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Abstract. Web automation applications are widely used for different purposes such as B2B 

integration and automated testing of web applications. Most current systems build the automatic 

web navigation component by using the APIs of conventional browsers. While this approach has 

its advantages, it suffers performance problems for intensive web automation tasks which require 

real time responses and/or a high degree of parallelism. In this paper, we outline a set of 

techniques to build a web navigation component able to efficiently execute web navigation 

sequences. These techniques detect what elements and scripts of the pages accessed during the 

navigation sequence are needed for the correct execution of the sequence (and, therefore, must be 

loaded and executed), and what parts of the pages can be discarded. The tests executed with real 

web sources show that the optimized navigation sequences run significantly faster and consume 

significantly less resources. 

Keywords: Web Automation, Navigation Sequence, Optimization, Efficient 

Execution.  

 

1 Introduction 

Most today's web sources do not provide suitable interfaces for software 

programs. That is why a growing interest has arisen in so-called web automation 

applications that are able to automatically navigate through websites simulating 

the behavior of a human user. For example, a flight meta-search application can 

use web automation to automatically search flights in the websites of different 

airlines or travel agencies. Web automation applications are widely used for 

different purposes such as B2B integration, web mashups, automated testing of 

web applications, Internet meta-search or technology and business watch.  

 

A crucial part of web automation technologies is the ability to execute automatic 

web navigation sequences. An automatic web navigation sequence consists in a 
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sequence of steps representing the actions to be performed by a human user over a 

web browser to reach a target web page. Figure 1 illustrates an example of a web 

navigation sequence to access to the content of the first message in the Inbox 

folder of a Gmail account. 

 

 

Fig. 1. Navigation Sequence Example 

 

This work is focused in improving the performance of the execution of automatic 

web navigation sequences. The approach followed by most of the current web 

automation systems [6] [11] [12] [14] [15] consists in using the APIs of 

conventional web browsers to automate them. This approach does not require to 

develop a custom navigation component, and guarantees that the accessed web 

pages will behave the same as when they are accessed by a regular user.  

 

While this approach is adequate to some web automation applications, it presents 

performance problems for intensive web automation tasks which require real time 

responses and/or to execute a significant number of navigation sequences in 

parallel. This is because commercial web browsers are designed to be client-side 

applications and, therefore, they consume a significant amount of resources, both 

memory and CPU. In this work we address this problem by using a custom 

browser specially built for web automation tasks. This browser is able to improve 

the response times and save a significant amount of resources (memory and CPU). 

We present a set of techniques and algorithms to automatically optimize the 



3 

navigation sequences, detecting which parts of the accessed pages can be 

discarded (not loaded), and which of the automatic events that are fired each time 

a new page is loaded can be omitted (not fired) without affecting to the correct 

execution of the navigation sequence. 

 

There exist other systems which use the approach of creating custom browsers to 

execute web navigation sequences [5] [8]. Since they are not oriented to be used 

by humans, they can avoid some of the tasks of conventional browsers (e.g. 

rendering). Nevertheless, they work like conventional browsers when loading and 

building the internal representation of the web pages. Since this is the most 

important part in terms of the use of computational resources, their performance 

enhancements are much smaller than the ones achieved with our approach.  

 

The rest of the paper is organized as follows. Section 2 briefly describes the 

models our approach relies on. Section 3 presents an overview of the solution. 

Section 4 explains the designed techniques in detail. Section 5 describes the 

experimental evaluation of the approach. Section 6 discusses related work. 

Finally, section 7 summarizes our conclusions. 

 

2  Background 

The main model we rely on is the Document Object Model (DOM) [4]. This 

model describes how browsers internally represent the HTML web page currently 

loaded in the browser and how they respond to user-performed actions on it. An 

HTML page is modelled as a tree, where each HTML element is represented by 

an appropriate type of node. An important type of nodes are the script nodes, used 

to place and execute a script code within the document (typically written in a 

script language such as JavaScript). The script nodes can contain the code directly 

or can reference an external file containing it. Those scripts are processed when 

the page is loaded and they can contain element declarations (e.g. a function or a 

variable) that are used from other script nodes or event listeners, or other script 

sentences that are executed at that moment. 
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Every node in the tree can receive events produced (directly or indirectly) by the 

user actions. Event types exist for actions such as clicking on an element (click), 

moving the mouse cursor over it (mouseover), or to indicate that a new page has 

just been loaded (load), to name but a few. Each node can register a set of 

listeners for different types of events. An event listener executes arbitrary script 

code, which normally calls a function declared in script nodes. The scripting code 

has the entire page DOM tree accessible and can perform actions such as 

modifying existing nodes, removing them, creating new ones or even launching 

new events. 

 

The event processing lifecycle can be summarized as follows: the event is 

dispatched following a path from the root of the tree to the target node. It can be 

handled locally at the target node or at any target's ancestors in the tree. The event 

dispatching (also called event propagation) occurs in three phases and in the 

following order: capture (the event is dispatched to the target's ancestors from the 

root of the tree to the direct parent of the target node), target (the event is 

dispatched to the target node) and bubbling (the event is dispatched to the target's 

ancestors from the direct parent of the target node to the root of the tree). The 

listeners in a node can register to either the capture or the bubbling phase. In the 

target phase, the events registered for the capture phase are executed before the 

events executed for the bubbling phase. This lifecycle is somewhat of a 

compromise between the approaches historically used in major browsers 

(Microsoft Internet Explorer using bubbling and Netscape using capture). 

 

The order of execution between the listeners associated to an event type in the 

same node is registration order. The event model is reentrant, meaning that the 

execution of a listener can cause new events to be generated. Those new events 

will be processed in a synchronous way; that is, if li, li+1 are two listeners 

registered to a certain event type in a given node in a consecutive order, then all 

events caused by li execution will be processed (and, therefore, their associated 

listeners executed) before li+1 is executed. 

 

In addition to the events caused by the user actions on the page, there are also 

some events that are automatically generated by the browser when a new page is 
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loaded. The most typical example is the load event, which is fired by the browser 

over the body element of the HTML page when the page has just been loaded. We 

will name these events as "automatic events". 

 

3  Overview 

This section presents an overview of our proposal.  

 

The input for the automatic web navigation component is a navigation sequence 

specification. In most systems, this specification is created by example: the user 

performs the desired sequence manually and her actions are recorded by some 

plugin in the browser. The exact format used to specify navigation sequences is 

different in each web automation system but all of them basically consist in a list 

of events which must be generated on certain elements of the website pages. 

