
This is an ACCEPTED VERSION of the following published document:

Losada, J., Raposo, J., Pan, A. et al. Efficient execution of web navigation sequences. World
Wide Web 17, 921–947 (2014). https://doi.org/10.1007/s11280-013-0259-8

Link to published version: https://doi.org/10.1007/s11280-013-0259-8

General rights:

This version of the article has been accepted for publication, after peer review and is
subject to Springer Nature’s AM terms of use, but is not the Version of Record and does
not reflect post-acceptance improvements, or any corrections. The Version of Record is
available online at: https://doi.org/10.1007/s11280-013-0259-8.

https://doi.org/10.1007/s11280-013-0259-8
https://doi.org/10.1007/s11280-013-0259-8
https://www.springernature.com/gp/open-research/policies/accepted-manuscript-terms
https://doi.org/10.1007/978-3-642-28795-4_15

1

Efficient Execution of Web Navigation
Sequences

José Losada, Juan Raposo, Alberto Pan, Paula Montoto

Information and Communications Technology Department, University of A
Coruña. Facultad de Informática, Campus de Elviña, s/n, 15071, A Coruña

(Spain)

{jlosada, jrs, apan, pmontoto}@udc.es

Abstract. Web automation applications are widely used for different purposes such as B2B

integration and automated testing of web applications. Most current systems build the automatic

web navigation component by using the APIs of conventional browsers. While this approach has

its advantages, it suffers performance problems for intensive web automation tasks which require

real time responses and/or a high degree of parallelism. In this paper, we outline a set of

techniques to build a web navigation component able to efficiently execute web navigation

sequences. These techniques detect what elements and scripts of the pages accessed during the

navigation sequence are needed for the correct execution of the sequence (and, therefore, must be

loaded and executed), and what parts of the pages can be discarded. The tests executed with real

web sources show that the optimized navigation sequences run significantly faster and consume

significantly less resources.

Keywords: Web Automation, Navigation Sequence, Optimization, Efficient

Execution.

1 Introduction

Most today's web sources do not provide suitable interfaces for software

programs. That is why a growing interest has arisen in so-called web automation

applications that are able to automatically navigate through websites simulating

the behavior of a human user. For example, a flight meta-search application can

use web automation to automatically search flights in the websites of different

airlines or travel agencies. Web automation applications are widely used for

different purposes such as B2B integration, web mashups, automated testing of

web applications, Internet meta-search or technology and business watch.

A crucial part of web automation technologies is the ability to execute automatic

web navigation sequences. An automatic web navigation sequence consists in a

2

sequence of steps representing the actions to be performed by a human user over a

web browser to reach a target web page. Figure 1 illustrates an example of a web

navigation sequence to access to the content of the first message in the Inbox

folder of a Gmail account.

Fig. 1. Navigation Sequence Example

This work is focused in improving the performance of the execution of automatic

web navigation sequences. The approach followed by most of the current web

automation systems [6] [11] [12] [14] [15] consists in using the APIs of

conventional web browsers to automate them. This approach does not require to

develop a custom navigation component, and guarantees that the accessed web

pages will behave the same as when they are accessed by a regular user.

While this approach is adequate to some web automation applications, it presents

performance problems for intensive web automation tasks which require real time

responses and/or to execute a significant number of navigation sequences in

parallel. This is because commercial web browsers are designed to be client-side

applications and, therefore, they consume a significant amount of resources, both

memory and CPU. In this work we address this problem by using a custom

browser specially built for web automation tasks. This browser is able to improve

the response times and save a significant amount of resources (memory and CPU).

We present a set of techniques and algorithms to automatically optimize the

3

navigation sequences, detecting which parts of the accessed pages can be

discarded (not loaded), and which of the automatic events that are fired each time

a new page is loaded can be omitted (not fired) without affecting to the correct

execution of the navigation sequence.

There exist other systems which use the approach of creating custom browsers to

execute web navigation sequences [5] [8]. Since they are not oriented to be used

by humans, they can avoid some of the tasks of conventional browsers (e.g.

rendering). Nevertheless, they work like conventional browsers when loading and

building the internal representation of the web pages. Since this is the most

important part in terms of the use of computational resources, their performance

enhancements are much smaller than the ones achieved with our approach.

The rest of the paper is organized as follows. Section 2 briefly describes the

models our approach relies on. Section 3 presents an overview of the solution.

Section 4 explains the designed techniques in detail. Section 5 describes the

experimental evaluation of the approach. Section 6 discusses related work.

Finally, section 7 summarizes our conclusions.

2 Background

The main model we rely on is the Document Object Model (DOM) [4]. This

model describes how browsers internally represent the HTML web page currently

loaded in the browser and how they respond to user-performed actions on it. An

HTML page is modelled as a tree, where each HTML element is represented by

an appropriate type of node. An important type of nodes are the script nodes, used

to place and execute a script code within the document (typically written in a

script language such as JavaScript). The script nodes can contain the code directly

or can reference an external file containing it. Those scripts are processed when

the page is loaded and they can contain element declarations (e.g. a function or a

variable) that are used from other script nodes or event listeners, or other script

sentences that are executed at that moment.

4

Every node in the tree can receive events produced (directly or indirectly) by the

user actions. Event types exist for actions such as clicking on an element (click),

moving the mouse cursor over it (mouseover), or to indicate that a new page has

just been loaded (load), to name but a few. Each node can register a set of

listeners for different types of events. An event listener executes arbitrary script

code, which normally calls a function declared in script nodes. The scripting code

has the entire page DOM tree accessible and can perform actions such as

modifying existing nodes, removing them, creating new ones or even launching

new events.

The event processing lifecycle can be summarized as follows: the event is

dispatched following a path from the root of the tree to the target node. It can be

handled locally at the target node or at any target's ancestors in the tree. The event

dispatching (also called event propagation) occurs in three phases and in the

following order: capture (the event is dispatched to the target's ancestors from the

root of the tree to the direct parent of the target node), target (the event is

dispatched to the target node) and bubbling (the event is dispatched to the target's

ancestors from the direct parent of the target node to the root of the tree). The

listeners in a node can register to either the capture or the bubbling phase. In the

target phase, the events registered for the capture phase are executed before the

events executed for the bubbling phase. This lifecycle is somewhat of a

compromise between the approaches historically used in major browsers

(Microsoft Internet Explorer using bubbling and Netscape using capture).

