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ABSTRACT 

Physically-based urban wash-off models are a promising means of studying the 

transport of finer suspended solids and their associated pollutants during rain events, 

considering spatial and temporal heterogeneities. This study contributes to the 

understanding of these models through an in-depth sensitivity analysis to provide the 

necessary information to simplify the model and deal with parameter identifiability. 

First, based on twelve tailored high-resolution experiments, the accurate measurement 

of input variables was used to study the parameters of the Hairsine-Rose sediment 

transport model through a global sensitivity analysis. Using Standardized Regression 

Coefficients (SRC) and Extended Fourier Amplitude Sensitivity Test (EFAST) methods, 

the analysis showed that both the total washed-off mass and the TSS peaks 

concentration are highly sensitive to the critical mass, which considers the reduction in 

the detachment of particles when the sediment available decreases and is scattered 

over the surface. In addition, the rain- and flow-driven detachment parameters were 

presented as key for smaller and larger sediment particles, respectively. Then, those 

uncertainties that are associated in field studies with the determination of the model 
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input variables were also considered by conducting a local sensitivity analysis. The 

initial load of sediment and the mean grain size were seen to be the most important 

variables, thus underlining the need for very accurate measurements here. Moreover, a 

precise definition of Harsine-Rose parameters is also necessary to achieve reliable 

results in order to work on treatment and management techniques to minimize the 

impact of urban surface contaminants on urban environments. 

 

KEYWORDS: 

Urban wash-off modelling 

Hairsine-Rose model 

IBER  

2D shallow water model 

Sensitivity analysis   
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1. INTRODUCTION 

The trend towards rapid urbanization and population migration to towns and 

cities has led to the development of more impervious surfaces, which themselves 

become a major contributor of pollutants in urban areas (Butler and Davies 2010). 

Urban runoff contains dissolved and suspended solids that have accumulated in 

streets, roofs and other surfaces, and are washed-off during rain events (Zafra et al. 

2008). Heavy metals and Polycyclic Aromatic Hydrocarbons (PAH) are traditionally 

considered to be the major causes of contamination in urban stormwater and have 

been found to be associated with fine particles (Herngren et al. 2005, Akan and 

Houghtalen 2003, Sartor and Boyd 1972). In addition, recent studies (Dris et al. 2015, 

Dehghani et al. 2017, Vogelsang et al. 2019) have highlighted the significant presence 

of microplastics (sizes from 0.1 to 1000 µm) in urban catchments. Thus, the transport 

process of these fine particles can be used to study stormwater quality during rain 

events, typically using the concentration of total suspended solids (TSS) as indicator 

(Rossi et al. 2009, Sikorska et al. 2015).  

A thorough understanding of the processes involved in the wash-off of 

suspended solids, then, is essential in estimating runoff pollution loads and 

concentrations, and in improving treatment and management techniques to minimize 

their impact on the environment (Anta et al. 2006). To that end, empirical wash-off 

equations (e.g. Sartor and Boyd 1972, Egodawatta et al. 2007, Leutnant et al. 2018, 

Muthusamy et al. 2018) have been developed and implemented in urban drainage 

models like SWMM (Rossman, 2015) over the last 40 years, but without significant 

advances in prediction accuracy (Schellart et al. 2010, Gorgoglione et al. 2019)). 

These lumped formulations take as the main variables the initially available sediment 

load or the total runoff volume, and neglect spatial heterogeneities (Wang et al. 2011), 

which has the effect of only roughly approximating the complexity of the physical 

phenomena. Specifically, they do not take into account processes such as the 

detachment of soil particles due to raindrop impacts or runoff shear, the transport of 
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these particles by the overland flow, or their deposition. Hence, the predictive results 

obtained are rather uncertain, and they are not particularly useful for engineering risk 

assessment or design.  

Given these limitations of empirical lumped equations to adequately model a 

complex process such as urban wash-off, several physically-based models have arisen 

as alternatives. Deletic et al. (1997) considered the spatial distribution of solid particles 

over the street surface and developed a new formulation, including the rainfall and the 

shear stress of the overland flow as main variables, to model the entrainment of the 

particles into suspension. In the wash-off model proposed in Shaw et al. (2006, 2009), 

the particles are suspended due to raindrop impacts on the flow, in which they are 

transported until their deposition. In the model introduced by Massoudieh et al. (2008), 

this particle detachment was assumed to be a function of flow velocity. All these 

studies showed the potential for modelling the wash-off processes in impervious 

surfaces with physically-based formulations, but their 1D approximation limits their 

performance in real urban catchments. More recently, Hong et al. (2016a, b, 2019) 

evaluated and calibrated the urban wash-off process on a road catchment of 2661 m2 

using the physically-based Hairsine-Rose (H-R) formulation (Hairsine and Rose, 

1992a, b) coupled with a 2D shallow water model. Their results showed a promising 

level of agreement with respect to the field-measured pollutographs, suggesting that 

2D physically-based wash-off models could be a feasible alternative to empirical wash-

off equations for a better representation of the spatial and temporal heterogeneities in 

urban water quality studies.  

However, several difficulties remain in the use of physical-based models to 

simulate urban wash-off: i) the high computational cost of these models currently limits 

their application to small urban catchments; ii) the H-R model was originally developed 

for, and is usually applied to, model erosion in rural catchments (Cea et al. 2016, Heng 

et al. 2011), so the lack of experience in urban catchments and the large number of 

variables needed to model the physical processes render the calibration of the model 
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difficult; iii) due to the randomness and variability in the build-up process (Wijesiri et al. 

2015a, Sandoval et al. 2018), uncertainty measuring some input variables, such as the 

initial load and the sediment distribution over the street surface and characteristics, can 

lead to unreliable model results in real-world studies. 

Therefore, the aim of the present study is to contribute to the understanding of 

physically-based wash-off models in urban catchments by means of a rigorous 

sensitivity analysis, this on the basis of a series of specifically designed full-scale 

laboratory experiments. In these, the physical properties, initial mass and spatial 

distribution of the deposited sediments in the surface were accurately measured under 

controlled laboratory conditions. This has allowed the assessment of the model 

sensitivity to the H-R model parameters through a global sensitivity analysis. Then, the 

uncertainties associated to all model inputs were considered in a local analysis to 

assess the relative importance in the water quality results of hydraulics, sediment 

inputs, and H-R model parameters. Hence, this study is novel regarding three specific 

aspects: 

 The Hairsine-Rose wash-off model was applied coupled with a 2D shallow 

water model that was previously calibrated with experimental surface velocity 

and flow data to have the most realistic description of rainfall-runoff 

transformation. 

 A series of tailored wash-off experiments were performed, where the wash-off 

process was accurately monitored under laboratory-controlled conditions. This 

experimental data is unique because they were obtained on a 1:1 scale 

including a realistic rainfall simulator of 36 m2, using three rainfall intensities and 

four realistic sediment distributions with different uniform grain sizes. In 

addition, the data is openly available, which makes our research reproducible 

and enables others to test their own models and hypotheses. 

 The results from our global and local sensitivity analyses provide the necessary 

information to choose the most important parameters and simplify the model to 
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make it feasible to transfer the Hairsine-Rose erosion model to a broad field of 

scientific studies and practical applications in urban catchments. 

 

The remainder of the paper is structured as follows: the numerical model, the 

laboratory experiments, and the global and local sensitivity analysis methodology are 

described in Section 2; the results of the sensitivity analyses are set out in Section 3; 

Section 4 offers a discussion of the results; and finally, general conclusions of the 

study are presented in Section 5. 

 

2. MATERIALS AND METHODS 

The physically-based wash-off model and the different variables and 

parameters involved are introduced first, in Section 2.1. Then, Section 2.2 includes a 

description of the experimental facility and the methodology used in the laboratory 

experiments, which are used as a basis for the sensitivity analysis (SA). Section 2.3 

and 2.4 describe the procedure and methods used to perform the global and the local 

SA. Finally, the ranges of the input factors considered, the implementation of the SA 

methods, and a preliminary assessment of model predictions, are set out in Sections 

2.5, 2.6 and 2.7, respectively.  

 

2.1. Numerical model 

The physically-based urban wash-off model used in this study consists of a 

process-based H-R formulation coupled to a 2D shallow water model. The model was 

previously applied to soil erosion modelling in Cea et al. (2016). The only modification 

required for its application to urban environments was the definition of a non-erodible 

layer corresponding to the impervious surface.  

 

2.1.1. Hydrodynamics 
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The model Iber (Bladé et al. 2014; García-Feal et al. 2018) was used as a basis 

for the implementation of the Hairsine-Rose sediment transport equations. This 

hydrodynamic model solves 2D unsteady depth-averaged shallow water equations 

using an explicit unstructured finite volume solver, including rainfall and infiltration 

terms in the mass conservation equation, and using the Manning formula to compute 

bed friction. Previous studies have shown the capacity of the model to adequately 

represent the spatial distributions of water depth and velocity under overland flow 

conditions and including rainfall-runoff transformation (Cea et al., 2010, Cea and Bladé 

2015). The runoff model has also been validated for urban areas in the same 

laboratory facility described in this work (Fraga et al. 2015, Naves et al. 2019b) and 

also in field applications (Fraga et al. 2016). The input factors in the hydrodynamic 

equations are the rain intensity (R), the bed roughness Manning coefficient (n), and the 

surface initial losses (IL). 

