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Abstract: In classical survival analysis, it is assumed that all the individuals will experience the event
of interest. However, if there is a proportion of subjects who will never experience the event, then a
standard survival approach is not appropriate, and cure models should be considered instead. This
paper deals with the problem of adapting a machine learning approach for classical survival analysis
to a situation when cure (i.e., not suffering the event) is a possibility. Specifically, a brief review of
cure models and recent machine learning methodologies is presented, and an adaptation of machine
learning approaches to account for cured individuals is introduced. In order to validate the proposed
methods, we present an extensive simulation study in which we compare the performance of the
adapted machine learning algorithms with existing cure models. The results show the good behavior
of the semiparametric or the nonparametric approaches, depending on the simulated scenario. The
practical utility of the methodology is showcased through two real-world dataset illustrations. In the
first one, the results show the gain of using the nonparametric mixture cure model approach. In the
second example, the results show the poor performance of some machine learning methods for small
sample sizes.

Keywords: censored data; cure rate; deep learning; mixture cure models; simulation; system reliability
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1. Introduction to Survival Analysis

Survival analysis is a branch of statistics whose object of study is the elapsed time
until an event of interest. Depending on its application, survival analysis has been widely
used in many areas: engineering (time to failure of a machine), economics (duration of
unemployment), medicine (time to death due to a specific medical condition), etc. A
relevant characteristic in survival analysis is that the event of interest does not always occur
during the follow-up period or that the failure time cannot be exactly defined. This absence
of information leads to the concept of censoring. The main challenge in survival analysis is
how to handle censored data. Specifically, there are two common cases of censoring. On
the one hand, point censoring occurs when the individual does not experience the event
within the study period. Two types of point censoring can be defined: right censoring (the
event of interest is experienced after the end of study, since it is not possible to follow the
individuals for an infinite period of time) and left censoring (it is known that the failure
occurred prior to the start of follow-up). On the other hand, an individual is interval censored
if it is known that the event occurred between two times, but it is not possible to determine
the exact failure time. In this paper, we focus on the most common censoring case: point
censoring and, specifically, right censoring (see, among others, refs. [1–4]).

In standard survival analysis, it is assumed that the individuals, if they could be
followed an infinite amount of time, would all experience the event of interest. Nevertheless,
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there might be some situations in which a group of individuals will never suffer the event,
no matter how long they are followed. For example, for a dataset related to cancer patients,
if the event is death due to cancer, it is known that not all the subjects will suffer the event.
In statistics, this group of long-term survivors is considered as cured. It is important to
highlight that the term cure does not mean the absence of illness: it refers to the fact that
the individuals will not suffer the event of interest. In order to accommodate the group of
cured individuals, classical survival methods have been extended to cure models.

Although the first cure models were proposed in the 1950s, these models have received
increasing attention in the last decades (see, between others, [3,5]). This is due, partly, to
the effectiveness of current cancer treatments: the proportion of patients who are cured (or
who, at least, survive for a long time) is increasing over time. In such a context, a classical
survival approach is not appropriate and cure models should be considered.

Recent works pointed out that machine learning algorithms, especially deep learning
(DL) algorithms, are a solid choice to compute the survival estimation in classic survival
scenarios [6–9], establishing the state-of-the-art solutions in this field. However, little has
been achieved in computing the cure fraction, which is usually referred to as the cure rate
(see, among others, ref. [10–12]).

In this paper, we compare different techniques to compute the cure fraction. Specifi-
cally, we consider a mixture cure model approach, and we focus on how machine learning
can be combined with a cure model framework to estimate the cure rate. The main
contributions of this paper are twofold:

• We propose to adapt the nonparametric mixture cure model approach by [13] to ML
methods. We show that all state-of-the-art ML techniques can be used to compute the
cure rate by placing a slight modification in the algorithms.

• An extensive study is conducted, in which we compare the performance of the adapted
ML algorithms with existing cure models. Furthermore, a real data application is
also presented, in which we show the gain of using some of the proposed methods in
specific situations and some drawbacks to take into account when working with small
sample sizes.

The paper is organized as follows: in Section 2, we review the recent developments in
cure models; in Section 3, we describe the state-of-the-art of machine learning approaches
for classical survival analysis and propose a nonparametric adaptation to account for
cured individuals; in Section 4, we conduct an extensive simulation study to compare both
methodologies, which are applied to two medical datasets in Section 5.1. In Section 6, we
comment the results, offering some advises related to how and when one should use the
tested methods. Finally, in Section 7, we detail some conclusions and future research lines.

2. Cure Models

Cure models consider a proportion of subjects who will never experience the event,
that is, the cure fraction.

These models are mainly classified in two groups: non-mixture cure models (NMCMs)
and mixture cure models (MCMs). NMCMs, also known as proportional hazard (PH) or
promotion time cure models, were introduced by [14] and deeply studied in [15,16]. In the
literature, there is a wide variety of parametric (see [17–19], among others), semiparametric
(see [20–23]), and nonparametric NMCM approaches (see [24]). One disadvantage of the
NMCM approach is that it forces the covariates to have the same influence on all the
individuals (those who will experience the event and those who will not). In this work,
we focus on MCMs, which consider the survival function as a mixture of two groups of
subjects: the susceptible group and the cured group. This feature allows the covariates to
have different influence on both sets of observations.