The order of execution between the listeners associated to an event type in the

same node is registration order. The event model is reentrant, meaning that the

execution of a listener can cause new events to be generated. Those new events

will be processed in a synchronous way; that is, if li, li+1 are two listeners

registered to a certain event type in a given node in a consecutive order, then all

events caused by li execution will be processed (and, therefore, their associated

listeners executed) before li+1 is executed.

In addition to the events caused by the user actions on the page, there are also

some events that are automatically generated by the browser when a new page is

5

loaded. The most typical example is the load event, which is fired by the browser

over the body element of the HTML page when the page has just been loaded. We

will name these events as "automatic events".

3 Overview

This section presents an overview of our proposal.

The input for the automatic web navigation component is a navigation sequence

specification. In most systems, this specification is created by example: the user

performs the desired sequence manually and her actions are recorded by some

plugin in the browser. The exact format used to specify navigation sequences is

different in each web automation system but all of them basically consist in a list

of events which must be generated on certain elements of the website pages.

Between executing one event and the next, it is needed to wait for the effects of

the previous event to take place (e.g. wait for a new page to be loaded in the

browser). See [10] for a discussion of the different approaches for recording and

executing web navigation sequences.

The basic idea of our approach consists in detecting which parts of the accessed

pages can be discarded (not loaded) and which events can be omitted (not fired)

without affecting the execution of the desired navigation sequence. Our approach

works in two phases:

 In the optimization phase the navigation sequence is executed once, and, in

the meantime, the navigation component automatically calculates which

nodes of the HTML DOM [4] tree of each loaded page are needed to

execute the sequence, and which ones can be discarded. Then, it stores

some information to be able to detect those nodes in subsequent sequence

executions (the information to identify the nodes should be resilient to

small changes in the page, because in real web sites there are usually small

differences between the DOM tree of the same page loaded at different

moments). At the same time, the navigation component calculates which

of the automatic events fired each time a page is loaded are necessary to

execute the sequence.

6

 In the execution phase the navigation component executes the sequence

using the optimization information previously calculated. When each page

is loaded, a reduced HTML DOM tree is built, containing only the relevant

nodes needed to execute the sequence, and only the necessary automatic

events are fired.

Fig. 2. DOM tree of an example page

Figure 2 shows the DOM tree of a simple example page. We use boxes to

represent the nodes of the tree, and continuous lines to represent its parent-child

relationship. Event listeners are represented as dashed boxes adjacent to the

corresponding tree node (onclick, onload). Arrows with dashed lines are used to

indicate that a script node defines a function (marked with <def>), and to indicate

that the code of an event listener invokes a function defined in a script node

(marked with <calls>). Suppose that the only action specified by the navigation

sequence for this page is executing a click on the first A node. When the click

event is produced, the click event listener (onclick) is executed, and the function f2

performs a navigation to the desired page (e.g. window.location =

'http://acme.com';).

The shaded nodes are those that are needed to simulate the click action and

properly perform the navigation to the next page (we call them relevant nodes). In

this case, the relevant nodes are: the A node which is the target of the click event,

the SCRIPT node which defines the f2 function executed by the click event

listener, and their respective ancestors (the exact rules to compute the relevant

nodes will be described later). The rest of the nodes can be discarded (not loaded)

without any problem (we call these ones irrelevant nodes). Besides, the automatic

7

load event does not need to be fired when the page is loaded, since the execution

of the onload listener is not needed for the execution of the sequence.

This will produce significant performance and resource usage improvements:

 We will save memory, since much less nodes need to be represented.

 We will save CPU and execution time since unneeded scripts are not

executed. For instance, in this case, the script nodes not shaded do not

need to be executed.

 We will save bandwidth and execution time because unneeded navigations

are not performed. For instance, in this case, the navigations specified by

the LINK and IFRAME nodes will not be performed.

The main problem we need to address is how to calculate what we call node

dependencies. For instance, in this example the SCRIPT node which defines f2 is

a dependency of the A node when the click event is fired on it (because it is

needed to properly execute the click event listener registered in the A node).

Notice that in the DOM model, scripts are "black boxes" and, therefore, these

dependencies cannot be inferred directly. By using a custom browser, where we

have full control over the script execution engine, we have a way to uncover these

hidden dependencies.

Also notice that dependencies can get much more complex than in this example.

For example, in the previous figure, a click on an anchor may produce the

execution of a script that requires another script in a different node in the DOM

tree to be executed previously. Another difficult example would be that the load

event listener of the BODY node could generate content dynamically, including

the A node that invokes the script that will lead us to the next page. It could even

happen that the script requires another script contained in an iframe and, therefore,

the iframe would need to be loaded too. We will see how to deal with these

problems in the next section.

8

4 Proposed Techniques

In this section we begin stating some definitions and properties which will help us

to model all the possible dependencies between the DOM tree nodes we are

interested in (section 4.1). After that, we describe the techniques used during the

optimization phase of our approach, (section 4.2). Then, we explain the method

used to generate expressions to identify the irrelevant nodes at the execution phase

(section 4.3). Finally we outline the operation at the execution phase (section 4.4).

4.1 Node Dependencies

Definition 1: We say that there exists a dependency between two nodes n1 and n2

when the node n2 is necessary for the correct execution of the node n1. We say

that the node n2 is a dependency of the node n1 and denote it as n1→ n2. The

following rules define this type of dependencies:

 If the script code of a node s1 uses an element (e.g. a function or a

variable) declared in a script node s2, then s1→ s2. Rationale: to be able to

execute the script code of the node s1 the node s2 must be executed

previously.

 If the script code of a node s uses a node n, then s→ n. Rationale: to be

able to execute the script code of the node s, the node n must be loaded

previously. For instance, if s obtains a reference to an anchor node (e.g.

using the JavaScript function document.getElementById) and navigates to

the URL specified by its href attribute, then it will not be possible to

execute s unless the anchor node is loaded.

 If the script code of a node s makes a modification in a node n, then n→ s

(note that, in this scenario, the dependency s→ n also exists, applying the

previous rule). Rationale: the action performed by s may be needed to

allow n to be used later. For instance, if s modifies the action attribute of a

form node to set the target URL, then it will not be possible to submit the

form unless s is executed previously.

Definition 2: We say that there exists a dependency conditioned to the event e

being fired over the node n, between two nodes n1 and n2, when the node n2 is

9

necessary for the correct execution of the node n1, when the event e is fired over

the node n. We denote this as n1→e|n n2. Analogous rules to the ones explained

before define this type of dependencies, which, in this case, involve nodes

containing event listeners:

 If the script code of an event listener l for the event e in the node n uses an

element (e.g. a function or a variable) declared in a script node s, then

n→e|n s. Rationale: if the event e is fired over the node n, then the event

listener l is executed, and it requires the script node s to be executed

previously.