Between executing one event and the next, it is needed to wait for the effects of 

the previous event to take place (e.g. wait for a new page to be loaded in the 

browser). See [10] for a discussion of the different approaches for recording and 

executing web navigation sequences. 

The basic idea of our approach consists in detecting which parts of the accessed 

pages can be discarded (not loaded) and which events can be omitted (not fired) 

without affecting the execution of the desired navigation sequence. Our approach 

works in two phases: 

 In the optimization phase the navigation sequence is executed once, and, in 

the meantime, the navigation component automatically calculates which 

nodes of the HTML DOM [4] tree of each loaded page are needed to 

execute the sequence, and which ones can be discarded. Then, it stores 

some information to be able to detect those nodes in subsequent sequence 

executions (the information to identify the nodes should be resilient to 

small changes in the page, because in real web sites there are usually small 

differences between the DOM tree of the same page loaded at different 

moments). At the same time, the navigation component calculates which 

of the automatic events fired each time a page is loaded are necessary to 

execute the sequence. 
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 In the execution phase the navigation component executes the sequence 

using the optimization information previously calculated. When each page 

is loaded, a reduced HTML DOM tree is built, containing only the relevant 

nodes needed to execute the sequence, and only the necessary automatic 

events are fired. 

 

Fig. 2. DOM tree of an example page 

 

Figure 2 shows the DOM tree of a simple example page. We use boxes to 

represent the nodes of the tree, and continuous lines to represent its parent-child 

relationship. Event listeners are represented as dashed boxes adjacent to the 

corresponding tree node (onclick, onload). Arrows with dashed lines are used to 

indicate that a script node defines a function (marked with <def>), and to indicate 

that the code of an event listener invokes a function defined in a script node 

(marked with <calls>). Suppose that the only action specified by the navigation 

sequence for this page is executing a click on the first A node. When the click 

event is produced, the click event listener (onclick) is executed, and the function f2 

performs a navigation to the desired page (e.g. window.location = 

'http://acme.com';). 

 

The shaded nodes are those that are needed to simulate the click action and 

properly perform the navigation to the next page (we call them relevant nodes). In 

this case, the relevant nodes are: the A node which is the target of the click event, 

the SCRIPT node which defines the f2 function executed by the click event 

listener, and their respective ancestors (the exact rules to compute the relevant 

nodes will be described later). The rest of the nodes can be discarded (not loaded) 

without any problem (we call these ones irrelevant nodes). Besides, the automatic 
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load event does not need to be fired when the page is loaded, since the execution 

of the onload listener is not needed for the execution of the sequence.  

 

This will produce significant performance and resource usage improvements: 

 We will save memory, since much less nodes need to be represented. 

 We will save CPU and execution time since unneeded scripts are not 

executed. For instance, in this case, the script nodes not shaded do not 

need to be executed. 

 We will save bandwidth and execution time because unneeded navigations 

are not performed. For instance, in this case, the navigations specified by 

the LINK and IFRAME nodes will not be performed. 

 

The main problem we need to address is how to calculate what we call node 

dependencies. For instance, in this example the SCRIPT node which defines f2 is 

a dependency of the A node when the click event is fired on it (because it is 

needed to properly execute the click event listener registered in the A node). 

Notice that in the DOM model, scripts are "black boxes" and, therefore, these 

dependencies cannot be inferred directly. By using a custom browser, where we 

have full control over the script execution engine, we have a way to uncover these 

hidden dependencies.  

 

Also notice that dependencies can get much more complex than in this example. 

For example, in the previous figure, a click on an anchor may produce the 

execution of a script that requires another script in a different node in the DOM 

tree to be executed previously. Another difficult example would be that the load 

event listener of the BODY node could generate content dynamically, including 

the A node that invokes the script that will lead us to the next page. It could even 

happen that the script requires another script contained in an iframe and, therefore, 

the iframe would need to be loaded too. We will see how to deal with these 

problems in the next section. 
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4  Proposed Techniques 

In this section we begin stating some definitions and properties which will help us 

to model all the possible dependencies between the DOM tree nodes we are 

interested in (section 4.1). After that, we describe the techniques used during the 

optimization phase of our approach, (section 4.2). Then, we explain the method 

used to generate expressions to identify the irrelevant nodes at the execution phase 

(section 4.3). Finally we outline the operation at the execution phase (section 4.4). 

 

4.1  Node Dependencies 

Definition 1: We say that there exists a dependency between two nodes n1 and n2 

when the node n2 is necessary for the correct execution of the node n1. We say 

that the node n2 is a dependency of the node n1 and denote it as n1→ n2. The 

following rules define this type of dependencies: 

 If the script code of a node s1 uses an element (e.g. a function or a 

variable) declared in a script node s2, then s1→ s2. Rationale: to be able to 

execute the script code of the node s1 the node s2 must be executed 

previously. 

 If the script code of a node s uses a node n, then s→ n. Rationale: to be 

able to execute the script code of the node s, the node n must be loaded 

previously. For instance, if s obtains a reference to an anchor node (e.g. 

using the JavaScript function document.getElementById) and navigates to 

the URL specified by its href attribute, then it will not be possible to 

execute s unless the anchor node is loaded. 

 If the script code of a node s makes a modification in a node n, then n→ s 

(note that, in this scenario, the dependency s→ n also exists, applying the 

previous rule). Rationale: the action performed by s may be needed to 

allow n to be used later. For instance, if s modifies the action attribute of a 

form node to set the target URL, then it will not be possible to submit the 

form unless s is executed previously. 

 

Definition 2: We say that there exists a dependency conditioned to the event e 

being fired over the node n, between two nodes n1 and n2, when the node n2 is 
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necessary for the correct execution of the node n1, when the event e is fired over 

the node n. We denote this as n1→e|n n2. Analogous rules to the ones explained 

before define this type of dependencies, which, in this case, involve nodes 

containing event listeners: 

 If the script code of an event listener l for the event e in the node n uses an 

element (e.g. a function or a variable) declared in a script node s, then 

n→e|n s. Rationale: if the event e is fired over the node n, then the event 

listener l is executed, and it requires the script node s to be executed 

previously. 

 If the script code of an event listener l for the event e in the node n1 uses a 

node n2, then n1→e|n1 n2. Rationale: if the event e is fired over n1, then the 

event listener l is executed and the node n2 must be loaded previously. 

