Tipo de acción	Estático				
Temperatura	Caliente	Frío			
FACTOR MI	SCELÁNEO				1
ÍNDICE DE F	RIESGO CTD				10.65

- Análisis del registro del índice

El corte de la caña se realiza en 5 horas por hectáreas; lo que implica que por cada 8 horas de jornada laboral pueden cortar 16000 m2 los 6 macheteros asignados; realizando entre 2 a 4 movimientos por metro cuadrado de avance. Para evidenciar el promedio de movimientos por ciclo de la mano se realizó una muestra piloto de 10 observaciones y luego se calculó la muestra al 95% de confianza que nos ayudó a determinar el promedio de movimientos por metro cuadrado.

Tabla 19.

Muestra piloto del no de veces de movimientos por metro cuadrado

N° OBS	N° VECES
1	2
2	3
3	3
4	3
5	2
6	3
7	2
8	2
9	3
10	2
PROMEDIO	2.5
DESV	0.53

Nota. En promedio el no de movimientos con el machete operario por avance de metro cuadrado son 3 aproximadamente.

Tabla 20.

Parámetros del cálculo de la muestra

Z	1.96
е	0.125
Desv	0.53

Nota. Elaboración propia

Después se analizó el promedio de las 69 personas aproximadas para el estudio obteniéndose los siguientes datos:

Tabla 21.

Cantidad de movimientos al 95%

AREA POR OPERARIO	2666.67
MOVIMIENTOS/M2	3
APROX	
TOTAL DE MOVIMEINTOS	8000.00000

En la tabla anterior se describe los 2666.67 metros cuadrados; considerando que son 6 operarios que tienen 16000 metros cuadrados por acabar en 8 horas de trabajo; asimismo los movimientos / m2 aproximados al 95 de confianza es de 3 movimientos por metro cuadrado de avance.

El total de ciclos que debe de hacer el operario en un día de trabajo es de 2667; por el avance de 1 metro cuadrado por cada 3 veces de corte; obteniéndose 8000 movimientos por operario en una jornada laboral de 8 horas. Es por ello que el índice de desorden trauma acumulativo es de 10.65 lo que ratifica las dolencias y lesiones de los operarios en las manos; provocando paradas inesperadas y descansos por fatiga excesiva.

Por lo tanto, como se sabe que los procedimientos no van a cambiar; se analizó la ergonomía del mango del machete para disminuir la fatiga y las lesiones superficiales de las manos de los operarios; es por lo que se procedió a tomar las muestras correspondientes de las medidas de las manos que se considerarán para su diseño ergonómico

Tabla 22.

Medidas para el diseño del mango de la herramienta.

OBS	Ancho largo										
	Meñique	Anular	Medio	Índice	Pulgar	Meñique	Anular	Medio	Índice	Pulgar	Mano
1	13	17	16	17	18	60	75	84	77	76	182
2	14	16	17	18	19	58	76	85	76	75	181
3	13	18	18	16	17	59	74	83	78	73	180
4	14	17	16	17	19	62	77	85	77	75	179
5	14	16	17	18	18	61	76	86	76	76	180
6	13	17	17	18	19	58	75	85	77	76	178
7	13	16	16	17	18	59	76	86	78	75	180
8	14	17	17	16	18	60	76	84	76	76	178
9	13	17	18	17	19	61	75	86	77	74	179
10	14	18	16	16	18	59	76	86	78	74	180
Promedio	13.5	16.9	16.8	17	18.3	59.7	75.6	85	77	75	179.7
Desv	0.52	0.73	0.78	0.81	0.67	1.33	0.84	1.05	0.81	1.05	1.25
Z	1.95	1.95	1.95	1.95	1.95	1.95	1.95	1.95	1.95	1.95	1.95
Muestra	10	10	10	10	10	10	10	10	10	10	10
Promedio Aprox	14	17	17	17	19	60	76	85	77	75	180

Nota: los datos fueron obtenidos de la medición de los colaboradores.

Las medidas utilizadas fueron las medidas aproximadas para el diseño de la herramienta obteniéndose los siguientes resultados:

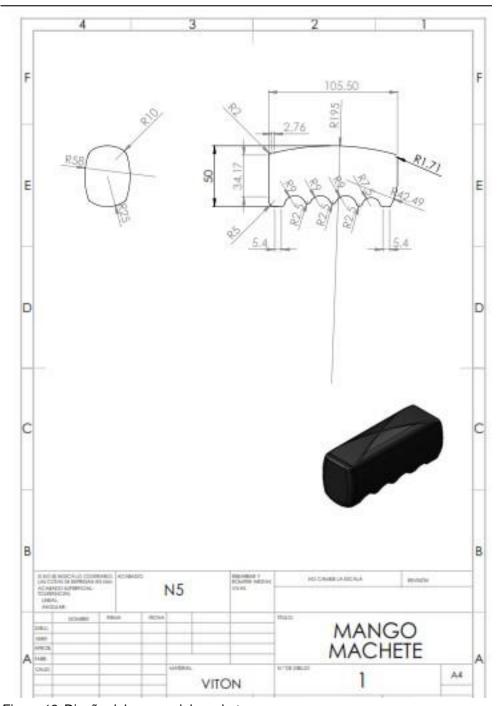


Figura 13. Diseño del mango del machete

A continuación, se realizó el análisis estático del mango mediante el programa Simulador de SolidWorks.

Análisis estático del mango del machete

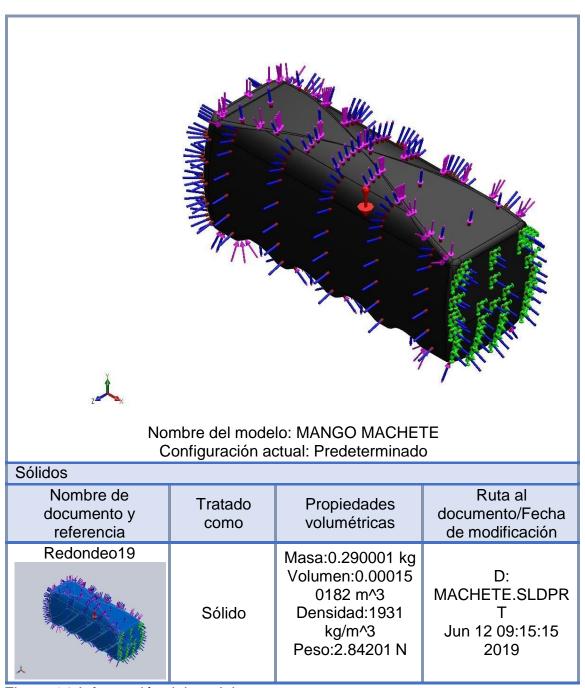


Figura 14. Información del modelo

Tabla 23. Propiedades del estudio

Nombre de estudio	Análisis estático 1
Tipo de análisis	Análisis estático
Tipo de malla	Malla sólida
Efecto térmico:	Activar
Opción térmica	Incluir cargas térmicas
Temperatura a tensión cero	298 Kelvin
Incluir los efectos de la presión de	Desactivar
fluidos desde SOLIDWORKS Flow	
Simulation	
Tipo de solver	Direct Sparse de Intel
Efecto de rigidización por tensión	Desactivar
(Inplane):	
Muelle blando:	Desactivar
Desahogo inercial:	Desactivar
Opciones de unión rígida incompatibles	Automático
Gran desplazamiento	Activar
Calcular fuerzas de cuerpo libre	Desactivar
Fricción	Desactivar
Utilizar método adaptativo:	Desactivar
Carpeta de resultados	Documento de SOLIDWORKS
	(D:\TRABAJOS\PROYECTO MESA, CAJA,
	POLO\machete)

Tabla 24. Unidades

Sistema de unidades:	Métrico (MKS)
Longitud/Desplazamiento	mm
Temperatura	Kelvin
Velocidad angular	Rad/seg
Presión/Tensión	N/m^2

Referencia de modelo	Propie	edades	Componentes
	Nombre:	VITON	Sólido
	Tipo de modelo:	Isotrópico	1(Redondeo19)
		elástico lineal	(MANGO
	Criterio de error	Tensión de von	MACHETE)
	predeterminado:	Mises máx.	
	Límite elástico:	9.31e+006 N/m^2	
	Límite de	1.37871e+007	
	tracción:	N/m^2	
	Módulo elástico:	6.1e+006 N/m^2	
↓ ′	Coeficiente de	0.49	
	Poisson:		
	Densidad:	1931 kg/m^3	
	Módulo cortante:	2.9e+006 N/m^2	
	Coeficiente de	0.00067 /Kelvin	
	dilatación térmica:		
Datos de curva:N/A			

Figura 15. Propiedades del material

Nombre de sujeción	Imagen de sujec	Detalles de sujeción				
Fijo-2					Entidades: 2 cara(s) Tipo: Geometrí	a fija
Fuerzas resultantes						_
Componentes	X	Υ		Z	Resultante	
Fuerza de reacción(N)	-6.9524	9.6564	16	-0.0832334	11.8992	
Momento de reacción(N.m)	0	0		0	0	

Figura 16. Sujeciones. Fuente. SolidWork

Nombre de carga	Cargar imagen	Detalles de carga
Fuerza-3		Entidades: 12 cara(s) Tipo: Aplicar fuerza normal Valor: 10 N

Nombre de carga	Cargar imagen	Detalles de	carga
Fuerza-4		Entidades: Tipo: Valor:	Aplicar fuerza normal
Gravedad-1		Referencia: Valores: Unidades:	0 0-9.81
Temperatura-4		Entidades: Temperatura:	22 cara(s) 150 Celsius

Figura 17. Prueba de cargas. Fuente. Solidwork.

Resultados del análisis del mango del machete

Nombre	Tipo	Mín.	Máx.
Tensiones1	VON: Tensión de von	1.793e+004N/m^2	1.373e+006N/m^2
	Mises	Nodo: 5684	Nodo: 107

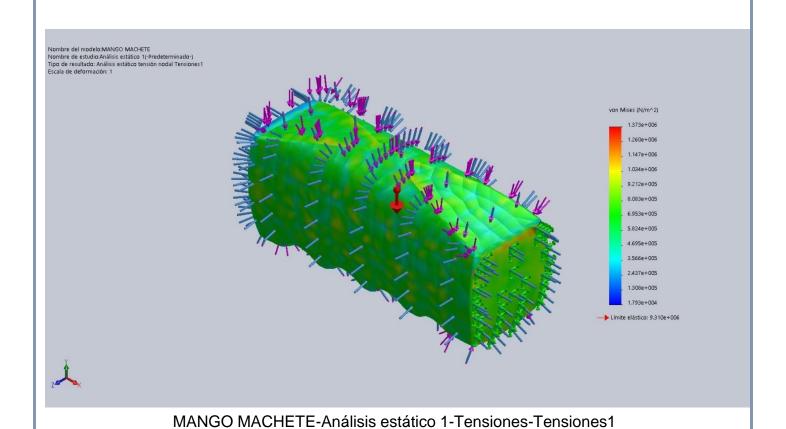


Figura 18. Análisis de tensión

Nombre	Tipo	Mín.	Máx.
Desplazamientos1	URES: Desplazamientos resultantes	0.000e+000mm Nodo: 105	5.470e+000mm Nodo: 12361

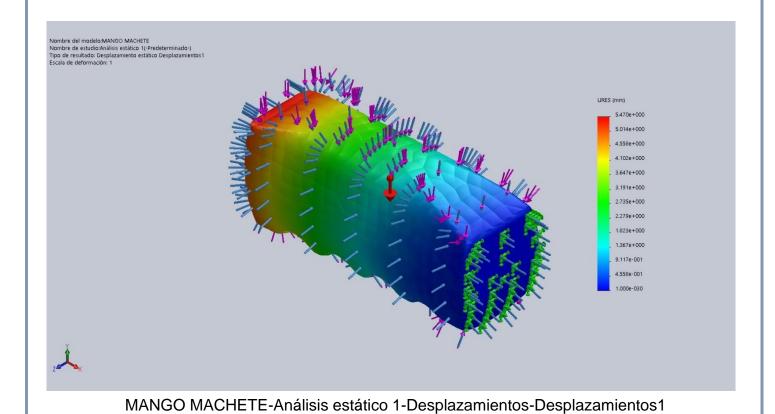
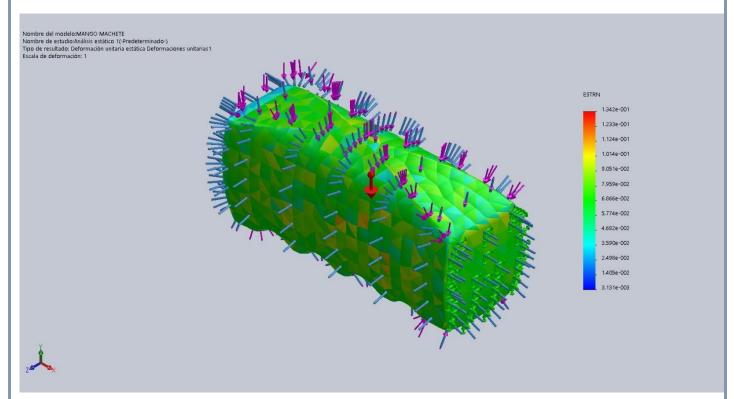



Figura 19. Análisis de desplazamiento

Nombre	Tipo	Mín.	Máx.
Deformaciones unitarias1	ESTRN: Deformación	3.131e-003	1.342e-001
	unitaria equivalente	Elemento: 4838	Elemento: 2241

MANGO MACHETE-Análisis estático 1-Deformaciones unitarias-Deformaciones unitarias1

Figura 20. Análisis de las deformaciones

Nombre	Tipo	Mín.	Máx.
Factor de seguridad1	Tensión de von	6.782e+000	5.192e+002
	Mises máx.	Nodo: 107	Nodo: 5684

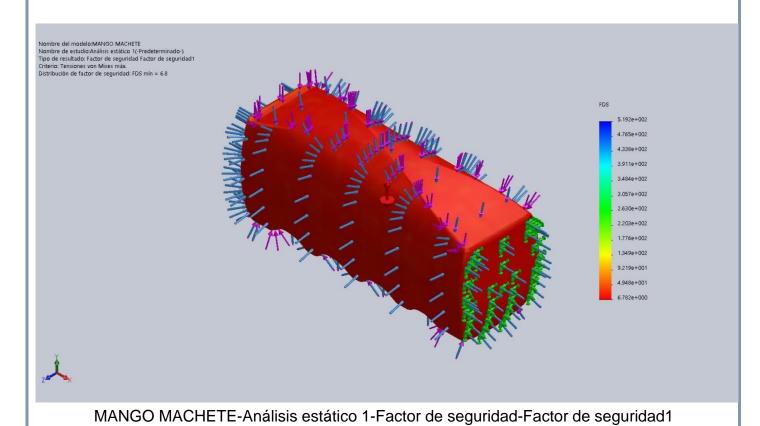


Figura 21. Análisis del factor de seguridad.

C. Diseño del mango del Machete

Análisis estático del mango de la palana

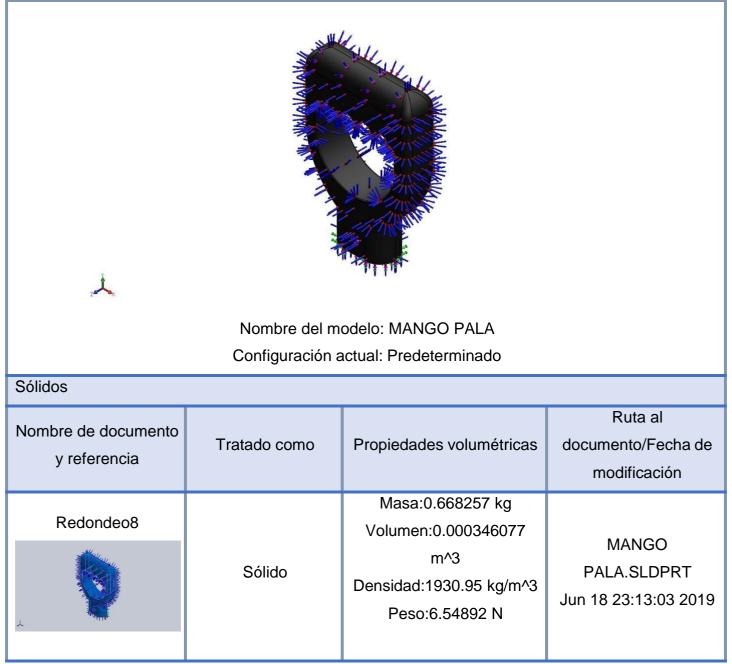


Figura 22. Información del modelo

Tabla 25.

Propiedades del modelo

Nombre de estudio	Análisis estático 1
Tipo de análisis	Análisis estático
Tipo de malla	Malla sólida
Efecto térmico:	Activar
Opción térmica	Incluir cargas térmicas
Temperatura a tensión cero	298 Kelvin
Tipo de solver	FFEPlus
Opciones de unión rígida incompatibles	Automático
Gran desplazamiento	Activar
Calcular fuerzas de cuerpo libre	Activar
Carpeta de resultados	Documento de SOLIDWORKS

Tabla 26.

Unidades referenciales

Sistema de unidades:	Métrico (MKS)
Longitud/Desplazamiento	mm
Temperatura	Kelvin
Velocidad angular	Rad/seg
Presión/Tensión	N/m^2

Nota. Elaboración propia

Tabla 27.

Propiedades del material

Referencia de modelo	Propied	lades	Componentes
Walterland	Nombre: Tipo de modelo: Criterio de error predeterminado: Límite elástico: Límite de tracción: Módulo elástico: Coeficiente de Poisson: Densidad: Módulo cortante: Coeficiente de dilatación térmica:	VITON Isotrópico elástico lineal Tensión de von Mises máx. 9.31e+006 N/m^2 1.37871e+007 N/m^2 6.1e+006 N/m^2 0.49 1931 kg/m^3 2.9e+006 N/m^2 0.00067 /Kelvin	Sólido 1(Redondeo8) (MANGO PALA)
Nota Flaboración propia			

Resultados del análisis del mango de la palana

Nombre	Tipo	Mín.	Máx.
Tensiones1	VON: Tensión de von Mises	1.245e+004N/m^2 Nodo: 8183	6.452e+005N/m^2 Nodo: 6007
Nombre de istudio Análisis estático 1 (-Predeterminado-) Tipo de residado- Análisis estático tesión nodal Tensiones 1 Escala de deformación: 3.66883			von Misses (N/Im² 2) 6.452e+005 . 5.925e+005 . 5.937e+005 . 4.870e+005 . 3.815e+005 . 3.288e+005 . 2.761e+005 . 1.7706e+005 . 1.179e+005 . 1.179e+005 . 6.518e+004 . 1.245e+004 . 1.245e+004
MANGO	PALA-Análisis	estático 1-Tensiones-1	Tensiones1

Figura 23. Análisis de tensiones

Nombre	Tipo	Mín.	Máx.
Desplazamientos1	URES:	0.000e+000mm	4.825e+000mm
	Desplazamientos resultantes	Nodo: 147	Nodo: 12838

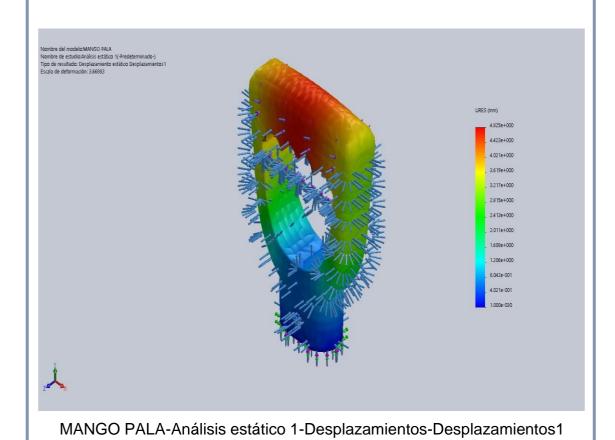
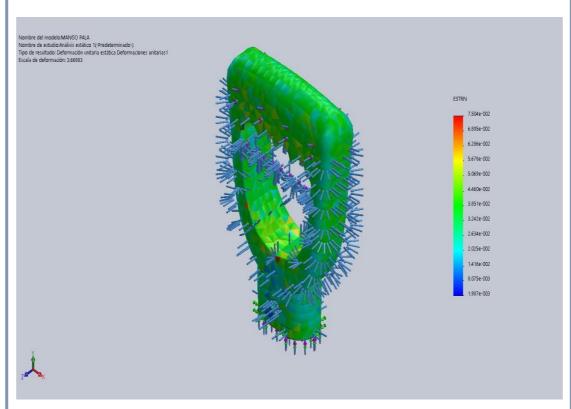
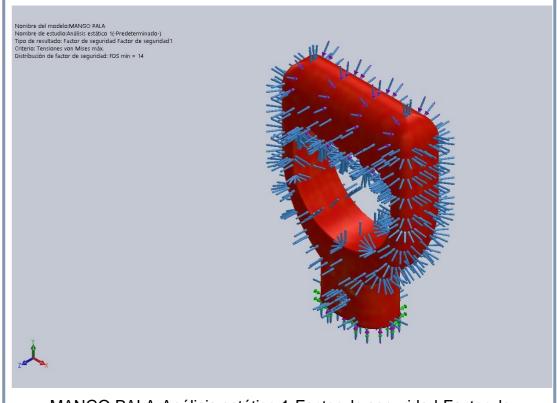



Figura 24. Análisis de desplazamientos


Nombre	Tipo	Mín.	Máx.
Deformaciones	ESTRN:	1.987e-003	7.504e-002
unitarias1	Deformación	Elemento:	Elemento:
	unitaria	6304	3105
	equivalente		

MANGO PALA-Análisis estático 1-Deformaciones unitarias-Deformaciones unitarias1

Figura 25. Análisis de deformaciones

Nombre	Tipo	Mín.	Máx.
Factor de	Tensión de	1.443e+001	7.477e+002
seguridad1	von Mises máx.	Nodo: 6007	Nodo: 8183

MANGO PALA-Análisis estático 1-Factor de seguridad-Factor de seguridad1

Figura 26. Análisis de seguridad.

El factor de seguridad del diseño de herramientas es mayor que 1 por lo que la fabricación del diseño es viable considerando una fuerza aplicada de 10 newton en el mango elaborado

D. Estandarización de los tiempos de cada proceso.

Para realizar la estandarización de tiempos se tomó en cuenta las mejoras aplicadas en el proceso productivo

Tabla 28

Factor de Desempeño del preparado del campo

Factor	Representación	Descripción	Calificación
Habilidad	D	Medio	0.00
Esfuerzo	C2	Bueno	+0.02
Condiciones	E	Aceptables	-0.03
Consistencia	В	Media	0.00
Suma	S		-0.05
Agregar unidad	AU		-0.06
Factor de			0.94
desempeño			

Nota. Elaboración propia

Tabla 29.

Factor de Desempeño en la siembra

Factor	Representación	Descripción	Calificación
Habilidad	D	Medio	0.00
Esfuerzo	C2	Bueno	+0.02
Condiciones	E	Mala	-0.03
Consistencia	В	Medio	0.00
Suma	S		-0.01
Agregar unidad	AU		1
Factor de			0.99
desempeño			

Tabla 30.

Factor de desempeño en cosecha.

Factor	Representación	Descripción	Calificación
Habilidad	D	Medio	0.00
Esfuerzo	C2	Bueno	+0.02
Condiciones	E	Aceptables	-0.03
Consistencia	F	Deficiente	-0.04
Suma	S	-0.05	
Agregar unidad	AU		-0.05
Factor de desempeño			0.95

Para el cálculo de los suplementos se consideró los siguientes criterios:

Necesidades Personales: Para el cálculo de estos suplementos, no existe un estudio científico que determine un estándar para cada operario; sin embargo, de acuerdo con las condiciones típicas de un taller, la holgura oscila entre 4.6% y 6.5%; por lo que para este trabajo se considerará el 5%

Fuerza muscular: Durante el proceso se levantan diferentes pesos; siendo lo máximo permitido por política de la empresa 35 kg y el tiempo máximo de sostenimiento de la carga sería 35% de la capacidad de la fuerza máxima de una persona promedio; calculándose lo siguiente:

$$T = \frac{1.2}{(0.35 - 0.15)^{0.618}} - 1.21 = 2.04 \, min$$

HD=1800 *
$$\left(\frac{0.05}{2.04}\right)^{1.4} - (0.35 - 0.15)^{0.5} = 9.56\% = 10\%$$

Por último; a partir del análisis previo se determinó que el suplemento o holgura será de 15% considerando los dos factores principales de holgura; tanto en necesidades personales como en fuerza muscular.

