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Abstract: in this work, a proposed methodology for univariate noisy time series prediction 
approximated by artificial neural networks (ANN) is applied to the problem of forecasting 
monthly rainfall precipitation in Cuesta El Portezuelo at Catamarca, province of Argentina (-
28°28'11.26";-65°38'14.05") with addition of white noise.  The feasibility of the proposed 
scheme is examined through dynamic modeling of the well-known chaotic time series such 
as Mackay Glass (MG) and one-dimensional Henon series (HEN).  
In particular, when the time series is noisy, the underlying dynamical system is nonlinear and 
temporal dependencies span long time intervals, in which this are also called long memory 
process. In such cases, the inherent nonlinearity of ANN models and a higher robustness to 
noise seem to partially explain their better prediction performance. So, in one-step-ahead 
prediction tasks, the predictive models are required to estimate the next sample value of a 
noisy time series, without feeding back it to the model’s input regressor. If the user is 
interested in a longer prediction horizon, a procedure known as long-term prediction, the 
model’s output should be fed back to the input regressor for a fixed but finite number of 
time steps. Even though feed-forward networks can be easily adapted to process time series 
through an input tapped delay line, giving rise to the well-known time tagged feed-forward 
neural network, respectively. 
The results show that the new method can improve the predictability of noisy rainfall and 
chaotic time series with a suitable number of hidden units compared to that of reported in 
the literature. 
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1. INTRODUCTION 
 

Prediction of future observations is an important 
problem in time series, namely in meteorology. All 
attempts to forecast future developments and to 
reproduce past data, a process necessary to gain 
understanding of relevant mechanisms, show that 
climate can only be interpreted as a stochastic 
system. Specifically, in view of the highly nonlinear 
relationships governing the rainfall phenomenon, 
long-term forecasting can be done only in a 
stochastic way. 
Time series prediction is based on the assumption 
that an observable feature of a system is determined 

by an underlying deterministic system. If the 
evolution of the system can be described by a set of 
n ordinary differential equations in n variables, there 
exists a unique trajectory through every point a in 
Rn. Neural Networks have been widely used as time 
series forecasters: most often these are feed-
forward networks which employ a sliding window 
over the input sequence. Typical examples of this 
approach are market predictions, meteorological 
and energy forecasting (Catalao et al., 2007; Yang et 

al., 2012; Vamsidhar, 2010; Valverde Ramírez et al., 
2005; Rodriguez Rivero and Pucheta, 2014). The 
advantages and disadvantages of neural networks in 
comparison to other statistical techniques for 
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pattern extraction are discussed in (Müller and 
Reinhardt, 1991; Atiya et al., 1999). 
Since the structure of the rainfall series depends on 
the climatic and meteorological regime as well as the 
length of rainfall duration, static computational 
intelligence methods are generally unable to capture 
the temporal pattern of the data (Pucheta et al., 
2009). 
Moreover, the non-Gaussian nature of the rainfall 
data also poses problem to statistical methods 
(Alcroft and Glasbey, 2003) that assume normal 
distribution. The fact that the data has high levels of 
noise, uncertainties and error complicated the 
matters (Toth et al., 2000). Together with the 
random nature of rainfall, these render the rainfall 
prediction challenging. The insufficient long series of 
probable rainfall scenarios exacerbate the situation 
(Gaume et al., 2007). The misrepresentation of the 
actual point rainfall at specific location also creates 
additional challenge to the problem (Mikkelsen et 

al., 2005). 
Hence, new methods have to be devised to further 
improve the present tools. It is found that neural 
network can get rid of the drawbacks of statistical 
methods (Guhathakurta, 2006) and handle 
uncertainties. Neural network has shown superior 
performance in long-short period prediction over 
other techniques, suggesting neural network is a 
promising tool to aid in weather prediction. 
In this work the Hurst’s parameter is used in the 
learning process to modify on-line the number of 
patterns, the number of iterations, and the number 
of filter’s inputs. This H serves to have an idea of 
roughness of a signal (Abry et al., 2003; Bardet et al., 
2003), and to determine its stochastic dependence. 
The definition of the Hurst's parameter appears in 
the Brownian motion from generalize the integral to 
a fractional one. The Fractional Brownian Motion 
(fBm) is defined in the pioneering work by 
Mandelbrot through its stochastic representation 
(Duncan et al., 2000). 
 