 If the script code of an event listener l for the event e in the node n1 uses a

node n2, then n1→e|n1 n2. Rationale: if the event e is fired over n1, then the

event listener l is executed and the node n2 must be loaded previously.

 If the script code of an event listener l for the event e in the node n1 makes

a modification in a node n2, then n2→e|n1 n1 (note that, in this scenario,

the dependency n1→e|n1 n2 also exists, applying the previous rule).

Rationale: the action performed by l may be needed to allow n2 to be used

later. For instance, if l modifies the action attribute of a form node to set

the target URL, then it will not be possible to submit the form unless l is

executed previously. Since l will only be executed when the event e is

fired over n1, then n1 is needed.

Observe that the following transitivity properties apply to node dependencies (we

will explain them through examples).

Property 1: If n1→ n2 and n2→ n3 then n1→ n3.

The example of Figure 3.a shows a fragment of the DOM tree of a page where

the script code of the node SCRIPT1 invokes a function f1 which is defined in the

node SCRIPT2 (SCRIPT1→ SCRIPT2), and the code of function f1 calls a

function f2 which is defined in the node SCRIPT3 (SCRIPT2→ SCRIPT3). For the

correct execution of the script code of the node SCRIPT1, both the second and the

third SCRIPT nodes are necessary, so both are dependencies of it (SCRIPT1→

SCRIPT3).

Property 2: If n1→e|n n2 and n2→ n3 then n1→e|n n3.

10

The example of Figure 3.b shows a fragment of a page DOM tree where the click

event listener of the node A calls a function f1 which is defined in the SCRIPT

node (A→ click|A SCRIPT), and the code of the function f1 uses the src attribute of

the IMG node (SCRIPT→ IMG). For the correct processing of the A node when

the click event is fired over it, both the SCRIPT and IMG nodes are necessary, so

both are dependencies of it (A→ click|A IMG).

Fig. 3. Transitivity Dependency Examples

Property 3: If n1→ n2, and n3→ n2 because n2 is a script node which makes a

modification in n3, then n3→ n1.

The example of Figure 3.c shows a fragment of a page DOM tree where the script

code of the node SCRIPT1 invokes a function f1 which is defined in the node

SCRIPT2 (SCRIPT1→ SCRIPT2), and the code of the function f1 modifies the

action attribute of the FORM node (FORM→ SCRIPT2). For the correct

processing of the FORM node (for example to correctly submitting it), we need to

ensure that f1 is both defined (and, therefore, we need SCRIPT2) and executed

(and, therefore, we need SCRIPT1). That is why both are dependencies of it

(FORM→ SCRIPT1).

11

Property 4: If n1→ e|n n2 and n3→ n2 because n2 is a script node which makes a

modification in n3, then n3→ e|n n1.

The example of Figure 3.d shows a fragment of a page DOM tree where the click

event listener of the A node calls a function f1 which is defined in the SCRIPT

node (A→ click|A SCRIPT), and the code of the function f1 modifies the action

attribute of the FORM node (FORM→ SCRIPT). For the correct processing of the

FORM node (e.g. to correctly submitting it), when the click event is fired over the

A node, both the SCRIPT and A nodes are necessary, so both are dependencies of

it (FORM→ click|A A).

4.2 Calculating the Relevant Nodes and Automatic Events

The main goal of the optimization phase is finding the set of relevant nodes for

the navigation sequence. During this phase, the browser works in a similar manner

to a conventional browser: the full page is loaded, generating the entire DOM tree,

downloading all external elements (e.g. style sheets, script files) and executing all

the script nodes defined in the page. Also, all the automatic events (recall section

2 for the definition of automatic events) are automatically fired by the browser

when each new page is completely loaded (e.g. the load event is fired over the

body element). After that, the browser will reproduce the desired navigation

sequence by firing the necessary events on the adequate elements to emulate the

user interaction with the page (e.g. clicking on elements, firing mouse events,

etc.), until a navigation to a new page is started.

During all this process, the browser interacts with the script execution engine (we

use Mozilla Rhino) to detect the node dependencies, according to the rules

defined in the previous section. For instance, when a script node is executed, the

browser interacts with the scripting engine to monitor what functions are called

during its execution. Then, according to the first rule of Definition 1, the nodes

defining those functions are marked as dependencies of the script node which

calls them. Similarly, if the code of the script node creates or modifies another

node, then, according to rule 3 of Definition 1, the script node will be a

dependency of the node which is created or modified.

12

In a similar way, when an event (be it automatic or generated by the navigation

sequence) is fired, the browser monitors which other nodes are used during the

execution of the listeners associated to the event, which other events are generated

and which nodes are modified by the execution of the event listeners. The

appropriate dependencies according to the rules of Definition 2 will be generated.

Once the dependencies have been computed, the set of relevant nodes is built

according to the following rules:

1. The nodes which are directly used in the target navigation sequence are

relevant. For instance, if one step in the sequence is generating the click event

on a A node, then that A node is relevant.

2. If a node n is relevant, all its ancestors are relevant. Note, that the ancestors

could be needed because of the capture and bubbling phases of the event

dispatching model of the DOM trees (see section 2).

3. By definition, if a node n1 is relevant and n1→ n2 then n2 is relevant (all its

dependencies are relevant too).

4. By definition, if a node n1 is relevant, n1→e|n n2, and the event e was fired over

the node n, then n2 is relevant (all its dependencies conditioned to the event e

being fired over the node n are relevant too, if the event e was fired over n).

5. Some special rules apply to form-related nodes, to be able to properly submit

forms:

(a) If a form node is relevant, all the nodes corresponding to input and select

elements contained in the form are relevant.

(b) If an input or select node is relevant, the form node containing it is relevant.

(c) If a select node is relevant, all its child option nodes are relevant.

6. A small set of nodes corresponding to some special element types are always

considered relevant because they are needed to properly process other nodes of

the page DOM tree. For instance, the base element sets the base URL, which

means that the URLs specified by other elements are relative to it.

From the set of relevant nodes, we can easily calculate the set of irrelevant nodes

which can be ignored at the execution phase. First, all the DOM tree nodes not

contained in the set of relevant nodes are added to the set of irrelevant nodes.

13

Then, all the irrelevant nodes which have an ancestor also contained in the set are

removed from it. The resulting set contains only the root nodes of the sub-trees

whose descendants are all irrelevant. We call them irrelevant sub-trees.