Posteriormente se realizó el cálculo del tiempo estándar tomando en cuenta las propuestas implementadas.

Tabla 31.

Tiempos por cada proceso y la actividad que se desempeña

Proceso	Descripción De Las Actividades	Tiempo
PREPARACIÓN DEL CAMPO	Rotura de cepa y borradura de surcos	0.5 h/ha – 045 h/ha
	Nivelación pesada o gruesa.	4.0 h/ha
	Subsolado	h/ha
	Nivelación fina y de ángulos	0.45 h/ha
	Levantamiento topográfico	0.45 h/ha
	Rayado del campo	0.10 h/ha
	Surcado	0.65 h/ha
	Bordeo y asequi adura	0.18 h/ha
SIEMBRA	Corte de semilla	5 h/ha
	Desinfección de la semilla	0.3 tn/h
	Pateado de surcos	0.7 h/ha
	Brochado y planchado de calles	0.2 h/ha
	Desparrame	3.3 h/ha
	Tapado	1.3 h/ha
	Riego de semillas	2.8 h/ha
COSECHA	Agoste	120 días
	Preparación de cosecha	2.5 h/ha
	La quema y corte de la caña	5 h/ha
	Repique	2.5 h/ha
	Carguío	1.20 h/ha

Nota: Se obtuvo de la revisión de la documentación de la producción.

Definiendo el factor de desempeño y las tolerancias se obtiene un tiempo estándar inicial de:

Tabla 32.

Tiempo estándar actual por proceso

Tiempo estándar PRE					
Observación	Preparación del campo	Siembra	Cosecha		
1	7.25	13.6	12.4		
2	7.39	13.75	13.5		
3	6.95	13.67	12.75		
4	7.19	13.54	12.83		
5	6.82	14.15	13.15		
6	6.85	13.82	12.41		
7	7.66	13.54	13.27		
8	7.21	14.08	13.32		
9	6.93	13.82	13.46		
10	6.76	13.67	12.67		
Tiempo observado (TO)	7.101	13.764	12.976		
Factor Desempeño (F)	0.94	0.99	0.95		
Tiempo normal (TN=TO*F)	6.67494	13.62636	12.19744		
Suplementos (S)	0.15	0.15	0.15		
Tiempo estándar	7.676181	15.670314	14.17628		

Nota: Se obtuvo cotejando la información de la evaluación del desempeño y tolerancias

Para el cálculo se aplicó la formula del tiempo estándar en cada proceso:

Preparación de campo

Tiempo observado:

$$TO = \frac{\sum tiempos}{total\ de\ datos}$$

$$TO = \frac{71.01}{10} = 7.101 \frac{H}{Ha}$$

Tiempo normal:

$$TN = TO * Factor$$

$$TN = 7.101 * 0.94 = 6.67 \frac{H}{Ha}$$

Tiempo estándar

$$TS = TN * (1 + \%suplementos)$$

$$TS = 6.67 * (1 + 0.15) = 7.68 \frac{H}{}$$

На

Siembra

Tiempo observado:

$$TO = \frac{\sum tiempos}{total\ de\ datos}$$

$$TO = \frac{137.64}{10} = 13.764 \frac{H}{Ha}$$

Tiempo normal:

$$TN = TO * Factor$$

$$TN = 13.764 * 0.99 = 13.63 \frac{H}{Ha}$$

Tiempo estándar

$$TS = TN * (1 + %suplementos)$$

$$TS = 13.63 * (1 + 0.15) = 15.67 \frac{H}{Ha}$$

Cosecha

Tiempo observado:

$$TO = \frac{\sum tiempos}{total\ de\ datos}$$

$$TO = \frac{129.76}{10} = 12.976 \frac{H}{Ha}$$

Tiempo normal:

$$TN = TO * Factor$$

$$TN = 12.976 * 0.95 = 12.32 \frac{H}{Ha}$$

Tiempo estándar

$$TS = TN * (1 + %suplementos)$$

$$TS = 12.32 * (1 + 0.15) = 14.17 \frac{H}{Ha}$$

3.5.3. Procedimiento para el objetivo 3: Realizar la evaluación de la productividad de la producción agrícola de la caña de azúcar en la empresa Casa Grande S.A.

Con los resultados obtenidos nuevamente se calculó la productividad realizando en base a costos, por lo que, se volvió a calcular los costos con la implementación simulación de la mejora:

Tabla 33

Costos con la propuesta

Evaluación	mes 1	mes 2	mes 3	mes 4	mes 5	mes 6
Costos M.O. post	S/ 91,442.05	S/ 92,767.30	S/ 90,116.81	S/ 87,466.31	S/ 91,442.05	S/ 91,442.05
Costo paras post	S/ 482.37					
Costo total	S/ 91,924.43	S/ 93,249.67	S/ 90,599.18	S/ 87,948.68	S/ 91,924.43	S/ 91,924.43

Evaluación	mes 7	mes 8	mes 9	mes 10	mes 11	mes 12	Total (Ha)
Costos							_
M.O. post	S/ 92,767.30	S/ 92,767.30	S/ 90,116.81	S/ 94,092.55	S/ 91,442.05	S/ 90,116.81	1,095,979.40
Costo							
paras post	S/ 482.37	5,788.46					
Costo total	S/ 93,249.67	S/ 93,249.67	S/ 90,599.18	S/ 94,574.92	S/ 91,924.43	S/ 90,599.18	1101767.86

Nota: Los costos se redujeron con la mejora implementando las herramientas diseñadas, el plan de mantenimiento y la estandarización de tiempos.

3.5.4. Procedimiento para el objetivo 4: Evaluar económicamente la propuesta de mejora para la empresa Casa Grande S.A.

Presupuesto de las propuestas de solución

Los costos asociados para la implementación de las propuestas de solución; se debe a los recursos tangibles e intangibles que se utilizarán. Asimismo, se debe de tener en cuenta que las cantidades han sido calculadas basado en los costos de materia prima Viton en el mercado laboral y cotizaciones de la consultora KAIZEN Consultares Asociados aproximados. A continuación; se describe los costos de evaluación:

Costos de Evaluación

Estos costos están relacionados con la etapa de verificación y validación; que incluyen actividades básicamente de auditoría, revisión por la dirección y seguimiento de acciones tomadas. A continuación, en la tabla 28 se detalla los costos de evaluación:

Tabla 34. Detalle de los costos de evaluación

ETAPA DE COSTEO	DESCRIPCIÓN	COSTO
Verificación		
y validación	Gastos Generales	S/500.00
	Gastos de Auditoría	S/2 500.00
	Gastos de visitas de inspección a los campos de	S/250.00
	cultivo.	
	Gastos de inspección de procesos agrícolas	S/300.00
	Gastos de validación de mantenimiento preventivo	S/1,200.00
	Total	\$/4,750.00

Nota. Los costos totales para la evaluación al año son de 2750.00 nuevos soles.

Costos de mangos ergonómicos

Para cotizar los mangos ergonómicos nos referimos de un productor internacional cuya página oficial es Manomano. (ManoMano, 2019)

Tabla 35.

Costos de mangos ergonómicos

Descripción	Costo unitario	Unidades	Costo total
Mango de machete	S/ 45.00	70	S/ 3,150.00
Mango de palana	S/ 55.00	70	S/ 3,850.00
	Total		S/ 7,000.00

Nota. El costo total de inversión para la cantidad de herramientas requeridas en un máximo de producción planificada en la administración de estudio es de 7000 soles.

El costo total para la ejecución de la propuesta en un año es de 11750 soles.

IV. PRESENTACIÓN DE RESULTADOS

4.1. Resultados del objetivo 1: "Realizar un diagnóstico de la situación actual de la producción agrícola en la empresa Casa Grande S.A."

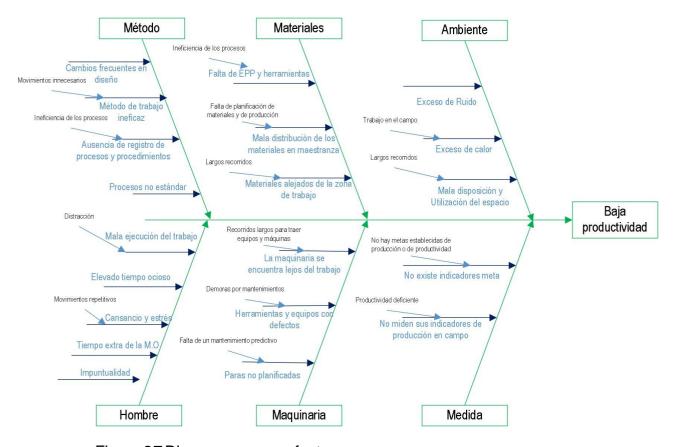


Figura 27 Diagrama causa efecto

Con respecto a las causas identificadas de la baja productividad indica que existen cambios frecuentes en el diseño, realizan un método de trabajo ineficaz ya que realizan movimientos innecesarios debido a que también existe una ausencia del registro de procesos y procedimientos para realizar las actividades que desempeñan esto se debe a que los procesos no son estándar en la producción agrícola en la empresa Casa Grande S.A. esto repercute significativamente en la productividad ya que se desperdicia bastante tiempo por tener un método ineficiente. Cuando nos referimos a la mano de obra, existe una mala ejecución de los trabajos debido a la distracción que existe generando tiempos ociosos además existe muchos tiempos extra que los operarios piden los cuales se ven reflejados en cansancio y estrés debido a que los movimientos que realizan son repetitivos esto repercute en la calidad del trabajo que

desempeñan los colaboradores y se ve afectada la productividad por estos motivos

Los materiales se encuentran alejados de la zona y además no cuentan con equipos de protección personal y herramientas adecuadas para la ejecución de las actividades en el campo por ende se ve reflejado en una ineficiencia en los procesos por estos motivos además existen largos recorridos para poder recoger sus herramientas para realizar sus actividades diarias esto repercute tengo unos elevados tiempos para la producción agrícola y se ve afectada la productividad. Además, la maquinaria se encuentra lejos de la zona de trabajo y esto permite que existan demoras al momento de realizar las actividades Por otro lado las herramientas y equipos tienen defectos lo cual hay demoras cuando se realizan mantenimientos o se cambian las herramientas para poder seguir realizando las actividades además existen paradas de las máquinas que no han sido planificadas debido a una falta de mantenimiento en ellas por lo que se ve traducido en una baja productividad.

Las deficiencias en medidas de control son que no existen indicadores metas en la zona agrícola de la empresa Casa Grande S.A. no están establecidos sus métricas de producción o productividad para lograr los objetivos planteados. Por otro lado, no miden su producción en campo y esto genera deficiencias en el proceso productivo agrícola disminuyendo la productividad. Por último, ambiente en el que se desempeña existe un elevado exceso de calory también exceso de ruido limitando el trabajo en el campo así como también la mala disposición y utilización del espacio genera largos recorridos al momento de desempeñar sus funciones en el campo por lo que disminuye la productividad en la empresa

Para el diagnóstico de la situación inicial se determinó la producción en hectáreas por hora de producción de la información de la producción de la última campaña, con ello se obtuvo que la producción anual es de para la sede de Casa Grande es de 2619.67 hectáreas al año, para Cartavio 1391.88 hectáreas al año y en total se produjo 4011.55 hectáreas en la última campaña.

Tabla 36

Producción por campaña en hectáreas

Producción por campaña en hectáreas							
	Abr-21	May-21	Jun-21	Jul-21	Ago-21	Set-21	
Casa Grande	153.48	337.07	247.31	235.75	271.99	313.51	
Cartavio	182.12	0.00	73.59	79.17	105.76	0.00	
Total	335.60	337.07	320.90	314.92	377.75	313.51	

Producción por campaña en hectáreas										
	Oct-21	Nov-21	Dic-21	Ene-22	Feb-22	Mar-22	Total (Ha)			
Casa Grande	166.33	191.58	140.65	286.44	128.25	147.31	2619.67			
Cartavio	193.61	148.14	214.33	68.62	232.95	93.59	1391.88			
Total	359.94	339.72	354.98	355.06	361.20	240.90	4011.55			

Nota: La información se trajo de la revisión documental.

Tabla 37
Costo de la producción por campaña

	Costo de la producción							
	Abr-21	May-21	Jun-21	Jul-21	Ago-21	Set-21	Oct-21	
Trabajadores Costos de	69	70	68	66	69	69	70	
M.O.	100,050.00	101,500.00	98,600.00	95,700.00	100,050.00	100,050.00	101,500.00	
Costo paras	1,245.19	1,245.19	1,245.19	1,245.19	1,245.19	1,245.19	1,245.19	
Costo total	101,295.19	102,745.19	99,845.19	96,945.19	101,295.19	101,295.19	102,745.19	

	Producción por campaña en hectáreas						
	Oct-21	Nov-21	Dic-21	Ene-22	Feb-22	Mar-22	Total (Ha)
Trabajadores Costos de	70	70	68	71	69	68	
M.O.	101,500.00	101,500.00	98,600.00	102,950.00	100,050.00	98,600.00	1199150.00
Costo paras	1,245.19	1,245.19	1,245.19	1,245.19	1,245.19	1,245.19	14942.31
Costo total	102,745.19	102,745.19	99,845.19	104,195.19	101,295.19	99,845.19	1214092.31

Nota: La información se extrajo de la revisión documental.

Tabla 38

Productividad en hectáreas producidas por cada sol invertido.

	Productividad Mensual							
	D	Costos de	Productividad	Productividad				
mes	Producción	producción	Ha/Sol	m2/Sol				
1	335.60	S/ 101,295.19	0.00331	33.13089				
2	337.07	S/ 102,745.19	0.00328	32.80640				
3	320.90	S/ 99,845.19	0.00321	32.13975				
4	314.92	S/ 96,945.19	0.00325	32.48433				
5	377.75	S/ 101,295.19	0.00373	37.29200				
6	313.51	S/ 101,295.19	0.00310	30.95014				
7	359.94	S/ 102,745.19	0.00350	35.03230				
8	339.72	S/ 102,745.19	0.00331	33.06432				
9	354.98	S/ 99,845.19	0.00356	35.55304				
10	355.06	S/ 104,195.19	0.00341	34.07643				
11	361.20	S/ 101,295.19	0.00357	35.65816				
12	240.90	S/ 99,845.19	0.00241	24.12735				
Total	4011.55	S/ 1,214,092.31	0.00330	33.04156				

Nota: La información se obtuvo por medio del análisis de la información encontrada en la empresa Casa Grande.

Actualmente la empresa tiene una producción de 4011.55 hectáreas cultivadas a un costo de S/ 1,214,092.31 por lo que tiene una productividad de 0.0033 hectáreas por casa sol invertido, o 33 metros cuadrados por sol.

4.2. Resultados del objetivo 2: "Diseñar la propuesta de mejora para la producción agrícola de la caña de azúcar en la empresa Casa Grande S.A."

Con relación a al diseño se estableció la mejora por medio de un plan de mantenimiento predictivo que ayudó a disminuir las cantidades de reparaciones que tiene las máquinas en la empresa el cual se estableció un plan de forma semanal, por lo que se estima la semana del mantenimiento considerando que el año se divide en 48 semanas:

Tabla 39

Cronograma del plan de mantenimiento predictivo

	Semanas M1	Semanas M2	Semanas M3	Semanas M4	Semanas M5	Semanas M6
Revisión 1	5	7	6	7	9	7
Revisión 2	10	13	11	13	13	13
Revisión 3	14	20	15	21	16	22
Revisión 4	18	27	22	27	19	27
Revisión 5	22	34	27	33	27	34
Revisión 6	26	39	31	38	31	40
Revisión 7	30	47	36	47	38	47
Revisión 8	34		40		41	
Revisión 9	39		43		48	
Revisión 10	44		49			
Cantidad						
mantenimientos	10	7	10	7	9	7

Además se implementó una mejora en el mango de las herramientas que emplean para la preparación de la tierra y cosecha en la producción de caña de azúcar de la empresa Casa Grande S.A., se propuso el diseño del mango de la palana al igual que el mango del machete, con ello se tomó nuevamente los tiempos de tal forma se pueda estandarizar y evaluar el impacto de la mejora.

Tabla 40
Tiempo estándar en cada proceso en la producción de caña después de la mejora

7	Tiempo estándar (h/ha)							
Observación	Preparación del campo	Siembra	Cosecha					
1	6.78	12.05	11.18					
2	7.3	12.2	12.28					
3	6.9	12.12	11.53					
4	7.1	11.99	11.61					
5	6.82	12.6	11.93					
6	6.85	12.27	11.19					
7	7.15	11.99	12.05					
8	7.21	12.53	12.1					
9	6.93	12.27	12.24					
10	6.76	12.12	11.45					
Tiempo observado (TO)	6.98	12.214	11.756					
Factor Desempeño (F)	0.94	0.99	0.94					
Tiempo normal (TN=TO*F)	6.56	12.09	11.05					
Suplementos (S)	0.15	0.15	0.15					
Tiempo estándar	7.54	13.90	12.70					

Nota: las unidades que se muestra son en horas por hectárea.

Tabla 41

Variación del tiempo estándar

Tiempo estándar							
Proceso	Preparación del campo	Siembra	Cosecha	Total			
Tiempo propuesto	7.55	13.91	12.84	34.29			
Tiempo actual	7.68	15.67	14.18	37.52			
Variación	1.704%	11.261%	9.402%	8.604%			

Nota: las unidades que se muestra son en horas por hectárea.

4.3. Resultados del objetivo 3 "Realizar la evaluación de la productividad de la producción agrícola de la caña de azúcar en la empresa Casa Grande S.A."

Para realizar la evaluación se volvió a calcular la productividad con la mejora de la propuesta ya que al implementar las mejoras de las herramientas, con el plan de mantenimiento predictivo, se obtuvo una reducción de los costos impactando positivamente en la productividad.

Tabla 42

Productividad en hectáreas producidas por cada sol invertido.

Productividad Mensual								
		Costo de la	Productividad	Productividad				
mes	Producción	producción	Ha/Sol	m2/Sol				
1	335.6	S/ 91,924.43	0.00365	36.51				
2	337.07	S/ 93,249.67	0.00361	36.15				
3	320.9	S/ 90,599.18	0.00354	35.42				
4	314.92	S/ 87,948.68	0.00358	35.81				
5	377.75	S/ 91,924.43	0.00411	41.09				
6	313.51	S/ 91,924.43	0.00341	34.11				
7	359.94	S/ 93,249.67	0.00386	38.60				
8	339.72	S/ 93,249.67	0.00364	36.43				
9	354.98	S/ 90,599.18	0.00392	39.18				
10	355.06	S/ 94,574.92	0.00375	37.54				
11	361.2	S/ 91,924.43	0.00393	39.29				
12	240.9	S/ 90,599.18	0.00266	26.59				
Total	4011.55	S/ 1,101,767.86	0.00364	36.41				

Nota: la tabla se muestra con los resultados de la mejora

Para evaluar el impacto que genera en la productividad se planteó la hipótesis:

La propuesta de mejora de la producción agrícola de la caña de azúcar permitirá incrementar la productividad de la empresa Casa Grande SA.

Por medio del software SPSS se determinó en el análisis descriptivo que existe una media en la productividad actual de 33.15 metros cuadrados producidos por sol invertido y con la mejora hay una productividad a 36.46 metros cuadrado por cada sol invertido y por medio del análisis inferencial se determinó que existe un cambio en la productividad ya que la significancia es 0.033 menor a 0.05, indicando que la productividad mejoró con la propuesta.

Además se calculó la variación de la productividad en la que se obtuvo los siguientes resultados:

Tabla 43 *Variación de la productividad*

Variación de la productividad								
Productividad Producción Costos de producción Productividad Ha/Sol Productividad m2/So								
Productividad Actual	4011.55	S/ 1,214,092.31	0.00330	33.04156				
Productividad con la mejora	4011.55	S/ 1,101,767.86	0.00364	36.41012				
Variación	0.00%	-9.25%	10.19%	10.19%				

Nota: Los datos se obtuvieron del análisis de los resultados de la productividad.

De acuerdo con la tabla 43 existe un cambio en la productividad, se incrementó un 10.19% con relación a la productividad actual, además se redujo el costo de la mano de obra con las mejoras.

Tabla 44

Análisis descriptivo de la productividad.

Análisis descriptivo									
	VAR00001	N	Media	Desv. Desviación	Desv. Error promedio				
Productividad	Actual	12	33,1533	3,36469	,97130				
	Propuesta	12	36,4608	3,75729	1,08464				

Nota: los datos se procesaron con la información de la productividad actual y la productividad propuesta luego de la simulación en Casa Grande S.A.

Tabla 45

Análisis inferencial de la productividad.

				Análi	isis inferencial			
			prueba t para la igualdad de medias					
					Diferencia de	Diferencia de error	95% de intervalo de confia	nza de la diferencia
		t	gl	Sig. (bilateral)	medias	estándar	Inferior	Superior
VAR00002	Se asumen varianzas iguales	-2,272	22	,033	-3,30750	1,45598	-6,32701	-,28799
	No se asumen varianzas iguales	-2,272	21,737	,033	-3,30750	1,45598	-6,32913	-,28587

Nota: los datos se procesaron con la información de la productividad actual y la productividad propuesta luego de la simulación en Casa Grande S.A.

4.4. Resultados del objetivo 4 "Evaluar económicamente la propuesta de mejora para la empresa Casa Grande S.A."

Para realizar la evaluación económica se realizó la estimación de los costos y beneficios que demanda la implementación por lo que se obtuvo el siguiente flujo de caja

Tabla 46

Flujo de caja para la propuesta.

Inversiones	0	1	2	3	4	5	6	7	8	9	10	11	12	Total
Inversión	-11,750													
Ingresos		4 045	4 0 4 5	4 045	4 0 4 5	4 045	4 045	4 0 4 5	4 0 4 5	4 0 4 5	4 045	4 0 4 5	4 045	44.040
Reducción costo de paradas		1,245	1,245	1,245	1,245	1,245	1,245	1,245	1,245	1,245	1,245	1,245	1,245	14,942
Reducción de costos M.O		8,608	8,733	8,483	8,234	8,608	8,608	8,733	8,733	8,483	8,857	8,608	8,483	
Total ingresos		9,853	9,978	9,728	9,479	9,853	9,853	9,978	9,978	9,728	10,103	9,853	9,728	14,942
Total ingresos actualizados		9,853	9,978	9,728	9,479	9,853	9,853	9,978	9,978	9,728	10,103	9,853	9,728	14,942
Egresos														
Capacitaciones				1,500			1500			1500			1500	6,000
Sensibilización			800			800			800			800		3,200
Total egresos		0	800	1,500	0	800	1,500	0	800	1,500	0	800	1,500	9,200
Total egresos actualizados		0	800	1,500	0	800	1,500	0	800	1,500	0	800	1,500	9,200
Flujo bruto		9,853	9,178	8,228	9,479	9,053	8,353	9,978	9,178	8,228	10,103	9,053	8,228	108,913
(Impuesto a la renta)		2,956	2,753	2,469	2,844	2,716	2,506	2,993	2,753	2,469	3,031	2,716	2,469	32,674
Flujo neto		6,897	6,425	5,760	6,635	6,337	5,847	6,985	6,425	5,760	7,072	6,337	5,760	76,239
Flujo neto actualizado	-11,750	6,897	6,425	5,760	6,635	6,337	5,847	6,985	6,425	5,760	7,072	6,337	5,760	76,239

Nota: Los datos fueron obtenidos del análisis de los resultados de la mejora de la productividad.

Tabla 47

Evaluación económica

Evaluación económica								
Tasa promedio activa en	16.32% efectiva anual							
soles	1.2678% efectiva mensual							
VAN	S/ 70,352.46							
TIR	54.99%							
B/C	5.99							
Retorno	2 meses							

Nota: Los datos fueron obtenidos del análisis de los resultados de la mejora de la productividad.

De acuerdo con los resultados obtenidos a raíz de la evaluación económica, se obtuvo que la propuesta de mejora en la productividad arroja un beneficio costo de 5.99, lo que indica que la propuesta generará beneficios en la empresa con un VAN de S/ 70,352.46, que indica el valor monetario de la propuesta el día de hoy tomando en cuenta una tasa efectiva anual de 16.32% que es el promedio en los bancos nacionales según la SBS , además se obtuvo una TIR del 54.99% con un retorno de la inversión de 2 meses

V. DISCUSIÓN DE RESULTADOS

5.1. Discusión del resultado del primer objetivo: "Realizar un diagnóstico de la situación actual de la producción agrícola en la empresa Casa Grande S.A."