 If the script code of an event listener l for the event e in the node n1 makes 

a modification in a node n2, then n2→e|n1 n1 (note that, in this scenario, 

the dependency n1→e|n1 n2 also exists, applying the previous rule). 

Rationale: the action performed by l may be needed to allow n2 to be used 

later. For instance, if l modifies the action attribute of a form node to set 

the target URL, then it will not be possible to submit the form unless l is 

executed previously. Since l will only be executed when the event e is 

fired over n1, then n1 is needed.  

 

Observe that the following transitivity properties apply to node dependencies (we 

will explain them through examples). 

 

Property 1: If n1→ n2 and n2→ n3 then n1→ n3.  

The example of Figure 3.a shows a fragment of  the DOM tree of a page where 

the script code of the node SCRIPT1 invokes a function f1 which is defined in the 

node SCRIPT2 (SCRIPT1→ SCRIPT2), and the code of function f1 calls a 

function f2 which is defined in the node SCRIPT3 (SCRIPT2→ SCRIPT3). For the 

correct execution of the script code of the node SCRIPT1, both the second and the 

third SCRIPT nodes are necessary, so both are dependencies of it (SCRIPT1→ 

SCRIPT3). 

 

Property 2: If n1→e|n n2 and n2→ n3 then n1→e|n n3.  
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The example of Figure 3.b shows a fragment of a page DOM tree where the click 

event listener of the node A calls a function f1 which is defined in the SCRIPT 

node (A→ click|A SCRIPT), and the code of the function f1 uses the src attribute of 

the IMG node (SCRIPT→ IMG). For the correct processing of the A node when 

the click event is fired over it, both the SCRIPT and IMG nodes are necessary, so 

both are dependencies of it (A→ click|A IMG). 

 

 

Fig. 3. Transitivity Dependency Examples 

 

Property 3: If n1→ n2, and n3→ n2 because n2 is a script node which makes a 

modification in n3, then n3→ n1. 

The example of Figure 3.c shows a fragment of a page DOM tree where the script 

code of the node SCRIPT1 invokes a function f1 which is defined in the node 

SCRIPT2 (SCRIPT1→ SCRIPT2), and the code of the function f1 modifies the 

action attribute of the FORM node (FORM→ SCRIPT2). For the correct 

processing of the FORM node (for example to correctly submitting it), we need to 

ensure that f1 is both defined (and, therefore, we need SCRIPT2) and executed 

(and, therefore, we need SCRIPT1). That is why both are dependencies of it 

(FORM→ SCRIPT1). 
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Property 4: If n1→ e|n n2 and n3→ n2 because n2 is a script node which makes a 

modification in n3, then n3→ e|n n1. 

The example of Figure 3.d shows a fragment of a page DOM tree where the click 

event listener of the A node calls a function f1 which is defined in the SCRIPT 

node (A→ click|A SCRIPT), and the code of the function f1 modifies the action 

attribute of the FORM node (FORM→ SCRIPT). For the correct processing of the 

FORM node (e.g. to correctly submitting it), when the click event is fired over the 

A node, both the SCRIPT and A nodes are necessary, so both are dependencies of 

it (FORM→ click|A A). 

 

4.2 Calculating the Relevant Nodes and Automatic Events 

The main goal of the optimization phase is finding the set of relevant nodes for 

the navigation sequence. During this phase, the browser works in a similar manner 

to a conventional browser: the full page is loaded, generating the entire DOM tree, 

downloading all external elements (e.g. style sheets, script files) and executing all 

the script nodes defined in the page. Also, all the automatic events (recall section 

2 for the definition of automatic events) are automatically fired by the browser 

when each new page is completely loaded (e.g. the load event is fired over the 

body element). After that, the browser will reproduce the desired navigation 

sequence by firing the necessary events on the adequate elements to emulate the 

user interaction with the page (e.g. clicking on elements, firing mouse events, 

etc.), until a navigation to a new page is started. 

 

During all this process, the browser interacts with the script execution engine (we 

use Mozilla Rhino) to detect the node dependencies, according to the rules 

defined in the previous section. For instance, when a script node is executed, the 

browser interacts with the scripting engine to monitor what functions are called 

during its execution. Then, according to the first rule of Definition 1, the nodes 

defining those functions are marked as dependencies of the script node which 

calls them. Similarly, if the code of the script node creates or modifies another 

node, then, according to rule 3 of Definition 1, the script node will be a 

dependency of the node which is created or modified.  
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In a similar way, when an event (be it automatic or generated by the navigation 

sequence) is fired, the browser monitors which other nodes are used during the 

execution of the listeners associated to the event, which other events are generated 

and which nodes are modified by the execution of the event listeners. The 

appropriate dependencies according to the rules of Definition 2 will be generated. 

 

Once the dependencies have been computed, the set of relevant nodes is built 

according to the following rules: 

1. The nodes which are directly used in the target navigation sequence are 

relevant. For instance, if one step in the sequence is generating the click event 

on a A node, then that A node is relevant. 

2. If a node n is relevant, all its ancestors are relevant. Note, that the ancestors 

could be needed because of the capture and bubbling phases of the event 

dispatching model of the DOM trees (see section 2). 

3. By definition, if a node n1 is relevant and n1→ n2 then n2 is relevant (all its 

dependencies are relevant too). 

4. By definition, if a node n1 is relevant, n1→e|n n2, and the event e was fired over 

the node n, then n2 is relevant (all its dependencies conditioned to the event e 

being fired over the node n are relevant too, if the event e was fired over n). 

5. Some special rules apply to form-related nodes, to be able to properly submit 

forms:  

(a)  If a form node is relevant, all the nodes corresponding to input and select 

elements contained in the form are relevant. 

(b)  If an input or select node is relevant, the form node containing it is relevant. 

(c)  If a select node is relevant, all its child option nodes are relevant. 

6. A small set of nodes corresponding to some special element types are always 

considered relevant because they are needed to properly process other nodes of 

the page DOM tree. For instance, the base element sets the base URL, which 

means that the URLs specified by other elements are relative to it. 

 

From the set of relevant nodes, we can easily calculate the set of irrelevant nodes 

which can be ignored at the execution phase. First, all the DOM tree nodes not 

contained in the set of relevant nodes are added to the set of irrelevant nodes. 
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Then, all the irrelevant nodes which have an ancestor also contained in the set are 

removed from it. The resulting set contains only the root nodes of the sub-trees 

whose descendants are all irrelevant. We call them irrelevant sub-trees. 