We will use the standard notation. Let Y be the time to occurrence of the event and C
the censoring time. The survival function, S, is defined as:

S(t) = P(Y > t) = 1− F(t).
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In classical survival analysis, limt→∞ S(t) = 0. However, if there is a proportion of
cured subjects, then

lim
t→∞

S(t) > 0.

Due to random right censoring, the variable Y will not always be observed. Therefore,
for each individual, we have the pair (T, δ), where T = min(Y, C) is the time until an
individual either experiences the event of interest or their follow-up period ends, and
δ = I(Y ≤ C) is the uncensoring indicator. A sample is a collection of observations:
{(Ti, δi), i = 1, . . . , n}, independent and identically distributed (i.i.d.) copies of the random
vector (T, δ). Note that, for i = 1, . . . , n, if Ti corresponds to an uncensored observation,
then Ti = Yi and δi = 1. Otherwise, Ti = Ci and δi = 0.

One of the main goals in survival analysis is to estimate the density and distribution (or
survival) functions of Y. In the literature, Ref. [25] introduced the nonparametric maximum-
likelihood estimator of the survival function in presence of censoring, also known as the
product-limit (PL) estimator:

Ŝ(t) =
n

∏
i:T(i)≤t

(
1−

δ[i]

n− i + 1

)
,

where δ[i] is the corresponding uncensoring indicator concomitant of T(i) and T(1) ≤ T(2) ≤
· · · ≤ T(n) are the ordered Ti’s. In addition, note that if t < T(1), then Ŝ(t) = 1. Later,
ref. [26] proposes a generalization of the Kaplan–Meier estimator, which allows the presence
of covariates:

Ŝh(t | x) =
n

∏
i:T(i)≤t

(
1−

δ[i]Bh(i)(x)

∑n
r=i Bh(r)(x)

)
, (1)

where Bh(i)(x) =
Kh(x−X[i])

∑n
j=1 Kh(x−X[j])

are Nadaraya–Watson weights with Kh(·) = 1
h K( ·h ), the

rescaled kernel with bandwidth h→ 0. Note that X[i] is the covariate concomitant of T(i).
In order to illustrate the necessity of cure models, let us introduce a real example in

which we do not consider the cure possibility. We work with a dataset related to 137 bone
marrow transplant patients (see [27,28]). The dataset is described in detail in Section 5.2.
Figure 1 shows the Kaplan–Meier estimator for the survival function for the complete
dataset, Ŝ. We can observe that the survival curve of Ŝ has a plateau at the end of the study.
In the literature (see [13,29]), this non-zero asymptote is taken as an estimator of the cure
rate. Specifically, the estimated cure probability is 0.35 for this dataset. Since a standard
survival model does not take into account the proportion of individuals who are cured,
it is not an appropriate way to analyze the data. On the contrary, a cure model may be a
suitable alternative.
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Figure 1. Standard survival function related to the bone marrow transplant dataset.
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Therefore, to account for the cure fraction, let us define ν as a binary variable, with
ν = 0 if the individual belongs to the susceptible group and ν = 1 if the individual belongs
to the cured group. Note that ν is partially observed, since it is not possible to distinguish
between those susceptible individuals that are censored and those observations of cured
individuals. In addition, let p(x) be the conditional probability of not being cured:

p(x) = P(ν = 0 | X = x).

In the literature (see [13,29]), the cure rate is estimated as follows:

1− p(x) = lim
t→∞

S(t | x) > 0.

Furthermore, the conditional survival function for the uncured population, referred to
as latency, is defined as

S0(t | x) = P(Y > t | X = x, ν = 0).

Then, the MCM can be written as

S(t | x) = 1− p(x) + p(x)S0(t | x). (2)

Note that, in Equation (2), 1− p(x) is the cure rate and S0(t | x) is the latency, which
corresponds to the subjects who will suffer the event of interest. Since the MCM approach
allows the covariates to have different influence on cured and uncured individuals, let us
define Z as a covariate which only influences the insusceptible subjects. Therefore, the
MCM in Equation (2) can be written as

S(t | x, z) = 1− p(z) + p(z)S0(t | x). (3)

Depending on the assumptions established for either the latency or the cure rate, there
are parametric, semiparametric, and nonparametric approaches of MCMs. A thorough
review of the most relevant proposals in the literature can be found in [3,5], among others.

2.1. Parametric MCM

The first approaches in MCM were introduced by [30] in a study related to the relapse
of mouth cancer patients. The cure rate was considered as a constant and the latency was
modeled as a lognormal distribution with independence to any covariate. Later, ref. [31]
delved into Boag’s approach and considered an exponential model for the latency, also
with independence of covariates.