Para realizar el diagnóstico de la situación actual de la producción de caña de azúcar en la empresa Casa Grande S.A. fue necesario estudiar los procesos que realizan diariamente para ello se diseñó un mapeo de procesos con la finalidad de evaluar y encontrar deficiencias el procedimiento para la producción en la empresa, además se revisó la documentación de la producción y los costos, por lo que de acuerdo con la tabla 36, se evidencia que la producción anual de cultivo de caña es de 4011.55 hectáreas, el costo de la producción para esa cantidad de hectáreas es de S/ 1,214,092.31, con ello se pudo obtener que la productividad inicial es de 0.0033 hectáreas por sol o 33.13 metros cuadrados por sol invertido en la producción, evidenciando además que la productividad se ha visto afectada por las elevadas horas perdidas por el fallo de las máquinas, los mangos de las herramientas como el machete y la palana no son los adecuados al tamaño ideal de los colaboradores. Los resultados se relacionan con la investigación de Gómez, Saldaña y Quintero (2020) quienes no tenían implementada alguna metodología para realizar sus actividades en la empresa, ya que se realiza empíricamente, por ello proponen que para la mejora de los tiempos es necesario mantener un estándar en la producción al igual que en la presente investigación. Además, tiene relación con la investigación de Polo (2019) ya que para definir el proceso aplicó BPM en la mejora del proceso de producción agrícola al igual que en la presente investigación.

5.2. Discusión del resultado del segundo objetivo: "Diseñar la propuesta de mejora para la producción agrícola de la caña de azúcar en la empresa Casa Grande S.A."

De acuerdo con el segundo objetivo de diseñar la mejora de la producción agrícola se propuso 4 mejoras, la primera fue la aplicación de la simulación para predecir el comportamiento de las máquinas BULLDOZER, con ello se pretende que los costos por mano de obra parada, se reduzca impactando en la productividad positivamente, en la tabla 39 se muestra el cronograma del

plan de mantenimiento en el cual se establece la semana en la que se tiene que aplicar, seguido se elaboró el diseño del mango del machete de tal forma pueda beneficiar a los colaboradores al momento de desempeñar sus actividad. Tercero se realizó el diseño del mango de la palana por medio SolidWorks y se realizó el análisis de fuerzas; y por último, se realizó la estimación del tiempo estándar, en la que se calculó el tiempo estándar de la situación actual, se tomóla evaluación del desempeño de los colaboradores al igual que se calculó el porcentaje de suplementos y con ello se obtuvo que el tiempo estándar inicial esde 37.39 horas por hectárea y con la propuesta se reduce a 34.23 horas por hectárea; los tiempos estándar variaron en el proceso de Preparación del campoen 1.704%, Siembra en 11.261% y en Cosecha incrementó en 9.402%. Los resultados del presente objetivo tienen que ver con la investigación de Gómez, Saldaña y Quintero (2020) guienes concluyen con la reducción de los tiempos en un 35.7% con la distribución de planta, se identificó que el cuello de botella es el 30% del tiempo total de producción. Además también tiene relación con lainvestigación de Polo (2019) en la cual concluye que se mejoró la productividad causando un efecto positivo en la calidad ya que se tuvo un ahorro del 65.44% del tiempo empleado en horas la cual logró incrementar su productividad aprovechando mejor el tiempo del recurso humano estableciendo procesos limpios y estándares para el desarrollo y mejora de la productividad en las actividades de producción agrícola.

5.3. Discusión del resultado del tercer objetivo: "Realizar la evaluación de la productividad de la producción agrícola de la caña de azúcar en la empresa Casa Grande S.A."

Para realizar la evaluación de la productividad se determinó los costos que se redujeron con las mejoras aplicadas de tal forma se pueda percibir el cambio en la productividad de la empresa, por ello en la tabla 33 se evidencia el costo nuevo con la propuesta en la que se observa una reducción en el costo de la mano de obra al igual que en el costo de las paras por fallos de máquinas, con ello en la tabla 42 se muestra el cambio en la productividad en la que se obtuvo 0.00364 hectáreas por sol o 36.41 metros cuadrados por cada sol invertido, para probar el cambio en la productividad se planteó la hipótesis para determinar si existe un cambio significativo en la productividad, en la tabla 43 se muestra el

análisis inferencial en la que se analizó la productividad antes y después para definir la diferencia de medias, y en el análisis inferencial se determinó que se acepta que la propuesta de mejora genera un cambio significativo en la productividad ya que se obtuvo una significancia del 0.033 menor a 0.05, con ello podemos decir que la productividad ha sufrido un cambio significativo con la propuesta, con ello se logró un incremento en la productividad del 10.19% con relación a la productividad de la situación problemática en la empresa Casa Grande S.A. Los resultados van de acuerdo con Cueva (2018) ya que en su tesis también logró aplicar mejoras en el proceso productivo de espárragos y obtuvo una productividad a 8 cajas por hora con la propuesta de mejora en lugar de 7 cajas por hora con la mejora actual representando un incremento de 12.5%, los cuales son similares al obtenidos en la presente investigación.

5.4. Discusión del resultado del cuarto objetivo: "Evaluar económicamente la propuesta de mejora para la empresa Casa Grande S.A."

Para realizar la evaluación económica, se estimó el beneficio obtenido de la propuesta en base al ahorro generado en costos y de acuerdo con la inversión se obtuvo el flujo de caja de la tabla 46, y en la tabla 47 se muestra que los resultados obtenidos a raíz de la evaluación económica, se obtuvo que la propuesta de mejora en la productividad arroja un beneficio costo de 5.99, lo que indica que la propuesta generará beneficios en la empresa con un VAN de S/70,352.46, que indica el valor monetario de la propuesta el día de hoy tomando en cuenta una tasa efectiva anual de 16.32% que es el promedio en los bancos nacionales según la SBS, además se obtuvo una TIR del 54.99% con un retorno de la inversión de 2 meses. La evaluación económica tiene relación con la investigación de Cueva (2018) quien después de obtener las estimaciones del beneficio obtenido con la inversión en la mejora propuesta, el beneficio costo obtenido es de 1.65 lo que significa que al momento de realizar la mejora de métodos de trabajo por cada sol invertido retornar a 1.65 soles de ingresos.

VI. CONCLUSIONES

- Se realizó el diagnóstico de la situación actual de la productividad con ello se obtuvo que la productividad en la situación problemática es de 33.04 metros cuadrados por cada sol invertido, además se identificó que el la producción es de 4011.55 hectáreas al año con u costo de S/ 1,214,092.31.
- Se realizó el diseño de la propuesta de mejora de la producción agrícola y se planteó 4 mejoras, la primera fue la aplicación de la simulación para predecir el comportamiento de las máquinas BULLDOZER, con ello se pretende que los costos por mano de obra parada, se reduzca impactando en la productividad positivamente, con ello se logró reducir el tiempo del proceso de preparación del campo en un 1.7%, la siembra en 11.26% y la cosecha en 9.4% ello disminuyó el costo de la mano de obra.
- Se evaluó la productividad de la propuesta de mejora por lo que en vista que se redujo el costo de la producción en 9.25%, afectó a la productividad ya que se obtuvo un incremento de 10.19% con respecto a la situación problemática de la empresa, además en la prueba de hipótesis arrojó que la propuesta de mejora genera un cambio significativo en la productividad de la empresa Casa Grande S.A. con una significancia de 0.02.
- Se realizó la evaluación económica de la propuesta de mejora por lo que se obtuvo un beneficio costo de 5.99 por lo que por cada sol que se invierta en la mejora de la producción agrícola de Casa Grande S.A genera un beneficio de 4.99 soles con VAN de S/ 70,352.46, una TIR de 54.99 y un retorno de la inversión de 2 meses.

VII. RECOMENDACIONES

- Aplicar un diagnóstico más efectivo en el área de producción por medio de herramientas de Lean Manufacturing con Value Stream Mapping de tal forma se pueda evaluar la productividad considerando los factores favorables para la empresa, ello permitirá eliminar desperdicios.
- Solicitar al jefe de producción realizar constantemente evaluaciones del desempeño y monitorear la producción de tal forma se pueda establecer estrategias para la mejora continua en la producción de la empresa Casa Grande S.A.
- Evaluar el área del almacén de tal forma se pueda tener siempre disponibilidad de los implementos que necesitan los colaboradores con ello se busca mejorar la eficiencia en el flujo de equipamiento para realizar las actividades
- Se recomienda capacitar a colaboradores para realizar sus actividades de forma óptima, además dotar de herramientas de tal forma puedan agilizar su trabajo y reducir los suplementos en algunos procesos

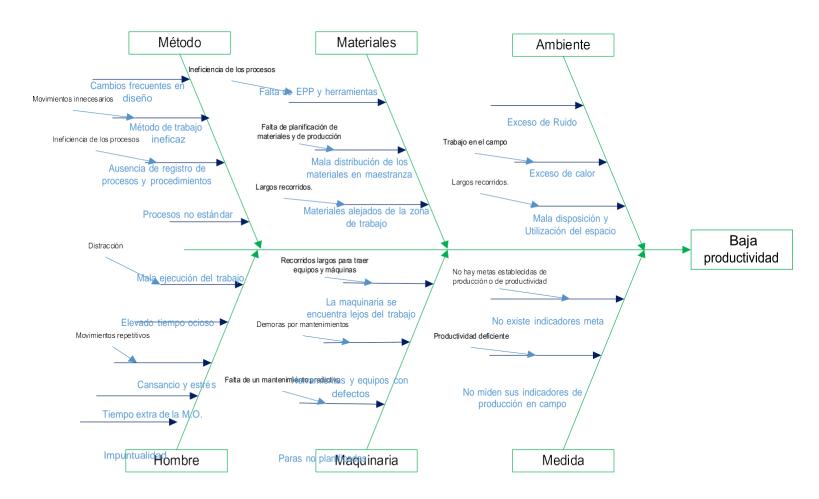
Referencias

- Arispe, C., Yangali, S., Guerrero, M., Lozada, O., Acuña, L., & Arellano, C. (2020). *La investigación científica: Una aproximación para los estudios de posgrado.* Guayaquil: Universidad Internacional del Ecuador.
- Asmat Vidarte, K., & García Ríos, B. (2018). propuesta de mejora en la gestión de compras e inventarios, y su impacto en los costos logísticos de una pequeña empresa de calzado. Trujillo: Universidad Nacional de Trujillo.
- Banco Mundial. (2017). *Tomando un impulso en la agricultura peruana*. Lima: Galese SAC.
- Barceló, J. (2015). SIMULACIÓN DE SISTEMAS DISCRETOS. Madrid: Isdefe.
- Bedaux, P., Farrés, X., Gallo, I., Lavoué, P., & Nielsen, B. (2020). Cómo preparar las cadenas de suministro tras la pandemia del coronavirus. Barcelona: Miebach.
- Benjamin W., N., & Andris, F. (2009). *Ingenieria Industrial Métodos, estándares* y diseño del trabajo. Mexico: The Mc Graw Hill Companies.
- Bonilla, A., & Singaña, D. (2018). la productividad agrícola más allá del rendimiento por hectárea: análisis de los cultivos de arroz y maíz duro en ecuador. *Scielo*, *29*(1), 70-83. doi:https://doi.org/10.17163/lgr.n29.2019.06
- Candelaria, B., Ruiz, O., Gallardo, F., Pérez, P., Martínez, Á., & Vargas, L. (05 de Abril de 2011). [Sitio Web]. Obtenido de http://www.scielo.org.mx/: http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S1870-04622011000300004
- Chase, R. B., Jacobs, F. R., & Aquilano, N. J. (2006). *ADMINISTRACIÓN DE OPERACIONES: Producción y cadena de Suministros*. Ciudad de Mexico: McGraw-Hill.
- Conexión ESAN. (2020). Recursos y estrategias de la cadena de suministro frente a la COVID-19. Lima: ESAN.
- Crespo, J., & Valenzuela, R. (2017). *IMPLEMENTACIÓN DE UN MODELO DE GESTIÓN DE INVENTARIOS Y COMPRAS PARA REDUCIR LOS*

- COSTOS LOGÍSTICOS EN LA CURTIEMBRE PIEL TRUJILLO S.A.C. EN EL DISTRITO DEL PORVENIR EN EL AÑO 2017. Trujillo: Universidad Nacional de Trujillo (UNT).
- Cueva Cueva, A. R., & Medina Julcamoro, K. (2018). Diseño de un sistema de gestión de almacén e inventario para reducir los costos operativos en el área de almacén de la empresa CCA-PERÚ SAC CAJAMARCA 2018.

 Cajarmarca: Universidad Privada del Norte.
- Cueva Gutiérrez, J. (2018). Implementación de un modelo de planificación de la producción y presupuestos agrícola en AGROCASAGRANDE S.A.C".

 Trujillo: Universidad Nacional de Trujillo.
- Diestra Ortiz, C. E. (2018). "PROPUESTA DE IMPLEMENTACIÓN DE UN MODELO DE GESTIÓN DE INVENTARIOS PARA REDUCIR COSTOS EN LA EMPRESA DISTRIBUIDORA FERRETERA RONNY L. S.A.C. Trujillo: Universidad Privada del Norte.
- ESAN. (2016). [Sltio Web]. Obtenido de Conexión ESAN: https://www.esan.edu.pe/apuntes-empresariales/2016/06/el-proceso-de-evaluacion-de-proveedores/
- García, E., García, H., & Cárdenas, L. (2013). Simulación y análisis de sistemas con Promodel. Monterrey: Pearson.
- Gómez, K., Saldaña, K., & Quintero, L. (2020). Propuesta de estandarización de proceso de fabricación de colchones para mejorar la productividad en la empresa Grupo Kasamia S.A.S. Bogotá D.C.: niversidad ECCI.
- Heizer, J., & Render, B. (2009). *Principios de la Administración de operaciones.*Mexico: Pearson Educación.
- HERRERA AGUILAR, M. A. (2017). Propuesta de mejora del control de inventarios para reducir los costos operacionales del área de almacén en la empresa STEEL WORK INGENIEROS S.A.C. Trujillo: Universidad Privada del Norte.
- Himmelblau, D. M., & Bischoff, K. B. (2015). *Libro: Análisis y Simulación de procesos*. Reverte.


- López Aita, J. P. (2018). Propuesta de mejora del proceso de cultivo de limón basado en modelos predictivos de rendimiento agrícola en los valles: alto Piura y San Lorenzo, 2018. Piura: Universidad Nacional de Piura.
- ManoMano. (05 de 11 de 2019). Obtenido de https://www.manomano.es/mangos-para-herramientas-de-jardineria-903?page=2
- Meyers, F. E., & Stephens, M. P. (2006). *Diseño de instalaciones de manufactura y manejo de materiales*. Mexico: Pearson.
- Millán, J., & Lache, A. (2018). Rediseño del sistema de gestión de la calidad a través de metodologías de mejora de procesos para incrementar la productividad en una empresa metalmecánica de Bogotá. Bogotá D.C.: Universidad Sergio Arboleda.
- Morales, K. (13 de Marzo de 2011). SlideShare. Obtenido de https://es.slideshare.net/ingkarent84/medicion-del-trabajotiempos-suplementariosfatiga
- Nail, A. (2016). Propuesta de mejora para la gestión de inventarios de sociedad repuestos españa limitada. Puerto Montt: Universidad Austral de Chile.
- NIEBEL, B. W. (2012). *Ingenieríaa Industrial. Métodos, estándares y diseño del trabajo* (Vol. 12° edición). México D. F.: McGraw-Hill Educación, 2012.
- Niebel, B. W., & Freivalds, A. (2012). *Ingeniería Industrial, métodos, estándares y diseño de trabajos.* Mexico: Mc Graw Hill.
- Pacherres Osorio, L. L., & Plácido Campos, J. K. (2017). Sistema de gestión de inventarios para reducir los costos de inventario en la empresa "costa gas TRUJILLO S.A.C." 2017. Trujillo: Universidad Privada Antenor Orrego.
- Palacios Acero, L. C. (2016). *Ingeniería de Métodos movimientos y tiempos.*Bogotá: Ecoe Ediciones.
- Polo López, G. D. (2019). Aplicación de BPM en la mejora del proceso de producción agrícola de la empresa Choco Real SAC, Lima 2019. Lima: Universidad César Vallejo.

- Ramos, C. (2021). Diseños de investigación experimental. *Experimental Investigation Designs,* 10(1), 1-7. Obtenido de https://dialnet.unirioja.es/servlet/articulo?codigo=7890336
- Rentería Morales, F. E. (2019). *Propuesta de mejora de la producción mediante* el diseño de un sistema automatizado para la línea de retail de la empresa vínculos Agrícolas S.A.C. Chiclayo: Universidad Católica Santro Toribio de Mogrovejo.
- Risco, A. (2020). *Clasificación de las Investigaciones*. Lima: Universidad de Lima. Obtenido de https://hdl.handle.net/20.500.12724/10818
- Ruiz Quispe, G. F. (2018). "Propuesta de mejora de métodos de trabajo en el proceso de producción de espárrago verde fresco para incrementar la productividad de la asociación agrícola Compositan Alto". Trujillo: Universidad Privada del Norte.
- Salazar López, B. (2016). *Ingenieros Industriales*. Obtenido de https://www.ingenieriaindustrialonline.com:
 https://www.ingenieriaindustrialonline.com/herramientas-para-el-ingeniero-industrial/producci%C3%B3n/
- Salvador, P. (6 de Abril de 2020). [Sitio Web]. Obtenido de EY: Building a better working world: https://www.ey.com/es_pe/supply-chain/gran-impacto-cadenas-de-suministros
- SFP. (2016). Guia para la optimización, estandarización y mejora continua en los procesos. Mexico: SFP Estados Unidos Mexicanos.
- Sotelsek, & Laborda. (2019). Desarrolllo y productividad agrícola en América Latina: El problema de la medición. *Scielo, 16*(1), 61-83. Obtenido de http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S1870-54722019000100061

ANEXOS

Anexo 1

Diagrama Causa Efecto

Anexo 2 Formato de Historial de fallas en las máquinas

	1/01/2
LAS - SOPLADORA	
AREA	FALLA
	1/01/:
LAS - SOPLADORA	
AREA	FALLA
	1/01/2
LAS - SOPLADORA	
AREA	FALLA
	1/01/:
LAS - SOPLADORA	
LAS SOI LABORA	
AREA	FALLA
	LAS - SOPLADORA AREA LAS - SOPLADORA

Anexo 3
Formato de registro de producción

			Registro de prod	ucción		
Cosecha	Fecha	Kg primera	Kg Segunda	Kg Rechazados	Causa del Rechazo	Segunda causa del rechazo
Ha 1 Ha 2						
На 3						
Ha 4						
На 5						
На 6						
Ha 7						
Ha 8						
Ha 9						
Ha 10						
Ha 11						
Ha 12						
Ha 13						
Ha 14						
Ha 15						
Ha 16						
Total						

ENTREVISTA

nombre del entrevistado Nombre del investigador Rubro de la empresa

Casa Grande S.A.

Objetivo Obtener información relevante con relación al proceso productivo agrícola.

No.	Preguntas realizadas	Observaciones
1	¿Cuál es la producción histórica por hectárea de terreno cultivado?	
2	¿Cuál es la productividad en la producción agrícola?	
3	¿Cuentan con indicadores de medición en la producción agrícola? ¿Cuáles son?	
4	¿Cuántos trabajadores intervienen en el proceso de producción agrícola?	
5	¿Tienen algún sistema de evaluación del desempeño?	
6	¿Consideran las tolerancias para determinar el tiempo de procesamiento estándar de las actividades de producción agrícola?	
7	¿Tienen estandarizado en los procesos en campo?	
8	¿Considera alguna actividad o proceso que deba mejorarse?	
9	¿Las máquinas presentan paras no planeadas?	
10	¿Tienen registrado el historial de fallas de las máquinas empleadas en la producción agrícola?	

Anexo 5 Formato de registro de Productividad

Revisión Documental

Nombre de la empresa Nombre del observador Rubro de la empresa

Objetivo

Obtener productividad de la situación actual

		Contidod		
		Cantidad		
		de horas	Productividad	
día	Producción	hombre		Observaciones
ula	Producción	empleadas	(Р/ПП)	Observaciones
1				
2				
3				
4				
5				
6				
7				
8				
9				
10				
11				
12				
13				
14				
15				
16				
17				
18				
19				
20				

Anexo 6
Formato de Propuesta de mejora del método de trabajo.

IDENTIFICACIÓN DE LA OPERACIÓN:	FECHA: No. DE OPERACIÓN: No. DEL OBJETO: OBSERVADO POR:
NOMBRE DEL OBJETO: NOMBRE DEL OPERARIO:	<u> </u>
BOSQUEJO DEL PUESTO DE TRABAJO	A: ¿SE PUEDE ELIMINAR? B: ¿SE PUEDE CAMBIAR? C: ¿SE PUEDE CAMBIAR EL OR DEN DE EJECUCIÓN? D: ¿SE PUEDE SIMPLIFICAR?
ELEMENTOS DE LA OPERACIÓN	SUGERENCIAS DE MEJORA
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	

Anexo 7
Formato de toma de tempos

Fecha:	a de o	bserva	ción (T					
Estudio N°01			Р	Nombre Del producto				
Hoja N°01	1	2	23	4 0	2 2	9 0	2 7	
Tiempo: Horas Cantidad: 10 observaciones	Proceso	Proceso	Proceso	Proceso	Proceso	Proceso	Proceso	Caña de azúcar
Muestras	T1	T2	Т3	T4	T5	T6	T7	Observaciones
1 2 3 4 5 6 7 8 9 10 Totales								
N° Observaciones Promedio	0	0	0	0	0	0	0	Tiempo estándar total
Ev. Desempeño Tiempo normal Suplementos Tiempo Estándar								0.00 min

Anexo 8
Formato de evaluación del desempeño

Factor	Representación	Calificación	
Habilidad	B2	+0.08	
Esfuerzo	C2	+0.02	
Condiciones	E	-0.03	
Consistencia	С	+ 0.01	
Suma	S	+0.09	
Agregar unidad	AU	1	
Factor de desempeño		+1.09	

Anexo 9 Formato de evaluación de suplementos

SISTEMA DE SUPLEMENTOS POR DESCANSO

SUPLEMENTOS CONSTANTES	HOMBRE	MUJER	SUPLEMENTOS VARIABLES	HOMBRE	MUJER	
Necesidades personales	5	7	e) Condiciones atmosféricas			
Básico por fatiga	4	4	Índice de enfriamiento, termómetro			
SUPLEMENTOS VARIABLES	HOMBRE	MUJER	de KATA (milicalorías/cm2/segundo)			
a) Trabajo de pie			16	0		
Trabajo se realiza sentado(a)	0	0	14	0		
Trabajo se realiza de pie	2	4	12	0		
b) Postura normal			10	3		
Ligeramete incómoda	0	1	8	10		
Incómoda (inclinación del cuerpo)	2	3	6	21		
Muy incómoda (Cuerpo estirado)	7	7	5	31		
			4	45	45	
c) Uso de la fuerza o energía muscular			3	64		
(levantar, tirar o empujar)			2	100)	
			f) Tensión visual			
Peso levantado por kilogramo			Trabajos de cierta precisión	0	0	
2,5	0	1	Trabajos de precisión o fatigosos	2 2		
5	1	2	Trabajos de gran precisión	5 5		
7,5	2	3	g) Ruido			
10	3	4	Sonido continuo 0		0	
12,5	4	6	Sonidos intermitentes y fuertes 2		2	
15	5	8	Sonidos intermitentes y muy fuertes 5		5	
17,5	7	10	Sonidos estridentes	7	7	
20	9	13	h) Tensión mental			
22,5	11	16	Proceso algo complejo	1	1	
25	13	20 (máx)	Proceso complejo o de atención	4	4	
30	17		dividida	4	4	
33,5	22		Proceso muy complejo	8	8	
d) Iluminación			i) Monotonía mental			
Ligeramente por debajo de la potencia	0	0	Trabajo monótono	0	0	
calculada			Trabajo bastante monótono	1	1	
Bastante por debajo	2	2	Trabajo muy monótono 4		4	
Absolutamente insuficiente	5	5	j) Monotonía física			
			Trabajo algo aburrido	0	0	
			Trabajo aburrido	2	2	
			Trabajo muy aburrido	5	5	

Anexo 10
Formato de evaluación de la productividad

Formato productividad por proceso

Situación: (actual o con la mejora)

nombre de la empresa Nombre del observador Nombre del proceso

Objetivo Calcular la productividad actual y la propuesta de mejora

día	Recurso	Producción	Productividad 1	Recurso 2	Producción 2	Productividad 2
1						
2						
3						
4						
5						
6						
7						
8						
9						
10						
11						
12						
13						
14						
15						
16						
17						
18						
19						
20						

Anexo 11

Formato de evaluación económica.