 

Finally, to determine which of the automatic events are necessary for the correct 

execution of the sequence, the system checks, for each automatic event, if any of 

the relevant nodes has any dependency derived from it (i.e. it checks if a relevant 

node has been affected by the listeners executed as result of firing the event). If 

that is the case, the event is added to the list of automatic events that should be 

fired at execution time when the current page is loaded. 

 

 

Fig. 4. Example 

 

Let’s see an example. Figure 4 shows a fragment of the DOM tree of a page. 

Suppose the target sequence specifies that the navigation component should 

execute a click over the A node. The relevant nodes for this interaction are shaded 

in the figure. Let's see how they are computed:  

 According to rule 1, the node A is relevant (since it is the target of the 

action). 

 According to rule 2, all the A ancestors are relevant: BODY and HTML.  

 According to rule 3, all A dependencies are relevant: SCRIPT5 and 

SCRIPT6 (and its ancestors: DIV3). In this case they are needed because 

they execute script code which modifies the click event listener of the node 

A when the page is loaded. 

o The function f3 (defined in SCRIPT5) modifies the click event 

listener of the node A, so A →SCRIPT5. 
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o SCRIPT6, which is executed when the page is loaded, invokes the 

function f3, so SCRIPT6→ SCRIPT5, and due to the transitivity 

rules explained in section 2, A→ SCRIPT6. 

 According to rule 4, all A dependencies conditioned to the event click 

being fired over A are relevant too: SCRIPT1 and FORM (and all its 

ancestors: HEAD). They are needed because the event listener of the node 

A invokes a function defined in SCRIPT1 which submits the form. 

o The click event listener of the node A invokes the function f1 

defined in SCRIPT1, so A→click|A SCRIPT1. 

o The function f1 uses the node FORM, so SCRIPT1→FORM, and 

due to the transitivity rules explained in section 2, A→click|A FORM. 

 According to rule 5, if a form node is relevant, all the input nodes 

contained in the form are relevant: INPUT1 and INPUT2. To properly 

submit the form all its input fields are necessary. 

 According to rule 3, all FORM dependencies are relevant: SCRIPT2 and 

BODY (and all its ancestors, already included in the set of relevant nodes). 

They are needed because the load event listener of the node BODY 

invokes a function defined in SCRIPT2 which modifies the action attribute 

of the form. 

o The load event listener of the node BODY invokes the function f2 

defined in SCRIPT2, so BODY→load|body SCRIPT2. 

o The function f2 (defined in SCRIPT2) modifies the action attribute 

of the node FORM, so FORM →SCRIPT2, and due to the 

transitivity rules explained in section 2, FORM→load|body BODY. 

 

The nodes which are stripped in Figure 4 are those which are identified as the 

roots of the irrelevant sub-trees, which can be discarded in the following 

executions. 

 

The automatic event load, which is fired over the BODY, must be added to the list 

of necessary automatic events, because the FORM, which is a relevant node, has a 

dependency derived from it (FORM→load|body BODY). Note that, to properly 

submit the form, the load event listener of the body element (onload) must have 

been executed, because it invokes f2 which sets the action of the form. 
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4.3  Identifying the Irrelevant Subtrees at Execution Phase 

Once the root nodes of the irrelevant sub-trees have been calculated, we need to 

generate expressions to be able to identify them at the execution phase. There are 

two requirements for this process. On one hand, the generated expressions should 

be resilient to small changes in the page because in real web sites there are usually 

small differences between the DOM tree of the same page loaded at different 

moments (e.g. new advertisement banners can appear or different data records can 

be shown). On the other hand, the process of testing if an expression identifies a 

node should be very efficient, because, at the execution phase the browser should 

check if each node is identified by any of those expressions before adding it to the 

DOM tree. 

 

To uniquely identify a node in the DOM tree we use an XPath-like [16] 

expression which can contain information about the element and some of its 

ancestors. For our purposes, we need to ensure that the generated expression 

identifies a single node, but is not too specific to be affected by the 

aforementioned small changes in the pages. For this, we use an enhanced version 

of the algorithm explained in [10]. The basic idea of the algorithm consists in 

building an expression matching the minimum required number of nodes in the 

DOM tree (maximizing, this way, its resilience), using its tag name, its attributes, 

and its associated text. 

 

An important concept is what we will call a “node expression”. It is an XPath-like 

expression which only contains information about one node, and it has the 

following format: 

//TagName[@a1=”v1” and … and @am=”vm” and text()=”t”]  

Where TagName is the tag name of the node, ai and vi i={1,...,m} are names and 

values of attributes of the node, and t is the text of the node if it is a leaf node 

(being the TagName the unique element of the expression which is mandatory). 

 

If the target node can be uniquely identified in the whole DOM tree with a node 

expression, then that is the result XPath-like expression to identify it. If it cannot 
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be uniquely identified (i.e. all the possible node expressions also match with other 

nodes in the DOM tree), then a node which can be uniquely identified with a node 

expression is searched in the path from the target node to the root of the tree. 

When it is found, the expression to identify the node is added to the result XPath-

like expression, and the algorithm is applied again over the subtree whose root is 

that node. This way, the global resulting XPath-like expression would be 

composed by a sequence of node expressions: 

//x1//x2//..//xn 

Where //xi iЄ{1,...,n} are the node expressions built to uniquely identify a node in the 

subtree considered in each iteration of the algorithm. We define the length of an 

XPath-like expression as the number of node expressions compounding it. 

 

Figure 5 gives the complete algorithm to generate the XPath-like expression to 

identify a node n contained in the DOM tree T. The repeat loop iterates until the 

target node n can be uniquely identified in the subtree considered in the current 

iteration (initially, the whole page DOM tree is considered). The while loop 

iterates from the target node n to the root of the subtree until a node which can be 

uniquely identified is found. When that node is found, the node expression to 

uniquely identify it (x) is added to the result expression (result) and the subtree 

considered in the next iteration of the repeat loop is set to the one which has that 

node as root.  

 

The function getNodeExp receives as input a node and a subtree and tries to 

generate a node expression to uniquely identify the input node in the input 

subtree. If such expression uniquely identifying the node cannot be generated, it 

returns null. 