The first MCMs considering the influence of covariates were developed by [32]. They
proposed to estimate the cure rate with a logistic function and the latency with a Weibull
distribution. One decade later, ref. [33] introduced the accelerated failure time (AFT) model
for the latency. This model, which was later studied by [34], assumes the presence of
covariates with fixed and multiplicative effects. Another example of a parametric MCM
was developed by [35]. They considered a parametric approach to study the impact of
several variables on the survival time of patients with follicular lymphomas. In addition,
ref. [36] proposed a pseudo-residual model to assess the fit of the survival regression in
the non-cured fraction for mixture cure models and applied their method to a dataset
related to a smoking cessation drug trial. More recently, ref. [37] provided introduced a
multivariate mixture cure rate model based on the Chen probability distribution to model
recurrent event data in the presence of cured individuals. Regarding goodness-of-fit tests,
ref. [38] introduced a method to test whether the cure rate, as a function of the covariates,
satisfies a certain parametric model. Furthermore, in a context with interval-censored data,
ref. [39], developed a parametric but flexible statistical model and ref. [40] proposed a
goodness-of-fit test which deals with partly interval-censored data.
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2.2. Semiparametric MCM

Due to the fact that the effects of the covariates on the mixture cure model cannot
always be well approximated using a parametric method, semiparametric models arose.
These models provide considerably more flexibility than the parametric approaches. In the
literature, most semiparametric models attribute flexibility to latency, whereas the cure rate
is modeled parametrically (usually, assuming a logistic function). For example, ref. [41]
proposed an estimation procedure for a parametric cure rate that relies on a preliminary
smooth estimator and is independent of the semiparametric model assumed for the latency.

One category in this group includes the AFT models, which consist of a semiparametric
adaptation for the latency of the AFT parametric models (see [42–44] among others).
Specifically, a logistic regression is considered for the cure rate and the latency is determined
by an AFT regression model with unspecified error distribution and estimated via EM
methods. The EM algorithm was also considered in this context by [45] to model the
effect of the covariates on the failure time of uncured individuals. Another category
in semiparametric MCMs contains flexible models [46]. These models consider either
the probit or the log-log distributions to infer the cure rate, and the EM algorithm and
maximum-likelihood criterion to estimate the parameters. Furthermore, a third category
includes the semiparametric approaches based on splines (see [47–49], among others).
More recently, ref. [50] proposed a semiparametric MCM approach related to single-index
structures, which could be considered as a fourth category in this section. These models
are defined with a nonparametric form for the latency and semiparametric methods for the
cure rate.

In spite of adding certain flexibility in some terms of the model, semiparametric
approaches still have the disadvantage of restricting some functions to a previously defined
form, which may not be fulfilled in many realistic cases and lead to estimation errors.

2.3. Nonparametric MCM

Very few papers exist that use a completely nonparametric view. The first nonpara-
metric MCMs were introduced by [51]. Specifically, these authors proposed to estimate
the cure rate as the height of the non-zero asymptote in the survival curve. However, they
did not consider the effect of covariates in the model. In order to deal with this challenge,
ref. [52] took into account discrete variables.

The main leap for the development of nonparametric MCMs was carried out by [13],
who proposed a nonparametric cure rate estimator which can handle both types of continu-
ous and discrete covariates. In [29], this estimator was deeply studied, and a nonparametric
approach for the latency was proposed. Note that, in a nonparametric context, the choice
of the bandwidth is of primary importance, since it controls the trade-off between bias
and variance. A plug-in bandwidth selector which can be used in this context is the one
introduced by [53]. Another option to select the smoothing parameter is with a bootstrap
approach. A bootstrap bandwidth selection method for the cure rate and for the latency
estimators has been proposed in [29,54], respectively. It is important to highlight that, due
to the curse of dimensionality, the completely nonparametric models in the literature which
are implemented in R can only handle a univariate continuous covariate [55,56]. Therefore,
testing the effect of a covariate is a relevant aspect in regression analysis since the number
of potential covariates to be included in the model can be extremely large. A nonparametric
covariate hypothesis test for the cure rate, which can be applied to continuous, discrete,
and qualitative covariates, has been introduced by [57].

3. Machine Learning Techniques Applied to Survival Analysis

Over the past years, hand in hand with computational capabilities, machine learning
has been evolving and improving its ability to confront traditional regression and classifica-
tion problems. The continued improvement made machine learning community interested
in adapting these methodologies to other branches, including survival analysis. The main
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challenge researchers deal with is the presence of censored data (a rare feature in traditional
machine learning problems).

In the literature, there are multiple complex machine learning models which take
into account the presence of censored observations and study the event of interest over
time [58]. Generally speaking, four machine learning approaches have been used for
survival analysis:

• Survival Trees: the tree-like approaches were the first machine learning models
successfully used to handle censored data. Similarly to other tree-like algorithms,
the main idea is to split the data according to the similarity among observations,
grouping similar data in the same branches while keeping the different data apart.
The key of these models is the splitting criterion, which can be classified into two
categories: those that minimize within-node homogeneity [59–64] and those that
maximize between-node heterogeneity [65–67]. Amongst the last group, the more
recent Random Survival Forests [68–70] is the best tree-like survival model to this
date.

• Support Vector Machines (SVMs): although SVMs were firstly developed to be used
in classification, they were modified and adapted to regression problems, giving
rise to the support vector regression (SVR) model [71]. In order to handle censored
data, ref. [72] considered uncensored instances in the SVR, with the disadvantage
of ignoring the information about the censored observations; Ref. [73] added the
constraint classification approach to the SVM formulation, increasing the complexity
of the algorithm to quadratic scale with respect the number of observations. Ref. [74]
proposed a SVR for censored data (SVRc) that uses an asymmetric loss functions to
allow right and left censored observations to be processed, and refs. [75,76] introduced
different SVR-based approaches that combine both ranking and regression methods
in survival data analysis.