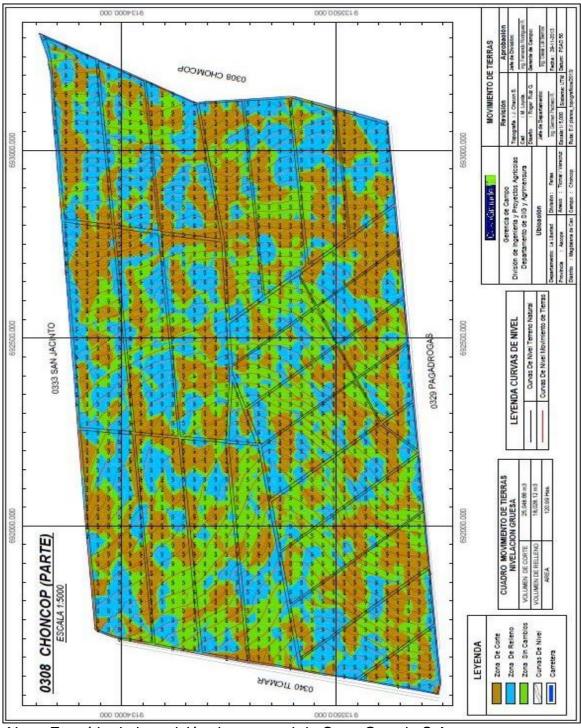
Resultados económicos

VAN	S/390,589.91		
TIR	84.51%		
B/C (FCE)	1.868		

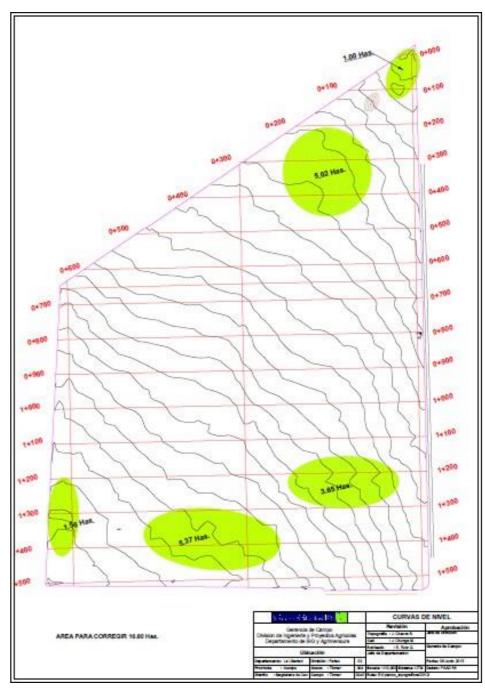
VAN > 0, TIR > COK y el B/C > 1

Periodo de recuperación 0	0	1	2	3	4	5
	209,055					
FC 0		149,801	121,350	138,522	156,555	177,114
FC 0 Acumulado		149,801	271,151	157,141	191,919	266,226

Anexo 12 Rastra 1


Nota: Extraído de la revisión documental de Casa Grande S.A.

Anexo 13 Nivelación de la gruesa


Nota: Extraído de la revisión documental de Casa Grande S.A.

Anexo 14 Plano de cortes y rellenos

Nota: Extraído de la revisión documental de Casa Grande S.A.

Anexo 15 Plano de curvas de nivel

Nota: Extraído de la revisión documental de Casa Grande S.A.

Anexo 16 Subsolado 1

Nota: Extraído de la revisión documental de Casa Grande S.A.

Anexo 17 Subsolado 2

Nota: Extraído de la revisión documental de Casa Grande S.A.

Anexo 18 Rasta 3

Nota: Extraído de la revisión documental de Casa Grande S.A.

Anexo 19
Pseudoaleatorios de la máquina 1.

m	128	k	8	
а	33	g	7	
С	1	Moda	#N/D	
Xi	(aXi+c)Mod(m)	Ri	Independencia	HUECOS
7	104	0.82	1	
104	105	0.83	1	1
105	10	80.0	0	1
10	75	0.59	1	1
75	44	0.35	0	1
44	45	0.35	0	0
45	78	0.61	1	1
78	15	0.12	0	1
15	112	0.88	1	1
112	113	0.89	1	0
113	18	0.14	0	1
18	83	0.65	1	1
83	52	0.41	0	1
52	53	0.42	0	0
53	86	0.68	1	1
86	23	0.18	0	1
23	120	0.94	1	1
120	121	0.95	1	0
121	26	0.20	0	1
26	91	0.72	1	1
91	60	0.47	0	1
60	61	0.48	0	0
61	94	0.74	1	1
94	31	0.24	0	1
31	0	0.00	0	0
0	1	0.01	0	0
1	34	0.27	0	0
34	99	0.78	1	1
99	68	0.54	1	0
68	69	0.54	1	0

Nota. Son 30 datos pseudoaleatorios.

Anexo 20

Prueba de medias para pseudoaleatorios máquina 1.

Prueba de Medias					
H0: Los Ri tienen	H0: Los Ri tienen una media de 0.5				
H1: Los Ri no tienen una media de 0.5					
Media ri 0.50 Z 1.96					
Nivel de Conf.	0.95	LS	0.60		
n	30.00	LI	0.40		

Nota. Como el valor del promedio ri está dentro de los límites de aceptación, se toma la hipótesis nula como verdadera concluyendo que su media es igual a 0.5 con un nivel de aceptación del 95%

Anexo 21.

Prueba de varianza para pseudoaleatorios máquina 1.

Prueba de Varianza				
H0: Los Ri tiene una varianza de 0.8333333				
H1: Los Ri tiene una varianza de 0.8333334				
VARIANZA ri 0.085652522 Nivel de Conf. 0.9500				
n 30 LI		0.0461		
X^2 (a/2)	16.0470717	LS	0.131385879	
X^2 (1-a/2)	45.7222858			

Nota. Como el valor de la varianza de los ri está dentro de los límites de aceptación, se toma la hipótesis nula como verdadera concluyendo que su varianza es igual a 1/12 con un nivel de aceptación del 95%

Anexo 22

Prueba de uniformidad para pseudoaleatorios máquina 1

Prueba de Uniformidad					
H0: Los Ri so	H0: Los Ri son uniformes				
H1: Los Ri no	H1: Los Ri no son uniformes				
n	30				
m	5	Amplitud		0.1906	
Rango	0.9528	Nivel de conf		1.9600	
Lím. Inf.	Lím. Sup.	Oi	Ei	(Ei - Oi)^2/Ei	
0.00000	0.19055	6	6	0	

	0.19055	0.38110	5	6	0.16666667
	0.38110	0.57166	6	6	0
	0.57166	0.76221	6	6	0
	0.76221	0.95276	7	6	0.16666667
	Т	otal	30		0.33333333
	V	'alor estadístico de	prueba		0.3333
	,	Valor estadístico de	co de tabla 42.5569678		
para a (0.05) y 4 g.l.		2	12.5569676		

Nota. Como el valor del estadístico de prueba de los ri es menor que el valor del estadístico de tabla, se aprueba hipótesis nula concluyendo que los números ri se encuentras uniformemente distribuidos con un nivel de aceptación del 95%

Anexo 23

Prueba de independencia corrida arriba y abajo media para pseudoaleatorios máquina 1

Prueba de Independencia corrida arriba y abajo media					
H0: Los Ri son unifo	H0: Los Ri son uniformes				
H1: Los Ri no son u	niformes				
N0	15	n	30		
N1	15	Nivel Conf.	0.95		
CO	19	MEDIA (C0)	15.5		
Z min (0.025)	-1.96	VARIANZA (CO)	7.24137931		
Z max (0.025)	1.96	Zo	1.300640868		

Nota. El valor estadístico resultante se encuentra dentro del rango establecido por Z, por lo tanto, se concluye que los números pseudoaleatorios presentan independencia.

Anexo 24

Pseudoaleatorios de la máquina 2.

m	128	k	11	
а	45	g	7	
С	7	Moda	#N/D	
Xi	(aXi+c)Mod(m)	Ri	Independencia	HUECOS
7	66	0.52	1	
66	33	0.26	0	1
33	84	0.66	1	1
84	75	0.59	1	0
75	54	0.43	0	1
54	5	0.04	0	0
5	104	0.82	1	1
104	79	0.62	1	0
79	106	0.83	1	0
106	41	0.32	0	1
41	60	0.47	0	0
60	19	0.15	0	0
19	94	0.74	1	1
94	13	0.10	0	1
13	80	0.63	1	1
80	23	0.18	0	1
23	18	0.14	0	0
18	49	0.39	0	0
49	36	0.28	0	0
36	91	0.72	1	1
91	6	0.05	0	1
6	21	0.17	0	0
21	56	0.44	0	0
56	95	0.75	1	1
95	58	0.46	0	1
58	57	0.45	0	0
57	12	0.09	0	0
12	35	0.28	0	0
35	46	0.36	0	0
46	29	0.23	0	0

Nota. Son 30 datos pseudoaleatorios.

Anexo 25

Prueba de medias para pseudoaleatorios máquina 2.

Prueba de Medias				
H0: Los Ri tienen	una media de	0.5		
H1: Los Ri no tienen una media de 0.5				
Media ri	0.41	Z	1.96	
Nivel de Conf.	0.95	LS	0.60	
n	30.00	LI	0.40	

Nota. Como el valor del promedio ri está dentro de los límites de aceptación, se toma la hipótesis nula como verdadera concluyendo que su media es igual a 0.5 con un nivel de aceptación del 95%.

Anexo 26

Prueba de varianza para pseudoaleatorios máquina 2.

Prueba de Varianza					
H0: L	H0: Los Ri tiene una varianza de 0.8333333				
H1: L	H1: Los Ri tiene una varianza de 0.8333334				
VARIANZA ri 0.058254039 Nivel de Conf. 0.9500					
n	30	LI	0.0461		
X^2 (a/2)	16.0470717	LS	0.131385879		
X^2 (1-a/2)	45.7222858				

Nota. Como el valor de la varianza de los ri está dentro de los límites de aceptación, se toma la hipótesis nula como verdadera concluyendo que su varianza es igual a 1/12 con un nivel de aceptación del 95%

Anexo 27

Prueba de uniformidad para pseudoaleatorios máquina 2.

Prueba de Uniformidad					
H0: Los Ri so	H0: Los Ri son uniformes				
H1: Los Ri no	H1: Los Ri no son uniformes				
n	30				
m	6	Amplitud	0.1325		
Rango	0.7953	Nivel de conf	1.9600		

Lím. Inf.	Lím. Sup.	Oi	Ei	(Ei - Oi)^2/Ei
0.03937	0.17192	7	5	0.8
0.17192	0.30446	5	5	0
0.30446	0.43701	4	5	0.2
0.43701	0.56956	5	5	0
0.56956	0.70210	4	5	0.2
0.70210	0.83465	5	5	0
٦	Γotal	30		1.2
Valor estadístico de prueba				1.2000
	Valor estadístico de	e tabla		40.5500070
	para a (0.05) y 4	g.l.		42.5569678

Nota. Como el valor del estadístico de prueba de los ri es menor que el valor del estadístico de tabla, se aprueba hipótesis nula concluyendo que los números ri se encuentras uniformemente distribuidos con un nivel de aceptación del 95%.

Anexo 28

Prueba de independencia corrida arriba y abajo medias para pseudoaleatorios máquina 2.

Prueba de Independencia corrida arriba y abajo medias				
H0: Los Ri son uniformes				
H1: Los Ri no son uniformes				
N0	20	n	30	
N1	10	Nivel Conf.	0.95	
CO	13	MEDIA (C0)	13.83333333	
Z min (0.025)	-1.96	VARIANZA (CO)	5.670498084	
Z max (0.025)	1.96	Zo	-0.349951734	

Nota. El valor estadístico resultante se encuentra dentro del rango establecido por Z por lo tanto, se concluye que los números pseudoaleatorios presentan independencia

Anexo 29

Pseudoaleatorios de la máquina 3.

m	4096	k	123	
а	493	g	12	
С	23	Moda	#N/D	
Xi	(aXi+c)Mod(m)	Ri	Independencia	HUECOS
7	3474	0.84835	1	
3474	577	0.14090	0	1
577	1860	0.45421	0	0

1860 3595 0.87790 1 1 3595 2886 0.70476 1 0 2886 1509 0.36850 0 1 1509 2584 0.63101 1 1 2584 79 0.01929 0 1 79 2106 0.51429 1 1 2106 1993 0.48669 0 1 1993 3628 0.88596 1 1	
2886 1509 0.36850 0 1 1509 2584 0.63101 1 1 2584 79 0.01929 0 1 79 2106 0.51429 1 1 2106 1993 0.48669 0 1 1993 3628 0.88596 1 1	
1509 2584 0.63101 1 1 2584 79 0.01929 0 1 79 2106 0.51429 1 1 2106 1993 0.48669 0 1 1993 3628 0.88596 1 1	
2584 79 0.01929 0 1 79 2106 0.51429 1 1 2106 1993 0.48669 0 1 1993 3628 0.88596 1 1	
79 2106 0.51429 1 1 2106 1993 0.48669 0 1 1993 3628 0.88596 1 1	
2106 1993 0.48669 0 1 1993 3628 0.88596 1 1	
1993 3628 0.88596 1 1	
3628 2771 0.67668 1 0	
2771 2158 0.52698 1 0	
2158 3053 0.74554 1 0	
3053 1920 0.46886 0 1	
1920 407 0.09939 0 0	
407 4066 0.99292 1 1	
4066 1617 0.39487 0 1	
1617 2580 0.63004 1 1	
2580 2203 0.53797 1 0	
2203 662 0.16166 0 1	
662 2805 0.68498 1 1	
2805 2536 0.61929 1 0	
2536 991 0.24200 0 1	
991 1162 0.28376 0 0	
1162 3545 0.86569 1 1	
3545 2812 0.68669 1 0	
2812 1891 0.46178 0 1	
1891 2494 0.60904 1 1	
2494 765 0.18681 0 1	
765 336 0.08205 0 0	
336 1831 0.44713 0 0	
1831 1586 0.38730 0 0	
1586 3681 0.89890 1 1	
3681 228 0.05568 0 1	
228 1835 0.44811 0 0	
1835 3558 0.86886 1 1	
3558 1029 0.25128 0 1	
1029 3512 0.85763 1 1	
3512 2927 0.71477 1 0	
2927 1242 0.30330 0 1	
1242 2025 0.49451 0 0	
2025 3020 0.73748 1 1	

3020	2035	0.49695	0	1
2035	3854	0.94115	1	1
3854	3597	0.87839	1	0
3597	3872	0.94554	1	0
3872	183	0.04469	0	1
183	130	0.03175	0	0
130	2673	0.65275	1	1
2673	2996	0.73162	1	0
2996	2491	0.60830	1	0
2491	3382	0.82589	1	0
3382	277	0.06764	0	1
277	1416	0.34579	0	0
1416	1791	0.43736	0	0
1791	2346	0.57289	1	1
2346	1529	0.37338	0	1
1529	156	0.03810	0	0
156	3203	0.78217	1	1
3203	2142	0.52308	1	0
2142	3357	0.81978	1	0
3357	240	0.05861	0	1
240	3655	0.89255	1	1
3655	3794	0.92650	1	0
3794	2689	0.65665	1	0
2689	2692	0.65739	1	0
2692	75	0.01832	0	1
75	134	0.03272	0	0
134	549	0.13407	0	0
549	344	0.08400	0	0
344	1679	0.41001	0	0
1679	378	0.09231	0	0
378	2057	0.50232	1	1
2057	2412	0.58901	1	0
2412	1299	0.31722	0	1
1299	1454	0.35507	0	0
1454	45	0.01099	0	0
45	1728	0.42198	0	0
1728	4055	0.99023	1	1
4055	290	0.07082	0	1
290	3729	0.91062	1	1
3729	3412	0.83321	1	0

3412 2779 0.67863 1 0 2779 2006 0.48987 0 1 2006 1845 0.45055 0 0 1845 296 0.07228 0 0 296 2591 0.63272 1 1 2591 3530 0.86203 1 0 3530 3609 0.88132 1 0 3609 1596 0.38974 0 1 1596 419 0.10232 0 0 419 1790 0.43712 0 0 1790 1853 0.45250 0 0 1853 144 0.03516 0 0 144 1383 0.33773 0 0 1383 1906 0.46545 0 0	
2006 1845 0.45055 0 0 1845 296 0.07228 0 0 296 2591 0.63272 1 1 2591 3530 0.86203 1 0 3530 3609 0.88132 1 0 3609 1596 0.38974 0 1 1596 419 0.10232 0 0 419 1790 0.43712 0 0 1790 1853 0.45250 0 0 1853 144 0.03516 0 0 144 1383 0.33773 0 0	
1845 296 0.07228 0 0 296 2591 0.63272 1 1 2591 3530 0.86203 1 0 3530 3609 0.88132 1 0 3609 1596 0.38974 0 1 1596 419 0.10232 0 0 419 1790 0.43712 0 0 1790 1853 0.45250 0 0 1853 144 0.03516 0 0 144 1383 0.33773 0 0	
296 2591 0.63272 1 1 2591 3530 0.86203 1 0 3530 3609 0.88132 1 0 3609 1596 0.38974 0 1 1596 419 0.10232 0 0 419 1790 0.43712 0 0 1790 1853 0.45250 0 0 1853 144 0.03516 0 0 144 1383 0.33773 0 0	
2591 3530 0.86203 1 0 3530 3609 0.88132 1 0 3609 1596 0.38974 0 1 1596 419 0.10232 0 0 419 1790 0.43712 0 0 1790 1853 0.45250 0 0 1853 144 0.03516 0 0 144 1383 0.33773 0 0	
3530 3609 0.88132 1 0 3609 1596 0.38974 0 1 1596 419 0.10232 0 0 419 1790 0.43712 0 0 1790 1853 0.45250 0 0 1853 144 0.03516 0 0 144 1383 0.33773 0 0	
3609 1596 0.38974 0 1 1596 419 0.10232 0 0 419 1790 0.43712 0 0 1790 1853 0.45250 0 0 1853 144 0.03516 0 0 144 1383 0.33773 0 0	
1596 419 0.10232 0 0 419 1790 0.43712 0 0 1790 1853 0.45250 0 0 1853 144 0.03516 0 0 144 1383 0.33773 0 0	
419 1790 0.43712 0 0 1790 1853 0.45250 0 0 1853 144 0.03516 0 0 144 1383 0.33773 0 0	
1790 1853 0.45250 0 0 1853 144 0.03516 0 0 144 1383 0.33773 0 0	
1853 144 0.03516 0 0 144 1383 0.33773 0 0	
144 1383 0.33773 0 0	
1202 1006 0.46545 0 0	
1383 1906 0.46545 0 0	
1906 1697 0.41441 0 0	
1697 1060 0.25885 0 0	
1060 2411 0.58877 1 1	
2411 806 0.19683 0 1	
806 69 0.01685 0 0	
69 1272 0.31062 0 0	
1272 431 0.10525 0 0	
431 3610 0.88156 1 1	
3610 2089 0.51013 1 0	
2089 1804 0.44054 0 1	
1804 563 0.13748 0 0	
563 3150 0.76923 1 1	
3150 589 0.14383 0 1	
589 3680 0.89866 1 1	
3680 3831 0.93553 1 0	
3831 450 0.10989 0 1	
450 689 0.16825 0 0	
689 3828 0.93480 1 1	
3828 3067 0.74896 1 0	
3067 630 0.15385 0 1	
630 3413 0.83346 1 1	
3413 3272 0.79902 1 0	
3272 3391 0.82808 1 0	
3391 618 0.15092 0 1	
618 1593 0.38901 0 0	
1593 3036 0.74139 1 1	