 

A special case is considered at the end of the while loop, to deal with the case 

when there is not any node in the path from the target node to the root of the 

subtree which can be uniquely identified using exclusively the node data (i.e with 

a node expression). In that case, the function getChildNodeExp is called over the 

child node of the root of S (the current subtree) which is in the path to the target 

node. This function works in a similar way as the function getNodeExp but: 
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 It never returns null. It applies the considerations explained in the two 

following points to the node expression which identifies the fewer number 

of nodes (including the target node).  

 The returned expression starts with “/” instead of “//”. This means that the 

node must be a direct child of the last node whose information was added 

to the result expression (i.e. the root node of S, whose information was 

added to result in the previous iteration of the repeat loop). This allows 

differentiating this node from other nodes matching with the same node 

expression, which are not child nodes of the root of S. 

 If necessary, it also uses the node position between its siblings to create an 

expression to uniquely identify it. This allows differentiating the node 

from other nodes matching with the same node expression, which are also 

child nodes of the root of S. 

So, the final XPath-like expression will have the following format: 

//x1 [“//” | “/” ]x2 … [“//” | “/” ]xn 

Note that the first node expression always starts with “//” because, if no other 

node is found before, the nodes HTML, BODY and HEAD always can be 

uniquely identified using only its tag name. 
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Fig. 5. Algorithm to generate an XPath-like expression to identify a node  

 

Let see now how the function genNodeExp tries to generate a node expression to 

uniquely identify a node in a subtree. As commented previously it only uses the 

node tag name, its attributes and its associated text (if it is a leaf node). 

 

First, it tries to identify the element using only its tag name. If it is not enough, 

then it tries to use its tag name and its attributes. The algorithm considers some 

attributes as “more relevant” to identify a node. For example, the attribute id, in 

most of the cases, identifies a single node in the entire DOM tree by itself. 

Examples of other attributes considered as more relevant are name, title, alt, 

value, for, src, action, href, class, etc. The algorithm also considers some 

attributes as “less relevant” to identify a node. These attributes, in most of the 

cases, are not useful to identify the node (for example, when they only represent 

numeric values) and, besides, if they were used, the generated expression could be 

Algorithm: Generate an XPath-like expression to identify a node in a DOM tree 
- X = GenerateExpression(n,T) 

Inputs: 
- n, the target node to be identified by the expression 
- T, the DOM tree where n is contained 

Output: 
- result, the XPath-like expression to uniquely identify n in T. 

 
result = “”;    # Initialize the variable that will contain the result expression 
S = T;              # Initialize the variable that will contain the subtree considered in each iteration 
m = null;         # Auxiliary variable that will contain the node analyzed in each iteration 
 
Repeat {    # Iterate until the target node n can be uniquely identified in S 
      m = n;      # Initialize m to the target node n 
      x = null;   # Initialize the variable that will contain the node expression generated to identify m 
 
      # Iterate from n to the root of S until a node which can be uniquely identified is found or the root 
      # of S is reached 
      While (x==null && m!= root(S)) { 
          x = getNodeExp(m, S);    # Returns an expression to uniquely identify m in S 
                                                   # or null if such expression cannot be generated 
          If (x != null) {     # The node can be uniquely identified in S 
              result = result + x;     
              S = <the subtree whose root is m>; 
          } else {                        # The node cannot be uniquely identified in S 
               m = parent(m,T);   # Analyze the parent node in the tree 
          } 
      } 
      If (m=root(S)) {          # No node can be uniquely identified in the path from n to the root of S. 
          Let m’ be the child of m which is in the path to the target node n; 
          x =  getChildNodeExp(m’,S);    # Returns an expression to uniquely identify 
                                                               # m’ as a child of m in S, using the node position if necessary 
          result = result + x; 
          S = <the subtree whose root is m’>; 
      } 
} Until (m==n); 
return result; 
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weaker. Examples of some of these attributes are cellpading, cellspacing, type, 

method, content, width, height, align, rel, etc. Initially, the algorithm tries to 

generate an expression using only the more relevant attributes. If the node cannot 

be uniquely identified using those attributes, then it tries to generate an expression 

considering all the node attributes except the ones considered as less relevant. If 

the node cannot be uniquely identified either, then it tries to generate an 

expression using all the attributes. 

 

If the attributes are not enough to uniquely identify the node, and it is a leaf node, 

then the algorithm tries to use the text of the node. First, it tries to generate an 

expression using exclusively the node tag name and its text, and if it is not enough 

it also uses its attributes (in the same way as commented previously). 

 

Figure 6 shows a simple example illustrating several scenarios. It shows a 

fragment of a DOM tree, showing the set of attributes of each node beside it. The 

SPAN grayed node is the one to be identified. In the first iteration of the algorithm 

the whole DOM tree is considered (S1). The target SPAN node cannot be uniquely 

identified in S1 because there are other SPAN nodes with the same attributes and 

values. So a node which can be uniquely identified is searched in the path to the 

root. The first one which is found is the TABLE node, which can be uniquely 

identified using its id attribute (note that the attribute width could also be used to 

identify the node but it is not present in the set of “more relevant” attributes, 

whereas the attribute id is). In the second iteration the target SPAN node cannot be 

uniquely identified in S2, and there is not any node, in the path to the root of S2, 

that can be. So, the child TR in the path to the target node is used to generate the 

node expression indicating that this node must be a direct child of the previous 

one (i.e. starting with “/”). In this case, the position must also be used to 

differentiate it from its sibling TR nodes. In the third iteration, the SPAN target 

node can be uniquely identified in S3 because there is not any other SPAN node, 

in that subtree, having the value “c2” assigned to the attribute class. 
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Fig. 6. XPath-like expression generation example  

 

4.4 Execution Phase 

The general functioning of the navigation component at this phase is the following 

one: before loading each page, it checks if it has optimization information 

regarding relevant nodes associated to that page, that is, a set of expressions to 

identify the root nodes of the irrelevant sub-trees. That information is used to 

build a reduced version of the HTML DOM tree, containing only the relevant 

nodes. Then it checks if it has optimization information related to automatic 

events that should be fired in that page. If that is the case, only the appropriate 

events are fired. 

 

The process of checking if a node is the root of an irrelevant sub-tree should be 

very efficient because it is executed for all the elements present in the page to 
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decide if they must be added to the HTML DOM tree or not. That is why we do 

not use a conventional XPath matching algorithm. Instead, we leverage on the fact 

that the XPath-like expressions we generate use a strict subset of XPath and 

always verify certain restrictions. This allows us to use a faster algorithm for those 

particular expressions. 