Finally, to determine which of the automatic events are necessary for the correct

execution of the sequence, the system checks, for each automatic event, if any of

the relevant nodes has any dependency derived from it (i.e. it checks if a relevant

node has been affected by the listeners executed as result of firing the event). If

that is the case, the event is added to the list of automatic events that should be

fired at execution time when the current page is loaded.

Fig. 4. Example

Let’s see an example. Figure 4 shows a fragment of the DOM tree of a page.

Suppose the target sequence specifies that the navigation component should

execute a click over the A node. The relevant nodes for this interaction are shaded

in the figure. Let's see how they are computed:

 According to rule 1, the node A is relevant (since it is the target of the

action).

 According to rule 2, all the A ancestors are relevant: BODY and HTML.

 According to rule 3, all A dependencies are relevant: SCRIPT5 and

SCRIPT6 (and its ancestors: DIV3). In this case they are needed because

they execute script code which modifies the click event listener of the node

A when the page is loaded.

o The function f3 (defined in SCRIPT5) modifies the click event

listener of the node A, so A →SCRIPT5.

14

o SCRIPT6, which is executed when the page is loaded, invokes the

function f3, so SCRIPT6→ SCRIPT5, and due to the transitivity

rules explained in section 2, A→ SCRIPT6.

 According to rule 4, all A dependencies conditioned to the event click

being fired over A are relevant too: SCRIPT1 and FORM (and all its

ancestors: HEAD). They are needed because the event listener of the node

A invokes a function defined in SCRIPT1 which submits the form.

o The click event listener of the node A invokes the function f1

defined in SCRIPT1, so A→click|A SCRIPT1.

o The function f1 uses the node FORM, so SCRIPT1→FORM, and

due to the transitivity rules explained in section 2, A→click|A FORM.

 According to rule 5, if a form node is relevant, all the input nodes

contained in the form are relevant: INPUT1 and INPUT2. To properly

submit the form all its input fields are necessary.

 According to rule 3, all FORM dependencies are relevant: SCRIPT2 and

BODY (and all its ancestors, already included in the set of relevant nodes).

They are needed because the load event listener of the node BODY

invokes a function defined in SCRIPT2 which modifies the action attribute

of the form.

o The load event listener of the node BODY invokes the function f2

defined in SCRIPT2, so BODY→load|body SCRIPT2.

o The function f2 (defined in SCRIPT2) modifies the action attribute

of the node FORM, so FORM →SCRIPT2, and due to the

transitivity rules explained in section 2, FORM→load|body BODY.

The nodes which are stripped in Figure 4 are those which are identified as the

roots of the irrelevant sub-trees, which can be discarded in the following

executions.

The automatic event load, which is fired over the BODY, must be added to the list

of necessary automatic events, because the FORM, which is a relevant node, has a

dependency derived from it (FORM→load|body BODY). Note that, to properly

submit the form, the load event listener of the body element (onload) must have

been executed, because it invokes f2 which sets the action of the form.

15

4.3 Identifying the Irrelevant Subtrees at Execution Phase

Once the root nodes of the irrelevant sub-trees have been calculated, we need to

generate expressions to be able to identify them at the execution phase. There are

two requirements for this process. On one hand, the generated expressions should

be resilient to small changes in the page because in real web sites there are usually

small differences between the DOM tree of the same page loaded at different

moments (e.g. new advertisement banners can appear or different data records can

be shown). On the other hand, the process of testing if an expression identifies a

node should be very efficient, because, at the execution phase the browser should

check if each node is identified by any of those expressions before adding it to the

DOM tree.

To uniquely identify a node in the DOM tree we use an XPath-like [16]

expression which can contain information about the element and some of its

ancestors. For our purposes, we need to ensure that the generated expression

identifies a single node, but is not too specific to be affected by the

aforementioned small changes in the pages. For this, we use an enhanced version

of the algorithm explained in [10]. The basic idea of the algorithm consists in

building an expression matching the minimum required number of nodes in the

DOM tree (maximizing, this way, its resilience), using its tag name, its attributes,

and its associated text.

An important concept is what we will call a “node expression”. It is an XPath-like

expression which only contains information about one node, and it has the

following format:

//TagName[@a1=”v1” and … and @am=”vm” and text()=”t”]

Where TagName is the tag name of the node, ai and vi i={1,...,m} are names and

values of attributes of the node, and t is the text of the node if it is a leaf node

(being the TagName the unique element of the expression which is mandatory).

If the target node can be uniquely identified in the whole DOM tree with a node

expression, then that is the result XPath-like expression to identify it. If it cannot

16

be uniquely identified (i.e. all the possible node expressions also match with other

nodes in the DOM tree), then a node which can be uniquely identified with a node

expression is searched in the path from the target node to the root of the tree.

When it is found, the expression to identify the node is added to the result XPath-

like expression, and the algorithm is applied again over the subtree whose root is

that node. This way, the global resulting XPath-like expression would be

composed by a sequence of node expressions:

//x1//x2//..//xn

Where //xi iЄ{1,...,n} are the node expressions built to uniquely identify a node in the

subtree considered in each iteration of the algorithm. We define the length of an

XPath-like expression as the number of node expressions compounding it.

Figure 5 gives the complete algorithm to generate the XPath-like expression to

identify a node n contained in the DOM tree T. The repeat loop iterates until the

target node n can be uniquely identified in the subtree considered in the current

iteration (initially, the whole page DOM tree is considered). The while loop

iterates from the target node n to the root of the subtree until a node which can be

uniquely identified is found. When that node is found, the node expression to

uniquely identify it (x) is added to the result expression (result) and the subtree

considered in the next iteration of the repeat loop is set to the one which has that

node as root.

The function getNodeExp receives as input a node and a subtree and tries to

generate a node expression to uniquely identify the input node in the input

subtree. If such expression uniquely identifying the node cannot be generated, it

returns null.

A special case is considered at the end of the while loop, to deal with the case

when there is not any node in the path from the target node to the root of the

subtree which can be uniquely identified using exclusively the node data (i.e with

a node expression). In that case, the function getChildNodeExp is called over the

child node of the root of S (the current subtree) which is in the path to the target

node. This function works in a similar way as the function getNodeExp but:

17

 It never returns null. It applies the considerations explained in the two

following points to the node expression which identifies the fewer number

of nodes (including the target node).

 The returned expression starts with “/” instead of “//”. This means that the

node must be a direct child of the last node whose information was added

to the result expression (i.e. the root node of S, whose information was

added to result in the previous iteration of the repeat loop). This allows

differentiating this node from other nodes matching with the same node

expression, which are not child nodes of the root of S.