 

2.1.2. Wash-off model 

The original H-R model uses a vertical layer structure where the sediments can 

be part of three different compartments. The first compartment is the original soil from 

which sediments can be detached through the effect of raindrop impacts or through the 

shear generated by overland flow. The eroded sediments become part of the flow’s 

suspended solid concentration, and can remain in the flow or be deposited over the 

bed, forming a deposited layer from where they can become re-detached. In the 

application of the formulation to urban drainage, the original soil corresponds with the 

impervious surface, so the interactions with the flow are only made from the deposited 

layer, which is where the urban surface sediments build up. In this way, the time (𝑡) 

and spatial (x, y) evolution of the suspended sediment concentration is computed by 

partial derivates from the following depth-averaged equation: 
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𝜕ℎ𝐶

𝜕𝑡
+

𝜕𝑞𝑥𝐶

𝜕𝑥
+

𝜕𝑞𝑦𝐶

𝜕𝑦
= 𝑒𝑟 + 𝑟𝑟 − 𝑑                                                                            

(1) 

where C (kg/m3) represents the depth-averaged concentration of sediment in the water 

column, ℎ (m) is the water depth, 𝑞𝑥 and 𝑞𝑦 (m2/s) are the two components of the 

specific discharge, 𝑒𝑟 (Kg/m2/s) and 𝑟𝑟 (Kg/m2/s) are, respectively, the rainfall-driven 

and flow-driven detachment rates from the deposited layer, and 𝑑 (Kg/m2/s) is the 

deposition rate.  

The rainfall-driven detachment rate 𝑒𝑟 is usually assumed to have a linear 

relation with rain intensity (Sharma et al., 1993, 1995; Gao et al., 2003) and is 

computed as: 

𝑒𝑟 = 𝛼𝑅𝜀                                                                                                                          

(2) 

𝜀 = 𝑚𝑖𝑛 [
𝑀𝑠

𝑀𝑠𝑐𝑟
, 1]                                                                                                              

(3) 

𝛼 = {
𝛼0,                 ℎ ≤ ℎ0

𝛼0 (
ℎ𝑜

ℎ
)

𝑏
,     ℎ > ℎ0

                                                                                                   

(4) 

where 𝛼0 (kg/m2/m) is the rainfall detachability coefficient, ℎ𝑜 (m) is a water depth 

threshold from where the rainfall detachment rate begins to decrease due to the 

damping of the rainfall energy on the water layer, 𝑏 is a constant exponent, 𝜀 is a 

correction coefficient to account for the availability of sediment over the impervious 

non-erodable surface, 𝑀𝑠 (Kg/m2) is the mass of deposited sediment per unit surface, 

and 𝑀𝑠𝑐𝑟 (Kg/m2) is the mass of sediment over the non-erodable layer needed to 

achieve the potential rain-driven detachment. Some authors do not implement the 

correction coefficient 𝜀 when modelling soil erosion in rural catchments because in 

such applications the availability of deposited sediment is guaranteed. This is not the 
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case in urban environments, where the small amount of sediment available over the 

impervious layer, as well as its heterogeneous distribution, makes it necessary to 

include this parameter in the model. In this way, it is possible to consider the lower 

detachment rates in areas where the mass of deposited sediments is low, as well as 

the decrease in the detachment rate produced when the sediment is being washed-off. 

The flow-driven term 𝑟𝑟 models the transfer of solids due to the effect of bed 

friction and is computed using the following equation: 

 𝑟𝑟 = {
𝜌𝑠𝐹(Ω−Ω0)𝜀

(𝜌𝑠−𝜌𝑤)𝑔ℎ
,    𝑖𝑓 Ω > Ω0

0,                     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                                                                                            

(5) 

where 𝜌𝑠 and 𝜌𝑤 (kg/m3) are the density of the solid particles and water, respectively, Ω 

(W/m2) is the runoff stream power per unit surface, Ω0 (W/m2) is the critical stream 

power threshold below which the entrainment rate is zero, 𝐹 is the fraction of stream 

power excess over Ω0 that contributes to the entrainment of sediments, 𝑔 (m/s2) is the 

gravity acceleration, and 𝜀 is a correction coefficient to account for the availability of 

deposited sediment, as explained above. This formulation assumes that only a fraction 

of the total stream power dissipation, given by 𝐹(Ω − Ω0)𝜀, contributes to sediment 

detachment and the rest is spent in other head losses. 

The deposition rate 𝑑 of solids from the flow to the surface is modelled as: 

𝑑 = 𝜌𝑠𝑤𝑠𝐶                                                                                                                       

(6) 

where 𝑤𝑠 is the settling velocity of sediment particles (m/s), which depends on the 

density and the mean diameter (D50) of the particles, and is computed using the 

formulation of Van Rijn (1984). 

Finally, the evolution of the sediment mass in the surface is computed by solving the 

following mass balance equation: 
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𝜕𝑀𝑠

𝜕𝑡
= 𝑑 − (𝑒𝑟 + 𝑟𝑟)                                                                                                           

(7) 

 

2.2. Laboratory experiments 

A series of wash-off experiments performed in an urban drainage physical 

model have been used as the basis for a SA of the wash-off model. The advantage of 

using these experiments instead of field data is that the variables involved in the wash-

off process can be measured with a high degree of accuracy under controlled 

laboratory conditions. In our case, the initial sediment conditions and the rest of 

hydraulic input factors could be fixed to a constant value, and the global SA was 

focused on the influence of the poorly-known H-R parameters. The experiments were 

also used to determine the ranges of the local SA, where hydrodynamic variables and 

parameters, and initial sediment conditions, are considered. 

The experimental facility is located in the Hydraulic Laboratory of the CITEEC, 

at the University of A Coruña, and consists of a 36 m2 full-scale street section. A rainfall 

simulator is located 2.6 m over a concrete street surface, which is divided into a 

sidewalk and a roadway (Figure 1). The detailed surface elevation data of the facility 

and the details of the rainfall simulator, which is able to generate rain intensities of 30 

mm/h, 50 mm/h and 80 mm/h with high spatial uniformity, were described in Naves et 

al. (2019b). The generated rainfall-runoff drains into two gully pots located along the 

curb and into a lateral outflow channel. The surface has an approximate transversal 

slope of 2% up to the sidewalk and a 0.5% longitudinal slope up to the outflow channel.  

The experiments consist of measuring the hydraulics and the total suspended 

solids (TSS) at the entrance of the gully pots, given a known initial load of sediment 

over the roadway surface. The initial amount and spatial distribution of sediments over 

the surface have been determined following previous wash-off studies by the authors 

(Naves et al. 2017) and the references included therein. The initial load of sediment 
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was fixed to 20 g per meter of curb. It was distributed realistically over the street 

section, following the results of Sartor and Boyd (1972), since it is known that roadway 

sediments tend to accumulate close to curbs (Grottker 1987; Deletic and Orr 2005). As 

shown in Figure 1, most of the sediment (78%) was placed homogeneously within the 

first 0.15 m from the curb. 10% and 9% of the sediment was then placed over the next 

0.15 and 0.70 m, and the remaining 3% over the rest of the surface up to the road 

median, which in our case was fixed at 2 m from the sidewalk. The sediment deployed 

was collected from a real road surface, which is described in Fraga et al. (2016), and 

sieved to obtain four different uniform granulometries (sediment classes in Table 1) 

with gradation coefficients (σg = √D84/D16) between 1.3 and 2.2 (Julien 2010). The 

density of the material, measured by a pycnometer for all the granulometries, was 

2557±16 kg/m3, this corresponding to a high value within the range obtained in Pitt et 

al. (2004), where different urban build-up studies were reviewed. 

Each laboratory experiment involves the combination of a sediment class (D1-

D4 in Table 1) with steady, homogeneous rainfall of 30, 50 or 80 mm/h intensity, with a 

duration of 5 minutes. The water discharge through both gully pots was measured by 

means of a triangular weir and an ultrasonic distance sensor (UB500-18GM75-I-V15, 

Pepperl and Fuchs), while the TSS were obtained from 200 mL manual grab samples 

taken at regular time intervals. At the end of the experiment, the solids that remained in 

the physical model were collected to verify the correct operation of the experiments 

through a sediment mass balance. The mass balance errors remained below roughly 

the 5% of the total mass, which is very satisfactory considering the complexity of the 

physical phenomena. The detailed methodology to perform the mass balance can be 

found in Naves et al. (2017). The plots in Figure 2 show the flow and TSS results for 

rain intensities of 80, 50 and 30 mm/h and for the different grain sizes. In addition, a 

more detailed description of the physical model and those experimental results not 

included here have been uploaded to the open-access repository Zenodo (Naves et al. 

2019a). The hydraulics of the experiments has already been calibrated successfully, 

Journal Pre-proof



Jo
ur

na
l P

re
-p

ro
of

 12 

using the measured hydrographs with the 2D shallow water model in Naves et al. 

(2019b). 

 

2.3. Global sensitivity analysis  

A global SA (Saltelli et al. 2008) was performed to investigate the variability of 

the model output under changes in the H-R model parameters. The SA methods and 

metrics were constrained by the high computational time of the model and the high 

number of input factors. Thus, to make analysis feasible, the rest of the input factors 

were not considered, their values being fixed according to the initial conditions of each 

laboratory experiment. Global SA was evaluated using two techniques: the 

Standardized Regression Coefficients (SRC), obtained from a multiple linear 

regression; and the Extended Fourier Amplitude Sensitivity Test (EFAST), which is 

able to consider the effect of the interactions of factors. These two methods have been 

applied recently in the field of urban drainage in Gamerith et al (2013) and Donckels et 

al. (2014), respectively. In addition, Vanrolleghem et al. (2015) and Mannina et al. 

(2016) used both methods at the same time, showing that robustness of global SA is 

substantially increased by using multiple methods and multiple objectives. 

 

2.3.1. Standardized Regression Coefficients (SRC) 

Standardized Regression Coefficients (Helton, 1993) were used as quantitative 

measures of the sensitivity of the model outputs to the H-R parameters considered 

(Saltelli et al. 2000, Saltelli et al. 2008). The multiple linear regression model takes the 

following form: 

𝑦𝑖 =  𝑏0 + ∑ 𝑏𝑖𝑗𝑥𝑖𝑗 + 𝜉𝑛
𝑗=1                                                                                                (8) 

where 𝑦𝑖 are the different outputs studied, 𝑥𝑖 (𝑥𝑖1, 𝑥𝑖2, …., 𝑥𝑖𝑛) are the 𝑛 parameters 

vectors, 𝑏𝑗 are the regression coefficients, and ξ is the residual error due to the linear 

Journal Pre-proof



Jo
ur

na
l P

re
-p

ro
of

 13 

approximation. The SRC (𝑏_𝑠𝑡𝑎𝑛𝑑𝑖𝑗) measure the effect of the input factors (𝑥𝑗) in the 

variance of the output (𝑦𝑖), and are obtained as: 

𝑏_𝑠𝑡𝑎𝑛𝑑𝑖𝑗 = 𝑏𝑖𝑗√
𝑉𝑎𝑟(𝑥𝑖𝑗)

𝑉𝑎𝑟(𝑦𝑖)
                                                                                                   

(9) 

The absolute value of the regression coefficients represents the influence of 

each parameter to a certain model output, with negative SRCs indicating inverse 

relationships. The coefficient of determination (R2) was used to check the assumption 

of linearity, so low R2 indicates unreliable SRCs. 