 

The main idea of the algorithm consists in checking, for each XPath-like 

expression, if there are nodes in the path from the analyzed node to the root of the 

tree which match with all the individual node expressions compounding it. Figure 

7 gives the complete algorithm to check if a node is the root of an irrelevant 

subtree.  

 

The external while loop iterates over the XPath-like expressions generated during 

the optimization phase. If any of the expressions identifies the node, then it is 

considered as irrelevant. To check if each XPath-like expression identifies the 

node, the first condition to check is if its last node expression matches with the 

target node. If it does not match, then that expression does not identify the node. 

On the contrary, if it matches and if the expression is compound by more node 

expressions, we need to check if there are nodes in the path to the root of the tree 

which match with all those node expressions. This is accomplished by the second 

while loop, which iterates over the individual node expressions previous to the 

last one. The main idea of each iteration of this loop consists in going up by the 

tree until a node which matches with the current node expression is found, but we 

need to consider the special case of the node expressions starting with “/” instead 

of “//” (note that, in this case, we can consider that a node matches with that node 

expression, only if its parent node matches with the previous node expression). 

So, the third while loop gets all the consecutive node expressions concatenated by 

“/” to create a partial XPath-like expression. Then, the fourth while loop iterates 

over the nodes in the path to the root of the tree, trying to find a list of consecutive 

nodes matching with this partial expression (i.e. each node of the list matches with 

the corresponding node expression contained in the partial XPath-like expression). 

Note that when the node expression analyzed in the second while loop does not 

start with “/”, then the partial XPath-like expression built in the third while loop is 
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equal to the node expression, and the fourth while loop tries to find one node 

matching with it. 

 

 

Fig. 7. Algorithm to check if a node is the root of an irrelevant subtree 

 

 

Algorithm: Check if a node matches with any of the XPath-like expressions which identifies the root 
nodes of the irrelevant subtrees 

- result = CheckIfIrrelevantNode(n,X) 
Inputs: 

- n, the target node to check if it matches with any expression. 
- X={X1, …Xr}, where each Xi iЄ{1,...,r} is an XPath-like expression identifying the root node of an 

irrelevant subtree. Each Xi is an expression with the following format: //xi1 [“//” | “/”]xi2 … [“//” 
| “/”]xit where [“//” | “/”]xik kЄ{1,...,t} is a node expression to identify a node using its tag name, 
attributes and/or text. 

- T, the DOM tree built up to the moment, and where the node n will be added if it does not match 
with any expression in X. 

Output: 
- True if n matches with any Xi iЄ{1,...,r} or false in other case. 

 
i = 1;      # Auxiliary expression counter 
While (i<=r) {           # Process one XPath-like expression in each iteration 
    m = n;                    # Initialize m to the target node n 
    k = length(Xi);       # Auxiliary counter, initialized to the number of node expressions in Xi 
    If (matches(m,xik) {     # If the target node matches with the last node expression 
          m = parent(m);     # Take the parent node 
          k = k - 1;               # Point to the previous node expression 
          While (k>0 && m!=null) {      # While there are node expressions left and parent nodes to match 
              p = xik;                                  # Partial expression initially set to the current node expression 
             While (xik is preceded by “/”) {   # Add to p all the consecutive previous node expressions  
                  k = k - 1;                                  # concatenated by “/” 
                  p = xik + “/” + p;        
               } 
              matched = false; 
              While (m != null && !matched) {    # Iterates over nodes in the path to the tree root 
                  N = [m];            # Node list, initially containing the current node 
                  m’ = m; 
                  Repeat (length(p) -1) times {    # Add to N the same number  
                      m’ = parent(m’,T);               # of nodes as node expressions are in p 
                      append(N,m’);                                  
                  } 
                  if (matches(N,p) {      # If the partial expression matches with the list of nodes 
                      matched = true; 
                      m = parent(m’,T); # Continue with the parent node of the ones matched in this iteration 
                      k = k - 1;               # and the node expression previous to the ones matched in this iteration 
                  } else { 
                      m = parent(m,T);   # Try to match p from the parent node of the current one 
                  } 
              } 
          } 
         If (k=0) {     # All the node expressions of Xi have been matched 
             return true; 
         } else { 
             i = i+1;   # Analyze the next XPath-like expression 

         } 
    } else { 
         i = i+1;   # Analyze the next XPath-like expression 

    } 
} 
return false; 
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Suppose we are building the DOM tree of the figure 5 and we have the expression 

generated to discard the grayed node (recall section 4.3). For each node which is 

added to the DOM tree we need to check if that expression identifies it: 

 All the nodes which do not have the tag name SPAN, or have it but they do 

not have the attribute class equals to “c2”, do not match with the last node 

expression (//SPAN[class=“c2”]), so they are not identified by the 

expression. 

 The first SPAN node with attribute class equals to “c2” matches with the 

last node expression. Then, the previous node expression is analyzed. In 

this case, the partial expression //TABLE[@id=“table2”]/TR[2] (because 

they are concatenated by “/”). A list of two consecutive nodes matching 

this expression cannot be find in the path to the tree root (note that when 

analyzing the TABLE node and its first TR child, the expression does not 

match because of the position of the TR between the children of the 

TABLE), so the node is not identified by the expression. 

 The second SPAN node with attribute class equals to “c2” matches with 

the last node expression. Besides, we are able to find two consecutive 

nodes in the path to the tree root matching the partial expression 

//TABLE[@id=“table2”]/TR[2] (the TABLE node and its second TR 

child). At this point, all the node expressions compounding the XPath-like 

expression have been matched, so the expression identifies the node, and it 

is considered as the root of an irrelevant subtree. As a consequence, the 

node and all its descendants would be discarded, and not added to the 

DOM tree. 

 

5  Evaluation 

To evaluate the validity of our approach we implemented a custom browser. This 

browser emulates Microsoft Internet Explorer (MSIE) version 9 and was fully 

developed in Java using open-source libraries including Apache Commons-

Httpclient to handle HTTP requests, Neko HTML parser to build DOM structures, 

and Mozilla Rhino as JavaScript engine. The browser neither has user interface 

nor renderization capabilities, but is able to simulate them, and it also supports 

CSS, cookies and Java Applets. Most of the JavaScript objects and functions 
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implemented in MSIE are also implemented in the custom browser including 

support for AJAX and some built-in ActiveX objects. Some MSIE advanced 

features are not implemented, including support for proprietary scripting 

languages (e.g. VBScript) or support for embedded objects (e.g. Adobe Flash). 