2. SERIES DATA 
 

2.1 Rainfall Series from Cuesta El Portezuelo 
 
A rainfall time series can be actually regarded as an 
integration of stochastic (or random) and 
deterministic components (Pucheta et al., 2012). 
Once the stochastic (noise) component is 
appropriately eliminated, the deterministic 
component can then be easily modeled. Rainfall is 
an end product of a number of complex atmospheric 
processes which vary both in space and time. 
The standard non-parametric approaches presented 
in this work by means of time-series analysis, is 
based on stochastic techniques that assume non-
linear relationship among data that reproduce the 

rainfall time series only in statistical sense. Then, in 
principle, machine learning models, such as artificial 
neural networks (Gencay and Liu, 1997), can 
improve the forecasting results obtained using 
models based on standard non-parametric 
approaches (Sorjamaa et al., 2007). 
The rainfall dataset used is from Cuesta El 
Portezuelo located at Catamarca, province of 
Argentina (-28°28'11.26";-65°38'14.05") and the 
collection date is from year 2000 to 2010 shown in 
Fig.1.  
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Fig. 1 Rainfall times series from Cuesta El Portezuelo, 
Catamarca, Argentina. 

 
2.2 Mackay-Glass time series 
 
This equation serves to model natural phenomena 
and has been used in earlier work to implement a 
comparison of different methods employed to make 
forecast (Vamsidhar, 2010; Hall, 1999; Senthil Kumar 
et al., 2005). Here one of the proposed algorithms to 
predict values of time series are taken from the 
solution of the MG equation (Glass and Mackey, 
1988), which is explained by the time delay 
differential equation defined as 
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where α, β, and c are parameters and τ is the delay 
time. According as τ increases, the solution turns 
from periodic to chaotic. Equation (1) is solved by a 
standard fourth order Runge-Kutta integration step, 
and the series to forecast is formed by sampling 
values with a given time interval. 
Thus, a time series with a random-like behavior is 
obtained, and the long-term behavior changes 
thoroughly by changing the initial conditions. 
Furthermore, by setting the parameter β between 
0.1 and 0.9 the stochastic dependence of the 
deterministic time series obtained varies according 
to its roughness. In Fig. 2 and Fig. 3, MG30noisy and 
MG17noisy, the first 102 data points are used for 
training and the remaining 18 points are kept for 
testing.  
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Fig. 2 MG30noisy series with Tau=30. 
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Fig. 3 MG17noisy series with Tau=17. 

 
The benchmark chosen for MG solutions are called 
MG17noisy and MG30noisy in the forecasting  
 
2.3 Henon time series 
 
The Henon equation was first introduced by Henon 
in 1976. The Henon equation has a simple format; 
however, it presents many aspects of dynamical 
behavior of more complicated chaotic systems 
(Davies, 1999). Henon equation is described by Eq. 
(2), which generates the benchmark chosen called 
HENnoisy, 

                      2

)1( 1 tt axbx 
                (2) 

In order to compare the results of the proposed 
technique with the results published in the 
literature, the parameters are selected according to 
(Fanzi and Zhengding, 2003), where the constants 
are taken to be A = 1.3, B = 0.3, x(0) = 0 and x(1) = 0. 
A chaotic time series with 120 samples is generated 
by Eq. (2). In Fig. 4, the first 102 data points of 
HENnoisy are used for training and the remaining 18 
points are kept for testing.  
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Fig. 4 HENnoisy series with b=0.3 and a=1.3. 

 
3. PROPOSED LEARNING APPROACH 

 
Once a model is selected and data are collected, the 
work is to find parameter values that best fit the 
historical data. We can only hope that the resulting 
model will provide good predictions of future 
observations. Statisticians usually assume that all 
values in a given sample are equally valid. For time 
series, however, most methods recognize that 
recent data are more accurate than aged data. 
Influences governing the data are likely to change 
with time so a method should have the ability of 
deemphasizing old data while favoring new. A model 
estimate should be designed to reflect changing 
conditions. 
Some results had been obtained from a linear 
autorregresive approach, which are detailed on 
(Pucheta et al., 2009).  
The proposed criterion in this work to modify the 
pair (it,Np) is given by the statistical dependence of 
the time series {xn}, supposing that is an fBm. The 
dependence is evaluated by the Hurst’s parameter 
H, which is computed using a wavelet-based method 
(Abry et al., 2003). Then, a heuristic adjustment for 
the pair (it,Np) in function of H according to the 
membership functions shown in Fig. 5 is proposed. 
The feed-forward neural network architecture is 
selected and trained. The number of the hidden 
layer nodes is selected via heuristic law via. The 
weights and biases of the neural networks are kept 
to forecast the unknown phase space points.  
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Fig. 5 Heurist adjustment proposed. 

 
4. TIME SERIES PREDICTION RESULTS 

 
The initial conditions of the ANN filter and the 
learning algorithm are shown in Table 1, in which it 
can be noted that the number of neurons in the 
hidden layer and iterations are adjusted depending 
on the number of inputs. These initiatory conditions 
of the learning algorithm are used for rainfall series, 
which consists of a 132 samples dataset. However, 
the dataset solutions of the MG and Henon 
equations have 120 samples. 