3036 1731 0.42271 0 1 1731 1438 0.35116 0 0 1438 349 0.08523 0 0 349 48 0.01172 0 0 48 3207 18 0.00440 0 1 18 705 0.17216 0 0 705 3524 0.86056 1 1 3524 651 0.15897 0 1 651 1478 0.36093 0 0 1478 3685 0.89988 1 1 3685 2200 0.53724 1 0 2200 3279 0.80073 1 0 3279 2746 0.67057 1 0 2746 2121 0.51795 1 0 2121 1196 0.29206 0 1 1196 3923 0.95800 1 1 <td< th=""><th></th><th></th><th></th><th></th><th></th></td<>					
1438 349 0.08523 0 0 349 48 0.01172 0 0 48 3207 0.78315 1 1 3207 18 0.00440 0 1 18 705 0.17216 0 0 705 3524 0.86056 1 1 3524 651 0.15897 0 1 651 1478 0.36093 0 0 1478 3685 0.89988 1 1 3685 2200 0.53724 1 0 2200 3279 0.80073 1 0 3279 2746 0.67057 1 0 2746 2121 0.51795 1 0 2121 1196 0.29206 0 1 1196 3923 0.95800 1 1 3923 750 0.18315 0 1 750 1133 0.27668 0 0 1133 1536 0.37509	3036	1731	0.42271	0	1
349 48 0.01172 0 0 48 3207 0.78315 1 1 3207 18 0.00440 0 1 18 705 0.17216 0 0 705 3524 0.86056 1 1 3524 651 0.15897 0 1 651 1478 0.36093 0 0 1478 3685 0.89988 1 1 3685 2200 0.53724 1 0 2200 3279 0.80073 1 0 3279 2746 0.67057 1 0 2746 2121 0.51795 1 0 2121 1196 0.29206 0 1 1196 3923 0.95800 1 1 3923 750 0.18315 0 1 750 1133 0.27668 0 0 1133	1731	1438	0.35116	0	0
48 3207 0.78315 1 1 3207 18 0.00440 0 1 18 705 0.17216 0 0 705 3524 0.86056 1 1 3524 651 0.15897 0 1 651 1478 0.36093 0 0 1478 3685 0.89988 1 1 3685 2200 0.53724 1 0 2200 3279 0.80073 1 0 22746 2121 0.51795 1 0 2746 2121 0.51795 1 0 2121 1196 0.29206 0 1 1196 3923 0.95800 1 1 3923 750 0.18315 0 1 750 1133 0.27668 0 0 1133 1536 0.37509 0 0 1536	1438	349	0.08523	0	0
3207 18 0.00440 0 1 18 705 0.17216 0 0 705 3524 0.86056 1 1 3524 651 0.15897 0 1 651 1478 0.36093 0 0 1478 3685 0.89988 1 1 3685 2200 0.53724 1 0 2200 3279 0.80073 1 0 2200 3279 0.80073 1 0 3279 2746 0.67057 1 0 2746 2121 0.51795 1 0 2746 2121 0.51795 1 0 2121 1196 0.29206 0 1 1196 3923 0.95800 1 1 3923 750 0.18315 0 1 750 1133 0.27668 0 0 1133	349	48	0.01172	0	0
18 705 0.17216 0 0 705 3524 0.86056 1 1 3524 651 0.15897 0 1 651 1478 0.36093 0 0 1478 3685 0.89988 1 1 3685 2200 0.53724 1 0 2200 3279 0.80073 1 0 3279 2746 0.67057 1 0 2746 2121 0.51795 1 0 2746 2121 0.51795 1 0 2121 1196 0.29206 0 1 1196 3923 0.95800 1 1 3923 750 0.18315 0 1 750 1133 0.27668 0 0 1133 1536 0.37509 0 0 1536 3607 0.88083 1 1 3607	48	3207	0.78315	1	1
705 3524 0.86056 1 1 3524 651 0.15897 0 1 651 1478 0.36093 0 0 1478 3685 0.89988 1 1 3685 2200 0.53724 1 0 2200 3279 0.80073 1 0 22746 0.67057 1 0 2746 2121 0.51795 1 0 2746 2121 0.51795 1 0 2121 1196 0.29206 0 1 1196 3923 0.95800 1 1 3923 750 0.18315 0 1 750 1133 0.27668 0 0 1133 1536 0.37509 0 0 1536 3607 0.88083 1 1 3607 610 0.14896 0 1 610 1745	3207	18	0.00440	0	1
3524 651 0.15897 0 1 651 1478 0.36093 0 0 1478 3685 0.89988 1 1 3685 2200 0.53724 1 0 2200 3279 0.80073 1 0 3279 2746 0.67057 1 0 2746 2121 0.51795 1 0 2121 1196 0.29206 0 1 1196 3923 0.95800 1 1 3923 750 0.18315 0 1 750 1133 0.27668 0 0 1133 1536 0.37509 0 0 1536 3607 0.88083 1 1 3607 610 0.14896 0 1 610 1745 0.42613 0 0 1745 148 0.03614 0 0 148	18	705	0.17216	0	0
651 1478 0.36093 0 0 1478 3685 0.89988 1 1 3685 2200 0.53724 1 0 2200 3279 0.80073 1 0 3279 2746 0.67057 1 0 2746 2121 0.51795 1 0 2746 2121 0.51795 1 0 2121 1196 0.29206 0 1 1196 3923 0.95800 1 1 3923 750 0.18315 0 1 750 1133 0.27668 0 0 1133 1536 0.37509 0 0 1536 3607 0.88083 1 1 3607 610 0.14896 0 1 610 1745 0.42613 0 0 1745 148 0.03614 0 0 148	705	3524	0.86056	1	1
1478 3685 0.89988 1 1 3685 2200 0.53724 1 0 2200 3279 0.80073 1 0 3279 2746 0.67057 1 0 2746 2121 0.51795 1 0 2121 1196 0.29206 0 1 1196 3923 0.95800 1 1 3923 750 0.18315 0 1 750 1133 0.27668 0 0 1133 1536 0.37509 0 0 1536 3607 0.88083 1 1 3607 610 0.14896 0 1 610 1745 0.42613 0 0 1745 148 0.03614 0 0 148 3355 0.81929 1 1 3350 885 0.21612 0 1 885 2152 0.52552 1 1 2152 95 0.02320	3524	651	0.15897	0	1
3685 2200 0.53724 1 0 2200 3279 0.80073 1 0 3279 2746 0.67057 1 0 2746 2121 0.51795 1 0 2121 1196 0.29206 0 1 1196 3923 0.95800 1 1 3923 750 0.18315 0 1 750 1133 0.27668 0 0 1133 1536 0.37509 0 0 1536 3607 0.88083 1 1 3607 610 0.14896 0 1 610 1745 0.42613 0 0 1745 148 0.03614 0 0 148 3355 0.81929 1 1 3350 885 0.21612 0 1 885 2152 0.52552 1 1 2152 95 0.02320 0 1 95 1802 0.44005	651	1478	0.36093	0	0
2200 3279 0.80073 1 0 3279 2746 0.67057 1 0 2746 2121 0.51795 1 0 2121 1196 0.29206 0 1 1196 3923 0.95800 1 1 3923 750 0.18315 0 1 750 1133 0.27668 0 0 1133 1536 0.37509 0 0 1536 3607 0.88083 1 1 3607 610 0.14896 0 1 610 1745 0.42613 0 0 1745 148 0.03614 0 0 148 3355 0.81929 1 1 3350 885 0.21612 0 1 885 2152 0.52552 1 1 2152 95 0.02320 0 1 95 1802 0.44005 0 0 1802 3673 0.89695	1478	3685	0.89988	1	1
3279 2746 0.67057 1 0 2746 2121 0.51795 1 0 2121 1196 0.29206 0 1 1196 3923 0.95800 1 1 3923 750 0.18315 0 1 750 1133 0.27668 0 0 1133 1536 0.37509 0 0 1536 3607 0.88083 1 1 3607 610 0.14896 0 1 610 1745 0.42613 0 0 1745 148 0.03614 0 0 148 3355 0.81929 1 1 3350 885 0.21612 0 1 885 2152 0.52552 1 1 2152 95 0.02320 0 1 95 1802 0.44005 0 0 1802 3673 0.89695 1 1 3673 380 0.09280	3685	2200	0.53724	1	0
2746 2121 0.51795 1 0 2121 1196 0.29206 0 1 1196 3923 0.95800 1 1 3923 750 0.18315 0 1 750 1133 0.27668 0 0 1133 1536 0.37509 0 0 1536 3607 0.88083 1 1 3607 610 0.14896 0 1 610 1745 0.42613 0 0 1745 148 0.03614 0 0 148 3355 0.81929 1 1 3350 885 0.21612 0 1 885 2152 0.52552 1 1 2152 95 0.02320 0 1 95 1802 0.44005 0 0 1802 3673 0.89695 1 1 3673 380 0.09280 0 1 380 3043 0.74310	2200	3279	0.80073	1	0
2121 1196 0.29206 0 1 1196 3923 0.95800 1 1 3923 750 0.18315 0 1 750 1133 0.27668 0 0 1133 1536 0.37509 0 0 1536 3607 0.88083 1 1 3607 610 0.14896 0 1 610 1745 0.42613 0 0 1745 148 0.03614 0 0 148 3355 0.81929 1 1 3350 885 0.21612 0 1 885 2152 0.52552 1 1 95 1802 0.44005 0 0 1802 3673 0.89695 1 1 3673 380 0.09280 0 1 380 3043 0.74310 1 1 3043 1086 0.26520 0 1 1086 2941 0.71819	3279	2746	0.67057	1	0
1196 3923 0.95800 1 1 3923 750 0.18315 0 1 750 1133 0.27668 0 0 1133 1536 0.37509 0 0 1536 3607 0.88083 1 1 3607 610 0.14896 0 1 610 1745 0.42613 0 0 1745 148 0.03614 0 0 148 3355 0.81929 1 1 3355 3350 0.81807 1 0 3350 885 0.21612 0 1 885 2152 0.52552 1 1 2152 95 0.02320 0 1 95 1802 0.44005 0 0 1802 3673 0.89695 1 1 3673 380 0.09280 0 1 380 3043 0.74310 1 1 3043 1074310 1 <	2746	2121	0.51795	1	0
3923 750 0.18315 0 1 750 1133 0.27668 0 0 1133 1536 0.37509 0 0 1536 3607 0.88083 1 1 3607 610 0.14896 0 1 610 1745 0.42613 0 0 1745 148 0.03614 0 0 148 3355 0.81929 1 1 3355 3350 0.81807 1 0 3350 885 0.21612 0 1 885 2152 0.52552 1 1 2152 95 0.02320 0 1 95 1802 0.44005 0 0 1802 3673 0.89695 1 1 3673 380 0.09280 0 1 380 3043 0.74310 1 1 3043 1074310 1 1 1 2941 4048 0.98852 <	2121	1196	0.29206	0	1
750 1133 0.27668 0 0 1133 1536 0.37509 0 0 1536 3607 0.88083 1 1 3607 610 0.14896 0 1 610 1745 0.42613 0 0 1745 148 0.03614 0 0 148 3355 0.81929 1 1 3355 3350 0.81807 1 0 3350 885 0.21612 0 1 885 2152 0.52552 1 1 2152 95 0.02320 0 1 95 1802 0.44005 0 0 1802 3673 0.89695 1 1 3673 380 0.09280 0 1 380 3043 0.74310 1 1 3043 1086 0.26520 0 1 1086 2941 0.71819 1 1 2941 4048 0.98852	1196	3923	0.95800	1	1
1133 1536 0.37509 0 0 1536 3607 0.88083 1 1 3607 610 0.14896 0 1 610 1745 0.42613 0 0 1745 148 0.03614 0 0 148 3355 0.81929 1 1 3355 3350 0.81807 1 0 3350 885 0.21612 0 1 885 2152 0.52552 1 1 2152 95 0.02320 0 1 95 1802 0.44005 0 0 1802 3673 0.89695 1 1 3673 380 0.09280 0 1 380 3043 0.74310 1 1 3043 1086 0.26520 0 1 1086 2941 0.71819 1 1 2941 4048 0.98852 1 0 4048 935 0.22833	3923	750	0.18315	0	1
1536 3607 0.88083 1 1 3607 610 0.14896 0 1 610 1745 0.42613 0 0 1745 148 0.03614 0 0 148 3355 0.81929 1 1 3355 3350 0.81807 1 0 3350 885 0.21612 0 1 885 2152 0.52552 1 1 2152 95 0.02320 0 1 95 1802 0.44005 0 0 1802 3673 0.89695 1 1 3673 380 0.09280 0 1 380 3043 0.74310 1 1 3043 1086 0.26520 0 1 1086 2941 0.71819 1 1 2941 4048 0.98852 1 0 4048 935 0.22833 0 1 935 2226 0.54359	750	1133	0.27668	0	0
3607 610 0.14896 0 1 610 1745 0.42613 0 0 1745 148 0.03614 0 0 148 3355 0.81929 1 1 3355 3350 0.81807 1 0 3350 885 0.21612 0 1 885 2152 0.52552 1 1 2152 95 0.02320 0 1 95 1802 0.44005 0 0 1802 3673 0.89695 1 1 3673 380 0.09280 0 1 380 3043 0.74310 1 1 3043 1086 0.26520 0 1 1086 2941 0.71819 1 1 2941 4048 0.98852 1 0 4048 935 0.22833 0 1 935 2226 0.54359 1 1 2226 3809 0.93016	1133	1536	0.37509	0	0
610 1745 0.42613 0 0 1745 148 0.03614 0 0 148 3355 0.81929 1 1 3355 3350 0.81807 1 0 3350 885 0.21612 0 1 885 2152 0.52552 1 1 2152 95 0.02320 0 1 95 1802 0.44005 0 0 1802 3673 0.89695 1 1 3673 380 0.09280 0 1 380 3043 0.74310 1 1 3043 1086 0.26520 0 1 1086 2941 0.71819 1 1 2941 4048 0.98852 1 0 4048 935 0.22833 0 1 935 2226 0.54359 1 1 2226 3809 0.93016 1 0	1536	3607	0.88083	1	1
1745 148 0.03614 0 0 148 3355 0.81929 1 1 3355 3350 0.81807 1 0 3350 885 0.21612 0 1 885 2152 0.52552 1 1 2152 95 0.02320 0 1 95 1802 0.44005 0 0 1802 3673 0.89695 1 1 3673 380 0.09280 0 1 380 3043 0.74310 1 1 3043 1086 0.26520 0 1 1086 2941 0.71819 1 1 2941 4048 0.98852 1 0 4048 935 0.22833 0 1 935 2226 0.54359 1 1 2226 3809 0.93016 1 0	3607	610	0.14896	0	1
148 3355 0.81929 1 1 3355 3350 0.81807 1 0 3350 885 0.21612 0 1 885 2152 0.52552 1 1 2152 95 0.02320 0 1 95 1802 0.44005 0 0 1802 3673 0.89695 1 1 3673 380 0.09280 0 1 380 3043 0.74310 1 1 3043 1086 0.26520 0 1 1086 2941 0.71819 1 1 2941 4048 0.98852 1 0 4048 935 0.22833 0 1 935 2226 0.54359 1 1 2226 3809 0.93016 1 0	610	1745	0.42613	0	0
3355 3350 0.81807 1 0 3350 885 0.21612 0 1 885 2152 0.52552 1 1 2152 95 0.02320 0 1 95 1802 0.44005 0 0 1802 3673 0.89695 1 1 3673 380 0.09280 0 1 380 3043 0.74310 1 1 3043 1086 0.26520 0 1 1086 2941 0.71819 1 1 2941 4048 0.98852 1 0 4048 935 0.22833 0 1 935 2226 0.54359 1 1 2226 3809 0.93016 1 0	1745	148	0.03614	0	0
3350 885 0.21612 0 1 885 2152 0.52552 1 1 2152 95 0.02320 0 1 95 1802 0.44005 0 0 1802 3673 0.89695 1 1 3673 380 0.09280 0 1 380 3043 0.74310 1 1 3043 1086 0.26520 0 1 1086 2941 0.71819 1 1 2941 4048 0.98852 1 0 4048 935 0.22833 0 1 935 2226 0.54359 1 1 2226 3809 0.93016 1 0	148	3355	0.81929	1	1
885 2152 0.52552 1 1 2152 95 0.02320 0 1 95 1802 0.44005 0 0 1802 3673 0.89695 1 1 3673 380 0.09280 0 1 380 3043 0.74310 1 1 3043 1086 0.26520 0 1 1086 2941 0.71819 1 1 2941 4048 0.98852 1 0 4048 935 0.22833 0 1 935 2226 0.54359 1 1 2226 3809 0.93016 1 0	3355	3350	0.81807	1	0
2152 95 0.02320 0 1 95 1802 0.44005 0 0 1802 3673 0.89695 1 1 3673 380 0.09280 0 1 380 3043 0.74310 1 1 3043 1086 0.26520 0 1 1086 2941 0.71819 1 1 2941 4048 0.98852 1 0 4048 935 0.22833 0 1 935 2226 0.54359 1 1 2226 3809 0.93016 1 0	3350	885	0.21612	0	1
95 1802 0.44005 0 0 1802 3673 0.89695 1 1 3673 380 0.09280 0 1 380 3043 0.74310 1 1 3043 1086 0.26520 0 1 1086 2941 0.71819 1 1 2941 4048 0.98852 1 0 4048 935 0.22833 0 1 935 2226 0.54359 1 1 2226 3809 0.93016 1 0	885	2152	0.52552	1	1
1802 3673 0.89695 1 1 3673 380 0.09280 0 1 380 3043 0.74310 1 1 3043 1086 0.26520 0 1 1086 2941 0.71819 1 1 2941 4048 0.98852 1 0 4048 935 0.22833 0 1 935 2226 0.54359 1 1 2226 3809 0.93016 1 0	2152	95	0.02320	0	1
3673 380 0.09280 0 1 380 3043 0.74310 1 1 3043 1086 0.26520 0 1 1086 2941 0.71819 1 1 2941 4048 0.98852 1 0 4048 935 0.22833 0 1 935 2226 0.54359 1 1 2226 3809 0.93016 1 0	95	1802	0.44005	0	0
380 3043 0.74310 1 1 3043 1086 0.26520 0 1 1086 2941 0.71819 1 1 2941 4048 0.98852 1 0 4048 935 0.22833 0 1 935 2226 0.54359 1 1 2226 3809 0.93016 1 0	1802	3673	0.89695	1	1
3043 1086 0.26520 0 1 1086 2941 0.71819 1 1 2941 4048 0.98852 1 0 4048 935 0.22833 0 1 935 2226 0.54359 1 1 2226 3809 0.93016 1 0	3673	380	0.09280	0	1
1086 2941 0.71819 1 1 2941 4048 0.98852 1 0 4048 935 0.22833 0 1 935 2226 0.54359 1 1 2226 3809 0.93016 1 0	380	3043	0.74310	1	1
2941 4048 0.98852 1 0 4048 935 0.22833 0 1 935 2226 0.54359 1 1 2226 3809 0.93016 1 0	3043	1086	0.26520	0	1
4048 935 0.22833 0 1 935 2226 0.54359 1 1 2226 3809 0.93016 1 0	1086	2941	0.71819	1	1
935 2226 0.54359 1 1 2226 3809 0.93016 1 0	2941	4048	0.98852	1	0
2226 3809 0.93016 1 0	4048	935	0.22833	0	1
	935	2226	0.54359	1	1
3809 1892 0.46203 0 1	2226	3809	0.93016	1	0
	3809	1892	0.46203	0	1