 

2.3.2. Extended Fourier Amplitude Sensitivity Test (EFAST) 

The Fourier Amplitude Sensitivity Test (FAST) is a variance-based method 

developed by Cukier et al. (1973) for sensitivity and uncertainty analysis. The FAST 

method does not require any assumption of linearity and is based on the exploration of 

the entire parameter space by an efficient search curve; it is able to obtain the direct 

influence of each parameter in the total variance (first-order indices, 𝑆𝑖). The EFAST 

(Saltelli et al. 1999), which is an improvement of the FAST method, is used in the 

current global SA to estimate both the main effect (𝑆𝑖) as well as the total effect 

sensitivity indices (𝑆𝑇𝑖), which include all its interactions with other factors at any 

order. 𝑆𝑖 and 𝑆𝑇𝑖 are obtained as: 

𝑆𝑖 =
𝑣𝑎𝑟𝑥𝑖

[𝐸𝑥−𝑖
(𝑌|𝑥𝑖)]

𝑣𝑎𝑟(𝑌)
                                                                                                            

(10) 

𝑆𝑇𝑖 = 1 −
𝑣𝑎𝑟𝑥−𝑖

[𝐸𝑥𝑖(𝑌|𝑥−𝑖)]

𝑣𝑎𝑟(𝑌)
                                                                                                     

(11) 

where 𝑣𝑎𝑟 is the variance, E is the expected value, Y the model output, and 𝑥𝑖 and 𝑥−𝑖 

indicate, respectively, that the operator is either applied over the 𝑖th factor or over all of 

Journal Pre-proof



Jo
ur

na
l P

re
-p

ro
of

 14 

them except the 𝑖th factor. The interaction between factors are therefore represented 

by the difference between 𝑆𝑇𝑖 and 𝑆𝑖. 

 

2.4. Local sensitivity analysis  

In a regular field application, it is not possible to measure all the input variables 

as accurately as in a laboratory facility, especially considering the randomness and 

variability in the sediment build-up. Therefore, a local SA was carried out including all 

the model input factors, not only the H-R parameters, to ensure the transferability of 

the results to real catchments and to analyze the relative importance of hydraulic 

parameters and variables, initial sediment conditions and H-R parameters in the model 

outputs. The thirteen input factors considered in the local SA are those described in 

Section 2.1 plus a uniformity coefficient (UC), which considers the uncertainties in the 

spatial distribution of the initial sediment load over the street surface. This coefficient 

varies linearly the distribution of the initial load of sediment among the four predefined 

zones shown in Figure 1, taking a value of zero when all the sediment is placed in the 

area attached to the curb, and a value of one for a spatially uniform distribution. In our 

experiments the UC is 0.32.  

Performing a variance-based method that considers all the variables was 

impossible due to the computational expense of the model. Thus, the Elementary 

Effects (EE) method (Saltelli et al. 2008, Campolongo et al 2007, Morris 1991), also 

known as the Morris screening method, was chosen following Saltelli and Annoni 

(2010). This method is based on the evaluation of the model along a determined 

number of trajectories (𝑟) where the different factors are changed in a one-at-a-time 

(OAT) experimental design. Considering a model of 𝑘 independent inputs 𝑋𝑖 , 𝑖 = 1, … , 𝑘, 

each input is assumed to vary in the 𝑘-dimensional unitary hypercube across 𝑝 

selected levels. This means that the input space is discretized into a 𝑝–level grid (Ω). 

The ranges of the factors are assumed to be normalized for sampling, and the actual 
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values are then calculated for simulations. The elementary effect (𝐸𝐸𝑖) for a given 𝑋𝑖 in 

the output 𝑌 is defined as: 

𝐸𝐸𝑖 = (𝑌(𝑋1, … , 𝑋𝑖 + 𝛥, … , 𝑋𝑘) − 𝑌(𝑋1, … , 𝑋𝑖, … , 𝑋𝑘))/𝛥 (10) 

 where 𝛥 is the distance between two realizations of factor 𝑋𝑖 (inside Ω). The starting 

point and the order and direction in which the inputs are evaluated OAT change 

randomly between the different trajectories. Therefore, the mean of the absolute values 

of all the elementary effects obtained in each trajectory (µ∗) and their standard 

deviation (𝜎) are the sensitivity measures for each input. µ∗ indicates the overall 

influence of the factors on the output and 𝜎 estimates the variability of the EE and thus 

the dependency with respect to the rest of the factors.  

 

2.5. Variables and parameters ranges 

2.5.1. Global sensitivity analysis 

Given the lack of work using the H-R model in urban catchments, which is limited to the 

studies presented in Hong et al. (2016a,2016b, 2019), the range of variation of the H-R 

parameters for the global SA (Table 2) was determined by taking into account previous 

erosion studies (Proffit et al. 1991, 1993, Beuselinck et al. 2002, Shaw et al. 2006, 

Sander et al. 2007, Heng et al. 2011 and Cea et al. 2016) and thus seeking to cover 

the complete performance range of the model. 

 

2.5.2. Local sensitivity analysis 

Table 3 shows the range of variation of the hydrodynamic variables and 

parameters and the initial sediment conditions used in the local SA. The ranges were 

centered according to the experimental layouts and their size was defined following the 

methodology presented in Brun et al. (2002). The input factors were classified on three 

levels corresponding to the degree of knowledge available in a typical field study. A 

relative uncertainty of 5 % (accurately known, level 1), 20 % (inaccurate known, level 
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2) and 50 % (very poorly known, level 3) was assigned to each level, respectively. In 

this way, as shown in Table 3, the hydrodynamic factors were considered as level 1. 

Due to the randomness and variability in the build-up and wash-off processes, the 

sediment diameter and the initial deposited mass and distribution of solids were 

defined as very poorly known variables (level 3). The sediment density was considered 

as a moderately inaccurate known variable (level 2), given its lower associated 

uncertainty.  

The ranges of the H-R parameters for the local SA (Table 4) represent the 

uncertainty in the estimation of these parameters in order to compare the relative 

importance of their correct determination with respect to the hydraulic and initial 

sediment conditions inputs. The ranges have been defined from the global SA 

simulations as the interquartile ranges of the parameter sets whose total washed-off 

mass results differed by less than 5% from the experimental measurement.   

 

2.6. Implementation 

The selected SA methods and metrics have been conditioned by the computationally 

expensive model. The model is solved using the explicit finite volume solver presented 

in Cea and Vázquez-Cendón (2012) and compiled for a Windows environment. Each 

simulation takes about five minutes using an Intel® Core i5-7500 3.4 GHz computer. 

The methodology implementing the different sensitivity methods and the number of 

simulations performed for each analysis are included in the following sections. 

 

2.6.1. Standardized regression coefficients 

Regarding the SRC, the Latin Hypercube Sampling (LHS) method was used to 

generate 1000 sets of H-R parameters for each of the twelve laboratory experiments, 

and considering the ranges of variation established in Table 2, using the free Matlab 

toolbox SAFE (Pianosi et al. 2015). Then, the multiple linear regressions were obtained 

by means of the regress function in Matlab. Convergence test considering 100, 500, 
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1000, 2000 and 5000 simulations showed that convergence was achieved with a 

sample size of 1000 simulations. Thus, over the twelve laboratory experiments, the 

total number of simulations was 12000. 

 

2.6.2. Extended Fourier amplitude sensitivity test 

 The toolbox Eikos, developed by Ekstrom (2005), was used for the calculation 

of the EFAST indices and for the sampling process, taking into account the ranges 

defined in Table 2. Due to the computational cost of the wash-off model, the number of 

simulations used for the implementation of the EFAST method was set to 505 per 

factor (3030 simulations per laboratory experiment and a total of 36360), which 

remains within the practical recommendations accordingly to Saltelli et al. (2005) and 

Cosenza et al (2013).  

 

2.6.3. Elementary effects 

Following Campolongo and Saltelli (1997), Campolongo et al. (1999) and 

Saltelli et al. (2000), a number of trajectories 𝑟=10 and values of 𝑝=4 ({0, 1/3, 2/3, 1}) 

and 𝛥=2/3 were chosen in the implementation of the EE method. In order to facilitate a 

better coverage of the input domain, these ten trajectories were selected from a set of 

twenty-five, which effectively maximizes their spread in the input space (Campolongo 

et al. 2007). The local SA assessed thirteen inputs, so the number of simulations was 

10(13+1)=140 for each laboratory experiment, a total of 1680 simulations. 

 

2.7. Assessment of model predictions 

In order to analyze the model performance, we first compared predictions with 

the results of the laboratory experiments, using the mean of the Nash-Sutcliffe model 

efficiency coefficient (NSE) in each of the gully pots as an objective function to assess 

overall prediction performance. Second, we checked the adequacy of the ranges 

selected for the global SA by visual assessment of the contours of the results of 
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simulations. Although Root-Mean-Squared-Deviation (RMSE) or NSE can be used as 

objective functions to assess model sensitivity (Hong et al. 2016a), in the light of the 

model performance observed, we chose the TSS concentration peaks and the washed-

off loads as outputs to analyze. These two outputs are the most significant ones for 

practitioners, since they are relevant variables for estimating the impacts of the 

stormwater pollution inflows to sewerage systems or the aquatic media. 

 

3. RESULTS  

3.1. Model and ranges performance 

To assess the suitability of model predictions, Figure 3 shows two examples of 

the five best TSS with rain intensities of 50 and 80 mm/h and sediment classes D2 and 

D3, respectively. It can be seen that the flexibility of the model and the established 

ranges allow for an accurate prediction of the TSS pollutographs in both gully pots at 

the same time and for both initial conditions. In addition, the parameter sets of the five 

best-fitted predictions performed for the global SA are also included in Figure 3. It can 

be seen that, as expected, different sets of parameters resulted in very similar 

pollutographs. 

 

3.2. Global sensitivity analysis 

3.2.1. Standardized Regression Coefficients (SRC) 

The SRC of the six H-R parameters regarding the total washed-off mass and 

the TSS peak for each gully pot are shown in Figure 4. The plots show the sensitivity 

indices of each parameter for the twelve laboratory experiments that have been used 

as layouts for the SA, considering the three different rain intensities and the four 

sediment grain sizes described above (Section 2.2).  

In general, the plots in Figure 4 show the critical mass (𝑀𝑠𝑐𝑟) as the most 

important H-R parameter, with the highest influence in both outputs and for all the 

laboratory experiments. The critical mass is the mass required to reach the total rain-
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driven and flow-driven potential detachment, so its effect on the results is increased in 

urban catchments due to the scattering of sediment when low loads are presented over 

the street. In addition, the relative importance of the H-R parameters varies widely with 

respect to the grain size, and b and Ω0 remain with a low influence in both outputs and 

for all the laboratory experiments. 

 Looking at the total washed-off mass sensitivity results in Figure 4 (first row 

plots), it can be seen that as the grain size of the sediment increases, the influence of 

the rain-driven detachment parameters 𝛼0 and ℎ0 decrease and F becomes more 

important. 𝑀𝑠𝑐𝑟, 𝛼0 and ℎ0 are thus key parameters for modelling wash-off with small 

grain sizes, but F has to be taken into account if bigger diameters are involved. An 

increase in rain intensity also involves a large increase in the sensitivity of the total 

washed-off mass results to ℎ0, which depends on the water depth. The sensitivity 

results for the TSS peak (second row plots in Figure 4) are very similar in terms of the 

main parameters and in the different laboratory experiments analyzed. However, ℎ0 

and 𝑏 become wholly negligible to the results, since ℎ0 is the water depth threshold 

from which the rain-driven detachment is dumped, thus the TSS peak, which is 

produced at the beginning of the rain event, and is not affected.  

Another interesting result in Figure 4 is the high match between the sensitivity 

results of both gully-pots. Despite gully pot 2 having a far more important curb flow 

component, only a slight increase in the sensitivity to F and a small reduction in the 

sensitivity to 𝛼0 and ℎ0 were observed for gully pot 2. Finally, it should be noted that 

the coefficients of determination obtained in the regressions, with values between 0.5 

and 0.85 in the total mass and between 0.35 and 0.6 in the TSS peak, indicate that a 

significant part of the variance is not explained by a linear regression model, which 

cannot represent the interaction between model parameters. In sum,𝛼0, ℎ0, 𝑀𝑠𝑐𝑟 and F 

appeared to be the important parameters for the washed-off mass, and only 𝛼0, 𝑀𝑠𝑐𝑟 

and F for the TSS concentration peak. In addition, the rain and flow-driven detachment 
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parameters were presented as key for smaller (mean grain sizes of 30 and 68 µm) and 

larger (144 and 274 µm) sediment particles, respectively  

 

3.2.2 Extended Fourier Amplitude Sensitivity Test (EFAST) 

In contrast to SRC, the EFAST method considers the interactions between the 

different parameters. Figure 5 shows the direct or first order effect and the total effect 

of the H-R parameters in the total washed-off mass and the TSS peak, computed with 

the EFAST methodology. Despite the fact that the coefficients of determination in the 

SRC analysis indicated in the same cases low reliability, with values below 0.6, the 

ranking of the most important parameters considering the first order effect results is 

very similar, as was also found in Cosenza et al. (2013). In addition, variations in the 

first order indices due to the changes of the sediment diameter and rain intensity in the 

different laboratory experiments show the same trends as in the SRC. 

The critical mass (𝑀𝑠𝑐𝑟) is the most important H-R parameter for all the 

laboratory experiments in the plots presented in Figure 5. Regarding the total washed-

off mass results (first row plots in Figure 5), 𝛼0 and ℎ0 are at a secondary level, with 

only a low degree of influence, including F in the case of the larger grain sizes 

(sediment classes 3 and 4). b and Ω0 appear to be negligible parameters for all the 

laboratory experiments analysed. In addition, some differences in the EFAST indices 

between both gully pots should be noted: 𝛼0 and ℎ0 decrease and F increases their 

influence in the results for gully pot 2, which has an important curb flow component. 

Considering the sensitivities of the TSS peak to the parameters (second row plots in 

Figure 5), the flow-driven detachment parameters F and Ω0 are low influential 

parameters, the rest of the rain-driven detachment parameters, 𝛼0, ℎ0 and b, being 

negligible. 

The differences between the total (bars with light colors) and first order effect 

indices (bars with dark colors) in the plots in Figure 5 show the variance of the results 

due to interactions between parameters. It can be seen that the interactions play an 
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important role in the results, especially in the TSS peak concentration and in the larger 

diameters (sediment classes 3 and 4) for the total washed-off mass. Unfortunately, this 

complicates the separation of the individual effect of each parameter and confirms our 

expectations that it is indeed challenging to calibrate this model. Summarizing, 

washed-off mass and TSS peak are very sensitivity to 𝑀𝑠𝑐𝑟 in all the experimental 

layouts. The same trends as in SRC have been observed between the relative 

importance of rain-driven and flow-driven detachment parameters and rain intensity 

and grain size values. In addition, a high level of interaction between parameters was 

found. 

 

3.3. Local sensitivity analysis 

Figure 6 shows the absolute mean (µ∗) of the elementary effects of each input 

factor with respect to the total washed-off mass against their standard deviation (𝜎) for 

the twelve laboratory experiments. The relation between µ∗ and 𝜎 is an indicator of the 

linearity of each variable with respect to the model output, assuming that below 0.1 

there are no substantial interactions with other factors. Only the results corresponding 

to the gully pot 2 are plotted here, but similar results are obtained for the gully pot 1. 

The initial load of sediment over the surface (Ms0) and its mean diameter (D50), 

classified as very poorly known variables, are the most influential measurable variables 

in all cases. The influence of the density is lower than that of the sediment diameter, 

although both variables affect the settling velocity of the solid particles. This is because 

its associated uncertainty is lower.  

The other input factor that shows a notable influence in the results is critical 

mass (𝑀𝑠𝑐𝑟), which was identified as the most influential H-R parameter in the global 

SA. Regarding the rest of the H-R parameters, their relative importance is the same in 

both the SRC and the EFAST analyses. Thus, the influence of 𝛼0 and ℎ0 is higher for 

the particles with lower diameters (sediment classes 1 and 2) and decreases as the 

sediment diameter increases. The influence of the uniformity coefficient (UC) is low in 
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all cases, despite its high level of uncertainty, which allows us to conclude that the 

differences in sediment distribution considered do not substantially affect the total 

washed-off mass. This confirms the findings of Naves et al. (2017). The hydraulic 

variables and parameters remain with the lowest influence on the results, mainly 

because of the low uncertainties associated with these. 

The local sensitivity results regarding the TSS peak concentration in gully pot 2 

for all the laboratory experiments are included in Figure 7. The input factors with most 

influence in the TSS peak are the same three factors (Ms0, D50 and Mscr) as in the case 

of the total washed-off mass. However, the H-R parameters related to the flow-driven 

detachment, especially F, are at a similar level of importance for the TSS peak. Thus, 

as seen in the global SA, the flow-driven detachment is key to accurately modelling the 

maximum TSS concentration. The hydraulic input factors and the rain-driven 

detachment parameters seem to be almost negligible for this output.  

In sum, our findings suggest that the initial load of sediment and the mean grain 

size were the most important variables. H-R parameters exhibited a high influence in 

the model outputs, with a similar behavior to that observed in the global SA. Finally, 

hydraulic input factors variations do not affect the outputs, since their determination 

has a low degree of uncertainty associated with it. 

 

4. DISCUSSION 

In the previous sections, we have presented a SA of a physically-based urban 

wash-off model. The study has shown that the flexibility of the model allowed for the 

replication of the laboratory results from accurately measured initial conditions by 

tuning the H-R model parameters. However, this flexibility also leads to identifiability 

problems and makes it difficult to obtain precise predictions in field studies. Therefore, 

it is important to discuss our findings in terms of: i) a careful interpretation of the SA 

results, ii) transferability to field studies, and iii) limitations and future steps towards 

improving urban wash-off predictions. 
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4.1. Interpretation of the sensitivity analysis results 

Uncertainties and interactions between the different processes involved in 

wash-off modelling such as flow and rain characterization, model parameters, or 

sediment initial conditions and characteristics, make it difficult to separate their 

individual contribution to a model’s predictions. Therefore, controlled laboratory 

experiments have been used to eliminate disturbances and to focus the global SA on 

the H-R model parameters, fixing remaining input variables. However, despite the 

accurate definition of the initial conditions, Figure 3 shown a wide range of possible 

model predictions that might alter the H-R parameters. This is a consequence of a lack 

of knowledge in estimating their possible values in urban catchments. In addition, there 

is no consensus as to model simplifications in the literature and, to date, it is difficult to 

define narrower ranges a priori. However, using the obtained global SA results, it is 

possible to address this lack of knowledge and identifiability issues, and thus to reduce 

the number of parameters to calibrate in future research. 

While flow-driven detachment is usually negligible in soil erosion (Cea et al. 

2016), it was seen as an important process for the largest grain sizes (144 and 274 

μm) in our urban application. Therefore, rain-driven and flow-driven detachment are the 

two physical processes that have to be taken into account using the H-R parameters. 

Regarding rain-driven detachment, exponent 𝑏 is negligible for all the laboratory 

experiments that we simulated, so its value could be fixed at 1. The water depth 

damping threshold, ℎ0, is typically set to two third of the mean raindrop size (Heng et 

al. 2011, Hong et al. 2016a). However, its high influence in modelling TSS peak 

concentrations, as well as the current lack of studies accurately measuring rain drop 

size distributions (DSD), mean that the development of work aimed at adequately fixing 

this parameter is an interesting line of research. With respect to the flow-driven 

parameters, Ω0 showed a low influence in the results and may be fixed to values 
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around 0.01 W/m2, following previous studies (Proffitt et al. 1993, Sander et al. 2007, 

Heng et al. 2011).  

Two processes must be adjusted by the remainder H-R model parameters: rain- 

and flow-driven detachment of particles. Among these three parameters (𝛼0, 𝑀𝑠𝑐𝑟 and 

F), which are those with the highest influence in the results, 𝑀𝑠𝑐𝑟 affects both 

processes at the same time, and may be fixed in future applications. However, due to 

the current lack of knowledge on this parameter, its notable influence in the results, 

plus its interactions with other parameters, this is not currently recommended. 

Therefore, given the sensitivity results, we proposed in this section a reduction from 6 

to 3 calibration parameters. However, next field and laboratory urban wash-off studies 

will increase our understanding of the H-R parameters, and may lead to a reduction in 

parameter ranges and to a consideration of further simplifications.    

 

4.2. Transferability to field studies 

When applying the H-R model in real-world catchments, we currently see three 

main limitations: i) high computational cost, ii) inaccurate input variables, and iii) the 

consideration of sediment heterogeneity.  

The model was already previously calibrated for different rain events in a 2661 

m2 road urban catchment in Hong et al. (2016a, 2016b, 2019). This work is the first and 

available field application of H-R model in urban environments, and studies in larger 

field catchments are currently challenging due to the mentioned limitations. However, 

physical-based wash-off models are at the beginning of their development and can be 

compared to 2D flood models in the early 2000s, when their applicability to large 

catchments were limited because computers were still slow and high-resolution terrain 

models were missing. In the same way as 2D-1D coupling is currently industry 

standard in urban drainage models, we think that the limitations in the catchment size 

for urban wash-off physically-based models will be significantly decreased in the near 

future and this will highlight, also for large catchments, the opportunities raised by 
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physically-based wash-off models. In this regard, the 2D shallow water model Iber has 

recently been improved, and now takes advantage of the parallelization functionalities 

of both CPUs (central processing units) and GPUs (graphics processing units), 

achieving speedups of up to two orders of magnitude in comparison with the version 

used in the present study (García-Feal et al. 2018). In addition, the use of fast 

emulators has already been applied in hydrodynamic urban drainage models (Carbajal 

et al. 2017, Hong et al. 2019), and these might be a very practical solution to reduce 

the computation time. Meanwhile, the application of physically-based wash-off models 

to small and medium-size basins is an opportunity to increase understanding of wash-

off process and model performance. 

Regarding the definition of input variables, as shown by the local SA, the initial 

load of sediment and mean grain size are the most important input variables in terms of 

model’s predictions, as also found in Hong et al. (2016a). Therefore, the uncertainties 

associated with these variables due to the variability and randomness of sediment 

build-up can limit the reliability of the results and make the model ineffective. The 

determination of the initial conditions, then, is key to the modelling of urban wash-off, 

and future research should continue to be oriented towards the determination of the 

initial build-up mass and characteristics, either through field studies analyzing urban 

dust samples (Wijesiri et al. 2015b) or by following the ideas in Sandoval et al. (2018) 

where input variables are estimated from measured pollutographs using virtual state 

variables.  

Spatial heterogeneity is other important issue to consider in terms of the 

transferability of the model. First, an accurate representation of the surface flow is 

needed to reduce the propagation of hydraulic uncertainties to the sediment transport 

equations, since the hydrodynamic model is used as a basis for wash-off equations. 

Visualization techniques such as large-scale particle image velocimetry (LSPIV) or 

surface structure image velocimetry (SSIV) can help to achieve the required accuracy 

here by obtaining useful surface calibration data (Naves 2019b), with the possibility of 
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using surveillance camera footage, as proposed in Leitão et al. (2018). The accuracy 

and resolution of elevation data are also key to attaining a suitable characterization of 

surface flow. However, current LIDAR techniques are able to provide high-resolution 

elevations each 0.1 m which, combined with manual measurements to incorporate 

important elements such as curbs, have demonstrated their effectiveness in 

representing adequately flow spatial variations (Hong et al. 2016a, b). In addition, gully 

pots and grid performance should be also included at this level of detail. In fact, this is 

interesting not only for surface flow modelling (Martins et al 2018) but also for water 

quality interactions and gully pot efficiency (Post et al. 2016). 

Rainfall input data involves spatial intensity distribution, which allows for 

obtaining an accurate surface flow, as well as rain energy, which depends on DSD and 

condition rain-driven detachment. An extensive literature exists on rain distribution and 

resolution in hydrological processes, but future research in urban wash-off should 

incorporate DSD measurements more frequently, in order to estimate rain-driven 

particle detachment from rain kinetic energy. Rainfall simulators, such as the one used 

in this study, can contribute to an understanding of this process through the use of 

constant rain intensities and varying DSDs. 

Finally, it is necessary to take into account the heterogeneity in the surface 

sediment mass. In the laboratory experiments described here, there are four different 

sediment classes with a uniform granulometry, this as a means of achieving greater 

control of the process. However, available surface sediment presents a high degree of 

heterogeneity in grain sizes and densities in real catchments, and mean diameter and 

density are not representative. In addition, representative characteristics of the 

sediment can change during the event as the lightest particles are washed-off first. A 

multiclass approach, such as the one used in Hong et al. (2016b), should therefore be 

considered as a means of obtaining reliable results with heterogeneous sediment 

masses. This approach leads to an increase in the complexity of the model, with 

adequate parameters needed for each class, and hence an assessment of the benefits 
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and drawbacks that such an approximation might involve would be a useful step. In this 

regard, the experimental data set used in this study (which is taken from the dataset 

Naves et al. 2019a) also includes experiments where the four sediment classes were 

mixed to obtain a realistic granulometry and including coulter samples in the inflow to 

the gully pots, and may be used in future studies. 

 

4.3. General perspectives for modelling urban wash-off 

The future aims of wash-off modelling in urban areas should not be seek to 

implement more and more complex models in which all the physical processes are 

perfectly defined. Rather, the objective should be to move towards models capable of 

considering the spatial and temporal heterogeneities of the catchment and able to 

reproduce the key wash-off process, overcoming the limitations of empirical equations 

yet maintaining optimal simplicity in the model. For this purpose, more laboratory and 

field applications of wash-off physical-based models should be conducted to increase 

our understanding of the parameters and processes here, one very important focus of 

attention being an effective characterization of catchment, sediment and rain 

characteristics. The wash-off process is challenging, but in view of the promising 

results of the first physically-based wash-off studies, it is an important line of research 

towards better treatment and management techniques for minimizing the impact of 

urban surface contaminants, such as microplastics, heavy metals and PAH, on the 

environments of cities and towns.  

 

5. CONCLUSIONS 

This study contributes to the understanding of physically-based urban wash-off 

models by presenting an in-depth SA using a series of specially-tailored laboratory 

experiments obtained on a realistic and 1:1 scale rainfall simulator of 36 m2. Thus, the 

accurate determination of the hydraulics variables and the initial sediment conditions 

were used to focus a global SA on poorly-known H-R parameters using SRC and 
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EFAST methods. Then, in order to ensure the transferability of the results to field 

studies, the relative importance in the model outputs of hydraulic parameters, initial 

sediment conditions and H-R model parameters was assessed through a local SA, 

using the EE method and considering uncertainties in their determination in real field 

studies. Specifically, the following can be concluded based on the results: 

 The flexibility of the model allowed us to successfully reproduce the results of 

the laboratory experiments by tuning the H-R model parameters. However, the 

predictions obtained suggested a complex calibration process, and thus 

highlight the usefulness of the SA performed for decision-making in order to 

simplify the model and to deal with identifiability problems. 

 The SRC indicated a strong sensitivity of the results to critical mass in 

comparison to the other H-R parameters. The parameters related to rain-driven 

detachment 𝛼0 and ℎ0 were at a second level of importance, roughly half that of 

sensitivity, for the total washed-off mass with the smallest diameters (mean 

grain sizes of 30 and 68 µm). When the grain size of the sediment increased 

(144 and 274 µm), F was included in this second level of influence. In addition, F 

was also shown to be an important variable with respect to the TSS peak, while 

b and Ω0 remained at a low influence for both outputs. 

 Although the ranking of the most important parameters obtained from the 

EFAST analysis was very similar to that for the SRC results, the EFAST total 

effect indices revealed the high importance of the interaction between 

parameters in the model outputs, which is also an indicator of the difficulties 

that can arise when calibrating the model.  

 In the local SA, which considered all the input variables and parameters, the 

initial load of sediment, mean grain size and critical mass were seen to be the 

most important factors for the total washed-off mass and the TSS peak in all the 

laboratory experiments. Therefore, very accurate measurement of the available 

mass and its characteristics is necessary in order to avoid the variability 
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associated with the build-up process affecting to the reliability of results. H-R 

parameters were seen to be at a second level of importance, which illustrates 

the need for accurate calibration of the model. Finally, variations in hydraulic 

variables did not affect the outputs since the uncertainty associated with their 

determination was low. 

 In the light of these results, the model may be simplified using the three 

parameters with the highest influence in the results, 𝛼0, 𝑀𝑠𝑐𝑟 and F, as a means 

of modelling the individual contribution of the rain-driven and flow-driven 

detachment. Future research should focus on more laboratory and field studies, 

to increase our knowledge of H-R parameters and thus to be able to adequately 

fix them.  