There are also some MSIE proprietary non-standard JavaScript functionalities not 

implemented in the custom browser. 

 

This section explains the set of experiments that we have performed. We selected 

a set of websites of different domains included in the top 500 sites on the web 

according to Alexa [1]. In each website we recorded a navigation sequence 

representative of its main function (e.g. a product search in an e-commerce 

website). Every sequence executes events to fill and submit forms, to navigate 

through hyperlinks and, in some cases, to display content collected with AJAX 

requests. 

 

In the first experiment, we compared the resources consumed by our custom 

browser when it uses its optimization capabilities, with the resources consumed in 

its normal operation mode (which emulates the behavior of the commercial 

browsers, loading the accessed pages entirely and firing all the automatic events). 

We ran a first execution of the navigation sequence, in each of the selected 

websites, to collect the optimization information. Then, we compared a normal 

execution of each sequence, without using the optimization information, and 

another one using it. To prevent the problem of small variations in web pages 

when they are accessed in different moments, each sequence was executed 10 

times and the results shown in this section are the averages of the 10 executions. 

 

Table 1 shows the following metrics for each web site: 

 Mean number of XPath-like expressions generated per page. That is, the 

mean number of irrelevant subtrees identified per page. 

 Mean length of the generated XPath-like expressions. That is, the mean 

number of “node expressions” per XPath-like expression. 

 Total time consumed to calculate node dependencies (and the percentage it 

represents regarding the time consumed by the normal execution of the 

sequence). 
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 Total time consumed to calculate the necessary automatic events and the 

irrelevant nodes from the node dependencies, and to generate the XPath-

like expressions identifying the root nodes of the irrelevant subtrees (and 

the percentage it represents regarding the time consumed by the normal 

execution of the sequence). 

 Total time consumed by the normal execution of the sequence. 

 

As we will demonstrate later, the number of XPath-like expressions (between 29.5 

and 159.25 per page, with a global mean of 72.79 per page) is relatively small 

compared to the number of nodes which they allow discarding. The mean length 

of the expressions is always greater than 1 which implies that, all the sources 

contains nodes that cannot unambiguously be identified using only their text 

and/or their attributes. On the other hand, the mean length of the expressions is 

always fewer than 2, so the generated expressions contain information about a 

small number of nodes, having a high resilience to small changes. Finally, it can 

be observed that the time consumed to calculate node dependencies and generate 

the XPath-like expressions is quite small (globally, they represent, respectively, 

the 0.69% and the 2.51% of the time consumed by a normal execution), so, we 

can conclude that the process of calculating and colleting the optimization 

information is very efficient, and it could be executed frequently, if desired, to 

prevent the invalidation of the collected optimization information due to major 

changes in the websites pages. 

 

Table 2 shows the following metrics comparing the normal and the optimized 

executions (each cell shows the result of the normal execution followed by the 

results of the optimized execution): 

 Total number of HTML DOM tree nodes created. 

 Total number of script nodes created and executed. 

 Total number of frame and window objects created.  

 Total number of HTML pages downloaded. Note that the number of 

frames and windows created can be greater than the number of HTML 

pages downloaded because some frames only execute JavaScript code 

without needing to download an HTML page. 
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 Total number of external objects downloaded (including JavaScript and 

CSS files). 

 Total number of AJAX requests executed. 

 

Measuring the resources used in all the navigation sequences, the optimized 

executions only require the 12.41% of the nodes. Discarding those nodes, the 

browser also avoids unnecessary downloads and the execution of unnecessary 

scripts, so the memory and CPU usage, is highly minimized. The optimized 

executions only execute the 24.85%% of the scripts, create the 31.11% of the 

frames and windows, download the 50.81% of the HTML documents and the 

33.23% of the external objects, and execute the 29.03% of the AJAX requests. 

 

The first five columns of Table 3 show the times consumed by the browser to 

perform the main tasks necessary to execute each navigation sequence (again, 

each cell shows the result of the normal execution followed by the results of the 

optimized execution). These tasks are: 

 Build the DOM tree (this task include creating frames and windows when 

needed). 

 Execute scripts. 

 Download HTML pages. 

 Download external objects (including JavaScript and CSS files). 

 Execute AJAX requests. 

The sixth column shows the time consumed, in the optimized execution, to check 

if the nodes are the root of an irrelevant subtree according to the optimization 

information (this task corresponds to the execution of the algorithm explained in 

the section 4.4, to decide if each node should be added to the DOM tree). Note 

that this time is part of the time consumed in the optimized execution to build the 

DOM tree, and which is shown in the first column. 

Finally, the seventh column shows the total time consumed to execute the 

sequence (note that this time is not exactly the sum of the first five columns 

because the browser needs to execute other internal tasks to execute the 

navigation sequences). 

Measuring the mean time consumed in all the navigation sequences, the optimized 

executions, compared to the normal ones, consume the 45.68%. By tasks, to build 
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the DOM tree they consume the 37.36%, to execute scripts the 37.69%, to 

download HTML pages the 67.37%, to download external objects the 33.3%, and 

to execute AJAX requests the 32.38%.  

The last row shows the total time which the optimized executions save in each 

task, and the percentage which it represents regarding the total time of the normal 

executions. As can be seen, checking if the nodes should be added to the DOM 

tree only adds a penalization of the 0.18%, which is insignificant compared to the 

time savings in all the tasks. Even if we consider only the task of building the 

DOM tree, which in the optimization execution includes the time to check if the 

nodes should be added to the DOM tree, a 1.02% of the time is saved (this is 

explained because creating objects is a much more expensive operation than 

comparing strings). Executing scripts it is saved a 16.42% of the time, 

downloading HTML pages a 10.08%, downloading external objects a 25.27%, 

and executing AJAX requests a 1.65%. Globally a 54.32% of the time is saved. 

 

In the second experiment we compared the execution time of our custom browser 

using and without using its optimization capabilities, with the execution time of 

other representative navigation components. We used a navigation component 

based on another custom browser, in this case, we chose HtmlUnit [5] because it 

is an open source project and also supports JavaScript and CSS, and a navigation 

component using the APIs of two commercial web browsers, in this case 

Microsoft Internet Explorer 9 and Mozilla Firefox 19.0. Table 4 shows the 

average execution time of 20 consecutive executions of each of our test navigation 

sequences, discarding those that don't fit in the range of the standard deviation. 