1892 2987 0.72943 1 1 2987 2150 0.52503 1 0 2150 3205 0.78266 1 0 3205 3128 0.76386 1 0 3128 2031 0.49597 0 1 2031 1882 0.45958 0 0 2031 1882 0.45958 0 0 2031 1882 0.45958 0 0 2031 1882 0.45958 0 0 2031 1882 0.45958 0 0 2153 588 0.14359 0 1 2153 588 0.14359 0 1 3187 2446 0.59731 1 0 3187 2446 0.59731 1 0 466 1677 0.40952 0 1 1677 3488 0.85177 1 1 3488					
2150 3205 0.78266 1 0 3205 3128 0.76386 1 0 3128 2031 0.49597 0 1 2031 1882 0.45958 0 0 1882 2153 0.52576 1 1 2153 588 0.14359 0 1 588 3187 0.77827 1 1 3187 2446 0.59731 1 0 2446 1677 0.40952 0 1 1677 3488 0.85177 1 1 3488 3383 0.82613 1 0 3488 3383 0.82613 1 0 370 0.18803 0 1 1 2801 564 0.13773 0 1 2801 564 0.13773 0 1 1974 2453 0.59902 1 1 1974	1892	2987	0.72943	1	1
3205 3128 0.76386 1 0 3128 2031 0.49597 0 1 2031 1882 0.45958 0 0 1882 2153 0.52576 1 1 2153 588 0.14359 0 1 588 3187 0.77827 1 1 3187 2446 0.59731 1 0 2446 1677 0.40952 0 1 1677 3488 0.85177 1 1 3488 3383 0.82613 1 0 3488 3383 0.82613 1 0 3488 3383 0.82613 1 0 370 0.18803 0 1 1 2801 564 0.13773 0 1 2801 564 0.13773 0 1 1974 2453 0.59902 1 1 1974	2987	2150	0.52503	1	0
3128 2031 0.49597 0 1 2031 1882 0.45958 0 0 1882 2153 0.52576 1 1 2153 588 0.14359 0 1 588 3187 0.77827 1 1 3187 2446 0.59731 1 0 2446 1677 0.40952 0 1 1677 3488 0.85177 1 1 3488 3383 0.82613 1 0 3488 3383 0.82613 1 0 370 24801 0.68400 1 1 2801 564 0.13773 0 1 3643 1974 0.48205 0 1 1974 2453 0.59902 1 1 2453 1032 0.25201 0 1 1032 895 0.21856 0 0 895	2150	3205	0.78266	1	0
2031 1882 0.45958 0 0 1882 2153 0.52576 1 1 2153 588 0.14359 0 1 588 3187 0.77827 1 1 3187 2446 0.59731 1 0 2446 1677 0.40952 0 1 1677 3488 0.85177 1 1 3488 3383 0.82613 1 0 3488 3383 0.82613 1 0 3383 770 0.18803 0 1 770 2801 0.68400 1 1 2801 564 0.13773 0 1 564 3643 0.88962 1 1 3643 1974 0.48205 0 1 1974 2453 0.59902 1 1 1032 895 0.21856 0 0 895	3205	3128	0.76386	1	0
1882 2153 0.52576 1 1 2153 588 0.14359 0 1 588 3187 0.77827 1 1 3187 2446 0.59731 1 0 2446 1677 0.40952 0 1 1677 3488 0.85177 1 1 3488 3383 0.82613 1 0 3383 770 0.18803 0 1 770 2801 0.68400 1 1 2801 564 0.13773 0 1 564 3643 0.88962 1 1 3643 1974 0.48205 0 1 1974 2453 0.59902 1 1 2453 1032 0.25201 0 1 1032 895 0.21856 0 0 895 2986 0.72918 1 1 2986	3128	2031	0.49597	0	1
2153 588 0.14359 0 1 588 3187 0.77827 1 1 3187 2446 0.59731 1 0 2446 1677 0.40952 0 1 1677 3488 0.85177 1 1 3488 3383 0.82613 1 0 3383 770 0.18803 0 1 770 2801 0.68400 1 1 2801 564 0.13773 0 1 564 3643 0.88962 1 1 3643 1974 0.48205 0 1 1974 2453 0.59902 1 1 2453 1032 0.25201 0 1 1032 895 0.21856 0 0 895 2986 0.72918 1 1 2986 1657 0.40464 0 1 1820	2031	1882	0.45958	0	0
588 3187 0.77827 1 1 3187 2446 0.59731 1 0 2446 1677 0.40952 0 1 1677 3488 0.85177 1 1 3488 3383 0.82613 1 0 3383 770 0.18803 0 1 770 2801 0.68400 1 1 2801 564 0.13773 0 1 564 3643 0.88962 1 1 3643 1974 0.48205 0 1 1974 2453 0.59902 1 1 1974 2453 0.59902 1 1 1032 895 0.21856 0 0 895 2986 0.72918 1 1 1657 1820 0.44444 0 0 1820 259 0.06325 0 0 259	1882	2153	0.52576	1	1
3187 2446 0.59731 1 0 2446 1677 0.40952 0 1 1677 3488 0.85177 1 1 3488 3383 0.82613 1 0 3383 770 0.18803 0 1 770 2801 0.68400 1 1 2801 564 0.13773 0 1 564 3643 0.88962 1 1 3643 1974 0.48205 0 1 1974 2453 0.59902 1 1 1974 2453 0.59902 1 1 1032 895 0.21856 0 0 895 2986 0.72918 1 1 1657 1820 0.44444 0 0 1820 259 0.06325 0 0 259 734 0.17924 0 0 734 1437 0.35092 0 0 1437 3952 0.96508	2153	588	0.14359	0	1
2446 1677 0.40952 0 1 1677 3488 0.85177 1 1 3488 3383 0.82613 1 0 3383 770 0.18803 0 1 770 2801 0.68400 1 1 2801 564 0.13773 0 1 564 3643 0.88962 1 1 3643 1974 0.48205 0 1 1974 2453 0.59902 1 1 1974 2453 0.59902 1 1 1032 895 0.21856 0 0 895 2986 0.72918 1 1 2986 1657 0.40464 0 1 1820 259 0.06325 0 0 259 734 0.17924 0 0 734 1437 0.35092 0 0 1437 3952 2759 0.67375 1 0 2759 338	588	3187	0.77827	1	1
1677 3488 0.85177 1 1 3488 3383 0.82613 1 0 3383 770 0.18803 0 1 770 2801 0.68400 1 1 2801 564 0.13773 0 1 564 3643 0.88962 1 1 3643 1974 0.48205 0 1 1974 2453 0.59902 1 1 1974 2453 0.59902 1 1 1032 895 0.21856 0 0 895 2986 0.72918 1 1 1657 1820 0.44444 0 0 1820 259 0.06325 0 0 259 734 0.17924 0 0 734 1437 0.35092 0 0 1437 3952 0.96508 1 1 3952 2759 0.67375 1 0 2759 338 0.08254	3187	2446	0.59731	1	0
3488 3383 0.82613 1 0 3383 770 0.18803 0 1 770 2801 0.68400 1 1 2801 564 0.13773 0 1 564 3643 0.88962 1 1 3643 1974 0.48205 0 1 1974 2453 0.59902 1 1 2453 1032 0.25201 0 1 1032 895 0.21856 0 0 895 2986 0.72918 1 1 2986 1657 0.40464 0 1 1657 1820 0.44444 0 0 1820 259 0.06325 0 0 259 734 0.17924 0 0 734 1437 0.35092 0 0 1437 3952 0.96508 1 1 3952 2759 0.67375 1 0 2759 338 0.08254	2446	1677	0.40952	0	1
3383 770 0.18803 0 1 770 2801 0.68400 1 1 2801 564 0.13773 0 1 564 3643 0.88962 1 1 3643 1974 0.48205 0 1 1974 2453 0.59902 1 1 1974 2453 0.59902 1 1 2453 1032 0.25201 0 1 1032 895 0.21856 0 0 895 2986 0.72918 1 1 2986 1657 0.40464 0 1 1657 1820 0.44444 0 0 1820 259 0.06325 0 0 259 734 0.17924 0 0 734 1437 0.35092 0 0 1437 3952 0.96508 1 1 3952 2759 0.67375 1 0 2759 338 0.08254	1677	3488	0.85177	1	1
770 2801 0.68400 1 1 2801 564 0.13773 0 1 564 3643 0.88962 1 1 3643 1974 0.48205 0 1 1974 2453 0.59902 1 1 1974 2453 0.59902 1 1 2453 1032 0.25201 0 1 1032 895 0.21856 0 0 895 2986 0.72918 1 1 2986 1657 0.40464 0 1 1657 1820 0.44444 0 0 1820 259 0.06325 0 0 259 734 0.17924 0 0 734 1437 0.35092 0 0 1437 3952 0.96508 1 1 3952 2759 0.67375 1 0 2759	3488	3383	0.82613	1	0
2801 564 0.13773 0 1 564 3643 0.88962 1 1 3643 1974 0.48205 0 1 1974 2453 0.59902 1 1 1974 2453 0.59902 1 1 2453 1032 0.25201 0 1 1032 895 0.21856 0 0 895 2986 0.72918 1 1 2986 1657 0.40464 0 1 1657 1820 0.44444 0 0 1820 259 0.06325 0 0 259 734 0.17924 0 0 734 1437 0.35092 0 0 1437 3952 0.96508 1 1 3952 2759 0.67375 1 0 2759 338 0.08254 0 1 338 2817 0.68791 1 1 2817 260 0.06349	3383	770	0.18803	0	1
564 3643 0.88962 1 1 3643 1974 0.48205 0 1 1974 2453 0.59902 1 1 2453 1032 0.25201 0 1 1032 895 0.21856 0 0 895 2986 0.72918 1 1 2986 1657 0.40464 0 1 1657 1820 0.44444 0 0 1820 259 0.06325 0 0 259 734 0.17924 0 0 734 1437 0.35092 0 0 1437 3952 0.96508 1 1 3952 2759 0.67375 1 0 2759 338 0.08254 0 1 338 2817 0.68791 1 1 2817 260 0.06349 0 1 2822 2725 0.66545 1 0 2725 4056 0.99048	770	2801	0.68400	1	1
3643 1974 0.48205 0 1 1974 2453 0.59902 1 1 2453 1032 0.25201 0 1 1032 895 0.21856 0 0 895 2986 0.72918 1 1 2986 1657 0.40464 0 1 1657 1820 0.44444 0 0 1820 259 0.06325 0 0 259 734 0.17924 0 0 734 1437 0.35092 0 0 1437 3952 0.96508 1 1 3952 2759 0.67375 1 0 2759 338 0.08254 0 1 338 2817 0.68791 1 1 2817 260 0.06349 0 1 2827 2822 0.68913 1 1 2822 2725 0.66545 1 0 2725 4056 0.99048	2801	564	0.13773	0	1
1974 2453 0.59902 1 1 2453 1032 0.25201 0 1 1032 895 0.21856 0 0 895 2986 0.72918 1 1 2986 1657 0.40464 0 1 1657 1820 0.44444 0 0 1820 259 0.06325 0 0 259 734 0.17924 0 0 734 1437 0.35092 0 0 1437 3952 0.96508 1 1 3952 2759 0.67375 1 0 2759 338 0.08254 0 1 338 2817 0.68791 1 1 2817 260 0.06349 0 1 260 1227 0.29963 0 0 1227 2822 0.68913 1 1 2822 2725 0.66545 1 0 2725 4056 0.99048	564	3643	0.88962	1	1
2453 1032 0.25201 0 1 1032 895 0.21856 0 0 895 2986 0.72918 1 1 2986 1657 0.40464 0 1 1657 1820 0.44444 0 0 1820 259 0.06325 0 0 259 734 0.17924 0 0 734 1437 0.35092 0 0 1437 3952 0.96508 1 1 3952 2759 0.67375 1 0 2759 338 0.08254 0 1 338 2817 0.68791 1 1 2817 260 0.06349 0 1 260 1227 0.29963 0 0 1227 2822 0.68913 1 1 2822 2725 0.66545 1 0 2725 4056 0.99048 1 0 4056 783 0.19121	3643	1974	0.48205	0	1
1032 895 0.21856 0 0 895 2986 0.72918 1 1 2986 1657 0.40464 0 1 1657 1820 0.44444 0 0 1820 259 0.06325 0 0 259 734 0.17924 0 0 734 1437 0.35092 0 0 1437 3952 0.96508 1 1 3952 2759 0.67375 1 0 2759 338 0.08254 0 1 338 2817 0.68791 1 1 2817 260 0.06349 0 1 260 1227 0.29963 0 0 1227 2822 0.68913 1 1 2822 2725 0.66545 1 0 2725 4056 0.99048 1 0 4056 783 0.19121 0 1 783 1018 0.24860	1974	2453	0.59902	1	1
895 2986 0.72918 1 1 2986 1657 0.40464 0 1 1657 1820 0.444444 0 0 1820 259 0.06325 0 0 259 734 0.17924 0 0 734 1437 0.35092 0 0 1437 3952 0.96508 1 1 3952 2759 0.67375 1 0 2759 338 0.08254 0 1 338 2817 0.68791 1 1 2817 260 0.06349 0 1 260 1227 0.29963 0 0 1227 2822 0.68913 1 1 2822 2725 0.66545 1 0 2725 4056 0.99048 1 0 4056 783 0.19121 0 1 783 1018 0.24860 0 0 1018 2185 0.53358	2453	1032	0.25201	0	1
2986 1657 0.40464 0 1 1657 1820 0.444444 0 0 1820 259 0.06325 0 0 259 734 0.17924 0 0 734 1437 0.35092 0 0 1437 3952 0.96508 1 1 3952 2759 0.67375 1 0 2759 338 0.08254 0 1 338 2817 0.68791 1 1 2817 260 0.06349 0 1 260 1227 0.29963 0 0 1227 2822 0.68913 1 1 2822 2725 0.66545 1 0 2725 4056 0.99048 1 0 4056 783 0.19121 0 1 783 1018 0.24860 0 0 1018 2185 0.53358 1 1	1032	895	0.21856	0	0
1657 1820 0.444444 0 0 1820 259 0.06325 0 0 259 734 0.17924 0 0 734 1437 0.35092 0 0 1437 3952 0.96508 1 1 3952 2759 0.67375 1 0 2759 338 0.08254 0 1 338 2817 0.68791 1 1 2817 260 0.06349 0 1 260 1227 0.29963 0 0 1227 2822 0.68913 1 1 2822 2725 0.66545 1 0 2725 4056 0.99048 1 0 4056 783 0.19121 0 1 783 1018 0.24860 0 0 1018 2185 0.53358 1 1	895	2986	0.72918	1	1
1820 259 0.06325 0 0 259 734 0.17924 0 0 734 1437 0.35092 0 0 1437 3952 0.96508 1 1 3952 2759 0.67375 1 0 2759 338 0.08254 0 1 338 2817 0.68791 1 1 2817 260 0.06349 0 1 260 1227 0.29963 0 0 1227 2822 0.68913 1 1 2822 2725 0.66545 1 0 2725 4056 0.99048 1 0 4056 783 0.19121 0 1 783 1018 0.24860 0 0 1018 2185 0.53358 1 1	2986	1657	0.40464	0	1
259 734 0.17924 0 0 734 1437 0.35092 0 0 1437 3952 0.96508 1 1 3952 2759 0.67375 1 0 2759 338 0.08254 0 1 338 2817 0.68791 1 1 2817 260 0.06349 0 1 260 1227 0.29963 0 0 1227 2822 0.68913 1 1 2822 2725 0.66545 1 0 2725 4056 0.99048 1 0 4056 783 0.19121 0 1 783 1018 0.24860 0 0 1018 2185 0.53358 1 1	1657	1820	0.44444	0	0
734 1437 0.35092 0 0 1437 3952 0.96508 1 1 3952 2759 0.67375 1 0 2759 338 0.08254 0 1 338 2817 0.68791 1 1 2817 260 0.06349 0 1 260 1227 0.29963 0 0 1227 2822 0.68913 1 1 2822 2725 0.66545 1 0 2725 4056 0.99048 1 0 4056 783 0.19121 0 1 783 1018 0.24860 0 0 1018 2185 0.53358 1 1	1820	259	0.06325	0	0
1437 3952 0.96508 1 1 3952 2759 0.67375 1 0 2759 338 0.08254 0 1 338 2817 0.68791 1 1 2817 260 0.06349 0 1 260 1227 0.29963 0 0 1227 2822 0.68913 1 1 2822 2725 0.66545 1 0 2725 4056 0.99048 1 0 4056 783 0.19121 0 1 783 1018 0.24860 0 0 1018 2185 0.53358 1 1	259	734	0.17924	0	0
3952 2759 0.67375 1 0 2759 338 0.08254 0 1 338 2817 0.68791 1 1 2817 260 0.06349 0 1 260 1227 0.29963 0 0 1227 2822 0.68913 1 1 2822 2725 0.66545 1 0 2725 4056 0.99048 1 0 4056 783 0.19121 0 1 783 1018 0.24860 0 0 1018 2185 0.53358 1 1	734	1437	0.35092	0	0
2759 338 0.08254 0 1 338 2817 0.68791 1 1 2817 260 0.06349 0 1 260 1227 0.29963 0 0 1227 2822 0.68913 1 1 2822 2725 0.66545 1 0 2725 4056 0.99048 1 0 4056 783 0.19121 0 1 783 1018 0.24860 0 0 1018 2185 0.53358 1 1	1437	3952	0.96508	1	1
338 2817 0.68791 1 1 2817 260 0.06349 0 1 260 1227 0.29963 0 0 1227 2822 0.68913 1 1 2822 2725 0.66545 1 0 2725 4056 0.99048 1 0 4056 783 0.19121 0 1 783 1018 0.24860 0 0 1018 2185 0.53358 1 1	3952	2759	0.67375	1	0
2817 260 0.06349 0 1 260 1227 0.29963 0 0 1227 2822 0.68913 1 1 2822 2725 0.66545 1 0 2725 4056 0.99048 1 0 4056 783 0.19121 0 1 783 1018 0.24860 0 0 1018 2185 0.53358 1 1	2759	338	0.08254	0	1
260 1227 0.29963 0 0 1227 2822 0.68913 1 1 2822 2725 0.66545 1 0 2725 4056 0.99048 1 0 4056 783 0.19121 0 1 783 1018 0.24860 0 0 1018 2185 0.53358 1 1	338	2817	0.68791	1	1
1227 2822 0.68913 1 1 2822 2725 0.66545 1 0 2725 4056 0.99048 1 0 4056 783 0.19121 0 1 783 1018 0.24860 0 0 1018 2185 0.53358 1 1	2817	260	0.06349	0	1
2822 2725 0.66545 1 0 2725 4056 0.99048 1 0 4056 783 0.19121 0 1 783 1018 0.24860 0 0 1018 2185 0.53358 1 1	260	1227	0.29963	0	0
2725 4056 0.99048 1 0 4056 783 0.19121 0 1 783 1018 0.24860 0 0 1018 2185 0.53358 1 1	1227	2822	0.68913	1	1
4056 783 0.19121 0 1 783 1018 0.24860 0 0 1018 2185 0.53358 1 1	2822	2725	0.66545	1	0
783 1018 0.24860 0 0 1018 2185 0.53358 1 1	2725	4056	0.99048	1	0
1018 2185 0.53358 1 1	4056	783	0.19121	0	1
	783	1018	0.24860	0	0
2185 4076 0.99536 1 0	1018	2185	0.53358	1	1
	2185	4076	0.99536	1	0

4076	2451	0.59853	1	0
2451	46	0.01123	0	1
46	2221	0.54237	1	1
2221	1344	0.32821	0	1
1344	3159	0.77143	1	1
3159	930	0.22711	0	1
930	3857	0.94188	1	1
3857	980	0.23932	0	1
980	3931	0.95995	1	1
3931	598	0.14603	0	1
598	4021	0.98193	1	1
4021	4008	0.97875	1	0
4008	1695	0.41392	0	1
1695	74	0.01807	0	0
74	3737	0.91258	1	1
3737	3260	0.79609	1	0
3260	1571	0.38364	0	1
1571	382	0.09328	0	0
382	4029	0.98388	1	1
4029	3856	0.94164	1	0
3856	487	0.11893	0	1
487	2546	0.62173	1	1
2546	1825	0.44567	0	1
1825	2724	0.66520	1	1
2724	3563	0.87009	1	0
3563	3494	0.85324	1	0
3494	2245	0.54823	1	0
2245	888	0.21685	0	1
888	3631	0.88669	1	1
3631	154	0.03761	0	1
154	2217	0.54139	1	1
2217	3468	0.84689	1	0
3468	1715	0.41880	0	1
1715	1742	0.42540	0	0
1742	2765	0.67521	1	1
2765	3296	0.80488	1	0
3296	2935	0.71673	1	0
2935	1090	0.26618	0	1
1090	817	0.19951	0	0
817	1396	0.34090	0	0

1396 123 0.03004 0 0 123 3318 0.81026 1 1 3318 1493 0.36459 0 1 1493 2888 0.70525 1 1 2888 2495 0.60928 1 0 2495 1258 0.30720 0 1 1258 1721 0.42027 0 0 604 2883 0.70403 1 1 2883 30 0.00733 0 1 30 2525 0.61661 1 1 1 2525 3760 0.91819 1 0 0 3760 2311 0.56435 1 0 0 2311 658 0.16068 0 1 0 658 833 0.20342 0 0 0 1092 1803 0.44029 0 0 0 1092 1803 <th></th> <th></th> <th></th> <th></th> <th></th>					
3318 1493 0.36459 0 1 1493 2888 0.70525 1 1 2888 2495 0.60928 1 0 2495 1258 0.30720 0 1 1258 1721 0.42027 0 0 604 2883 0.70403 1 1 2883 30 0.00733 0 1 30 2525 0.61661 1 1 2525 3760 0.91819 1 0 3760 2311 0.56435 1 0 2311 658 0.16068 0 1 658 833 0.20342 0 0 833 1092 0.26667 0 0 1092 1803 0.44029 0 0 70 1765 0.43101 0 0 1765 1816 0.44347 0 0 1816	1396	123	0.03004	0	0
1493 2888 0.70525 1 1 2888 2495 0.60928 1 0 2495 1258 0.30720 0 1 1258 1721 0.42027 0 0 604 2883 0.70403 1 1 2883 30 0.00733 0 1 30 2525 0.61661 1 1 2525 3760 0.91819 1 0 3760 2311 0.56435 1 0 2311 658 0.16068 0 1 658 833 0.20342 0 0 833 1092 0.26667 0 0 1092 1803 0.44029 0 0 1092 1803 0.44029 0 0 70 1765 0.43101 0 0 1816 2383 0.58193 1 1 2383 3386 2249 0.54921 1 0 2249 2860	123	3318	0.81026	1	1
2888 2495 0.60928 1 0 2495 1258 0.30720 0 1 1258 1721 0.42027 0 0 1721 604 0.14750 0 0 604 2883 0.70403 1 1 2883 30 0.00733 0 1 30 2525 0.61661 1 1 2525 3760 0.91819 1 0 3760 2311 0.56435 1 0 2311 658 0.16068 0 1 658 833 0.20342 0 0 833 1092 0.26667 0 0 1092 1803 0.44029 0 0 1092 1803 0.44029 0 0 70 1765 0.43101 0 0 1765 1816 0.44347 0 0 1816 <	3318	1493	0.36459	0	1
2495 1258 0.30720 0 1 1258 1721 0.42027 0 0 1721 604 0.14750 0 0 604 2883 0.70403 1 1 2883 30 0.00733 0 1 30 2525 0.61661 1 1 2525 3760 0.91819 1 0 3760 2311 0.56435 1 0 2311 658 0.16068 0 1 658 833 0.20342 0 0 833 1092 0.26667 0 0 1092 1803 0.44029 0 0 1803 70 0.01709 0 0 70 1765 0.43101 0 0 1765 1816 0.43447 0 0 1765 1816 0.44347 0 0 1816 <td< td=""><td>1493</td><td>2888</td><td>0.70525</td><td>1</td><td>1</td></td<>	1493	2888	0.70525	1	1
1258 1721 0.42027 0 0 1721 604 0.14750 0 0 604 2883 0.70403 1 1 2883 30 0.00733 0 1 30 2525 0.61661 1 1 2525 3760 0.91819 1 0 3760 2311 0.56435 1 0 2311 658 0.16068 0 1 658 833 0.20342 0 0 833 1092 0.26667 0 0 1092 1803 0.44029 0 0 1803 70 0.01709 0 0 70 1765 0.43101 0 0 1816 2383 0.58193 1 1 2383 3386 2249 0.54921 1 0 2249 2860 0.69841 1 0 1	2888	2495	0.60928	1	0
1721 604 0.14750 0 0 604 2883 0.70403 1 1 2883 30 0.00733 0 1 30 2525 0.61661 1 1 2525 3760 0.91819 1 0 3760 2311 0.56435 1 0 2311 658 0.16068 0 1 658 833 0.20342 0 0 833 1092 0.26667 0 0 1092 1803 0.44029 0 0 1803 70 0.01709 0 0 70 1765 0.43101 0 0 1816 2383 0.58193 1 1 2383 3386 2249 0.54921 1 0 2249 2860 0.69841 1 0 0 3309 1152 0.23907 0 1 <td< td=""><td>2495</td><td>1258</td><td>0.30720</td><td>0</td><td>1</td></td<>	2495	1258	0.30720	0	1
604 2883 0.70403 1 1 2883 30 0.00733 0 1 30 2525 0.61661 1 1 2525 3760 0.91819 1 0 3760 2311 0.56435 1 0 2311 658 0.16068 0 1 658 833 0.20342 0 0 833 1092 0.26667 0 0 1092 1803 0.44029 0 0 1803 70 0.01709 0 0 70 1765 0.43101 0 0 1816 2383 0.58193 1 1 1816 2383 0.58193 1 1 2383 3386 0.82686 1 0 3386 2249 0.54921 1 0 2249 2860 0.69841 1 0 2860 979 0.23907 0 1 979 3438 0.83956	1258	1721	0.42027	0	0
2883 30 0.00733 0 1 30 2525 0.61661 1 1 2525 3760 0.91819 1 0 3760 2311 0.56435 1 0 2311 658 0.16068 0 1 658 833 0.20342 0 0 833 1092 0.26667 0 0 1092 1803 0.44029 0 0 1803 70 0.01709 0 0 70 1765 0.43101 0 0 1816 2383 0.58193 1 1 1816 2383 0.58193 1 1 2383 3386 0.82686 1 0 3386 2249 0.54921 1 0 2249 2860 0.69841 1 0 2860 979 0.23907 0 1 979 3438 0.83956 1 1 3438 3309 1.52 <	1721	604	0.14750	0	0
30 2525 0.61661 1 1 2525 3760 0.91819 1 0 3760 2311 0.56435 1 0 2311 658 0.16068 0 1 658 833 0.20342 0 0 833 1092 0.26667 0 0 1092 1803 0.44029 0 0 1803 70 0.01709 0 0 70 1765 0.43101 0 0 1765 1816 0.44347 0 0 1816 2383 0.58193 1 1 2383 3386 0.82686 1 0 3386 2249 0.54921 1 0 2249 2860 0.69841 1 0 2860 979 0.23907 0 1 979 3438 0.83956 1 1 3438 3309 1152 0.28132 0 1 2711 1250	604	2883	0.70403	1	1
2525 3760 0.91819 1 0 3760 2311 0.56435 1 0 2311 658 0.16068 0 1 658 833 0.20342 0 0 833 1092 0.26667 0 0 1092 1803 0.44029 0 0 1803 70 0.01709 0 0 70 1765 0.43101 0 0 1816 2383 0.58193 1 1 2383 3386 0.82686 1 0 3386 2249 0.54921 1 0 2249 2860 0.69841 1 0 2860 979 0.23907 0 1 979 3438 0.83956 1 1 3438 3309 0.80806 1 0 3309 1152 0.28132 0 1 2711 1250 0.30525 0 1 1250 1873 0.45739	2883	30	0.00733	0	1
3760 2311 0.56435 1 0 2311 658 0.16068 0 1 658 833 0.20342 0 0 833 1092 0.26667 0 0 1092 1803 0.44029 0 0 1803 70 0.01709 0 0 70 1765 0.43101 0 0 1816 2383 0.58193 1 1 2383 3386 0.82686 1 0 3386 2249 0.54921 1 0 2249 2860 0.69841 1 0 2860 979 0.23907 0 1 979 3438 0.83956 1 1 3438 3309 1.80806 1 0 3309 1152 0.28132 0 1 2711 1250 0.30525 0 1 1250 1873 0.45739 0 0 1873 1812 0.44249	30	2525	0.61661	1	1
2311 658 0.16068 0 1 658 833 0.20342 0 0 833 1092 0.26667 0 0 1092 1803 0.44029 0 0 1803 70 0.01709 0 0 70 1765 0.43101 0 0 1816 2383 0.58193 1 1 2383 3386 0.82686 1 0 3386 2249 0.54921 1 0 2249 2860 0.69841 1 0 2860 979 0.23907 0 1 979 3438 0.83956 1 1 3438 3309 0.80806 1 0 3309 1152 0.28132 0 1 2711 1250 0.30525 0 1 1250 1873 0.45739 0 0 1873 1812 0.44249 0 0 1812 411 0.10037	2525	3760	0.91819	1	0
658 833 0.20342 0 0 833 1092 0.26667 0 0 1092 1803 0.44029 0 0 1803 70 0.01709 0 0 70 1765 0.43101 0 0 1765 1816 0.44347 0 0 1816 2383 0.58193 1 1 2383 3386 0.82686 1 0 3386 2249 0.54921 1 0 2249 2860 0.69841 1 0 2860 979 0.23907 0 1 979 3438 0.83956 1 1 3438 3309 0.80806 1 0 3309 1152 0.28132 0 1 152 2711 0.66203 1 1 2711 1250 0.30525 0 1 1873 1812 0.44249 0 0 1873 1812 0.47424	3760	2311	0.56435	1	0
833 1092 0.26667 0 0 1092 1803 0.44029 0 0 1803 70 0.01709 0 0 70 1765 0.43101 0 0 1765 1816 0.44347 0 0 1816 2383 0.58193 1 1 2383 3386 0.82686 1 0 3386 2249 0.54921 1 0 2249 2860 0.69841 1 0 2860 979 0.23907 0 1 979 3438 0.83956 1 1 3438 3309 0.80806 1 0 3309 1152 0.28132 0 1 152 2711 0.66203 1 1 2711 1250 0.30525 0 1 1873 1812 0.44249 0 0 1873 1812 0.47424 0 0 411 1942 3061	2311	658	0.16068	0	1
1092 1803 0.44029 0 0 1803 70 0.01709 0 0 70 1765 0.43101 0 0 1765 1816 0.44347 0 0 1816 2383 0.58193 1 1 2383 3386 0.82686 1 0 3386 2249 0.54921 1 0 2249 2860 0.69841 1 0 2860 979 0.23907 0 1 979 3438 0.83956 1 1 3438 3309 0.80806 1 0 3309 1152 0.28132 0 1 1152 2711 0.66203 1 1 2711 1250 0.30525 0 1 1250 1873 0.45739 0 0 1873 1812 0.44249 0 0 1812 411 0.10037 0 0 1812 411 0.74750 <td>658</td> <td>833</td> <td>0.20342</td> <td>0</td> <td>0</td>	658	833	0.20342	0	0
1803 70 0.01709 0 0 70 1765 0.43101 0 0 1765 1816 0.44347 0 0 1816 2383 0.58193 1 1 2383 3386 0.82686 1 0 3386 2249 0.54921 1 0 2249 2860 0.69841 1 0 2860 979 0.23907 0 1 979 3438 0.83956 1 1 3438 3309 0.80806 1 0 3309 1152 0.28132 0 1 152 2711 0.66203 1 1 2711 1250 0.30525 0 1 1250 1873 0.45739 0 0 1873 1812 0.44249 0 0 1812 411 0.10037 0 0 411 1942 3061 0.74750 1 1 3061 1768	833	1092	0.26667	0	0
70 1765 0.43101 0 0 1765 1816 0.44347 0 0 1816 2383 0.58193 1 1 2383 3386 0.82686 1 0 3386 2249 0.54921 1 0 2249 2860 0.69841 1 0 2860 979 0.23907 0 1 979 3438 0.83956 1 1 3438 3309 0.80806 1 0 3309 1152 0.28132 0 1 1152 2711 0.66203 1 1 2711 1250 0.30525 0 1 1250 1873 0.45739 0 0 1873 1812 0.44249 0 0 1812 411 0.10037 0 0 411 1942 3061 0.74750 1 1 3061 1768 0.43175 0 1 1768 3295	1092	1803	0.44029	0	0
1765 1816 0.44347 0 0 1816 2383 0.58193 1 1 2383 3386 0.82686 1 0 3386 2249 0.54921 1 0 2249 2860 0.69841 1 0 2860 979 0.23907 0 1 979 3438 0.83956 1 1 3438 3309 0.80806 1 0 3309 1152 0.28132 0 1 1152 2711 0.66203 1 1 2711 1250 0.30525 0 1 1250 1873 0.45739 0 0 1873 1812 0.44249 0 0 1812 411 0.10037 0 0 411 1942 3061 0.74750 1 1 3061 1768 0.43175 0 1 1768 3295 0.80464 1 1 3295 2442 <td>1803</td> <td>70</td> <td>0.01709</td> <td>0</td> <td>0</td>	1803	70	0.01709	0	0
1816 2383 0.58193 1 1 2383 3386 0.82686 1 0 3386 2249 0.54921 1 0 2249 2860 0.69841 1 0 2860 979 0.23907 0 1 979 3438 0.83956 1 1 3438 3309 0.80806 1 0 3309 1152 0.28132 0 1 1152 2711 0.66203 1 1 2711 1250 0.30525 0 1 1250 1873 0.45739 0 0 1873 1812 0.44249 0 0 1812 411 0.10037 0 0 411 1942 0.47424 0 0 1942 3061 0.74750 1 1 3061 1768 0.43175 0 1 1768 3295 0.80464 1 1 3295 2442 0.59634	70	1765	0.43101	0	0
2383 3386 0.82686 1 0 3386 2249 0.54921 1 0 2249 2860 0.69841 1 0 2860 979 0.23907 0 1 979 3438 0.83956 1 1 3438 3309 0.80806 1 0 3309 1152 0.28132 0 1 1152 2711 0.66203 1 1 2711 1250 0.30525 0 1 1250 1873 0.45739 0 0 1873 1812 0.44249 0 0 1812 411 0.10037 0 0 411 1942 0.47424 0 0 1942 3061 0.74750 1 1 3061 1768 0.43175 0 1 1768 3295 0.80464 1 1 3295 2442 0.59634 1 0 2442 3801 0.92821	1765	1816	0.44347	0	0
3386 2249 0.54921 1 0 2249 2860 0.69841 1 0 2860 979 0.23907 0 1 979 3438 0.83956 1 1 3438 3309 0.80806 1 0 3309 1152 0.28132 0 1 1152 2711 0.66203 1 1 2711 1250 0.30525 0 1 1250 1873 0.45739 0 0 1873 1812 0.44249 0 0 1812 411 0.10037 0 0 411 1942 0.47424 0 0 1942 3061 0.74750 1 1 3061 1768 0.43175 0 1 1768 3295 0.80464 1 1 3295 2442 0.59634 1 0 2442 3801 0.92821 1 0	1816	2383	0.58193	1	1
2249 2860 0.69841 1 0 2860 979 0.23907 0 1 979 3438 0.83956 1 1 3438 3309 0.80806 1 0 3309 1152 0.28132 0 1 1152 2711 0.66203 1 1 2711 1250 0.30525 0 1 1250 1873 0.45739 0 0 1873 1812 0.44249 0 0 1812 411 0.10037 0 0 411 1942 0.47424 0 0 1942 3061 0.74750 1 1 3061 1768 0.43175 0 1 1768 3295 0.80464 1 1 3295 2442 0.59634 1 0 2442 3801 0.92821 1 0	2383	3386	0.82686	1	0
2860 979 0.23907 0 1 979 3438 0.83956 1 1 3438 3309 0.80806 1 0 3309 1152 0.28132 0 1 1152 2711 0.66203 1 1 2711 1250 0.30525 0 1 1250 1873 0.45739 0 0 1873 1812 0.44249 0 0 1812 411 0.10037 0 0 411 1942 0.47424 0 0 1942 3061 0.74750 1 1 3061 1768 0.43175 0 1 1768 3295 0.80464 1 1 3295 2442 0.59634 1 0 2442 3801 0.92821 1 0	3386	2249	0.54921	1	0
979 3438 0.83956 1 1 3438 3309 0.80806 1 0 3309 1152 0.28132 0 1 1152 2711 0.66203 1 1 2711 1250 0.30525 0 1 1250 1873 0.45739 0 0 1873 1812 0.44249 0 0 1812 411 0.10037 0 0 411 1942 0.47424 0 0 1942 3061 0.74750 1 1 3061 1768 0.43175 0 1 1768 3295 0.80464 1 1 3295 2442 0.59634 1 0 2442 3801 0.92821 1 0	2249	2860	0.69841	1	0
3438 3309 0.80806 1 0 3309 1152 0.28132 0 1 1152 2711 0.66203 1 1 2711 1250 0.30525 0 1 1250 1873 0.45739 0 0 1873 1812 0.44249 0 0 1812 411 0.10037 0 0 411 1942 0.47424 0 0 1942 3061 0.74750 1 1 3061 1768 0.43175 0 1 1768 3295 0.80464 1 1 3295 2442 0.59634 1 0 2442 3801 0.92821 1 0	2860	979	0.23907	0	1
3309 1152 0.28132 0 1 1152 2711 0.66203 1 1 2711 1250 0.30525 0 1 1250 1873 0.45739 0 0 1873 1812 0.44249 0 0 1812 411 0.10037 0 0 411 1942 0.47424 0 0 1942 3061 0.74750 1 1 3061 1768 0.43175 0 1 1768 3295 0.80464 1 1 3295 2442 0.59634 1 0 2442 3801 0.92821 1 0	979	3438	0.83956	1	1
1152 2711 0.66203 1 1 2711 1250 0.30525 0 1 1250 1873 0.45739 0 0 1873 1812 0.44249 0 0 1812 411 0.10037 0 0 411 1942 0.47424 0 0 1942 3061 0.74750 1 1 3061 1768 0.43175 0 1 1768 3295 0.80464 1 1 3295 2442 0.59634 1 0 2442 3801 0.92821 1 0	3438	3309	0.80806	1	0
2711 1250 0.30525 0 1 1250 1873 0.45739 0 0 1873 1812 0.44249 0 0 1812 411 0.10037 0 0 411 1942 0.47424 0 0 1942 3061 0.74750 1 1 3061 1768 0.43175 0 1 1768 3295 0.80464 1 1 3295 2442 0.59634 1 0 2442 3801 0.92821 1 0	3309	1152	0.28132	0	1
1250 1873 0.45739 0 0 1873 1812 0.44249 0 0 1812 411 0.10037 0 0 411 1942 0.47424 0 0 1942 3061 0.74750 1 1 3061 1768 0.43175 0 1 1768 3295 0.80464 1 1 3295 2442 0.59634 1 0 2442 3801 0.92821 1 0	1152	2711	0.66203	1	1
1873 1812 0.44249 0 0 1812 411 0.10037 0 0 411 1942 0.47424 0 0 1942 3061 0.74750 1 1 3061 1768 0.43175 0 1 1768 3295 0.80464 1 1 3295 2442 0.59634 1 0 2442 3801 0.92821 1 0	2711	1250	0.30525	0	1
1812 411 0.10037 0 0 411 1942 0.47424 0 0 1942 3061 0.74750 1 1 3061 1768 0.43175 0 1 1768 3295 0.80464 1 1 3295 2442 0.59634 1 0 2442 3801 0.92821 1 0	1250	1873	0.45739	0	0
411 1942 0.47424 0 0 1942 3061 0.74750 1 1 3061 1768 0.43175 0 1 1768 3295 0.80464 1 1 3295 2442 0.59634 1 0 2442 3801 0.92821 1 0	1873	1812	0.44249	0	0
1942 3061 0.74750 1 1 3061 1768 0.43175 0 1 1768 3295 0.80464 1 1 3295 2442 0.59634 1 0 2442 3801 0.92821 1 0	1812	411	0.10037	0	0
3061 1768 0.43175 0 1 1768 3295 0.80464 1 1 3295 2442 0.59634 1 0 2442 3801 0.92821 1 0	411	1942	0.47424	0	0
1768 3295 0.80464 1 1 3295 2442 0.59634 1 0 2442 3801 0.92821 1 0	1942	3061	0.74750	1	1
3295 2442 0.59634 1 0 2442 3801 0.92821 1 0	3061	1768	0.43175	0	1
2442 3801 0.92821 1 0	1768	3295	0.80464	1	1
	3295	2442	0.59634	1	0
3801 2044 0.49915 0 1	2442	3801	0.92821	1	0
	3801	2044	0.49915	0	1