 If necessary, it also uses the node position between its siblings to create an

expression to uniquely identify it. This allows differentiating the node

from other nodes matching with the same node expression, which are also

child nodes of the root of S.

So, the final XPath-like expression will have the following format:

//x1 [“//” | “/”]x2 … [“//” | “/”]xn

Note that the first node expression always starts with “//” because, if no other

node is found before, the nodes HTML, BODY and HEAD always can be

uniquely identified using only its tag name.

18

Fig. 5. Algorithm to generate an XPath-like expression to identify a node

Let see now how the function genNodeExp tries to generate a node expression to

uniquely identify a node in a subtree. As commented previously it only uses the

node tag name, its attributes and its associated text (if it is a leaf node).

First, it tries to identify the element using only its tag name. If it is not enough,

then it tries to use its tag name and its attributes. The algorithm considers some

attributes as “more relevant” to identify a node. For example, the attribute id, in

most of the cases, identifies a single node in the entire DOM tree by itself.

Examples of other attributes considered as more relevant are name, title, alt,

value, for, src, action, href, class, etc. The algorithm also considers some

attributes as “less relevant” to identify a node. These attributes, in most of the

cases, are not useful to identify the node (for example, when they only represent

numeric values) and, besides, if they were used, the generated expression could be

Algorithm: Generate an XPath-like expression to identify a node in a DOM tree
- X = GenerateExpression(n,T)

Inputs:
- n, the target node to be identified by the expression
- T, the DOM tree where n is contained

Output:
- result, the XPath-like expression to uniquely identify n in T.

result = “”; # Initialize the variable that will contain the result expression
S = T; # Initialize the variable that will contain the subtree considered in each iteration
m = null; # Auxiliary variable that will contain the node analyzed in each iteration

Repeat { # Iterate until the target node n can be uniquely identified in S
 m = n; # Initialize m to the target node n
 x = null; # Initialize the variable that will contain the node expression generated to identify m

 # Iterate from n to the root of S until a node which can be uniquely identified is found or the root
 # of S is reached
 While (x==null && m!= root(S)) {
 x = getNodeExp(m, S); # Returns an expression to uniquely identify m in S
 # or null if such expression cannot be generated
 If (x != null) { # The node can be uniquely identified in S
 result = result + x;
 S = <the subtree whose root is m>;
 } else { # The node cannot be uniquely identified in S
 m = parent(m,T); # Analyze the parent node in the tree
 }
 }
 If (m=root(S)) { # No node can be uniquely identified in the path from n to the root of S.
 Let m’ be the child of m which is in the path to the target node n;
 x = getChildNodeExp(m’,S); # Returns an expression to uniquely identify
 # m’ as a child of m in S, using the node position if necessary
 result = result + x;
 S = <the subtree whose root is m’>;
 }
} Until (m==n);
return result;

19

weaker. Examples of some of these attributes are cellpading, cellspacing, type,

method, content, width, height, align, rel, etc. Initially, the algorithm tries to

generate an expression using only the more relevant attributes. If the node cannot

be uniquely identified using those attributes, then it tries to generate an expression

considering all the node attributes except the ones considered as less relevant. If

the node cannot be uniquely identified either, then it tries to generate an

expression using all the attributes.

If the attributes are not enough to uniquely identify the node, and it is a leaf node,

then the algorithm tries to use the text of the node. First, it tries to generate an

expression using exclusively the node tag name and its text, and if it is not enough

it also uses its attributes (in the same way as commented previously).

Figure 6 shows a simple example illustrating several scenarios. It shows a

fragment of a DOM tree, showing the set of attributes of each node beside it. The

SPAN grayed node is the one to be identified. In the first iteration of the algorithm

the whole DOM tree is considered (S1). The target SPAN node cannot be uniquely

identified in S1 because there are other SPAN nodes with the same attributes and

values. So a node which can be uniquely identified is searched in the path to the

root. The first one which is found is the TABLE node, which can be uniquely

identified using its id attribute (note that the attribute width could also be used to

identify the node but it is not present in the set of “more relevant” attributes,

whereas the attribute id is). In the second iteration the target SPAN node cannot be

uniquely identified in S2, and there is not any node, in the path to the root of S2,

that can be. So, the child TR in the path to the target node is used to generate the

node expression indicating that this node must be a direct child of the previous

one (i.e. starting with “/”). In this case, the position must also be used to

differentiate it from its sibling TR nodes. In the third iteration, the SPAN target

node can be uniquely identified in S3 because there is not any other SPAN node,

in that subtree, having the value “c2” assigned to the attribute class.

20

Fig. 6. XPath-like expression generation example

4.4 Execution Phase

The general functioning of the navigation component at this phase is the following

one: before loading each page, it checks if it has optimization information

regarding relevant nodes associated to that page, that is, a set of expressions to

identify the root nodes of the irrelevant sub-trees. That information is used to

build a reduced version of the HTML DOM tree, containing only the relevant

nodes. Then it checks if it has optimization information related to automatic

events that should be fired in that page. If that is the case, only the appropriate

events are fired.

The process of checking if a node is the root of an irrelevant sub-tree should be

very efficient because it is executed for all the elements present in the page to

21

decide if they must be added to the HTML DOM tree or not. That is why we do

not use a conventional XPath matching algorithm. Instead, we leverage on the fact

that the XPath-like expressions we generate use a strict subset of XPath and

always verify certain restrictions. This allows us to use a faster algorithm for those

particular expressions.

The main idea of the algorithm consists in checking, for each XPath-like

expression, if there are nodes in the path from the analyzed node to the root of the

tree which match with all the individual node expressions compounding it. Figure

7 gives the complete algorithm to check if a node is the root of an irrelevant

subtree.

The external while loop iterates over the XPath-like expressions generated during

the optimization phase. If any of the expressions identifies the node, then it is

considered as irrelevant. To check if each XPath-like expression identifies the

node, the first condition to check is if its last node expression matches with the

target node. If it does not match, then that expression does not identify the node.

On the contrary, if it matches and if the expression is compound by more node

expressions, we need to check if there are nodes in the path to the root of the tree

which match with all those node expressions. This is accomplished by the second

while loop, which iterates over the individual node expressions previous to the

last one. The main idea of each iteration of this loop consists in going up by the

tree until a node which matches with the current node expression is found, but we

need to consider the special case of the node expressions starting with “/” instead

of “//” (note that, in this case, we can consider that a node matches with that node

expression, only if its parent node matches with the previous node expression).