• Bayesian Networks: both naive-Bayes (NB) and Bayesian networks are models which
predict the probability of the event of interest based on the Bayes theorem. Ref. [77]
modeled the censored data by introducing a Bayesian framework to carry out auto-
matic relevance determination (ARD) in feedforward neural networks, and ref. [78]
effectively integrate Bayesian methods with an AFT model by adapting the prior
probability of the event occurrence for future time points. The main drawback of NB
methods is the assumptions of independence between all the features, which may not
be realistic in survival analysis [58].

• Neural Networks: Artificial neural networks (ANNs), originally introduced by [79],
are one of the most used machine learning models in survival analysis. In the literature,
there are three main groups, depending on the considered output for the neural
network:

1. Neural networks where the output is the survival status of a subject [77,80–82].
2. Neural networks based on a Cox PH model [83,84], where the output is the

survival time.
3. Neural networks based on the discrete-time survival likelihood, where the output

is the discrete survival time.

In this work, we focus on the most recent neural network approaches due to their
potential compared to the rest of the machine learning methods. Specifically, we will study
neural networks based on a Cox PH model and neural networks based on the discrete-
time survival likelihood. The reason is that their predictions (survival time) provide more
information about the event of interest than the neural networks where the output is the
survival status of a subject, which only considers the survival status.

3.1. Neural Networks Based on a Cox PH Model

A neural network based on the Cox regression model was introduced by [85]. It
consists of a logistic hidden layer and a linear output layer where the parameters are
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estimated via the maximum-likelihood method. This methodology was later extended with
deeper network architectures and better optimization techniques [86–89]). It is worth noting
that [90] made a wide comparison of these deep learning architectures (also proposing a
continuous-time model, the PC-Hazard) in a simulation with real-world data, using the
Python library pycox https://github.com/havakv/pycox (accessed on 1 October 2023) [7].
Note that all these approaches are limited by the PH assumptions. In order to ease Cox
model restrictions, ref. [7] proposed a non-proportional extension to this methodology,
denominated CoxTime. Additionally, ref. [91] studied the potential of machine learning
algorithms in a survival analysis context with the Cox proportional hazard model. In
addition, ref. [92] consider the inverse probability of censoring weighting (IPCW) and
IPCW bagging to improve the time-to-event analysis outcomes in machine learning, and
they conclude that machine learning models outperform survival analysis techniques in
the case of time-to-event right censored data.

In this study, we will consider three recent algorithms: CoxPH, also known as DeepSurv,
by [88], and CoxTime and CoxCC, both presented by [7].

3.2. Neural Networks Based on the Discrete-Time Survival Likelihood

Numerous studies applied discrete-time methods to approximate continuous survival
data analysis. The main advantage of discrete-time models is that, unlike the continuous-
time methods in the literature, they are not restricted by Cox regression assumptions. In this
work, we will consider two recent approaches: DeepHit [93] and Deep Survival Machines [9].

DeepHit, proposed by [93], is a neural network which learns the estimate of the joint
distribution of the first hitting time and competing events, making no assumptions about
the underlying stochastic process. A relevant aspect of the DeepHit model is that it can
smoothly handle situations in which either there is a single underlying risk or when there
are multiple competing risks (more than one event of interest). Later, ref. [94] proposed the
Nnet-survival model, a neural network which parametrizes the hazard rates and trains with
the maximum-likelihood method using mini-batch stochastic gradient descent (SGD).

More recently, a new approach was proposed by [9], called Deep Survival Machines,
that combines a parametric approach with a fixed stack of primitive distributions. It can be
considered a mix between the two big groups previously mentioned.

Note that all the mentioned ANN approaches are related to classical survival analysis;
that is, they are appropriate in contexts where it is assumed that all the individuals will
suffer the event of interest. Therefore, these methods do not try to estimate the cure rate,
and they are only focused on the survival function. If there is a proportion of subjects who
will never experience the event, then an adaptation to cure models needs to be considered.
Lately, several machine learning methods have been integrated with both mixture and
promotion time cure rate models. See, refs. [11,95–97], among others.

In this paper, we propose to adapt the nonparametric mixture cure model approach
by [13] to machine learning methods. Following [13], the cure rate can be estimated
nonparametrically as follows:

1− p̂(x) = Ŝ(T1
max | x), (4)

where T1
max = maxi:δi=1(Ti) is the largest uncensored failure time and Ŝ(T1

max | x) is the
Beran estimator in (1). Note that, for the mentioned ANN approaches, this estimation
requires little extra computation as it does not consider a different training algorithm: it
only needs to establish T1

max. Thus, any algorithm which estimates the survival function
in a classical survival analysis context is suitable to be adapted to account for cured data.
Considering (4), several machine learning methods have been adapted to be compared
with the two cure model approaches introduced in Section 2. The results related to the
simulation study are included in Section 4.

https://github.com/havakv/pycox
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3.3. Machine Learning Algorithm’s Selection for This Study

When selecting the proper ML algorithms to be used in this study, we wanted to focus
on the models that achieve the best results in previous state-of-the-art studies while also
achieving a good approximation to the cure rate distribution. For instance, in [7,9,12,98], the
authors compare different methods by using the concordance-index measure, concluding
that Deep Survival Machines, Random Survival Forests, and DeepHit achieve the best results.
However, when testing these methods against a known survival distribution when cure is
a possibility, both Random Survival Forests and DeepHit highly deviate from it, causing a
high MSE in both methods.