2044 99 0.02418 0 0 99 3774 0.92161 1 1 3774 1021 0.24933 0 1 1021 3664 0.89475 1 1 3664 39 0.00952 0 1 39 2866 0.69988 1 1 2866 3937 0.96142 1 0 3937 3556 0.86838 1 0 3556 43 0.01050 0 1 43 742 0.18120 0 0 742 1285 0.31380 0 0 1285 2744 0.67009 1 1 1285 2744 0.67009 1 1 2744 1135 0.27717 0 1 1135 2522 2281 0.55702 1 0 2281 2252 243 0.05934 0 1					
3774 1021 0.24933 0 1 1021 3664 0.89475 1 1 3664 39 0.00952 0 1 39 2866 0.69988 1 1 2866 3937 0.96142 1 0 3937 3556 0.86838 1 0 3937 3556 0.86838 1 0 3937 3556 0.86838 1 0 3937 3556 0.86838 1 0 3937 3556 0.86838 1 0 3556 43 0.01050 0 1 43 742 0.18120 0 0 742 1285 0.31380 0 0 1285 2744 0.67009 1 1 1135 2522 2081 0.55702 1 0 2281 2252 25499 1 0 1	2044	99	0.02418	0	0
1021 3664 0.89475 1 1 3664 39 0.00952 0 1 39 2866 0.69988 1 1 2866 3937 0.96142 1 0 3937 3556 0.86838 1 0 3937 3556 0.86838 1 0 3937 3556 0.86838 1 0 43 742 0.18120 0 0 43 742 0.18120 0 0 742 1285 0.31380 0 0 1285 2744 0.67009 1 1 2744 1135 0.27717 0 1 1135 2522 0.61587 1 1 2522 2281 0.55702 1 0 2281 2252 243 0.05934 0 1 243 1038 0.25348 0 0 3853 3104 0.75800 1 0 3104 2487	99	3774	0.92161	1	1
3664 39 0.00952 0 1 39 2866 0.69988 1 1 2866 3937 0.96142 1 0 3937 3556 0.86838 1 0 3556 43 0.01050 0 1 43 742 0.18120 0 0 742 1285 0.31380 0 0 1285 2744 0.67009 1 1 2744 1135 0.27717 0 1 1135 2522 0.61587 1 1 2522 2281 0.55702 1 0 2281 2252 243 0.05934 0 1 243 1038 0.25348 0 0 1038 3853 0.94090 1 1 3853 3104 0.75800 1 0 3104 2487 0.60733 1 0 3104 2487 0.60733 1 0 2228 0.5408	3774	1021	0.24933	0	1
39 2866 0.69988 1 1 2866 3937 0.96142 1 0 3937 3556 0.86838 1 0 3556 43 0.01050 0 1 43 742 0.18120 0 0 742 1285 0.31380 0 0 1285 2744 0.67009 1 1 2744 1135 0.27717 0 1 1135 2522 0.61587 1 1 2522 2281 0.55702 1 0 2281 2252 0.54994 1 0 2252 243 0.05934 0 1 243 1038 0.25348 0 0 1038 3853 0.94090 1 1 3853 3104 0.75800 1 0 3104 2487 0.60733 1 0 3104 2487 0.60733 1 0 2487 1410 0.34432	1021	3664	0.89475	1	1
2866 3937 0.96142 1 0 3937 3556 0.86838 1 0 3556 43 0.01050 0 1 43 742 0.18120 0 0 742 1285 0.31380 0 0 1285 2744 0.67009 1 1 2744 1135 0.27717 0 1 1135 2522 0.61587 1 1 2522 2281 0.55702 1 0 2281 2252 0.54994 1 0 2252 243 0.05934 0 1 243 1038 0.25348 0 0 1038 3853 0.94090 1 1 3853 3104 0.75800 1 0 3104 2487 0.60733 1 0 2487 1410 0.34432 0 1 2929	3664	39	0.00952	0	1
3937 3556 0.86838 1 0 3556 43 0.01050 0 1 43 742 0.18120 0 0 742 1285 0.31380 0 0 1285 2744 0.67009 1 1 2744 1135 0.27717 0 1 1135 2522 0.61587 1 1 2522 2281 0.55702 1 0 2281 2252 0.54994 1 0 2252 243 0.05934 0 1 243 1038 0.25348 0 0 1038 3853 0.94090 1 1 3853 3104 0.75800 1 0 3104 2487 0.60733 1 0 3104 2487 0.60733 1 0 2487 1410 0.34432 0 1 1410 2929 0.71526 1 1 2929 2228 0.54408 <td>39</td> <td>2866</td> <td>0.69988</td> <td>1</td> <td>1</td>	39	2866	0.69988	1	1
3556 43 0.01050 0 1 43 742 0.18120 0 0 742 1285 0.31380 0 0 1285 2744 0.67009 1 1 2744 1135 0.27717 0 1 1135 2522 0.61587 1 1 2522 2281 0.55702 1 0 2281 2252 0.54994 1 0 2252 243 0.05934 0 1 243 1038 0.25348 0 0 1038 3853 0.94090 1 1 3853 3104 0.75800 1 0 3104 2487 0.60733 1 0 3104 2487 0.60733 1 0 2487 1410 0.34432 0 1 1410 2929 0.71526 1 1 2929 2228 0.54408 1 0 2228 699 0.17070 0 1 699 566 0.13822 0 0 533 648 0.15824 0 0 64	2866	3937	0.96142	1	0
43 742 0.18120 0 0 742 1285 0.31380 0 0 1285 2744 0.67009 1 1 2744 1135 0.27717 0 1 1135 2522 0.61587 1 1 2522 2281 0.55702 1 0 2281 2252 0.54994 1 0 2252 243 0.05934 0 1 243 1038 0.25348 0 0 1038 3853 0.94090 1 1 3853 3104 0.75800 1 0 3104 2487 0.60733 1 0 3104 2487 0.60733 1 0 2487 1410 0.34432 0 1 1410 2929 0.71526 1 1 2929 2228 0.54408 1 0 2228 699 0.17070 0 1 699 566 0.13822	3937	3556	0.86838	1	0
742 1285 0.31380 0 0 1285 2744 0.67009 1 1 2744 1135 0.27717 0 1 1135 2522 0.61587 1 1 2522 2281 0.55702 1 0 2281 2252 0.54994 1 0 2252 243 0.05934 0 1 243 1038 0.25348 0 0 1038 3853 0.94090 1 1 3853 3104 0.75800 1 0 3104 2487 0.60733 1 0 3487 1410 0.34432 0 1 1410 2929 0.71526 1 1 2929 2228 0.54408 1 0 2228 699 0.17070 0 1 699 566 0.13822 0 0 533	3556	43	0.01050	0	1
1285 2744 0.67009 1 1 2744 1135 0.27717 0 1 1135 2522 0.61587 1 1 2522 2281 0.55702 1 0 2281 2252 0.54994 1 0 2252 243 0.05934 0 1 243 1038 0.25348 0 0 1038 3853 0.94090 1 1 3853 3104 0.75800 1 0 3104 2487 0.60733 1 0 3104 2487 1410 0.34432 0 1 1410 2929 0.71526 1 1 2929 2228 0.54408 1 0 2228 699 0.17070 0 1 699 566 0.13822 0 0 533 648 0.15824 0 0 648 4095 1.00000 1 1 4095 3626	43	742	0.18120	0	0
2744 1135 0.27717 0 1 1135 2522 0.61587 1 1 2522 2281 0.55702 1 0 2281 2252 0.54994 1 0 2252 243 0.05934 0 1 243 1038 0.25348 0 0 1038 3853 0.94090 1 1 3853 3104 0.75800 1 0 3104 2487 0.60733 1 0 3104 2487 0.60733 1 0 2487 1410 0.34432 0 1 1410 2929 0.71526 1 1 2929 2228 0.54408 1 0 2228 699 0.17070 0 1 699 566 0.13822 0 0 533 648 0.15824 0 0 648 4095 1.00000 1 1 4095 3626 0.88547 <td>742</td> <td>1285</td> <td>0.31380</td> <td>0</td> <td>0</td>	742	1285	0.31380	0	0
1135 2522 0.61587 1 1 2522 2281 0.55702 1 0 2281 2252 0.54994 1 0 2252 243 0.05934 0 1 243 1038 0.25348 0 0 1038 3853 0.94090 1 1 3853 3104 0.75800 1 0 3104 2487 0.60733 1 0 2487 1410 0.34432 0 1 1410 2929 0.71526 1 1 2929 2228 0.54408 1 0 2228 699 0.17070 0 1 699 566 0.13822 0 0 533 648 0.15824 0 0 648 4095 1.00000 1 1 4095 3626 0.88547 1 0 3626 1785 0.43590 0 1 1785 3484 0.85079 <td>1285</td> <td>2744</td> <td>0.67009</td> <td>1</td> <td>1</td>	1285	2744	0.67009	1	1
2522 2281 0.55702 1 0 2281 2252 0.54994 1 0 2252 243 0.05934 0 1 243 1038 0.25348 0 0 1038 3853 0.94090 1 1 3853 3104 0.75800 1 0 3104 2487 0.60733 1 0 2487 1410 0.34432 0 1 1410 2929 0.71526 1 1 2929 2228 0.54408 1 0 2228 699 0.17070 0 1 699 566 0.13822 0 0 566 533 0.13016 0 0 533 648 0.15824 0 0 648 4095 1.00000 1 1 4095 3626 0.88547 1 0 3626 1785 0.43590 0 1 1785 3484 0.85079	2744	1135	0.27717	0	1
2281 2252 0.54994 1 0 2252 243 0.05934 0 1 243 1038 0.25348 0 0 1038 3853 0.94090 1 1 3853 3104 0.75800 1 0 3104 2487 0.60733 1 0 2487 1410 0.34432 0 1 1 1410 2929 0.71526 1 1 1 2929 2228 0.54408 1 0 0 2228 699 0.17070 0 1 0 699 566 0.13822 0 0 0 533 648 0.15824 0 0 648 4095 1.00000 1 1 4095 3626 0.88547 1 0 3626 1785 0.43590 0 1 1785 3484 0.85079 1 1 3442 3613 0.88230 1 0<	1135	2522	0.61587	1	1
2252 243 0.05934 0 1 243 1038 0.25348 0 0 1038 3853 0.94090 1 1 3853 3104 0.75800 1 0 3104 2487 0.60733 1 0 2487 1410 0.34432 0 1 1410 2929 0.71526 1 1 2929 2228 0.54408 1 0 2228 699 0.17070 0 1 699 566 0.13822 0 0 566 533 0.13016 0 0 533 648 0.15824 0 0 648 4095 1.00000 1 1 4095 3626 0.88547 1 0 3626 1785 0.43590 0 1 1785 3484 0.85079 1 1 3442 3613 0.88230 1 0 3613 3568 0.87131	2522	2281	0.55702	1	0
243 1038 0.25348 0 0 1038 3853 0.94090 1 1 3853 3104 0.75800 1 0 3104 2487 0.60733 1 0 2487 1410 0.34432 0 1 1410 2929 0.71526 1 1 2929 2228 0.54408 1 0 2228 699 0.17070 0 1 699 566 0.13822 0 0 566 533 0.13016 0 0 533 648 0.15824 0 0 648 4095 1.00000 1 1 4095 3626 0.88547 1 0 3626 1785 0.43590 0 1 1785 3484 0.85079 1 1 3484 1411 0.34457 0 1 1411 3422 3613 0.88230 1 0 3613 3568	2281	2252	0.54994	1	0
1038 3853 0.94090 1 1 3853 3104 0.75800 1 0 3104 2487 0.60733 1 0 2487 1410 0.34432 0 1 1410 2929 0.71526 1 1 2929 2228 0.54408 1 0 2228 699 0.17070 0 1 699 566 0.13822 0 0 566 533 0.13016 0 0 533 648 0.15824 0 0 648 4095 1.00000 1 1 4095 3626 0.88547 1 0 3626 1785 0.43590 0 1 1785 3484 0.85079 1 1 3484 1411 0.34457 0 1 1411 3422 3613 0.88230 1 0 3613 3568 0.87131 1 0 3568 1863	2252	243	0.05934	0	1
3853 3104 0.75800 1 0 3104 2487 0.60733 1 0 2487 1410 0.34432 0 1 1410 2929 0.71526 1 1 2929 2228 0.54408 1 0 2228 699 0.17070 0 1 699 566 0.13822 0 0 566 533 0.13016 0 0 533 648 0.15824 0 0 648 4095 1.00000 1 1 4095 3626 0.88547 1 0 3626 1785 0.43590 0 1 1785 3484 0.85079 1 1 3484 1411 0.34457 0 1 1411 3422 0.83565 1 1 3422 3613 0.88230 1 0 3613 3568 0.87131 1 0 3568 1863 0.45495 <td>243</td> <td>1038</td> <td>0.25348</td> <td>0</td> <td>0</td>	243	1038	0.25348	0	0
3104 2487 0.60733 1 0 2487 1410 0.34432 0 1 1410 2929 0.71526 1 1 2929 2228 0.54408 1 0 2228 699 0.17070 0 1 699 566 0.13822 0 0 566 533 0.13016 0 0 533 648 0.15824 0 0 648 4095 1.00000 1 1 4095 3626 0.88547 1 0 3626 1785 0.43590 0 1 1785 3484 0.85079 1 1 3484 1411 0.34457 0 1 1411 3422 0.83565 1 1 3422 3613 0.88230 1 0 3668 1863 0.45495 0 1 1863 978 0.23883 0 0 978 2945 0.71917	1038	3853	0.94090	1	1
2487 1410 0.34432 0 1 1410 2929 0.71526 1 1 2929 2228 0.54408 1 0 2228 699 0.17070 0 1 699 566 0.13822 0 0 566 533 0.13016 0 0 533 648 0.15824 0 0 648 4095 1.00000 1 1 4095 3626 0.88547 1 0 3626 1785 0.43590 0 1 1785 3484 0.85079 1 1 3484 1411 0.34457 0 1 1411 3422 0.83565 1 1 3422 3613 0.88230 1 0 3668 1863 0.45495 0 1 1863 978 0.23883 0 0 978 2945 0.71917 1 1	3853	3104	0.75800	1	0
1410 2929 0.71526 1 1 2929 2228 0.54408 1 0 2228 699 0.17070 0 1 699 566 0.13822 0 0 566 533 0.13016 0 0 533 648 0.15824 0 0 648 4095 1.00000 1 1 4095 3626 0.88547 1 0 3626 1785 0.43590 0 1 1785 3484 0.85079 1 1 3484 1411 0.34457 0 1 1411 3422 0.83565 1 1 3422 3613 0.88230 1 0 3613 3568 0.87131 1 0 3568 1863 0.45495 0 1 1863 978 0.23883 0 0 978 2945 0.71917 1 1	3104	2487	0.60733	1	0
2929 2228 0.54408 1 0 2228 699 0.17070 0 1 699 566 0.13822 0 0 566 533 0.13016 0 0 533 648 0.15824 0 0 648 4095 1.00000 1 1 4095 3626 0.88547 1 0 3626 1785 0.43590 0 1 1785 3484 0.85079 1 1 3484 1411 0.34457 0 1 1411 3422 0.83565 1 1 3422 3613 0.88230 1 0 3613 3568 0.87131 1 0 3568 1863 0.45495 0 1 1863 978 0.23883 0 0 978 2945 0.71917 1 1	2487	1410	0.34432	0	1
2228 699 0.17070 0 1 699 566 0.13822 0 0 566 533 0.13016 0 0 533 648 0.15824 0 0 648 4095 1.00000 1 1 4095 3626 0.88547 1 0 3626 1785 0.43590 0 1 1785 3484 0.85079 1 1 3484 1411 0.34457 0 1 1411 3422 0.83565 1 1 3422 3613 0.88230 1 0 3613 3568 0.87131 1 0 3568 1863 0.45495 0 1 1863 978 0.23883 0 0 978 2945 0.71917 1 1	1410	2929	0.71526	1	1
699 566 0.13822 0 0 566 533 0.13016 0 0 533 648 0.15824 0 0 648 4095 1.00000 1 1 4095 3626 0.88547 1 0 3626 1785 0.43590 0 1 1785 3484 0.85079 1 1 3484 1411 0.34457 0 1 1411 3422 0.83565 1 1 3422 3613 0.88230 1 0 3613 3568 0.87131 1 0 3568 1863 0.45495 0 1 1863 978 0.23883 0 0 978 2945 0.71917 1 1	2929	2228	0.54408	1	0
566 533 0.13016 0 0 533 648 0.15824 0 0 648 4095 1.00000 1 1 4095 3626 0.88547 1 0 3626 1785 0.43590 0 1 1785 3484 0.85079 1 1 3484 1411 0.34457 0 1 1411 3422 0.83565 1 1 3422 3613 0.88230 1 0 3613 3568 0.87131 1 0 3568 1863 0.45495 0 1 1863 978 0.23883 0 0 978 2945 0.71917 1 1	2228	699	0.17070	0	1
533 648 0.15824 0 0 648 4095 1.00000 1 1 4095 3626 0.88547 1 0 3626 1785 0.43590 0 1 1785 3484 0.85079 1 1 3484 1411 0.34457 0 1 1411 3422 0.83565 1 1 3422 3613 0.88230 1 0 3613 3568 0.87131 1 0 3568 1863 0.45495 0 1 1863 978 0.23883 0 0 978 2945 0.71917 1 1	699	566	0.13822	0	0
648 4095 1.00000 1 1 4095 3626 0.88547 1 0 3626 1785 0.43590 0 1 1785 3484 0.85079 1 1 3484 1411 0.34457 0 1 1411 3422 0.83565 1 1 3422 3613 0.88230 1 0 3613 3568 0.87131 1 0 3568 1863 0.45495 0 1 1863 978 0.23883 0 0 978 2945 0.71917 1 1	566	533	0.13016	0	0
4095 3626 0.88547 1 0 3626 1785 0.43590 0 1 1785 3484 0.85079 1 1 3484 1411 0.34457 0 1 1411 3422 0.83565 1 1 3422 3613 0.88230 1 0 3613 3568 0.87131 1 0 3568 1863 0.45495 0 1 1863 978 0.23883 0 0 978 2945 0.71917 1 1	533	648	0.15824	0	0
3626 1785 0.43590 0 1 1785 3484 0.85079 1 1 3484 1411 0.34457 0 1 1411 3422 0.83565 1 1 3422 3613 0.88230 1 0 3613 3568 0.87131 1 0 3568 1863 0.45495 0 1 1863 978 0.23883 0 0 978 2945 0.71917 1 1	648	4095	1.00000	1	1
1785 3484 0.85079 1 1 3484 1411 0.34457 0 1 1411 3422 0.83565 1 1 3422 3613 0.88230 1 0 3613 3568 0.87131 1 0 3568 1863 0.45495 0 1 1863 978 0.23883 0 0 978 2945 0.71917 1 1	4095	3626	0.88547	1	0
3484 1411 0.34457 0 1 1411 3422 0.83565 1 1 3422 3613 0.88230 1 0 3613 3568 0.87131 1 0 3568 1863 0.45495 0 1 1863 978 0.23883 0 0 978 2945 0.71917 1 1	3626	1785	0.43590	0	1
1411 3422 0.83565 1 1 3422 3613 0.88230 1 0 3613 3568 0.87131 1 0 3568 1863 0.45495 0 1 1863 978 0.23883 0 0 978 2945 0.71917 1 1	1785	3484	0.85079	1	1
3422 3613 0.88230 1 0 3613 3568 0.87131 1 0 3568 1863 0.45495 0 1 1863 978 0.23883 0 0 978 2945 0.71917 1 1	3484	1411	0.34457	0	1
3613 3568 0.87131 1 0 3568 1863 0.45495 0 1 1863 978 0.23883 0 0 978 2945 0.71917 1 1	1411	3422	0.83565	1	1
3568 1863 0.45495 0 1 1863 978 0.23883 0 0 978 2945 0.71917 1 1	3422	3613	0.88230	1	0
1863 978 0.23883 0 0 978 2945 0.71917 1 1	3613	3568	0.87131	1	0
978 2945 0.71917 1 1	3568	1863	0.45495	0	1
	1863	978	0.23883	0	0
2945 1924 0.46984 0 1	978	2945	0.71917	1	1
	2945	1924	0.46984	0	1