So, the third while loop gets all the consecutive node expressions concatenated by

“/” to create a partial XPath-like expression. Then, the fourth while loop iterates

over the nodes in the path to the root of the tree, trying to find a list of consecutive

nodes matching with this partial expression (i.e. each node of the list matches with

the corresponding node expression contained in the partial XPath-like expression).

Note that when the node expression analyzed in the second while loop does not

start with “/”, then the partial XPath-like expression built in the third while loop is

22

equal to the node expression, and the fourth while loop tries to find one node

matching with it.

Fig. 7. Algorithm to check if a node is the root of an irrelevant subtree

Algorithm: Check if a node matches with any of the XPath-like expressions which identifies the root
nodes of the irrelevant subtrees

- result = CheckIfIrrelevantNode(n,X)
Inputs:

- n, the target node to check if it matches with any expression.
- X={X1, …Xr}, where each Xi iЄ{1,...,r} is an XPath-like expression identifying the root node of an

irrelevant subtree. Each Xi is an expression with the following format: //xi1 [“//” | “/”]xi2 … [“//”
| “/”]xit where [“//” | “/”]xik kЄ{1,...,t} is a node expression to identify a node using its tag name,
attributes and/or text.

- T, the DOM tree built up to the moment, and where the node n will be added if it does not match
with any expression in X.

Output:
- True if n matches with any Xi iЄ{1,...,r} or false in other case.

i = 1; # Auxiliary expression counter
While (i<=r) { # Process one XPath-like expression in each iteration
 m = n; # Initialize m to the target node n
 k = length(Xi); # Auxiliary counter, initialized to the number of node expressions in Xi
 If (matches(m,xik) { # If the target node matches with the last node expression
 m = parent(m); # Take the parent node
 k = k - 1; # Point to the previous node expression
 While (k>0 && m!=null) { # While there are node expressions left and parent nodes to match
 p = xik; # Partial expression initially set to the current node expression
 While (xik is preceded by “/”) { # Add to p all the consecutive previous node expressions
 k = k - 1; # concatenated by “/”
 p = xik + “/” + p;
 }
 matched = false;
 While (m != null && !matched) { # Iterates over nodes in the path to the tree root
 N = [m]; # Node list, initially containing the current node
 m’ = m;
 Repeat (length(p) -1) times { # Add to N the same number
 m’ = parent(m’,T); # of nodes as node expressions are in p
 append(N,m’);
 }
 if (matches(N,p) { # If the partial expression matches with the list of nodes
 matched = true;
 m = parent(m’,T); # Continue with the parent node of the ones matched in this iteration
 k = k - 1; # and the node expression previous to the ones matched in this iteration
 } else {
 m = parent(m,T); # Try to match p from the parent node of the current one
 }
 }
 }
 If (k=0) { # All the node expressions of Xi have been matched
 return true;
 } else {
 i = i+1; # Analyze the next XPath-like expression

 }
 } else {
 i = i+1; # Analyze the next XPath-like expression

 }
}
return false;

23

Suppose we are building the DOM tree of the figure 5 and we have the expression

generated to discard the grayed node (recall section 4.3). For each node which is

added to the DOM tree we need to check if that expression identifies it:

 All the nodes which do not have the tag name SPAN, or have it but they do

not have the attribute class equals to “c2”, do not match with the last node

expression (//SPAN[class=“c2”]), so they are not identified by the

expression.

 The first SPAN node with attribute class equals to “c2” matches with the

last node expression. Then, the previous node expression is analyzed. In

this case, the partial expression //TABLE[@id=“table2”]/TR[2] (because

they are concatenated by “/”). A list of two consecutive nodes matching

this expression cannot be find in the path to the tree root (note that when

analyzing the TABLE node and its first TR child, the expression does not

match because of the position of the TR between the children of the

TABLE), so the node is not identified by the expression.

 The second SPAN node with attribute class equals to “c2” matches with

the last node expression. Besides, we are able to find two consecutive

nodes in the path to the tree root matching the partial expression

//TABLE[@id=“table2”]/TR[2] (the TABLE node and its second TR

child). At this point, all the node expressions compounding the XPath-like

expression have been matched, so the expression identifies the node, and it

is considered as the root of an irrelevant subtree. As a consequence, the

node and all its descendants would be discarded, and not added to the

DOM tree.

5 Evaluation

To evaluate the validity of our approach we implemented a custom browser. This

browser emulates Microsoft Internet Explorer (MSIE) version 9 and was fully

developed in Java using open-source libraries including Apache Commons-

Httpclient to handle HTTP requests, Neko HTML parser to build DOM structures,

and Mozilla Rhino as JavaScript engine. The browser neither has user interface

nor renderization capabilities, but is able to simulate them, and it also supports

CSS, cookies and Java Applets. Most of the JavaScript objects and functions

24

implemented in MSIE are also implemented in the custom browser including

support for AJAX and some built-in ActiveX objects. Some MSIE advanced

features are not implemented, including support for proprietary scripting

languages (e.g. VBScript) or support for embedded objects (e.g. Adobe Flash).

There are also some MSIE proprietary non-standard JavaScript functionalities not

implemented in the custom browser.

This section explains the set of experiments that we have performed. We selected

a set of websites of different domains included in the top 500 sites on the web

according to Alexa [1]. In each website we recorded a navigation sequence

representative of its main function (e.g. a product search in an e-commerce

website). Every sequence executes events to fill and submit forms, to navigate

through hyperlinks and, in some cases, to display content collected with AJAX

requests.

In the first experiment, we compared the resources consumed by our custom

browser when it uses its optimization capabilities, with the resources consumed in

its normal operation mode (which emulates the behavior of the commercial

browsers, loading the accessed pages entirely and firing all the automatic events).

We ran a first execution of the navigation sequence, in each of the selected

websites, to collect the optimization information. Then, we compared a normal

execution of each sequence, without using the optimization information, and

another one using it. To prevent the problem of small variations in web pages

when they are accessed in different moments, each sequence was executed 10

times and the results shown in this section are the averages of the 10 executions.

Table 1 shows the following metrics for each web site:

 Mean number of XPath-like expressions generated per page. That is, the

mean number of irrelevant subtrees identified per page.

 Mean length of the generated XPath-like expressions. That is, the mean

number of “node expressions” per XPath-like expression.

 Total time consumed to calculate node dependencies (and the percentage it

represents regarding the time consumed by the normal execution of the

sequence).