Although Random Survival Forests can shed some degree of explainability over the
provided solution, we decided to discard it due to the high MSE obtained in our preliminary
tests. If the algorithm cannot properly adjust to the cure rate distribution, there is no
reliability on the explanation provided. In the case of the DeepHit model, its strength relies
on the great results obtained with the concordance index scores. However, similarly to
the Random Survival Forest, its accuracy does not lead to a good approximation to the cure
rate distribution.

In the case of the SVM and the NB variations, their principal feature is their stability.
Their results are barely influenced by either the initialization or their hyper-parameters.
Unfortunately, both their concordance index and our initial test results are way below those
obtained by the deep learning approaches. As the explainabity of these methods is also
low, we decided not to include them in this study.

Therefore, considering the good results obtained in previous studies [7,9] and in our
initial tests, we considered the following methods for this work: CoxCC [7], CoxTime [7],
CoxPH (also known as DeepSurv) [88] and the Deep Survival Machine [9]. From now on,
we will denote them as ML_coxcc, ML_coxtime, ML_dcph, and ML_dsm, respectively.

4. Simulation Study

In this section, we carry out an extensive simulation study. The objective is to compare
the finite sample performance of the cure rate estimator computed using four machine
learning methods and two mixture cure model approaches. The results will show the
gain of using either a nonparametric cure model approach (which does not require any
parametric or semiparametric assumptions to be fulfilled) or a machine learning method
(which can handle multiple covariates and is not limited by any parametric condition),
depending on the context.

An important aspect to address in this paper is the reliability of the tested algorithms,
that is, how much we can trust on the provided solution (see [99,100]). A recent ML
survey [90] tested all algorithms against a temporal concordance index [101], which is
a correlation between predicted risk scores and the observed ones. Although this is a
commonly used test in machine learning researches, as it requires a split between training
and testing data, it does not completely capture the ability of the algorithm to model the
probability distribution, which is necessary to evaluate the performance of the estimators in
the field of cure models. To that end, similarly as in [95,97], we consider the mean squared
error (MSE) of the cure rate estimator:

MSE(x) = E[( p̂(x)− p(x))2]

which can be estimated, using Monte Carlo, by:

MSE(x) =
1
n

n

∑
i=1

( p̂(xi)− p(xi))
2 (5)

as a measure of the performance of the methods.
Regarding the software used to apply mixture cure models, two R packages were

considered: the npcure, to compute the nonparametric estimator, by [54], and the smcure,
to compute the semiparametric PH estimator, by [102]. Hereafter, these semiparametric and
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nonparametric estimators will be referred to as the MCM_np and MCM_semip, respectively.
To compute the ML methods, the Python pycox (https://github.com/havakv/pycox)
package [7] was used for CoxCC [7], CoxTime [7], and CoxPH (a.k.a DeepSurv) [88],
whereas the auton-survival (https://autonlab.org/auton-survival) package [103] was
used for the latter.

All ML methods used the same neural network: a fully-connected network with two
hidden layers (50 neurons per layer), all of them with batch normalization and swish as the
activation function. It is worth noting that several configurations were tested, proving all
ML methods to be highly affected by the selected network. This issue may suggest a lack
of stability in the ML approaches. Since the evaluation of this problem is beyond the scope
of this work, we provide the results obtained when using the most stable configuration,
based on preliminary simulation studies.

Eight scenarios are simulated. In Scenario 1, the data are generated from a semi-
parametric model with one covariate involved. Therefore, a good performance of the
MCM_semip estimator is expected. In Scenario 2, we consider a nonparametric model, also
with one covariate involved. Then, the MCM_np estimator will have advantage over the
other approaches. In Scenario 3, the data are generated following a similar procedure to
Scenario 1, except that the model does not depend on only one covariate: the cure rate
and the latency functions depend on different covariates. Thus, it is expected that both the
semiparametric and the machine learning approaches have a good performance, since they
allow for multiple covariates in the model. In Scenario 4, the data are generated in the same
forms as in Scenario 2, but the cure rate and the latency depend on different covariates.
Therefore, it is supposed that the machine learning methods will have advantage over
the MCM_np, which can not handle multiple covariates. For Scenarios 5–8, we consider
that two covariates influence the cure rate. In particular, in Scenario 5 (Scenario 6), the
data are generated from a semiparametric (nonparametric) model with two covariates
involved. One covariate influences on both the cure rate and the latency functions, and the
other covariate only influences the cure rate. Finally, Scenario 7 (Scenario 8) consists of a
semiparametric (nonparametric) model with three covariates. Two covariates are related to
the cure rate and a different covariate influences the latency.

For comparison reasons, Scenarios 1 and 2 are the same as the ones considered
in [13,29]. Below, we describe the general functions for the cure rate and the latency in all
the scenarios. Specifically, for data generated from a semiparametric model (Scenarios 1, 3,
5 and 7), the uncure rate and the latency are defined as follows:

p(x, y) =
exp(β0 + β1x + β2y)

1 + exp(β0 + β1x + β2y)
,

with β0, β1, and β2 defined in Table 1. In addition, the survival function of the uncured
subjects is

S0(t | x) =


exp(−λ(x)t)− exp(−λ(x)τ0)

1− exp(−λ(x)τ0)
if t ≤ τ0

0 if t > τ0

,

where τ0 = 4.605 and λ(x) = exp((x + 20)/40).
Regarding the data generated from a nonparametric model (Scenarios 2, 4, 6, and 8),

the following functions for the probability of uncure and the latency parts are considered:

p(x, y) =
exp

(
β0 + β1x + β2x2 + β3x3 + β4y

)
1 + exp(β0 + β1x + β2x2 + β3x3 + β4y)

,

with βi, i = 1, . . . , 4 defined in Table 1. As for the latency, the data was simulated using the
following function:

S0(t | x) =
1
2

(
exp(−α(x)t5) + exp(−100t5)

)
,

https://github.com/havakv/pycox
https://autonlab.org/auton-survival
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with
α(x) =

1
5

exp((x + 20)/40).

For all the scenarios, the censoring times are generated according to the exponen-
tial distribution with mean 1/0.3 and all the covariates follow a uniform distribution,
U(−10, 10). The censoring percentage varies from 51% to 61%, and the cure percentage
varies from 43% to 51%, approximately. The main characteristics of each scenario are
detailed in Table 1. A total of m = 1000 samples of sizes n = 100, 200, 500, and 1000
were considered.

Table 1. Parameter values.

Scenario 1 2 3 4 5 6 7 8

β0 0.476 0.0476 0.476 0.0476 0.476 0.0476 0.476 0.0476
β1 0.358 −0.2558 0.358 −0.2558 0.358 −0.2558 0.358 −0.2558
β2 0 −0.0027 0 −0.0027 −0.151 −0.0027 −0.151 −0.0027
β3 − 0.0020 − 0.0020 − 0.0020 − 0.0020
β4 − 0 − 0 − 0.207 − 0.207

Note that, in Scenarios 1–4, the MSE in Equation (5) will be represented for a grid of
covariate values. However, since in Scenarios 5–8 there are two covariates which influence
the cure rate, the MSE is represented in a contour plot. The results related to Scenarios 1–8
are shown in Figures 2–9, respectively.
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Figure 2. Mean squared error for the MCM_np (black solid line), MCM_semip (black dashed line),
ML_coxcc (red solid line), ML_coxtime (red dashed line), ML_dcph (red dotted line), and ML_dsm
(red dot-dashed line), with sample sizes n = 100 (top left), n = 200 (top right), n = 500 (bottom left),
and n = 1000 (bottom right) for Scenario 1.
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Figure 3. Mean squared error for the MCM_np (black solid line), MCM_semip (black dashed line),
ML_coxcc (red solid line), ML_coxtime (red dashed line), ML_dcph (red dotted line), and ML_dsm
(red dot-dashed line), with sample sizes n = 100 (top left), n = 200 (top right), n = 500 (bottom left),
and n = 1000 (bottom right) for Scenario 2.
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Figure 4. Cont.



Mathematics 2023, 11, 4150 12 of 21

−10 −5 0 5 10

0
.0

0
0

0
.0

0
5

0
.0

1
0

0
.0

1
5

0
.0

2
0

0
.0

2
5

x

M
S

E

−10 −5 0 5 10

0
.0

0
0

0
.0

0
5

0
.0

1
0

0
.0

1
5

0
.0

2
0

0
.0

2
5

x

M
S

E

Figure 4. Mean squared error for the MCM_np (black solid line), MCM_semip (black dashed line),
ML_coxcc (red solid line), ML_coxtime (red dashed line), ML_dcph (red dotted line), and ML_dsm
(red dot-dashed line), with sample sizes n = 100 (top left), n = 200 (top right), n = 500 (bottom left),
and n = 1000 (bottom right) for Scenario 3.
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Figure 5. Mean squared error for the MCM_np (black solid line), MCM_semip (black dashed line),
ML_coxcc (red solid line), ML_coxtime (red dashed line), ML_dcph (red dotted line), and ML_dsm
(red dot-dashed line), with sample sizes n = 100 (top left), n = 200 (top right), n = 500 (bottom left),
and n = 1000 (bottom right) for Scenario 4.

As expected, as the sample size increases, the MSE decreases, proving the consistency
of the methods. Figure 2 shows the results related to Scenario 1, where the underlying
covariate effects can be well approximated by a logistic function. Therefore, the perfor-
mance of the MCM_semip estimator is very good for all the sample sizes and for most of
the covariate values. Regarding the MCM_np estimator, it is clear that, in this unfavorable
context, it will lead to large MSE values. Not surprisingly, the second best method is
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the ML_coxtime, since the non-proportional hazard approach gives more flexibility for
these scenarios.

The results obtained in Scenario 2 (see Figure 3), where there are no parametric or
semiparametric assumptions, show the gain of using a nonparametric estimator. For mod-
erate or large sample sizes and for most of the covariate values, the MCM_np outperforms
the MCM_semip approach. However, the MCM_semip and the ML_coxcc are very compet-
itive for small sample sizes, even beating the nonparametric methodology for a specific
range of covariate values. Furthermore, it is important to note that the performance of the
ML_coxtime approach is very similar to the one by the MCM_np method.

Regarding Figures 4 and 5, which correspond to Scenarios 3 and 4, respectively, the
MCM approaches outperform the ML methods for all the sample sizes and for most
covariate values, as expected. The reason is that, in these scenarios, there are two covariates
involved: one related to the cure rate and another one to the latency. However, since the ML
methods cannot distinguish between those variables, the MSE error is not constant along the
latency-involved variable, causing these models to be non-competitive in these situations.
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Figure 6. From left to right, mean squared error for the MCM_np, MCM_semip, ML_coxcc,
ML_coxtime, ML_dcph, and ML_dsm, with sample sizes n = 200 (top) and n = 500 (bottom)
for Scenario 5.

−10
−5
0
5

10
MCM_np MCM_semip ML_coxcc ML_coxtime ML_dcph ML_dsm

−10 0 10
−10
−5
0
5

10

−10 0 10−10 0 10−10 0 10−10 0 10−10 0 10
0

0.005

0.01

0.015

0.02

Figure 7. From left to right, mean squared error for the MCM_np, MCM_semip, ML_coxcc,
ML_coxtime, ML_dcph, and ML_dsm, with sample sizes n = 200 (top) and n = 500 (bottom)
for Scenario 6.

In Figure 6, we can appreciate the difference regarding the MSE obtained in a semipara-
metric and in a nonparametric context. Note that, although the data were generated under
a nonparametric model, the MCM_np is not expected to have a good performance since it
does not account for multiple covariates in the cure rate. Specifically, the results related to
the MCM_np approach show that, as the sample size increases, the MSE decreases very
slowly, in some cases even negligibly. In Scenario 6 (see Figure 7), the minimum MSE
is obtained with the MCM_semip, the ML_coxcc, and the ML_coxtime methods for the
two considered sample sizes. As we observed in Scenarios 2 and 4, these semiparametric
approaches are competitive even in nonparametric contexts.
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Figure 8. From left to right, mean squared error for the MCM_np, MCM_semip, ML_coxcc,
ML_coxtime, ML_dcph, and ML_dsm, with sample sizes n = 200 (top) and n = 500 (bottom)
for Scenario 7.

Figure 8 shows the results related to a semiparametric context in which three different
covariates are involved. As expected, the MCM_semip, ML_coxcc, and ML_coxtime
approaches, due to their semiparametric nature, lead to small MSEs. Note that Scenario 8
(see Figure 9) is a non-favorable context for all of the methods. However, the performance
of the MCM_semip is very good, beating the other methods. Again, the existence of a
covariate only affecting the latency causes a bad performance of the ML methods.
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Figure 9. From left to right, mean squared error for the MCM_np, MCM_semip, ML_coxcc,
ML_coxtime, ML_dcph, and ML_dsm, with sample sizes n = 200 (top) and n = 500 (bottom)
for Scenario 8.

5. Real Data Application
5.1. Application to COVID-19 Patients

The MCM and ML methods were applied to a dataset related to 8623 individuals
who tested positive for COVID-19 infection in Galicia (Spain) during the first weeks of the
pandemic (from 6 March 2020 until 7 May 2020). The data were provided by the Galician
Public Health System. The event of interest is the hospital admission. Specifically, the
variable of interest is the follow-up time, in days, since the individual tested positive for the
first time until hospital admission. In this case, the term cured refers to individuals who did
not need hospitalization. Since not all the infected subjects will suffer the event of interest,
it is clear that a standard survival analysis is not appropriate and a cure model approach
should be used.

Two covariates are considered: sex and age (from 0 to 106 years). The percentage of
censoring is around 90%, depending on the sex. Table 2 shows a summary of the dataset.
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Table 2. Summary of the COVID-19 dataset.

Sex Number of Infected Patients Number of Censored Data % Censoring

Female 5451 5015 92.00%
Male 3172 2808 88.52%

The cure rate estimation computed considering all the MCM and the ML approaches
is shown in Figure 10. Regarding the MCM_np estimator, for both male and female patients
aged below 50, the probability of not needing hospitalization is very close to 1. However,
for individuals aged between 50 and 80, this probability decreases as the age increases.
In addition, for patients above 80, the cure rate seems to become stabilized. Specifically,
for female individuals above 80, the probability of not needing hospitalization is around
0.82, whereas for male subjects, this probability is around 0.77. The results obtained by
the MCM_semip estimator and all the ML approaches deserve some comments. Note that
these methods are not able to account for the, apparently, nonparametric underlying form
of the data. In particular, although all the approaches lead to similar results for patients
younger than 80, the MCM_semip estimation does not account for the constant cure rate
related to patients above 80.
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Figure 10. Cure rate estimation for female (left) and male (right) patients, computed with MCM_np
(black solid line), MCM_semip (black dashed line), ML_coxcc (red solid line), ML_coxtime (red
dashed line), ML_dcph (red dotted line), and ML_dsm (red dot-dashed line) for the COVID-19
data set.

5.2. Application to Bone Marrow Transplant Patients

We consider the well-known dataset related to 137 bone marrow transplant patients
(see [27,28]). The event of interest is the relapse of the disease, and the variable of interest is
the disease-free survival time. Similarly as for the COVID-19 data application in Section 5.1,
we considered two covariates: sex and age. The age varies from 8 to 45 years. A summary
of the dataset is shown in Table 3.

Table 3. Summary of the bmt dataset.