1924	2379	0.58095	1	1
2379	1414	0.34530	0	1
1414	805	0.19658	0	0
805	3672	0.89670	1	1
3672	3983	0.97265	1	0
3983	1658	0.40488	0	1
1658	2313	0.56484	1	1
2313	1644	0.40147	0	1
1644	3603	0.87985	1	1
3603	2734	0.66764	1	0
2734	301	0.07350	0	1
301	960	0.23443	0	0
960	2263	0.55263	1	1
2263	1570	0.38339	0	1
1570	3985	0.97314	1	1
3985	2644	0.64567	1	0
2644	987	0.24103	0	1
987	3286	0.80244	1	1
3286	2101	0.51306	1	0
2101	3624	0.88498	1	0
3624	799	0.19512	0	1
799	714	0.17436	0	0
714	3865	0.94383	1	1
3865	828	0.20220	0	1
828	2723	0.66496	1	1
2723	3070	0.74969	1	0
3070	2109	0.51502	1	0
2109	3472	0.84786	1	0
3472	3687	0.90037	1	0
3687	3186	0.77802	1	0
3186	1953	0.47692	0	1
1953	292	0.07131	0	0
292	619	0.15116	0	0
619	2086	0.50940	1	1
2086	325	0.07937	0	1
325	504	0.12308	0	0
504	2735	0.66789	1	1

Nota. Son 360 datos

Anexo 30

Prueba de medias para pseudoaleatorios máquina 3.

Prueba de Medias					
H0: Los Ri tienen una media de 0.5					
H1: Los Ri no tienen una media de 0.5					
Media ri	0.5022	Z	1.96		
Nivel de Conf.	0.95	LS	0.5298		
n	360	LI	0.4702		

Nota. Como el valor del promedio ri está dentro de los límites de aceptación, se toma la hipótesis nula como verdadera concluyendo que su media es igual a 0.5 con un nivel de aceptación del 95%

Anexo 31

Prueba de varianza para pseudoaleatorios máquina 3.

Prueba de Varianza				
H0: Los Ri tiene una varianza de 0.8333333				
H1: Los Ri tiene una varianza de 0.8333334				
VARIANZA ri 0.086713003 Nivel de Conf. 0.9500				
n	360	LI	0.0716	
X^2 (a/2)	308.400929	LS	0.095957791	
X^2 (1-a/2)	413.3861622			

Nota. Como el valor de la varianza de los ri está dentro de los límites de aceptación, se toma la hipótesis nula como verdadera concluyendo que su varianza es igual a 1/12 con un nivel de aceptación del 95%

Anexo 32

Prueba de uniformidad para pseudoaleatorios máquina 3.

Prueba de Uniformidad					
H0: Los Ri son uniformes					
H1: Los Ri	H1: Los Ri no son uniformes				
n 360					
m	m 19 Amplitud 0.0524				
Rango	0.9956	Nivel de conf	1.96	800	
Lím. Inf.	Lím. Sup.	Oi	Ei	(Ei - Oi)^2/Ei	
0.00440	0.05680	23	18.94736842	0.86681287	

0.05680	0.10920	21	18.94736842	0.22236842
0.10920	0.16160	20	18.94736842	0.05847953
0.16160	0.21400	17	18.94736842	0.2001462
0.21400	0.26640	19	18.94736842	0.0001462
0.26640	0.31880	13	18.94736842	1.86681287
0.31880	0.37120	13	18.94736842	1.86681287
0.37120	0.42360	19	18.94736842	0.0001462
0.42360	0.47600	28	18.94736842	4.3251462
0.47600	0.52840	20	18.94736842	0.05847953
0.52840	0.58080	15	18.94736842	0.82236842
0.58080	0.63320	19	18.94736842	0.0001462
0.63320	0.68560	18	18.94736842	0.04736842
0.68560	0.73800	17	18.94736842	0.2001462
0.73800	0.79040	15	18.94736842	0.82236842
0.79040	0.84280	19	18.94736842	0.0001462
0.84280	0.89520	28	18.94736842	4.3251462
0.89520	0.94760	21	18.94736842	0.22236842
0.94760	1.00000	15	18.94736842	0.82236842
T	otal	360		5.08172515
Valor estadístico de prueba		5.08	317	
Valor estadístico de tabla		404.18	22110	
	para a (0.05) y	4 g.l.	404.10	04110

Nota. Como el valor del estadístico de prueba de los ri es menor que el valor del estadístico de tabla, se aprueba hipótesis nula concluyendo que los números ri se encuentras uniformemente distribuidos con un nivel de aceptación del 95%

Anexo 33

Prueba de independencia corrida arriba y abajo media para pseudoaleatorios máquina 3.

Prueba de Independencia corrida arriba y abajo media				
H0: Los Ri son uniformes				
H1: Los Ri no son uniformes				
N0	181	n	360	
N1	179	Nivel Conf.	0.95	
CO	190	MEDIA (C0)	180.4944444	
Z min (0.025)	-1.96	VARIANZA (CO)	89.74374815	
Z max (0.025)	1.96	Zo	1.003403017	

Nota. El valor estadístico resultante se encuentra dentro del rango establecido por Z por lo tanto, se concluye que los números pseudoaleatorios presentan independencia.

Anexo 34

Pseudoaleatorios de la máquina 4.

m	512	k	15	
а	61	g	9	
С	13	Moda	#N/D	
Xi	(aXi+c)Mod(m)	Ri	Independencia	HUECOS
7	440	0.86106	1	
440	229	0.44814	0	1
229	158	0.30920	0	0
158	435	0.85127	1	1
435	436	0.85323	1	0
436	497	0.97260	1	0
497	122	0.23875	0	1
122	287	0.56164	1	1
287	112	0.21918	0	1
112	189	0.36986	0	0
189	278	0.54403	1	1
278	75	0.14677	0	1
75	492	0.96282	1	1
492	329	0.64384	1	0
329	114	0.22309	0	1
114	311	0.60861	1	1
311	40	0.07828	0	1
40	405	0.79256	1	1
405	142	0.27789	0	1
142	483	0.94521	1	1
483	292	0.57143	1	0
292	417	0.81605	1	0
417	362	0.70841	1	0
362	79	0.15460	0	1
79	224	0.43836	0	0
224	365	0.71429	1	1
365	262	0.51272	1	0
262	123	0.24070	0	1
123	348	0.68102	1	1
348	249	0.48728	0	1

249	354	0.69276	1	1
354	103	0.20157	0	1
103	152	0.29746	0	0
152	69	0.13503	0	0
69	126	0.24658	0	0
126	19	0.03718	0	0
19	148	0.28963	0	0
148	337	0.65949	1	1
337	90	0.17613	0	1
90	383	0.74951	1	1
383	336	0.65753	1	0
336	29	0.05675	0	1
29	246	0.48141	0	0
246	171	0.33464	0	0
171	204	0.39922	0	0
204	169	0.33072	0	0
169	82	0.16047	0	0
82	407	0.79648	1	1
407	264	0.51663	1	0
264	245	0.47945	0	1
245	110	0.21526	0	0
110	67	0.13112	0	0
67	4	0.00783	0	0
4	257	0.50294	1	1
257	330	0.64579	1	0
330	175	0.34247	0	1
175	448	0.87671	1	1
448	205	0.40117	0	1
205	230	0.45010	0	0
230	219	0.42857	0	0

Nota. Son 60 datos.

Anexo 35

Prueba de medias para pseudoaleatorios máquina 4.

Prueba de Medias				
H0: Los Ri tienen una media de 0.5				
H1: Los Ri no tienen una media de 0.5				
Media ri 0.4656 Z 1.96				

Nivel de Conf.	0.95	LS	0.5730
n	60	LI	0.4270

Nota. Como el valor del promedio ri está dentro de los límites de aceptación, se toma la hipótesis nula como verdadera concluyendo que su media es igual a 0.5 con un nivel de aceptación del 95%

Anexo 36

Prueba de varianza para pseudoaleatorios máquina 4.

Prueba de Varianza				
H0: Los Ri tiene una varianza de 0.8333333				
H1: Los Ri tiene una varianza de 0.8333334				
VARIANZA ri 0.069298022 Nivel de Conf. 0.9500				
n	60	LI	0.0560	
X^2 (a/2)	39.66185935	LS	0.115985037	
X^2 (1-a/2)	82.11740594			

Nota. Como el valor de la varianza de los ri está dentro de los límites de aceptación, se toma la hipótesis nula como verdadera concluyendo que su varianza es igual a 1/12 con un nivel de aceptación del 95%

Anexo 37

Prueba de uniformidad para pseudoaleatorios máquina 4.

Prueba de Uniformidad						
H0: Los Ri so	on uniformes					
H1: Los Ri no	H1: Los Ri no son uniformes					
n	60					
m	8	Amplitud		0.1206		
Rango	0.9648	Nivel de conf		1.9600		
Lím. Inf.	Lím. Sup.	Oi	Ei	(Ei - Oi)^2/Ei		
0.00783	0.12843	4	7.5	1.63333333		
0.12843	0.24902	13	7.5	4.03333333		
0.24902	0.36962	7	7.5	0.03333333		
0.36962	0.49022	10	7.5	0.83333333		
0.49022	0.61081	7	7.5	0.03333333		

0.61081	0.73141	8	7.5	0.03333333	
0.73141	0.85200	5	7.5	0.83333333	
0.85200	0.97260	6	7.5	0.3	
7	Total	60		7.73333333	
\	/alor estadístico de	prueba	7.7333		
Valor estadístico de tabla para a (0.05) y 4 g.l.		7	7.93052381		
	para a (0.00) y +	9.1.			

Nota. Como el valor del estadístico de prueba de los ri es menor que el valor del estadístico de tabla, se aprueba hipótesis nula concluyendo que los números ri se encuentras uniformemente distribuidos con un nivel de aceptación del 95%

Anexo 38

Prueba de independencia corrida arriba y abajo media para pseudoaleatorios máquina 4.

Prueba de Independencia corrida arriba y abajo media					
H0: Los Ri son uniformes					
H1: Los Ri no son uniformes					
N0	33	n	59		
N1	26	Nivel Conf.	0.95		
CO	31	MEDIA (C0)	29.58474576		
Z min (0.025)	-1.96	VARIANZA (CO)	14.08340845		
Z max (0.025)	1.96	Zo	0.377120878		

El valor estadístico resultante se encuentra dentro del rango establecido por Z por lo tanto, se concluye que los números pseudoaleatorios presentan independencia.

Anexo 39 Pseudoaleatorios *de la máquina 5.*

m	256	k	9	
а	37	g	8	
С	15	Moda	#N/D	
Xi	(aXi+c)Mod(m)	Ri	Independencia	HUECOS
7	18	0.07059	0	
18	169	0.66275	1	1
169	124	0.48627	0	1
124	251	0.98431	1	1
251	86	0.33725	0	1
86	125	0.49020	0	0
125	32	0.12549	0	0
32	175	0.68627	1	1
175	90	0.35294	0	1

90	17	0.06667	0	0
17	132	0.51765	1	1
132	35	0.13725	0	1
35	30	0.11765	0	0
30	101	0.39608	0	0
101	168	0.65882	1	1
168	87	0.34118	0	1
87	162	0.63529	1	1
162	121	0.47451	0	1
121	140	0.54902	1	1
140	75	0.29412	0	1
75	230	0.90196	1	1
230	77	0.30196	0	1
77	48	0.18824	0	0
48	255	1.00000	1	1
255	234	0.91765	1	0
234	225	0.88235	1	0
225	148	0.58039	1	0
148	115	0.45098	0	1
115	174	0.68235	1	1
174	53	0.20784	0	1
53	184	0.72157	1	1
184	167	0.65490	1	0
167	50 - 0	0.19608	0	1
50 - 0	73	0.28627	0	0
73	156	0.61176	1	1
156	155	0.60784	1	0
155	118	0.46275	0	1
118	29	0.11373	0	0
29	64	0.25098	0	0
64	79	0.30980	0	0
79	122	0.47843	0	0
122	177	0.69412	1	1
177	164	0.64314	1	0
164	195	0.76471	1	0
195	62	0.24314	0	1
62	5	0.01961	0	0
5	200	0.78431	1	1
200	247	0.96863	1	0
247	194	0.76078	1	0
194	25	0.09804	0	1
25	172	0.67451	1	1

172	235	0.92157	1	0
235	6	0.02353	0	1
6	237	0.92941	1	1
237	80	0.31373	0	1
80	159	0.62353	1	1
159	10	0.03922	0	1
10	129	0.50588	1	1
129	180	0.70588	1	0
180	19	0.07451	0	1

Nota. Son 60 datos.

Anexo 40

Prueba de medias para pseudoaleatorios máquina 5.

Prueba de Medias						
H0: Los Ri tier	H0: Los Ri tienen una media de 0.5					
H1: Los Ri no ti	H1: Los Ri no tienen una media de 0.5					
Media ri	0.4830	Z	1.96			
Nivel de Conf.	0.95	LS	0.5730			
n	60	LI	0.4270			

Nota. Como el valor del promedio ri está dentro de los límites de aceptación, se toma la hipótesis nula como verdadera concluyendo que su media es igual a 0.5 con un nivel de aceptación del 95%

Anexo 41

Prueba de varianza para pseudoaleatorios máquina 5.

Prueba de Varianza					
H0: L	os Ri tiene una	varianza de 0.83	33333		
H1: L	os Ri tiene una	varianza de 0.83	33334		
VARIANZA ri	0.081072011 Nivel de Conf. 0.9500				
n	60	LI	0.0560		
X^2 (a/2)	39.66185935	LS	0.115985037		
X^2 (1-a/2)	82.11740594				

Nota. Como el valor de la varianza de los ri está dentro de los límites de aceptación, se toma la hipótesis nula como verdadera concluyendo que su varianza es igual a 1/12 con un nivel de aceptación del 95%

Anexo 42

Prueba de uniformidad para pseudoaleatorios máquina 5.

Prueba de Uniformidad

					_		
H0: Los Ri son uniformes							
H1: Los Ri no son uniformes							
n	60						
m	8	Amplitud		0.1225			
Rango	0.9804	Nivel de conf		1.9600			
Lím. Inf.	Lím. Sup.	Oi	Ei	(Ei - Oi)^2/Ei			
0.01961	0.14216	11	7.5	1.63333333			
0.14216	0.26471	5	7.5	0.83333333			
0.26471	0.38726	8	7.5	0.03333333			
0.38726	0.50981	8	7.5	0.03333333			
0.50981	0.63235	6	7.5	0.3			
0.63235	0.75490	11	7.5	1.63333333			
0.75490	0.87745	3	7.5	2.7			
0.87745	1.00000	8	7.5	0.03333333			
Total 60 7.2							
Valor estadístico de prueba 7.2000							
	Valor estadístico para a (0.05) y	4 g.l.		77.93052381			
na al valor d	vo al valor del actadíctico de prueba de los ri os manor que al valor del						

Nota. Como el valor del estadístico de prueba de los ri es menor que el valor del estadístico de tabla, se aprueba hipótesis nula concluyendo que los números ri se encuentras uniformemente distribuidos con un nivel de aceptación del 95%.

Anexo 43

Prueba de independencia corrida arriba y abajo media para pseudoaleatorios máquina 5.

Prueba de Independencia corrida arriba y abajo media							
H0: Los Ri son ur	H0: Los Ri son uniformes						
H1: Los Ri no so	n uniform	es					
N0	31	n	60				
N1	29	Nivel Conf.	0.95				
CO	36	MEDIA (C0)	30.46666667				
Z min (0.025)	-1.96	VARIANZA (CO)	14.71244821				
Z max (0.025)	1.96	Zo	1.442594791				

Nota. El valor estadístico resultante se encuentra dentro del rango establecido por Z por lo tanto, se concluye que los números pseudoaleatorios presentan independencia

Anexo 44

Pseudoaleatorios de la máquina 6.

m 256 k 9

а	37	g	8	
С	9	Moda	#N/D	
	(aXi+c)Mod(Independen	
Xi	m)	Ri	cia	HUECOS
7	12	0.04706	0	
12	197	0.77255	1	1
197	130	0.50980	1	0
130	211	0.82745	1	0
211	136	0.53333	1	0
136	177	0.69412	1	0
177	158	0.61961	1	0
158	223	0.87451	1	0
223	68	0.26667	0	1
68	221	0.86667	1	1
221	250	0.98039	1	0
250	43	0.16863	0	1
43	64	0.25098	0	0
64	73	0.28627	0	0
73	150	0.58824	1	1
150	183	0.71765	1	0
183	124	0.48627	0	1
124	245	0.96078	1	1
245	114	0.44706	0	1
114	131	0.51373	1	1
131	248	0.97255	1	0
248	225	0.88235	1	0
225	142	0.55686	1	0
142	143	0.56078	1	0
143	180	0.70588	1	0
180	13	0.05098	0	1
13	234	0.91765	1	1
234	219	0.85882	1	0
219	176	0.69020	1	0
176	121	0.47451	0	1
121	134	0.52549	1	1
134	103	0.40392	0	1
103	236	0.92549	1	1
236	37	0.14510	0	1
37	98	0.38431	0	0
98	51	0.20000	0	0

51	104	0.40784	0	0
104	17	0.06667	0	0
17	126	0.49412	0	0
126	63	0.24706	0	0
63	36	0.14118	0	0
36	61	0.23922	0	0
61	218	0.85490	1	1
218	139	0.54510	1	0
139	32	0.12549	0	1
32	169	0.66275	1	1
169	118	0.46275	0	1
118	23	0.09020	0	0
23	92	0.36078	0	0
92	85	0.33333	0	0
85	82	0.32157	0	0
82	227	0.89020	1	1
227	216	0.84706	1	0
216	65	0.25490	0	1
65	110	0.43137	0	0
110	239	0.93725	1	1
239	148	0.58039	1	0
148	109	0.42745	0	1
109	202	0.79216	1	1
202	59	0.23137	0	1

Nota. Son 60 datos

Anexo 45

Prueba de medias para pseudoaleatorios máquina 6.

Prueba de Medias						
H0: Los Ri tie	H0: Los Ri tienen una media de 0.5					
H1: Los Ri no t	H1: Los Ri no tienen una media de 0.5					
Media ri	0.5235	Z	1.96			
Nivel de Conf.	0.95	LS	0.5730			
n	60	LI	0.4270			

Nota. Como el valor del promedio ri está dentro de los límites de aceptación, se toma la hipótesis nula como verdadera concluyendo que su media es igual a 0.5 con un nivel de aceptación del 95%

Anexo 46

Prueba de varianza para pseudoaleatorios máquina 6.

Prueba de Varianza					
H0: L	os Ri tiene una	varianza de 0.83	33333		
H1: L	os Ri tiene una	varianza de 0.83	33334		
VARIANZA ri	VARIANZA ri 0.076837822 Nivel de Conf. 0.9500				
n	60	LI	0.0560		
X^2 (a/2)	39.66185935	LS	0.115985037		
X^2 (1-a/2)	82.11740594				

Como el valor de la varianza de los ri está dentro de los límites de aceptación, se toma la hipótesis nula como verdadera concluyendo que su varianza es igual a 1/12 con un nivel de aceptación del 95%

Anexo 47

Prueba de uniformidad para pseudoaleatorios máquina 6.

Prueba de Uniformidad							
	H0: Los Ri son uniformes						
	H1: Lo	s Ri no son uniform	es				
n		60					
m	8	Amplitud		0.1167			
Rango	0.9333	Nivel de conf		1.9600			
Lím. Inf.	Lím. Sup.	Oi	Ei	(Ei - Oi)^2/Ei			
0.04706	0.16373	7	6	0.16666667			
0.16373	0.28039	8	6	0.66666667			
0.28039	0.39706	5	6	0.16666667			
0.39706	0.51373	10	6	2.66666667			
0.51373	0.63039	9	6	1.5			
0.63039	0.74706	5	6	0.16666667			
0.74706	0.86372	6	6	0			
0.86372	0.98039	10	6	2.66666667			
٦	Total 60 8						
Valor estadístico de prueba				8.0000			
Valor estadístico de tabla				77.93052381			
	para a (0.05) y	4 g.l.					

Nota. Como el valor del estadístico de prueba de los ri es menor que el valor del estadístico de tabla, se aprueba hipótesis nula concluyendo que los números ri se encuentras uniformemente distribuidos con un nivel de aceptación del 95%

Anexo 48

Prueba de independencia corrida arriba y abajo media para pseudoaleatorios máquina 6.

Prueba de Independencia corrida arriba y abajo media			
H0: Los Ri son uniformes			
H1: Los Ri no son uniformes			
N0	29	n	60
N1	31	Nivel Conf.	0.95
CO	26	MEDIA (C0)	30.46666667
Z min (0.025)	-1.96	VARIANZA (CO)	14.71244821
Z max (0.025)	1.96	Zo	-1.164504229

Nota. El valor estadístico resultante se encuentra dentro del rango establecido por Z, por lo tanto, se concluye que los números pseudoaleatorios presentan independencia.