The table 4 also shows, between brackets, the percentage they represent in 

comparison with the execution time of our custom browser using its optimization 

capabilities. The last four rows show, respectively, the following aggregate 

metrics about the time percentages: the average, the standard deviation, the 

average discarding those results that do not fit in range of the average ± standard 

deviation, and the median. 

 

The execution time of the custom browser using its optimization capabilities 

always got better results. Compared with the executions without optimization, the 

execution time varies from 141% in the worst case to the 651% in the best case. 
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Calculating the average of the percentages, the execution time of the custom 

browser without optimization is 2.44 times slower (244%) than the execution time 

with optimization. Discarding the results that do not fit in range of the average ± 

the standard deviation (the standard deviation is 45%), the execution time of the 

custom browser without optimization is 2.01 times slower (201%). The median 

value of the executions indicates that the custom browser without optimization is 

2.19 times slower (219%). 

 

Regarding the other browsers, the HtmlUnit custom browser is the one that got 

better results. In average it is 3.55 times slower than our custom browser with 

optimization (2.48 times if we discard the results that do not fit in range of the 

average ± the standard deviation), and the median of the executions indicates that 

it is 3.01 times slower. In the case of the navigation components based on 

Microsoft Internet Explorer and Mozilla Firefox, the average execution times are 

6.34 and 5.19 times slower than the execution time of the custom browser with 

optimization (4.49 and 3.85 times if we discard the results that do not fit in range 

of the average ± the standard deviation), and the median of the executions 

indicates that they are 5.07 and 4.63 times slower, respectively. 

 

The website where the optimized execution got better results was W3CSchools. 

As can be seen in Tables 2 and 3 it is because in the normal execution it 

downloaded 33 external objects and executed 89 scripts, but none of them were 

necessary in the optimized execution. This allows saving a lot of time in the 

corresponding tasks. The worst result was obtained in the website Barnes&Noble. 

As can be seen in Table 2, in this website the optimized exeuction could build a 

smaller DOM tree, but it needed to download the same external objects and 

HTML pages, and executed the same scripts. In Table 3, it can be observed that 

the optimized execution saves time building the DOM tree and also executing 

scripts, although the same ones are executed. The scripts are executed faster in the 

optimized execution because some of them contain operations which are executed 

faster when applied to a reduced DOM tree (for example if they access to the 

collection which contains all the nodes of the tree). 
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6  Related Work 

Currently, web automation applications are widely used for different purposes. 

The approach followed by most of the current web automation systems, like 

Smart Bookmarks [6], Wargo [11], QEngine [12], Sahi [14], Selenium [15], and 

Montoto et al. [7] consists in using the APIs of conventional web browsers to 

automate them. This approach has two important advantages: it does not require 

to develop a new browser (which is costly), and it is guaranteed that the page will 

behave in the same way as when a human user access the page with her browser. 

Nevertheless, it presents performance problems for intensive web automation 

tasks which require real time responses and/or to execute a significant number of 

navigation sequences in parallel. This is because commercial web browsers are 

designed to be client-side applications and, therefore, they consume a significant 

amount of resources and time, as we have demonstrated in the evaluation section. 

 

Other systems use the approach of creating simplified custom browsers specially 

built for the task. WebVCR [2] and WebMacros [13] rely on simple HTTP clients 

that lack the ability to execute complex scripting code or to support AJAX 

requests. Our custom browser supports all those complexities. 

 

HtmlUnit [5] and Kapow [8] use their own custom browser with support for many 

JavaScript and AJAX functionalities. They are more efficient than commercial 

web browsers, because they are not oriented to be used by humans and can avoid 

some tasks (e.g. rendering). Nevertheless, HtmlUnit works like conventional 

browsers when loading and building the internal representation of the web pages. 

The last versions of Kapow are not downloadable, but to the best of our 

knowledge it also works like conventional browsers regarding this issue. Since 

this is the most important part in terms of the use of computational resources, their 

performance enhancements are much smaller than the ones achieved with our 

approach, as we have demonstrated in the evaluation section. 

 

Related to the problem of identifying elements in web pages, some systems [2] [7] 

[11] [12] [13] [14] use the text associated to the elements and the value of some 

specific pre-configured attributes (e.g. href for A tags). In complex websites it is 

frequent that some elements cannot unambiguously be identified by their text 
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and/or the value of their attributes (as our experiments have demonstrated). Smart 

Bookmarks [6] can also generate full XPath expressions pointing to the target 

element when the above strategy does not uniquely identify it. But these 

expressions are not resilient to small changes on the page loaded at different 

moments. Selenium [15] generates XPath expressions to identify the target 

element trying to make them resilient to changes but they consider only some pre-

defined attributes (e.g. id, href). Kapow [6] generates an XPath-like expression 

that tries to be resilient to small changes, although the details of the algorithm 

they use have not been published. Works like [3] [9] have also addressed the 

problem of generating change-resilient XPath expressions, but in those 

approaches, the user have to provide several example pages identifying the target 

element. 

 

7  Conclusions 

In this paper, we have presented a novel set of techniques and algorithms to 

efficiently execute web navigation sequences. Our approach is based on executing 

the navigation sequence once, to automatically collect information about the 

elements of the loaded pages that are irrelevant for that navigation sequence. 

Then, that information is used in the next executions of the sequence, to load only 

the required elements and fire only the required events. 

 

To evaluate the proposed techniques and algorithms, they have been implemented 

in the core of a custom browser, developed for this purpose. According to our 

experiments the techniques are very effective: smaller DOM tree nodes are built, 

unneeded scripts are not executed and unneeded navigations are not performed. 

This way, the techniques allow to save bandwidth, memory and CPU usage, and 

to execute the navigation sequences faster compared with the same custom 

browser without using its optimization capabilities, and with other representative 

navigation components. 
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Figure Legends 

Fig. 1. Navigation Sequence Example  

Fig. 2. DOM tree of an example page 

Fig. 3. Transitivity Dependency Examples 

Fig. 4. Example 

Fig. 5. Algorithm to generate an XPath-like expression to identify a node 

Fig. 6. XPath-like expression generation example 

Fig. 7. Algorithm to check if a node is the root of an irrelevant subtree 
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Tables 

Table 1. Metrics about the optimization phase 
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Table 2. Metrics comparing normal and optimized executions  
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Table 3. Times comparing normal and optimized executions  
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Table 4. Average execution times in milliseconds 
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