 

Although the problem is complex, these promising results should stimulate efforts 

towards overcoming the current limitations of physically-based models, such as high 

computational cost, the need for an accurate definition of the input variables, and the 

accurate modelling of spatial and sediment heterogeneities. 

 

Acknowledgments 

The first author was in receipt of a predoctoral grant [FPU14/01778] and an 

internship fellowship to visit the EAWAG [EST17/00715], from the Spanish Ministry of 

Science, Innovation and Universities. The authors would also like to acknowledge 

fruitful discussions with Andreas Scheidegger and Juan Pablo Carbajal. 

 

References 

Akan, A. O. Houghtalen, R. J., (2003). Urban hydrology, hydraulics, and stormwater 

quality: engineering applications and computer modeling. John Wiley & Sons. 

Journal Pre-proof



Jo
ur

na
l P

re
-p

ro
of

 30 

Anta, J., Peña, E., Suárez, J., Cagiao, J. (2006). A BMP selection process based on the 

granulometry of runoff solids in a separate urban catchment. Water Sa, 32(3), 419-

428. http://dx.doi.org/10.4314/wsa.v32i3.5268 

Beuselinck, L., Govers, G., Hairsine, P. B., Sander, G. C., Breynaert, M. (2002). The 

influence of rainfall on sediment transport by overland flow over areas of net 

deposition. Journal of Hydrology, 257(1-4), 145-163. 

https://doi.org/10.1016/S0022-1694(01)00548-0 

Bladé, E., Cea, L., Corestein, G., Escolano, E., Puertas, J., Vázquez-Cendón, E., Dolz, 

J., Coll, A. (2014). Iber: herramienta de simulación numérica del flujo en ríos. 

Revista Internacional de Métodos Numéricos para Cálculo y Diseño en Ingeniería, 

30(1), 1-10. https://doi.org/10.1016/j.rimni.2012.07.004 

Butler, D., Davies, J. (2010) Urban Drainage, 3rd edn. Spon Press, Abingdon, UK 

Brun, R., Kühni, M., Siegrist, H., Gujer, W., Reichert, P. (2002). Practical identifiability 

of ASM2d parameters—systematic selection and tuning of parameter subsets. 

Water research, 36(16), 4113-4127. https://doi.org/10.1016/S0043-1354(02)00104-

5 

Campolongo, F., Saltelli, A., (1997). Sensitivity analysis of an environmental model: a 

worked application of different analysis methods. Reliability Engineering and 

System Safety 52, 49–69. https://doi.org/10.1016/S0951-8320(97)00021-5 

Campolongo, F., Tarantola, S., Saltelli, A. (1999). Tackling quantitatively large 

dimensionality problems. Computer Physics Communications 117, 75–85. 

https://doi.org/10.1016/S0010-4655(98)00165-9 

Journal Pre-proof



Jo
ur

na
l P

re
-p

ro
of

 31 

Campolongo, F., Cariboni, J., Saltelli, A. (2007). An effective screening design for 

sensitivity analysis of large models. Environmental Modelling and Software 22, 

1509–1518. https://doi.org/10.1016/j.envsoft.2006.10.004 

Carbajal, J. P., Leitão, J. P., Albert, C., & Rieckermann, J. (2017). Appraisal of data-

driven and mechanistic emulators of nonlinear simulators: The case of 

hydrodynamic urban drainage models. Environmental modelling & software, 92, 

17-27. https://doi.org/10.1016/j.envsoft.2017.02.006 

Cea, L., Garrido, M., Puertas, J., (2010). Experimental validation of two-dimensional 

depth-averaged models for forecasting rainfall–runoff from precipitation data in 

urban areas. J. Hydrol. 382 (1), 88–102. 

https://doi.org/10.1016/j.jhydrol.2009.12.020 

Cea, L., Vázquez-Cendón, M. E. (2012). Unstructured finite volume discretisation of 

bed friction and convective flux in solute transport models linked to the shallow 

water equations. Journal of Computational Physics, 231(8), 3317-3339. 

https://doi.org/10.1016/j.jcp.2012.01.007 

Cea, L., Blade, E., (2015). A simple and efficient unstructured finite volume scheme for 

solving the shallow water equations in overland flow applications. Water Resour. 

Res. 51 (7), 5464–5486. https://doi.org/10.1002/2014WR016547 

Cea, L., Legout, C., Grangeon, T., Nord, G. (2016). Impact of model simplifications on 

soil erosion predictions: application of the GLUE methodology to a distributed 

event‐based model at the hillslope scale. Hydrological Processes, 30(7), 1096-

1113. https://doi.org/10.1002/hyp.10697 

Journal Pre-proof



Jo
ur

na
l P

re
-p

ro
of

 32 

Cosenza, A., Mannina, G., Vanrolleghem, P. A., Neumann, M. B. (2013). Global 

sensitivity analysis in wastewater applications: A comprehensive comparison of 

different methods. Environmental modelling & software, 49, 40-52. 

https://doi.org/10.1016/j.envsoft.2013.07.009 

Cukier, R. I., Fortuin, C. M., Shuler, K. E., Petschek, A. G., Schaibly, J. H. (1973). 

Study of the sensitivity of coupled reaction systems to uncertainties in rate 

coefficients. I Theory. The Journal of chemical physics, 59(8), 3873-3878. 

https://doi.org/10.1063/1.1680571 

Deletic, A., Maksimovic, E., Ivetic, M. (1997). Modelling of storm wash-off of 

suspended solids from impervious surfaces. Journal of Hydraulic Research, 35(1), 

99-118. https://doi.org/10.1080/00221689709498646 

Deletic, A., Orr, D.W. (2005). Pollution buildup on road surfaces. Journal of 

Environmental Engineering, 131(1), 49-59. https://doi.org/10.1061/(ASCE)0733-

9372(2005)131:1(49) 

Dehghani, S., Moore, F., Akhbarizadeh, R. (2017). Microplastic pollution in deposited 

urban dust, Tehran metropolis, Iran. Environmental Science and Pollution 

Research, 24(25), 20360-20371. http://doi.org/10.1007/s11356-017-9674-1 

Donckels, B.M.R., Kroll, S., Van Dorpe, M., & Weemaes, M. (2014). Global sensitivity 

analysis of an in-sewer process model for the study of sulfide-induced corrosion of 

concrete. Water Science and Technology, 69(3), 647-655. 

http://doi.org/10.2166/wst.2013.763 

Journal Pre-proof



Jo
ur

na
l P

re
-p

ro
of

 33 

Dris, R., Gasperi, J., Rocher, V., Saad, M., Renault, N., Tassin, B. (2015). Microplastic 

contamination in an urban area: a case study in Greater Paris. Environmental 

Chemistry, 12(5), 592-599. http://doi.org/10.1071/EN14167 

Ekstrom, P.A. (2005). Eikos: a simulation toolbox for sensitivity analysis in matlab. 

Uppsala University, Uppsala 

Egodawatta, P., Thomas, E., Goonetilleke, A., (2007). Mathematical interpretation of 

pollutant wash-off from urban road surfaces using simulated rainfall. Water Res. 

41 (13), 3025–3031. https://doi.org/10.1016/j.watres.2007.03.037. 

Fraga, I., Cea, L., Puertas, J., (2015). Validation of a 1D-2D dual drainage model under 

unsteady part-full and surcharged sewer conditions, Urban Water J. 14 (1), 74–84. 

https://doi.org/10.1080/1573062X.2015.1057180 

Fraga, I., Cea, L., Puertas, J., Suárez, J., Jiménez, V., Jácome, A., (2016). Global 

Sensitivity and GLUE-Based Uncertainty Analysis of a 2D-1D Dual Urban 

Drainage Model. J. Hydrol. Eng. 21 (5), 04016004. 

https://doi.org/10.1061/(asce)he.1943-5584.0001335 

Gamerith, V., Neumann, M.B., & Muschalla, D. (2013). Applying global sensitivity 

analysis to the modelling of flow and water quality in sewers. Water research, 

47(13), 4600-4611. http://dx.doi.org/10.1016/j.watres.2013.04.054 

Gao, B., Walter, M.T., Steenhuis, T.S., Parlange, J.Y., Nakano, K., Hogarth, W.L., 

Rose, C. (2003) Investigating ponding depth and soil detachability for a 

mechanistic erosion model using a simple experiment. Journal of 

Hydrology277(1–2): 116–124. https://doi.org/ 10.1016/S0022-1694(03)00085-4 

Journal Pre-proof



Jo
ur

na
l P

re
-p

ro
of

 34 

García-Feal, O., González-Cao, J., Gómez-Gesteira, M., Cea, L., Domínguez, J., 

Formella, A. (2018). An accelerated tool for flood modelling based on Iber. Water, 

10(10), 1459. https://doi.org/10.3390/w10101459 

Gorgoglione, A., Bombardelli, F.A., Pitton, B.J., Oki, L.R., Haver, D.L., Young, T.M. 

(2019). Uncertainty in the parameterization of sediment build-up and wash-off 

processes in the simulation of sediment transport in urban areas. Environ. Modell. 

Softw., 111, 170-181. https://doi.org/10.1016/j.envsoft.2018.09.022 

Grottker, M. (1987). Runoff quality from a street with medium traffic loading. Science 

of the Total Environment, 59, 457-466. https://doi.org/10.1016/0048-

9697(87)90469-4 

Hairsine, P.B., Rose, C.W., (1992a). Modeling water erosion due to overland flow using 

physical principles: 1. Sheet flow. Water Resour. Res. 28, 237–243. 

http://doi.org/10.1029/91wr02380.  

Hairsine, P.B., Rose, C.W., (1992b). Modeling water erosion due to overland flow 

using physical principles: 2. Rill flow. Water Resour. Res. 28, 245–250. 

http://doi.org/10.1029/91wr02381. 

Helton, J. C. (1993). Uncertainty and sensitivity analysis techniques for use in 

performance assessment for radioactive waste disposal. Reliability Engineering & 

System Safety, 42(2-3), 327-367. https://doi.org/10.1016/0951-8320(93)90097-I 

Heng, B. C. P., G. C. Sander, A. Armstrong, J. N. Quinton, J. H. Chandler, and C. F. 

Scott (2011), Modeling the dynamics of soil erosion and size-selective sediment 

Journal Pre-proof



Jo
ur

na
l P

re
-p

ro
of

 35 

transport over nonuniform topography in flume-scale experiments, Water Resour. 

Res., 47, W02513. https://doi.org/10.1029/2010WR009375 

Herngren, L. F., (2005). Build-up and Wash-off Process Kinetics of PAHs and Heavy 

Metals on Paved Surfaces Using Simulated Rainfall. Doctoral dissertation, 

Queensland University of Technology, Brisbane, Queensland, Australia 

Hong, M., Bonhomme, C., Le, M.H., Chebbo, G., (2016a). A new approach of 

monitoring and physically-based modelling to investigate urban wash-off process 

on a road catchment near Paris. Water Res. 102, 96–108, 

https://doi.org/10.1016/j.watres.2016.06.027 

Hong, M., Bonhomme, C., Le, M.H., Chebbo, G., (2016b). New insights into the urban 

washoff process with detailed physical modelling. Sci. Total Environ. 573, 924–

936. https://doi.org/10.1016/j.scitotenv.2016.08.193 

Hong, Y., Liao, Q., Bonhomme, C., Chebbo, G. (2019). Physically-based urban 

stormwater quality modelling: An efficient approach for calibration and sensitivity 

analysis. Journal of environmental management, 246, 462-471. 

Julien, P. Y. (2010). Erosion and sedimentation. Cambridge University Press, 

Cambridge. 

Leitão, J.P., Peña-Haro, S., Lüthi, B., Scheidegger, A., de Vitry, M.M., 2018. Urban 

overland runoff velocity measurement with consumer-grade surveillance cameras 

and surface structure image velocimetry. J. Hydrol. 565, 791–804. 

https://doi.org/10.1016/j.jhydrol.2018.09.001. 

Journal Pre-proof



Jo
ur

na
l P

re
-p

ro
of

 36 

Leutnant, D., Muschalla, D., Uhl, M. (2018). Statistical distribution of TSS event loads 

from small urban environments. Water, 10(6), 769. 

https://doi.org/10.3390/w10060769 

Mannina, G., Cosenza, A., Gori, R., Garrido-Baserbac, M., Sobhani, R., & Rosso, D. 

(2016). Greenhouse gas emissions from wastewater treatment plants on a 

plantwide scale: sensitivity and uncertainty analysis. Journal of Environmental 

Engineering, 142(6), 04016017. https://doi.org/10.1061/ (ASCE)EE.1943-

7870.0001082 

Martins, R., Rubinato, M., Kesserwani, G., Leandro, J., Djordjević, S., & Shucksmith, 

J. D. (2018). On the Characteristics of Velocities Fields in the Vicinity of Manhole 

Inlet Grates During Flood Events. Water Resources Research, 54(9), 6408-6422. 

https://doi.org/10.1029/2018WR022782 

Massoudieh, A., Abrishamchi, A., Kayhanian, M. (2008). Mathematical modeling of 

first flush in highway storm runoff using genetic algorithm. Science of the total 

environment, 398(1-3), 107-121. https://doi.org/10.1016/j.scitotenv.2008.02.050 

Morris, M. D. (1991). Factorial sampling plans for preliminary computational 

experiments. Technometrics 33, 161–174. 

Muthusamy, M., Tait, S., Schellart, A., Beg, M.N.A., Carvalho, F.R. de Lima, J.L.M.P., 

(2018). Improving understanding of the underlying physical process of sediment 

wash-off from urban road surfaces. J. Hydrol. 557, 426–433, 

https://doi.org/10.1016/j.jhydrol.2017.11.047.  

Journal Pre-proof



Jo
ur

na
l P

re
-p

ro
of

 37 

Naves, J., Jikia, Z., Anta, J., Puertas, J., Suárez, J., Regueiro-Picallo, M., (2017). 

Experimental study of pollutant washoff on a full-scale street section physical 

model. Water Sci. Technol. 76 (10), 2821–2829. 

https://doi.org/10.2166/wst.2017.345.  

[dataset] Naves, J., Puertas, J., Suárez, J., Anta, J. (2019a) WASHTREET project 

experimental data. Zenodo.  http://doi.org/10.5281/zenodo.3233918 

Naves, J., Anta J., Puertas J., Regueiro-Picallo, M., Suárez, J. (2019b) Using a 2D 

shallow waters model to assess Large-scale Particle Image Velocimetry (LSPIV) 

and Structure from Motion (SfM) techniques in a street-scale urban drainage 

physical model. Journal of Hydrology 575, 54-65 

https://doi.org/10.1016/j.jhydrol.2019.05.003 

Pianosi, F., Sarrazin, F., Wagener, T. (2015). A Matlab toolbox for global sensitivity 

analysis. Environmental Modelling & Software, 70, 80-85. 

https://doi.org/10.1016/j.envsoft.2015.04.009 

Pitt, R., Williamson, D., Voorhees, J., Clark, S. (2004). Review of historical street dust 

and dirt accumulation and washoff data. Effective Modeling of Urban Water 

Systems, Monograph, 13, 43-54. https://doi.org/10.14796/JWMM.R223-12 

Post, J. A. B., Pothof, I. W. M., Dirksen, J., Baars, E. J., Langeveld, J. G., & Clemens, 

F. H. L. R. (2016). Monitoring and statistical modelling of sedimentation in gully 

pots. Water research, 88, 245-256. https://doi.org/10.1016/j.watres.2015.10.021 

Proffitt, A. P. B., Rose, C. W., Hairsine, P. B. (1991). Rainfall detachment and 

deposition: Experiments with low slopes and significant water depths. Soil Science 

Journal Pre-proof



Jo
ur

na
l P

re
-p

ro
of

 38 

Society of America Journal, 55(2), 325-332. 

https://doi.org/10.2136/sssaj1991.03615995005500020004x 

Proffitt, A. P. B., Hairsine, P. B., Rose, C. W. (1993). Modeling soil erosion by 

overland flow: application over a range of hydraulic conditions. Transactions of 

the ASAE, 36(6), 1743-1753. https://doi.org/10.13031/2013.28519 

Rijn, L. C. V. (1984). Sediment transport, part II: suspended load transport. Journal of 

hydraulic engineering, 110(11), 1613-1641. https://doi.org/10.1061/(ASCE)0733-

9429(1984)110:11(1613) 

Rossi, L., Chèvre, N., Fankhauser, R., Krejci, V. (2009). Probabilistic environmental 

risk assessment of urban wet-weather discharges: an approach developed for 

Switzerland. Urban Water Journal, 6(5), 355-367. 

https://doi.org/10.1080/15730620902934801 

Rossman, L. A., (2015) Storm Water Management Model, User’s Manual, Version 5.1 

No. EPA/600/R-05/040). US Environmental Protection Agency, Cincinnati, OH, 

USA 

Saltelli, A., Tarantola, S., Chan, K. S. (1999). A quantitative model-independent 

method for global sensitivity analysis of model output. Technometrics, 41(1), 39-

56. https://doi.org/10.1080/00401706.1999.10485594 

Saltelli, A., Chan, K., Scott, E. M. (Eds.). (2000). Sensitivity analysis (Vol. 1). New 

York: Wiley. 

Journal Pre-proof



Jo
ur

na
l P

re
-p

ro
of

 39 

Saltelli, A., Ratto, M., Tarantola, S., Campolongo, F. (2005). Sensitivity analysis for 

chemical models. Chemical reviews, 105(7), 2811-2828. 

https://doi.org/10.1021/cr040659d 

Saltelli, A., Ratto, M., Andres, T., Campolongo, F., Cariboni, J., Gatelli, D., Saisana, 

M., Tarantola, S. (2008). Global sensitivity analysis: the primer. John Wiley & 

Sons. 

Saltelli, A., Annoni, P. (2010). How to avoid a perfunctory sensitivity analysis. 

Environmental Modelling & Software, 25(12), 1508-1517. 

https://doi.org/10.1016/j.envsoft.2010.04.012 

Sander, G. C., Parlange, J. Y., Barry, D. A., Parlange, M. B., Hogarth, W. L. (2007). 

Limitation of the transport capacity approach in sediment transport modeling. 

Water Resources Research, 43(2). https://doi.org/10.1029/2006WR005177 

Sandoval, S., Vezzaro, L., Bertrand-Krajewski, J. L. (2018). Revisiting conceptual 

stormwater quality models by reconstructing virtual state variables. Water Science 

and Technology, 78(3), 655-663. https://doi.org/10.2166/wst.2018.337 

Sartor, J.D., Boyd, G.B., (1972). Water Pollution Aspects of Street Surface 

Contaminants. EPA-R2-72-081. United States Environmental Protection Agency, 

Washington, DC, USA.  

Schellart, A.N.A., Tait, S.J., Ashley, R.M. (2010). Towards quantification of 

uncertainty in predicting water quality failures in integrated catchment model 

studies. Water research, 44(13), 3893-3904. 

https://doi.org/10.1016/j.watres.2010.05.001 

Journal Pre-proof



Jo
ur

na
l P

re
-p

ro
of

 40 

Sharma, P.P., Gupta, S.C., Foster, G.R. (1993). Predicting soil detachment by raindrops. 

Soil Science Society of America Journal57: 674–680. 

https://doi.org/10.2136/sssaj1993.03615995005700030007x 

Sharma, P.P., Gupta, S.C., Foster, G.R. (1995). Raindrop-induced soil detachment and 

sediment transport from interrill areas. Soil Science Society of America Journal59: 

727–734. https://doi.org/10.2136/sssaj1995.03615995005900030014x 

Shaw, S. B., Walter, M.T., Steenhuis, T.S. (2006). A physical model of particulate 

wash-off from rough impervious surfaces. Journal of Hydrology, 327(3-4), 618-

626. https://doi.org/10.1016/j.jhydrol.2006.01.024 

Shaw, S.B., Parlange, J.Y., Lebowitz, M., Walter, M.T. (2009). Accounting for surface 

roughness in a physically-based urban wash-off model. Journal of hydrology, 

367(1-2), 79-85. https://doi.org/10.1016/j.jhydrol.2009.01.004 

Sikorska, A. E., Del Giudice, D., Banasik, K., & Rieckermann, J. (2015). The value of 

streamflow data in improving TSS predictions–Bayesian multi-objective 

calibration. Journal of Hydrology, 530, 241-254. 

https://doi.org/10.1016/j.jhydrol.2015.09.051 

Vanrolleghem, P. A., Mannina, G., Cosenza, A., Neumann, M. B. (2015). Global 

sensitivity analysis for urban water quality modelling: Terminology, convergence 

and comparison of different methods. Journal of Hydrology, 522, 339-352. 

https://doi.org/10.1016/j.jhydrol.2014.12.056 

Vogelsang, C., Lusher, A. L., Dadkhah, M. E., Sundvor, I., Umar, M., Ranneklev, S. B., 

Eidsvoll, D., Meland, S. (2019). Microplastics in road dust–characteristics, 

Journal Pre-proof



Jo
ur

na
l P

re
-p

ro
of

 41 

pathways and measures. Norsk institutt for vannforskning. 

http://hdl.handle.net/11250/2493537 

Wang, L., Wei, J., Huang, Y., Wang, G. Maqsood, I., (2011). Urban nonpoint source 

pollution buildup and washoff models for simulating storm runoff quality in the 

Los Angeles County. Environmental Pollution 159 (7), 1932–1940. 

https://doi.org/10.1016/j.envpol.2011.03.019 

Wijesiri, B., Egodawatta, P., McGree, J., Goonetilleke, A., (2015a). Incorporating 

process variability into stormwater quality modelling. Sci. Total Environ. 533, 

454–461. https://doi.org/10.1016/j.scitotenv.2015.07.008.  

Wijesiri, B., Egodawatta, P., McGree, J., & Goonetilleke, A. (2015b). Process 

variability of pollutant build-up on urban road surfaces. Science of the Total 

Environment, 518, 434-440. https://doi.org/10.1016/j.scitotenv.2015.03.014 

Zafra, C. A., Temprano, J., Tejero, I. (2008). Particle size distribution of accumulated 

sediments on an urban road in rainy weather. Environmental technology, 29(5), 

571-582. https://doi.org/10.1080/09593330801983532. 

  

Journal Pre-proof

https://doi.org/10.1080/09593330801983532


Jo
ur

na
l P

re
-p

ro
of

 42 

Figure 1. Physical model scheme and initial distribution of the sediment.  
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Figure 2. Total suspended solids (TSS) and experimental flow results in both gully pots for the 

four different grain sizes (D1-D4) and rain intensities of 80, 50 and 30 mm/h. It can be seen that 

the complete pollutographs of the experiments have been a satisfactory measure here, through 

analyzing the manual grab samples for all the diameters and rain intensities. 
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Figure 3. TSS experimental results and five best-fitted TSS simulations for the 

experiments with rain intensities of 50 (up) and 80 mm/h (down) and sediment classes 

D2 and D3, respectively. It can be see that predictions agree well with experimental 

results. The contours of all the simulations performed in the global SA are also 

included (dashed lines), and illustrate the sensitivity of the model output to the 

plausible values of H-R parameters.  
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Figure 4. Standardized Regression Coefficients (SRC) of the Hairsine-Rose 

parameters for the total washed-off mass (row 1) and the TSS maximum value (row 2) 

in each gully pot (columns) and for each laboratory experiment (colours for the rain 

intensities and x-position for the sediment classes). The degree of transparency 

represents the R2 value. The plots show that the critical mass is the most important H-

R parameter and that there is a strong relation between the grain size of the sediment 

and the relative importance of rain-driven and flow-driven detachment parameters.  
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Figure 5. EFAST first order and total effect sensitivity indices of the Hairsine-Rose parameters 

for the total washed-off mass (row 1) and the TSS maximum value (row 2) in each gully pot 

(columns) and for each of the laboratory experiments (colors for rain intensities and x-position 

for sediment classes). It can be seen that the critical mass is the most important H-R parameter. 

𝛼0, ℎ0 and F occupy a secondary level of influence with respect to the total washed mass, but 

only F in the case of the TSS peak results. 
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Figure 6. Sensitivity results for the Elementary Effects method. Plots show the sensitivity to the 

total washed-off mass through gully pot 2 for each of the three rainfall intensities and four grain 

sizes considered in the experiments. The ranking of the three most influential input factors is 

shown in the upper-left corner of each case. In general, Ms0, D50 and Mscr are the factors with 

the most influence on the result for all the laboratory experiments.  
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Figure 7. Sensitivity results for the Elementary Effects method. Plots show the sensitivity to the 

TSS maximum value in gully pot 2 in all cases. The ranking of the three most influential input 

factors is shown in the upper-left corner of each case. In general, Ms0, D50, Mscr and F are the 

factors with the most influence on results. 
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Table 1. Sediment granulometries considered (D1-D4) and total washed-off mass for the twelve 

laboratory experiments. 

Sediment 
class 

 
Granulometries  Washed-off mass (g) 

 
D50 (µm) D16 (µm) D84 (µm) σg  30 mm/h 50 mm/h 80 mm/h 

D1 
 

30.1 11.4 54.6 2.19  31.0 48.3 61.2 

D2 
 

68.1 46.3 91.8 1.41  13.2 32.5 53.8 

D3 
 

143.9 105.8 186.8 1.33  7.5 17.1 28.6 

D4 
 

273.8 204.7 351.8 1.31  6.1 13.6 22.9 
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Table 2. Parameters and ranges of variation used in the global sensitivity analysis. 

Variable Units Definition Range 

𝛼0  Kg/m
2
/m Rainfall detachability coefficient 500 - 3500 

ℎ0  M Water depth damping threshold 0.0001 - 0.0025 

𝑏  - Positive constant 0.6 - 1.4 

𝑀𝑠𝑐𝑟  Kg/m
2
 Critical mass to achieve the potential detachment 0 – 2.8 

𝐹  - Effective fraction of excess stream power 0 - 0.03 

Ω0  W/m
2
 Critical stream power 0 - 0.02 
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Table 3. Input factor ranges for the local sensitivity analysis. 

Variable R n IL D50 𝜌𝑠 Ms0 UC 

Units mm/h - Mm μm Kg/m
3
 kg/mcurb - 

Uncertainty level 1 1 1 3 2 3 3 

Range variation (%) 5 5 5 50 20 50 50 

Lab. experiment        

1 29.25-30.75 0.0156-0.0164 0.585-0.615 22.5-37.5 2301-2812 15-25 0.24-0.40 

2 48.75-51.25 0.0156-0.0164 0.585-0.615 22.5-37.5 2301-2812 15-25 0.24-0.40 

3 78.00-82.00 0.0156-0.0164 0.585-0.615 22.5-37.5 2301-2812 15-25 0.24-0.40 

4 29.25-30.75 0.0156-0.0164 0.585-0.615 51.0-85.0 2301-2812 15-25 0.24-0.40 

5 48.75-51.25 0.0156-0.0164 0.585-0.615 51.0-85.0 2301-2812 15-25 0.24-0.40 

6 78.00-82.00 0.0156-0.0164 0.585-0.615 51.0-85.0 2301-2812 15-25 0.24-0.40 

7 29.25-30.75 0.0156-0.0164 0.585-0.615 108.0-180.0 2301-2812 15-25 0.24-0.40 

8 48.75-51.25 0.0156-0.0164 0.585-0.615 108.0-180.0 2301-2812 15-25 0.24-0.40 

9 78.00-82.00 0.0156-0.0164 0.585-0.615 108.0-180.0 2301-2812 15-25 0.24-0.40 

10 29.25-30.75 0.0156-0.0164 0.585-0.615 205.5-342.5 2301-2812 15-25 0.24-0.40 

11 48.75-51.25 0.0156-0.0164 0.585-0.615 205.5-342.5 2301-2812 15-25 0.24-0.40 

12 78.00-82.00 0.0156-0.0164 0.585-0.615 205.5-342.5 2301-2812 15-25 0.24-0.40 
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Table 4. Ranges of Hairsine-Rose parameters for the local sensitivity analysis. 

Variable 𝛼0 ℎ0 𝑏 𝑀𝑠𝑐𝑟  𝐹 Ω0 

Units Kg/m
2
/m mm - Kg/m

2
 - W/m

2
 

Lab. experiment       

1 1504-3040 1.05-1.98 0.81-1.17 0.62-1.22 0.009-0.024 0.005-0.016 

2 1614-2779 1.02-2.00 0.78-1.19 0.77-1.66 0.010-0.023 0.003-0.013 

3 1589-2883 0.95-2.03 0.74-1.14 0.85-1.88 0.008-0.022 0.004-0.014 

4 1536-2891 0.91-2.11 0.82-1.22 0.48-1.11 0.011-0.025 0.003-0.015 

5 1557-2953 1.03-1.92 0.78-1.20 0.36-0.73 0.009-0.026 0.003-0.013 

6 1364-2998 1.08-1.74 0.76-1.12 0.25-0.53 0.009-0.023 0.003-0.014 

7 1391-2917 0.66-1.95 0.82-1.18 0.44-0.92 0.011-0.025 0.005-0.014 

8 1602-2668 0.45-1.93 0.74-1.21 0.20-0.54 0.011-0.026 0.03-0.012 

9 1647-2835 0.95-2.16 0.77-1.16 0.24-0.43 0.010-0.026 0.002-0.012 

10 963-2556 0.72-2.11 0.88-1.21 0.25-0.59 0.013-0.026 0.004-0.013 

11 1770-2629 0.89-1.96 0.83-1.30 0.14-0.31 0.009-0.025 0.004-0.015 

12 1658-2755 1.19-2.07 0.85-1.21 0.12-0.22 0.010-0.025 0.005-0.014 
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