 

Table 1.  Initial conditions of the parameters 
 

Variable Initial Conditions 

Ho 19 

lx 1.5Ho 

it 200 

NP 3lx 

 

The last 18 values can be used to validate the 
performance of the prediction system and to 
compare if the forecast is acceptable or not. 
The Monte Carlo method was used to forecast the 
next 18 values from MG time series and Henon time 
series. Such outcomes are shown from Fig. 6 to Fig. 
13. 
The results are summarized in Table 2 and the 
performance can be noted form Fig. 6 for 
PORTEZUELO series,  Fig. 8 and Fig. 10 the MG17 noisy 
and MG30noisy series and Fig. 12 for HEN noisy series 
and their forecast horizons in Fig. 7, Fig. 9, Fig. 11 
and Fig. 13, respectively. The measure of 
performance is defined as the Symmetric Mean 
Absolute Percent Error (SMAPE) proposed in the 
most of metric evaluation, defined by 
 

(3) 
 
where t is the observation time, n is the size of the 
test set, s is each time series, Xt and Ft are the actual 
and the forecasted time series values at time t 
respectively. The SMAPE of each series s calculates 
the symmetric absolute error in percent between 
the actual Xt and its corresponding forecast value Ft, 

across all observations t of the test set of size n for 
each time series s. 
The assessments of the obtained results adding 
white noise to the series is compared with the 
performance of an earlier work (Rodriguez Rivero et 

al., 2012; Rodriguez Rivero et al., 2013), both are 
based on ANN.  
Although the difference between filters resides only 
in the adjustment algorithm, the coefficients that 
each filter has, each ones performs different 
behaviors, in which it can be noted from short 
rainfall series (Rodriguez Rivero et al.,  2012; 
Rodriguez Rivero et al.,  2013) have more roughness 
than MG solutions and rainfall series. So, the 
proposal of considering white noise addition applied 
to the time series demonstrate a level improvement 
when refers to stochastic series. The SMAPE INDEX 
decreases an adequate prior distribution model was 
chosen in order for tuning the parameters and 
outputs of the predictor filter. 
The main results shows that the addition of white 
noise outperform a similar performance to predict 
rainfall time series where the roughness of the series 
is assessed by the Hurst parameter, which is 
calculated in the real and forecasted series.  
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Fig. 6 PORTEZUELO rainfall times series from 

Catamarca, Argentina. 
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Fig. 7 Forecast horizon of the PORTEZUELO series. 
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Fig. 8 MG30noisy with Tau=30 series forecast. 
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Fig. 10 MG17noisy with Tau=17 series forecast. 
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Fig. 12 HENnoisy series forecast 

 
Table 2 Results prediction of time series 

 

Series No. H He Real mean 
Mean 

Forecasted 
SMAPE 

PORTEZUELO  0.621 0.665 0.181 0.194 5.63 10-7 

MG17noisy 0.719 0.679 0.150 0.142 6.8 10-4 

MG30noisy 0.47 0.339 0.152 0.18 4 10-5 

HENnoisy 0.262 0.258 0.15 0.123 2,34 10-7 
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Fig. 9 Forecast horizon of the MG30noisy series. 
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Fig. 11 Forecast horizon of the MG17noisy series. 

 

102 104 106 108 110 112 114 116 118 120
-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

Time [samples].

Real Media = 0.092394. Forescated Mean = 0.17919.
H = -0.28402. H

e
 = -0.4108. l

x
 = 29. H

o
=19. SMAPE = 41.931

 

 

Validation data

Forecast

 
Fig. 13 Forecast horizon of the HENnoisy series. 

 
5. CONCLUSIONES 
 

En In this study, the proposed methodology for 
univariate noisy time series approximated by 
artificial neural networks (ANN) forecasting method 
was applied to some benchmarking and real life 
chaotic time series.  The learning rule proposed to 
adjust the ANN weights is based on the Levenberg-
Marquardt method. Likewise, in function of the long 
or short term stochastic dependence of the time 
series evaluated by the Hurst parameter H, an on-
line heuristic adaptive law was proposed to update 
the ANN topology at each time-stage. 
Results are presented for prediction of nonlinear, 
chaotic and non-stationary chaotic time series using 
computational intelligence techniques. In fact, the 
proposed approach to meteorological time series 
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such as rainfall, when observations are taken from a 
single standpoint, shows a good performance 
measured by the SMAPE index shown in Table 2 
compared with earlier works (Rodriguez Rivero et al., 
2012; Rodriguez Rivero et al., 2013). Thus, the ANN 
filter proposed and its higher robustness to noise 
seem to partially explain their better prediction 
performance in time series prediction illustrated 
using two well-known chaotic benchmark datasets, 
MG and Henon solutions. 
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