25

 Total time consumed to calculate the necessary automatic events and the

irrelevant nodes from the node dependencies, and to generate the XPath-

like expressions identifying the root nodes of the irrelevant subtrees (and

the percentage it represents regarding the time consumed by the normal

execution of the sequence).

 Total time consumed by the normal execution of the sequence.

As we will demonstrate later, the number of XPath-like expressions (between 29.5

and 159.25 per page, with a global mean of 72.79 per page) is relatively small

compared to the number of nodes which they allow discarding. The mean length

of the expressions is always greater than 1 which implies that, all the sources

contains nodes that cannot unambiguously be identified using only their text

and/or their attributes. On the other hand, the mean length of the expressions is

always fewer than 2, so the generated expressions contain information about a

small number of nodes, having a high resilience to small changes. Finally, it can

be observed that the time consumed to calculate node dependencies and generate

the XPath-like expressions is quite small (globally, they represent, respectively,

the 0.69% and the 2.51% of the time consumed by a normal execution), so, we

can conclude that the process of calculating and colleting the optimization

information is very efficient, and it could be executed frequently, if desired, to

prevent the invalidation of the collected optimization information due to major

changes in the websites pages.

Table 2 shows the following metrics comparing the normal and the optimized

executions (each cell shows the result of the normal execution followed by the

results of the optimized execution):

 Total number of HTML DOM tree nodes created.

 Total number of script nodes created and executed.

 Total number of frame and window objects created.

 Total number of HTML pages downloaded. Note that the number of

frames and windows created can be greater than the number of HTML

pages downloaded because some frames only execute JavaScript code

without needing to download an HTML page.

26

 Total number of external objects downloaded (including JavaScript and

CSS files).

 Total number of AJAX requests executed.

Measuring the resources used in all the navigation sequences, the optimized

executions only require the 12.41% of the nodes. Discarding those nodes, the

browser also avoids unnecessary downloads and the execution of unnecessary

scripts, so the memory and CPU usage, is highly minimized. The optimized

executions only execute the 24.85%% of the scripts, create the 31.11% of the

frames and windows, download the 50.81% of the HTML documents and the

33.23% of the external objects, and execute the 29.03% of the AJAX requests.

The first five columns of Table 3 show the times consumed by the browser to

perform the main tasks necessary to execute each navigation sequence (again,

each cell shows the result of the normal execution followed by the results of the

optimized execution). These tasks are:

 Build the DOM tree (this task include creating frames and windows when

needed).

 Execute scripts.

 Download HTML pages.

 Download external objects (including JavaScript and CSS files).

 Execute AJAX requests.

The sixth column shows the time consumed, in the optimized execution, to check

if the nodes are the root of an irrelevant subtree according to the optimization

information (this task corresponds to the execution of the algorithm explained in

the section 4.4, to decide if each node should be added to the DOM tree). Note

that this time is part of the time consumed in the optimized execution to build the

DOM tree, and which is shown in the first column.

Finally, the seventh column shows the total time consumed to execute the

sequence (note that this time is not exactly the sum of the first five columns

because the browser needs to execute other internal tasks to execute the

navigation sequences).

Measuring the mean time consumed in all the navigation sequences, the optimized

executions, compared to the normal ones, consume the 45.68%. By tasks, to build

27

the DOM tree they consume the 37.36%, to execute scripts the 37.69%, to

download HTML pages the 67.37%, to download external objects the 33.3%, and

to execute AJAX requests the 32.38%.

The last row shows the total time which the optimized executions save in each

task, and the percentage which it represents regarding the total time of the normal

executions. As can be seen, checking if the nodes should be added to the DOM

tree only adds a penalization of the 0.18%, which is insignificant compared to the

time savings in all the tasks. Even if we consider only the task of building the

DOM tree, which in the optimization execution includes the time to check if the

nodes should be added to the DOM tree, a 1.02% of the time is saved (this is

explained because creating objects is a much more expensive operation than

comparing strings). Executing scripts it is saved a 16.42% of the time,

downloading HTML pages a 10.08%, downloading external objects a 25.27%,

and executing AJAX requests a 1.65%. Globally a 54.32% of the time is saved.

In the second experiment we compared the execution time of our custom browser

using and without using its optimization capabilities, with the execution time of

other representative navigation components. We used a navigation component

based on another custom browser, in this case, we chose HtmlUnit [5] because it

is an open source project and also supports JavaScript and CSS, and a navigation

component using the APIs of two commercial web browsers, in this case

Microsoft Internet Explorer 9 and Mozilla Firefox 19.0. Table 4 shows the

average execution time of 20 consecutive executions of each of our test navigation

sequences, discarding those that don't fit in the range of the standard deviation.

The table 4 also shows, between brackets, the percentage they represent in

comparison with the execution time of our custom browser using its optimization

capabilities. The last four rows show, respectively, the following aggregate

metrics about the time percentages: the average, the standard deviation, the

average discarding those results that do not fit in range of the average ± standard

deviation, and the median.

The execution time of the custom browser using its optimization capabilities

always got better results. Compared with the executions without optimization, the

execution time varies from 141% in the worst case to the 651% in the best case.

28

Calculating the average of the percentages, the execution time of the custom

browser without optimization is 2.44 times slower (244%) than the execution time

with optimization. Discarding the results that do not fit in range of the average ±

the standard deviation (the standard deviation is 45%), the execution time of the

custom browser without optimization is 2.01 times slower (201%). The median

value of the executions indicates that the custom browser without optimization is

2.19 times slower (219%).

Regarding the other browsers, the HtmlUnit custom browser is the one that got

better results. In average it is 3.55 times slower than our custom browser with

optimization (2.48 times if we discard the results that do not fit in range of the

average ± the standard deviation), and the median of the executions indicates that

it is 3.01 times slower. In the case of the navigation components based on

Microsoft Internet Explorer and Mozilla Firefox, the average execution times are

6.34 and 5.19 times slower than the execution time of the custom browser with

optimization (4.49 and 3.85 times if we discard the results that do not fit in range

of the average ± the standard deviation), and the median of the executions

indicates that they are 5.07 and 4.63 times slower, respectively.

The website where the optimized execution got better results was W3CSchools.

As can be seen in Tables 2 and 3 it is because in the normal execution it

downloaded 33 external objects and executed 89 scripts, but none of them were

necessary in the optimized execution. This allows saving a lot of time in the

corresponding tasks. The worst result was obtained in the website Barnes&Noble.