Sex Number of Patients Number of Censored Data % Censoring

Female 57 21 36.84%
Male 80 33 41.25%

Figure 11 shows the estimated probability of cure (i.e., not suffering a relapse of
the disease). Regarding MCM, we can observe that, for young female patients (aged
below 30), this probability is between 0.8 and 1. However, for female patients above 30,
the cure rate estimated with the MCM_np method considerably decreases and remains,
approximately, constant at 0.6. Note that the methods defined under a semiparametric
assumption (MCM_semip, ML_coxcc and ML_coxtime) are not able to detect this feature.
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It is important to mention that the MCM_np method considers the optimal bootstrap
bandwidth required in the nonparametric estimator. If a larger bandwidth was considered,
it would lead to a smoother cure rate estimation, especially for ages below 20, where the
number of patients is not large. With respect to male subjects, it seems that the age does
not influence the cure rate, since the estimated probability is around 0.6 and 0.8 for all
ages. Furthermore, it is important to mention the results obtained by the ML_coxtime
method, which differ considerably from all the other results. The reduced number of
patients together with the underlying nonparametric curve may cause the ML_coxtime
approach not to converge during the training procedure.
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Figure 11. Cure rate estimation for female (left) and male (right) patients, computed with MCM_np
(black solid line), MCM_semip (black dashed line), ML_coxcc (red solid line), ML_coxtime (red
dashed line), ML_dcph (red dotted line), and ML_dsm (red dot-dashed line) for the bone marrow
transplant dataset.

6. Discussion

The outcome of this study shows that although machine learning approaches are
powerful tools to deal with censored data, they have trouble fitting the real distribution.
As far as we know, it is a relevant question that was not previously answered, since using
the concordance index as metric does not provide information about how well the models
adjust to the probability distribution.

In addition to that, our studies can offer some observations regarding the tested algo-
rithms:

• There is a high discrepancy between the results obtained by the tested methods in
recent classic survival analysis studies [7,9] and the ones obtained here, when cure is
a possibility. Previous studies conclude that techniques like Random Survival Forests,
DeepHit, and Deep Survival Machine achieve the best results in terms of the concordance
index. However, when dealing with survival scenarios where cure is a possibility, the
previous results do not translate. The experiments conducted in this paper conclude
that mixture cure models and deep learning Cox-based approaches are the ones that
best approximate the cure rate distribution.

• The MCM_semip approach is the best choice whenever the underlying cure rate
function follows a semiparametric model. However, this is a hard assumption that is
difficult to reassure when dealing with real case scenarios.

• Although it is never the best choice, the MCM_np approach obtains close-to-best
results. Unfortunately, due to the curse of dimensionality, its implementation is only
available for single-covariate contexts.

• The ML_coxtime algorithm is very accurate when dealing with both semiparametric
and nonparametric cure rate functions.

• Both ML_coxcc and ML_dcph achieve similar results, proving to be a good choice
whenever the cure rate function is not known.
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• The ML_coxtime approach has to be treated carefully, as its solution can be unstable if
a wrong neural network architecture is selected. Our experiments suggest that small
networks (less than three hidden layers) tend to achieve more consistent results.

• With independence of the selected Deep Survival algorithm, the performance is highly
affected in cases where the uncure rate and the latency are influenced by different co-
variates. In these cases, the MCM_semip achieves the best results, even when dealing
with nonparametric scenarios.

Regarding the real data applications, some important remarks can also be made:

• ML_coxtime estimation in the application to bone narrow transplant is clearly far from
the solutions provided by the other methods. We advise not to use it when the number
of study samples is low.

• In addition, we do not recommend to use the ML_dhcp algorithm when the sample
size is small. Figure 11, left, suggests the algorithm is not able to adjust to the cure
rate estimation, providing a completely flat curve.

• The MCM_np is the only algorithm that is able to capture subtle changes in the cure
rate estimation. Both machine learning Cox models and the MCM_semip method
assume some conditions that cause a high degree of rigidity in their output. Therefore,
in order to avoid biased estimations, we recommend the use of MCM_np when
the underlying covariate effects cannot be well approximated by any parametric or
semiparametric model.

7. Conclusions

In this work, we adapted ML methods used for classical survival analysis to estimate
the probability of cure. Furthermore, we compared the performance of the introduced
approaches. Two main groups have been evaluated: cure models (semiparametric and
nonparametric approaches) and ML algorithms (mainly focused on deep learning solutions).
An extensive simulation study was conducted, where the reliability of the evaluated
methods was tested by measuring how they can estimate the cure probability. The results
stipulate that MCM_np is the best choice, since it is the method which leads to the lowest
MSE in each scenario. For contexts with multiple covariates, both MCM_semip and
ML_coxtime are solid choices. In terms of reliability, we advise carefully using either
ML_dsm and other ML approaches that were not included in the study, like DeepHit. Their
output is highly influenced by either the model initialization or their hyper-parameters,
making their output very unstable. For illustrative purposes, the methodologies were
applied to two medical datasets, where the gain of using the nonparametric mixture cure
model approach, which does not require any parametric or semiparametric assumptions to
be fulfilled, was shown. In addition, it was observed how a small sample size affects the
reliability of some machine learning methods, specifically, the ML_coxtime method.

Regarding future research lines, we propose to extend this work to evaluate the
performance of these methods over the survival function, instead of only taking into
account the survival rate. Additionally, we aim to define a fully nonparametric deep
learning approach that can cope with some of the problems detected in the deep learning
methods: discretization of the cure rate (DeepHit) and the rigidity of the Cox restrictions. In
addition, a comparison of the latency estimation for the different methods will be of interest.
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