As can be seen in Table 2, in this website the optimized exeuction could build a

smaller DOM tree, but it needed to download the same external objects and

HTML pages, and executed the same scripts. In Table 3, it can be observed that

the optimized execution saves time building the DOM tree and also executing

scripts, although the same ones are executed. The scripts are executed faster in the

optimized execution because some of them contain operations which are executed

faster when applied to a reduced DOM tree (for example if they access to the

collection which contains all the nodes of the tree).

29

6 Related Work

Currently, web automation applications are widely used for different purposes.

The approach followed by most of the current web automation systems, like

Smart Bookmarks [6], Wargo [11], QEngine [12], Sahi [14], Selenium [15], and

Montoto et al. [7] consists in using the APIs of conventional web browsers to

automate them. This approach has two important advantages: it does not require

to develop a new browser (which is costly), and it is guaranteed that the page will

behave in the same way as when a human user access the page with her browser.

Nevertheless, it presents performance problems for intensive web automation

tasks which require real time responses and/or to execute a significant number of

navigation sequences in parallel. This is because commercial web browsers are

designed to be client-side applications and, therefore, they consume a significant

amount of resources and time, as we have demonstrated in the evaluation section.

Other systems use the approach of creating simplified custom browsers specially

built for the task. WebVCR [2] and WebMacros [13] rely on simple HTTP clients

that lack the ability to execute complex scripting code or to support AJAX

requests. Our custom browser supports all those complexities.

HtmlUnit [5] and Kapow [8] use their own custom browser with support for many

JavaScript and AJAX functionalities. They are more efficient than commercial

web browsers, because they are not oriented to be used by humans and can avoid

some tasks (e.g. rendering). Nevertheless, HtmlUnit works like conventional

browsers when loading and building the internal representation of the web pages.

The last versions of Kapow are not downloadable, but to the best of our

knowledge it also works like conventional browsers regarding this issue. Since

this is the most important part in terms of the use of computational resources, their

performance enhancements are much smaller than the ones achieved with our

approach, as we have demonstrated in the evaluation section.

Related to the problem of identifying elements in web pages, some systems [2] [7]

[11] [12] [13] [14] use the text associated to the elements and the value of some

specific pre-configured attributes (e.g. href for A tags). In complex websites it is

frequent that some elements cannot unambiguously be identified by their text

30

and/or the value of their attributes (as our experiments have demonstrated). Smart

Bookmarks [6] can also generate full XPath expressions pointing to the target

element when the above strategy does not uniquely identify it. But these

expressions are not resilient to small changes on the page loaded at different

moments. Selenium [15] generates XPath expressions to identify the target

element trying to make them resilient to changes but they consider only some pre-

defined attributes (e.g. id, href). Kapow [6] generates an XPath-like expression

that tries to be resilient to small changes, although the details of the algorithm

they use have not been published. Works like [3] [9] have also addressed the

problem of generating change-resilient XPath expressions, but in those

approaches, the user have to provide several example pages identifying the target

element.

7 Conclusions

In this paper, we have presented a novel set of techniques and algorithms to

efficiently execute web navigation sequences. Our approach is based on executing

the navigation sequence once, to automatically collect information about the

elements of the loaded pages that are irrelevant for that navigation sequence.

Then, that information is used in the next executions of the sequence, to load only

the required elements and fire only the required events.

To evaluate the proposed techniques and algorithms, they have been implemented

in the core of a custom browser, developed for this purpose. According to our

experiments the techniques are very effective: smaller DOM tree nodes are built,

unneeded scripts are not executed and unneeded navigations are not performed.

This way, the techniques allow to save bandwidth, memory and CPU usage, and

to execute the navigation sequences faster compared with the same custom

browser without using its optimization capabilities, and with other representative

navigation components.

Acknowledgments. This research was partially supported by the Spanish Ministry of Science and

Innovation under projects TIN2009-14203 and TIN2010-09988-E, and the European Commission

under project FP7-SEC-2007-01 Proposal Nº 218223.

31

8 References

[1] Alexa, The Web Infomration Company. http://www.alexa.com

[2] Anupam V., Freire J., Kumar B., Lieuwen D., Automating web navigation with the WebVCR,

Computer Networks 33(1-6), 503-517 (2000)

[3] Davulcu H., Yang G., Kifer M. and Ramakrishnan I.V, Computational Aspects of Resilient

Data Extraction from Semistructured Sources, ACM Symposium on Principles of Database

Systems (PODS) 2000, pp. 136-144.

[4] Document Object Model (DOM). http://www.w3.org/DOM/

[5] HtmlUnit, http://htmlunit.sourceforge.net/

[6] Hupp D., Miller R.C.: Smart Bookmarks: automatic retroactive macro recording on the web.

In: Proceedings of the 20th Annual ACM Symposium on User Interface Software and Technology,

pp. 81-90. ACM New York, Newport (2007)

[7] iOpus, http://www.iopus.com

[8] Kapow, http://www.openkapow.com

[9] Lingam S., Elbaum S., Supporting End-Users in the Creation of Dependable Web Clips.

WWW 2007, 953-962.

[10] Montoto P., Pan A., Raposo J., Bellas F, López J.: Automated browsing in AJAX websites.

Data Knowl. Eng. 70(3), 269-283 (2011)

[11] Pan A., Raposo J., Álvarez M., Hidalgo J., Viña A.: Semi automatic wrapper-generation for

commercial web sources. In: IFIP WG8.1 Working Conference on Engineering Information

Systems in the Internet Context, pp. 265-283. Kluwer, B.V. Deventer, Japan (2002)

[12] QEngine, http://www.adventnet.com/products/qengine/index.html

[13] Safonov A., Konstan J., Carlis J.: Beyond Hard-to-Reach Pages: Interactive, Parametric Web

Macros. In: 7th Conference on Human Factors & the Web. Madison 2001

[14] Sahi, http://sahi.co.in/w/

[15] Selenium, http://seleniumhq.org/

[16] XML Path Language (XPath), http://www.w3.org/TR/xpath

32

Figure Legends

Fig. 1. Navigation Sequence Example

Fig. 2. DOM tree of an example page

Fig. 3. Transitivity Dependency Examples

Fig. 4. Example

Fig. 5. Algorithm to generate an XPath-like expression to identify a node

Fig. 6. XPath-like expression generation example

Fig. 7. Algorithm to check if a node is the root of an irrelevant subtree

33

Tables

Table 1. Metrics about the optimization phase

34

Table 2. Metrics comparing normal and optimized executions

35

Table 3. Times comparing normal and optimized executions

36

Table 4. Average execution times in milliseconds

	PortadaRUC_declaracionDerechos.pdf
	This is an ACCEPTED VERSION of the following published document:
	General rights:

