

This is an ACCEPTED VERSION of the following published document:

Nieves R. Brisaboa, Travis Gagie, Adrián Gómez-Brandón, Gonzalo Navarro & José R.
Paramá (2021) An index for moving objects with constant-time access to their
compressed trajectories, International Journal of Geographical Information Science,
35:7, 1392-1424, DOI: 10.1080/13658816.2020.1833015

Link to published version: https://doi.org/10.1080/13658816.2020.1833015

General rights:

This is an Accepted Manuscript of an article published by Taylor & Francis in
International Journal of Geographical Information Science in 2021, available at:
https://doi.org/10.1080/13658816.2020.1833015

ARTICLE TEMPLATE

An index for moving objects with constant-time access to their

compressed trajectories

Nieves R. Brisaboaa, Travis Gagieb, Adrián Gómez-Brandóna, Gonzalo Navarroc,
and José R. Paramáa

aUniversidade da Coruña, Centro de investigación CITIC, Facultade de Informática, A
Coruña, Spain; bFaculty of Computer Science, Dalhousie University, Halifax, Canada; c

Millennium Institute for Foundational Research on Data, Department of Computer Science,
University of Chile, Beauchef 851, Santiago, Chile

ARTICLE HISTORY

Compiled December 15, 2023

ABSTRACT
As the number of vehicles and devices equipped with GPS technology has grown
explosively, an urgent need has arisen for time- and space-efficient data structures to
represent their trajectories. The most commonly desired queries are the following:
queries about an object’s trajectory, range queries and nearest neighbor queries.
In this paper we consider that the objects can move freely and we present a new
compressed data structure for storing their trajectories, based on a combination of
logs and snapshots, with the logs storing sequences of the objects’ relative move-
ments and the snapshots storing their absolute positions sampled at regular time
intervals. We call our data structure ContaCT because it provides Constant-time
access to Compressed Trajectories. Its logs are based on a compact partial-sums
data structure that returns cumulative displacement in constant time, and allows
us to compute in constant time any object’s position at any instant, enabling a
speedup when processing several other queries. We have compared ContaCT exper-
imentally with another compact data structure for trajectories, called GraCT, and
with a classic spatio-temporal index, the MVR-tree. Our results show that ContaCT
outperforms the MVR-tree by orders of magnitude in space and also outperforms
the compressed representation in time performance.

KEYWORDS
Moving objects; Trajectories representation; Spatio-temporal query.

1. Introduction

Managing data on object trajectories is by no means a new topic, but it has attracted
a lot of attention recently (Mahmood et al. 2019) as the number of vehicles and de-
vices — cars, ships, planes, drones, smartphones, smartwatches — equipped with GPS
technology has grown explosively. The data generated by these multiple sources have
a wealth of applications, including traffic management, analysis of human movement,
tracking animal behavior, security and surveillance, military logistics and combat, and
emergency-response planning (Gudmundsson et al. 2008). The vast quantities of data
now involved, however, can make storing and processing them a challenge, especially

CONTACT Adrián Gómez-Brandón. Email: adrian.gbrandon@udc.es

on mobile devices, so an urgent need has arisen for data structures that are more time-
and space-efficient (Zheng and Zhou 2011).

By a trajectory we mean the route followed by a moving object during an interval
of time. The approaches to storing trajectories depend on the kind of vehicle or device
involved, the application, the geographical scale and resolution required, and other
criteria. They can be roughly divided into two groups: those designed for objects
moving over networks, such as roads or public transportation networks, and those
designed for objects moving freely in space, either two- or three-dimensional. In this
paper we focus on the second case.

The most basic queries that a data structure storing trajectories should support
are object position and object trajectory: given an object’s identifier and either a time
instant or a time interval, respectively, they return that object’s position at that instant
or its trajectory during that interval. For the applications we have mentioned, however,
more sophisticated queries are necessary. The most common are range queries: given a
spatial range and a time instant or a time interval, time slice and time interval return
the identifiers of the objects in the spatial range in that instant or during that interval,
respectively. We also consider the simplest variant of the popular nearest neighbor
queries: given a position, an integer k, and a time instant, return the identifiers of the
k closest objects to that point in that instant. The last query we consider in this paper
is minimum bounding rectangle (MBR): given an object’s identifier and a time interval,
return the smallest axis-aligned rectangular spatial range containing that object for
that whole time interval.

Solving those queries efficiently requires storing and indexing the trajectory data
in different forms. Since the 1990s, several different disk-based data structures and
indexes for mobile objects have been proposed. As we explain in Section 2, some
solutions are oriented to efficiently solving object position and object trajectory, while
others index the space to efficiently answer range and nearest neighbor. Many of those
that index the space enrich the classical R-tree index (Guttman 1984), by adding a
new dimension to represent time.

As internal memories have grown, however, in-memory indexes have become more
popular in many areas of computer science, since internal memory is several orders of
magnitude faster than secondary memory. In particular, in-memory trajectory indexes
have been proposed (Cudre-Mauroux et al. 2010, Zheng et al. 2018). To keep large
datasets in memory, it is often necessary to compress them. The common compression
technique is delta compression, which represents each position of an object relative to
its position in the previous instant, thus exploiting encodings that use fewer bits to
represent smaller numbers. In order to retrieve the position of the object at a specified
instant, the differences must be summed up. This operation, called partial sum, is sped
up by storing sampled absolute positions.

An alternative to delta compression is grammar-based compression, which com-
presses datasets by representing them as context-free grammars that expand to yield
those datasets. Grammar-based compression exploits (and depends on) the repetitive-
ness of the datasets, which in this case means the similarities between the trajectories
of many objects. In a previous paper (Brisaboa et al. 2019) the authors proposed a
system of Grammar C ompressed T rajectories (GraCT), which also stores summary
data associated with the grammar to speed up queries.

In this paper, we propose a new in-memory data structure that indexes compressed
trajectories, called Constant-t ime access to C ompressed T rajectories (ContaCT). We
return to the idea of differentially encoding the trajectories, with each object storing
a compressed log of its movements. Like other differential encoders, we achieve com-

2

pression whenever consecutive movements in trajectories tend to be comparatively
small. The important novelty is that ContaCT encodes logs with modern and compact
bitmap data structures supporting constant-time queries (Navarro 2016). For exam-
ple, constant-time calculation of partial sums enables us to efficiently answer object
position and object trajectory queries, which are fundamental. To answer range and
nearest neighbor queries efficiently, ContaCT combines the bitmaps with snapshots,
which represent the absolute positions of all the objects at regular time periods using
a compact data structure called a k2-tree (Brisaboa et al. 2013).

We further augment the bitmaps with compact data structures that support, in
constant time, another query called range minimum/maximum (Fischer and Heun
2011). This query takes an interval in a sequence and returns the positions of the
minimum and maximum values in that interval. Since the bitmaps store the objects’
coordinates, we can use range minimum/maximum queries to compute an object’s
MBR in constant time. With constant-time MBR queries we can speed up time interval
queries, by filtering out candidates if their MBRs for the query interval do not intersect
the query range.

Constant-time MBR queries are important in their own right. For example, some
visualization tools (Leontiadis et al. 2011, Becker et al. 2015, Li et al. 2011) display
MBRs of all objects during time intervals, and data mining problems can be sped
up by using MBRs, such as detecting objects that move together (Gudmundsson and
van Kreveld 2006, Gudmundsson et al. 2004, Ma et al. 2013), extracting sequential
patterns from trajectories (Cao et al. 2005, Ye et al. 2009, Xiao et al. 2010), and
trajectory clustering (Li et al. 2010a,b).

We have compared ContaCT experimentally with GraCT and with a classic spatio-
temporal index, called the MVR-tree (Tao and Papadias 2001b), and found ContaCT
to be generally somewhat larger than GraCT but much faster at finding objects’ posi-
tions and minimum bounding rectangles (and competitive for the rest of the queries)
and much smaller and somewhat faster than the MVR-tree.

In our experiments we used datasets from four different types of moving objects:
ships, planes, city taxis, and birds. ContaCT achieves reasonably good compression
ratios, representing both trajectory data and the auxiliary data structures in 20%–60%
of the sizes of the original uncompressed datasets. Although these space usages are
up to 3 times higher than those achieved with GraCT, ContaCT is 4–14 times faster
at answering object position queries and 4–9 times faster at answering MBR queries,
which are the queries that best exploit its constant-time computations. For the other
queries, ContaCT is up to 3.5 times faster than GraCT, unless we enlarge the latter to
use half the space of ContaCT, at which point their performance becomes similar. We
note that the birds’ trajectories are not repetitive and for this dataset GraCT used
space much closer to ContaCT while remaining significantly slower. ContaCT is 60–90
times smaller than the MVR-tree but as fast, and even faster on time interval queries.

The rest of the paper is laid out as follows: in Section 2 we review the state of
the art; in Section 3 we summarize the basic concepts of compact data structures;
Section 4 covers the structure of ContaCT; Section 5 explains how it supports queries;
in Section 6 we present our experimental results; finally, in Section 7 we present our
conclusions and outline directions for future work.

3

2. State of the art

The research on moving objects can be roughly classified into two groups: one oriented
to objects that move over networks (Popa et al. 2015) (roads, streets, or public trans-
portation networks), and another oriented to objects that move freely in the space
(typically in two or three dimensions). This work belongs to the second group. In this
section we describe how free trajectories are modeled, and then cover the most relevant
previous work on compressing and indexing trajectory data.

2.1. Modeling trajectories

Trajectories can be understood as continuous space-time functions. Due to storage
constraints and the frequency of emission of GPS devices, however, they are actually
represented as discrete sequences of pairs (position, time). That is, trajectories are
usually represented as lists of timestamped points in a two- or three-dimensional space.

The displacement of an object between two consecutive timestamps is called a move-
ment. A movement in a d-dimensional space involves displacements of different mag-
nitude (which could be 0) along each of the dimensions of the space.

By increasing the sampling rate of the timestamps one obtains better accuracy, but
also requires handling larger amounts of data, which in turn increases storage, trans-
mission, and processing costs. Reducing or simplifying the trajectory representations
is useful for decreasing those costs as data volumes grow.

Trajectory simplification aims to reduce the size of a trajectory by discarding some
of its less relevant points. The simplified trajectories can then be compressed and
indexed with other techniques. We can distinguish between two kinds of trajectory
simplification methods: batch mode and online mode.

The batch mode methods compress the trajectory as a whole. The Douglas-Peucker
algorithm (Douglas and Peuker 1973) discards the most redundant points and keeps
those with relevant information. A similar method is Top-Down Time Ratio (Meratnia
and de By 2004), which is identical to Douglas-Peucker, but exploits the time dimen-
sion. Other methods approximate trajectories by deciding on the relevance of points
considering the network (Schmid et al. 2009, Ta et al. 2016).

The online mode methods compress the trajectory as they scan it by maintaining
a buffer of the recent points. The simplest method (Potamias et al. 2006) is to collect
the positions at regular time intervals. Other algorithms, like Dead Reckoning (Tra-
jcevski et al. 2006) and STTrace (Potamias et al. 2006), exploit speed and direction of
objects to discern which points produce an important change in the trajectory path.
SQUISH (Muckell et al. 2011) is another online method, whose approximation error
cannot be bounded. SQUISH-E (Muckell et al. 2014) is an evolution of SQUISH that
offers a compression bound and an error bound. Other online approximation methods
are OPERB (Lin et al. 2017), and BQS (Liu et al. 2015).

This paper does not focus on trajectory simplification. We assume that the times-
tamped points of a trajectory are already recorded at regular intervals. This is the case
for many GPS devices in real life1. We also assume that the recorded timestamped
points correspond to the same time instants for all the objects in the collection. In
addition, we discretize the space, dividing it into square cells of a fixed size and iden-
tifying positions with their containing cell. This corresponds to the well-established

1There can be time instants without values, however, because objects could stop recording their position. For

example, ships turn off the GPS when they are at a port. We do address that case.

4

raster model.

2.2. Compressing trajectories

Once the trajectory is simplified, we can apply some lossless compression method to
further reduce its size. The most common method is delta compression: after storing
the first position of the trajectory, each subsequent position is encoded as its difference
with respect to the previous one. That is, the trajectory is encoded as a sequence of
consecutive movements. Those movements tend to be small, and so the differences can
be stored with fewer bits than the original coordinates. While the whole trajectory
can be efficiently recovered by accumulating differences, computing just the position
of an object at a given time t is not so efficient, because it requires decompressing
the whole trajectory until the queried time t. Some methods introduce a space/time
trade-off by sampling some absolute positions at regular intervals of time.

Delta compression is used in systems like TrajStore (Cudre-Mauroux et al. 2010)
and SharkDB (Zheng et al. 2018). Trajic (Nibali and He 2015), instead, predicts the
next point of a trajectory and stores the difference between the predicted point and
the real one. The deviations are then encoded with a (usually) small number of bits.
A different technique is used in REST (Zhao et al. 2018), where every trajectory is
represented by the concatenation of parts of other trajectories, which are known as
references. A spatio-temporal threshold adjusts the error between the original and the
represented trajectories.

As expected, systems like Trajic (Nibali and He 2015), STTrace (Potamias et al.
2006) or SQUISH (Muckell et al. 2011), which just store the trajectories, can retrieve
trajectories very efficiently. However, they are inefficient at solving range or nearest
neighbor queries. For solving range queries, they need to retrieve the trajectory of every
object during the queried interval of time and check if some point of the trajectory is
within the queried region. For nearest neighbor queries, they compute the position of
every object at the queried time instant.

A different approach is taken by GraCT (Brisaboa et al. 2019), which uses instead
grammar compression on the set of the differential trajectories of all the objects, in
the hope that many objects will follow similar trajectories. Grammar compression
produces a context-free grammar that generates (only) the set of the trajectories.
Grammar non-terminals are enriched with summary data that allows skipping without
expanding them when a trajectory is traversed. Therefore, the trajectories are not only
encoded in less space, but they are also faster to traverse.

Although our proposal is based on GraCT, the compression of the trajectories is
totally different. ContaCT uses a differential compression of the trajectories, by using
bitmaps and other compact data structures. Those structures allow us to compute
the position of an object in constant time, thereby outperforming GraCT in many
queries. Although the trajectory compression of ContaCT is generally worse than
that of GraCT, it is also more robust because it only relies on the assumption that
consecutive movements along a trajectory are relatively small. This is a more basic
assumption than the fact that many objects share similar trajectories, which is needed
for the grammar-compression of GraCT to outperform that of ContaCT.

5

2.3. Indexing trajectories

Spatio-temporal indexes for object trajectories are mostly based on the R-tree
(Guttman 1984), a classic spatial data structure that encloses objects with Minimum
Bounding Rectangles (MBRs). Each node of an R-tree includes an MBR that wraps
the MBRs of their children or objects in leaves. A search for the objects within an area
can be efficiently solved by descending through the nodes whose MBRs intersect the
queried area. Therefore, the queries run more efficiently when the MBRs are smaller.

The 3DR-tree (Vazirgiannis et al. 1998) is a spatio-temporal index that replaces
MBRs by MBBs (Minimum Bounding Boxes), where the third dimension represents
the time. Since this time dimension can cover a very long interval, the MBBs may
become large and damage the search performance. Some indexes (Pfoser et al. 2000)
try to solve this problem by modifying the strategy that creates MBBs (STR-Tree),
or by inserting partial trajectories as MBBs in an R-tree (TB-tree).

Indexes like MR-tree (Xu et al. 1990), HR-tree (Nascimento and Silva 1998), HR+-
tree (Tao and Papadias 2001a), and MV3R-tree (Tao and Papadias 2001b) adopt a
different strategy: they conceptually store an R-tree for each timestamp. Storing a full
R-tree per timestamp requires a large amount of space, thus they only store the parts
of the R-tree that differ from the preceding one.

Grid-based indexes split the space into several partitions and build a temporal index
for each partition. SETI (Chakka et al. 2003), for example, divides the space into cells
and, for each cell, it indexes the trajectories by time with an R*-tree. Other grid-
based indexes are Multi Time Split B-Tree (Zhou et al. 2005), Compressed Start-End
tree (Wang et al. 2008), PIST (Botea et al. 2008), and GCOTraj (Yang et al. 2018).

All these indexes based on R-trees can efficiently solve range and nearest neighbor
queries. However, they are very slow for object trajectory queries because retrieving
each trajectory position requires a top-down traversal of an R-tree.

A completely different approach is presented in the PA-tree (Ni and Ravishankar
2007), which approximates each trajectory by a single continuous polynomial, avoiding
MBBs and R-trees. Since the original and the approximate trajectories are not iden-
tical, they keep the maximum deviation between both so as to detect false negatives.

A recent approach is to store trajectories in a distributed computing framework and
augment it with spatio-temporal indexes. PRADASE (Ma et al. 2009) and CloST (Tan
et al. 2012) use Hadoop and a spatio-temporal index. TrajSpark (Zhang et al. 2017)
is based on Spark (Zaharia et al. 2016) and adds a two-level spatio-temporal index.
Other indexes like MD-HBase (Nishimura et al. 2013), R-HBase (Huang et al. 2014),
and GeoMesa (Hughes et al. 2015) are based on distributed key/value storages.

The SEST-Index (Gutiérrez et al. 2005, Worboys 2005) uses a different approach,
based on snapshots and logs. A time sampling interval is defined and a spatial index
is stored for each sampled timestamp, recording the positions of all the objects at
that timestamp. A log of “events” signals the objects that appear at some position,
or disappear, between each consecutive pair of snapshots.

Our index follows the model of snapshots and logs, but it has important differ-
ences with SEST-Index. First, ContaCT uses compact data structures to store the
information in an efficient way, whereas SEST-Index does not consider compression.
Second, the information stored in the ContaCT log contains the relative movements
of each individual object. The “events” stored by SEST-Index, instead, are suitable
for detecting when an object is within a region, but not for obtaining its trajectory.

6

2.4. Combining compression and indexing

There are a few indexes that combine spatial indexing with trajectory compression.
TrajStore (Cudre-Mauroux et al. 2010) is an example. Like SETI (Chakka et al. 2003),
it splits every trajectory into subtrajectories, each one confined to a cell. Instead of
storing those subtrajectories in plain form, they are compressed in each cell. TrajStore
can be considered a lossy method because it groups similar trajectories and stores only
one of them. These representative trajectories are encoded using delta compression. A
quadtree indexes the cells of the space and, inside each cell, it stores a temporal index.
Like the indexes based on the R-tree, TrajStore can efficiently solve range queries.

Another system combining compression and indexing is SharkDB (Zheng et al.
2018). It splits the time dimension into intervals of a given length, and stores one
point for each trajectory and interval of time. The points contained in each interval are
stored as a column of a column-oriented database and encoded with delta compression.
SharkDB focuses on solving nearest neighbor queries.

GraCT (Brisaboa et al. 2019) uses the same snapshot-and-log architecture of the
SEST-Index (Gutiérrez et al. 2005) combined with grammar compression of the log, as
explained. The snapshots are useful for speeding up range and nearest neighbor queries,
because from the snapshot closest to the query we can use spatial range queries to
filter the objects that have a chance of belonging to the spatial query window during
the queried time interval. In addition to speeding up the scanning of compressed
trajectories, the MBRs stored for nonterminals are useful for discarding portions of
the trajectories that cannot intersect the query window.

Our index can be placed in this same category. ContaCT uses the same architecture
of GraCT, but it uses delta compression instead of grammar compression. Further, it
uses a clever format for delta compression that allows it to find the position of any
object at any time instant in constant time, without the need for traversals. It can also
compute the MBR of any object along any time interval on the fly, in constant time
as well, which is useful for speeding up range and nearest neighbor queries (GraCT
has precomputed MBRs only for its grammar nonterminals). This ability is relevant
by itself, as a summary of the movements of an object along a time period.

Note that systems that just store trajectories (Trajic, STTrace, SQUISH) are ef-
ficient for retrieving the whole trajectory of each object; STTrace can also answer
object trajectory efficiently because it samples absolute positions. However, they can-
not efficiently compute range and nearest neighbor queries, where they must check the
position of every object. Conversely, systems storing the trajectory data in R-trees
(SETI, Trajstore, SharkDB) are efficient at range and nearest neighbor queries, be-
cause they can quickly filter the candidates. However, they need to traverse several
paths in one or more R-trees in order to recover a given trajectory. The indexes based
on snapshots and logs (SEST-Index, GraCT, ContaCT) have sufficient information to
efficiently handle both types of queries, because they store the trajectories explicitly
while providing snapshots to speed up the filtration of candidate objects.

3. Compact data structures

An emerging research area termed compact data structures (Navarro 2016) focuses on
the design of data structures that compress the data and can solve queries without the
need to decompress the whole structure. Their space consumption is usually close to
that of the standard compressed form of the data, and their query times are competi-

7

tive with those of classical data structures. Our structure is composed of several basic
compact data structures and compression methods, which we cover in this section.

3.1. Rank and select on bitmaps

Rank and select operations over bitmaps are widely used in compact data structures:
rankb(B, p) is the number of times bit b occurs in the bitmap B up to position p, and
selectb(B, i) is the position of the i-th occurrence of bit b in bitmap B.

These operations can be solved in O(1) time with just o(n) bits of space on top
of the n bits used by B[1..n] (Munro 1996). In practice, the implementations of rank
are faster than those of select. A related operation, select nextb(B, p), returns the
position of the next bit b after position p in B. Although it can be solved in O(1)
time using select nextb(B, p) = selectb(B, rankb(B, p) + 1), a direct implementation
of select next makes it as fast as rank in practice (Navarro 2016).

When B has m� n 1s, an alternative representation based on Elias-Fano encoding
(Okanohara and Sadakane 2007) uses only m log(n/m)+2m bits in total, and answers
rank queries in time O(log(n/m)) and select in O(1) time.

3.2. Partial sums

Given a sequence of positive values d1, d2, . . . , dm, a partial sum computes xi =
∑i

j=1 dj
for any given i. An obvious way to solve these queries in constant time is to store all
the answers xi explicitly, using m log n bits, with n = xm.

By using bitmaps with rank and select functionality, it is possible to build a compact
partial sums data structure that still answers in constant time. Since 0 < x1 < x2 <
. . . < xm, we can set a bitmap B[1..n], having 1s at the positions xi. It then holds
that xi = select1(B, i). By using the Elias-Fano representation, the space of the data
structure is m log(n/m) + 2m bits.

An alternative setup is that we have increasing values xi and store them in compact
form by marking them in B, in a way that allows us to retrieve any value in constant
time. The bitmap B can then be regarded as the concatenation of the differential values
di = xi − xi−1 written in unary. Each difference di is then encoded in log(n/m) + 2
bits on average, where n/m is the average difference value.

It is instructive to compare this result with a classical differential encoding. For
example, δ codes (Bell et al. 1990) use log di+o(log di) bits to encode di, adding up to∑m

i=1 log di + o(log di) ≤ m log(n/m) + o(m log(n/m)) bits. The inequality approaches
equality when the values di are close to each other. To retrieve the values xi with partial
sums in time O(t), however, we must sample the absolute values every t positions, for
an extra space of (m/t) log n bits. For example, with the extra space of 2m bits of the
bitmap encoding we described, we can only achieve O(log n) time, not O(1).

Recall that we use differential encoding for the compression of the trajectories.
Those differential movements, in a two-dimensional space, are composed of horizontal
and vertical displacements, which can be represented by using partial sum structures.
Indeed, in ContaCT, we use a small variation of the constant-time partial sums struc-
ture, which allows us to represent differences that are 0 as well. In our case, the value
of a difference di = v is represented as v + 1, that is, v consecutive zeros followed
by a 1 to mark the end of the number. Therefore, the value xi can be obtained as
select1(B, i)− i.

8

3.3. Range minimum/maximum queries

Let A[1..n] be an array of integers. The range minimum query rmq(A, i, j) returns the
position k, where A[k] is the minimum value in A[i..j]. The range maximum query
rMq(A, i, j) computes the position of the maximum instead of the minimum. Notice
that those types of queries are useful for obtaining the MBR of an object, where the
corners correspond to the minimum and maximum value of each dimension from the
trajectory.

Fischer et al. (Fischer and Heun 2011) proposed an rmq structure that answers in
O(1) time and uses only 2n+o(n) bits, without the need to access A. An obvious variant
solves rMq in O(1) time using other 2n+ o(n) bits. A simplified variant (Ferrada and
Navarro 2017) is also O(1) time, but it obtains the best time in practice.

3.3.1. Queries on arrays with runs

Observe that rMq (rmq) queries return only the position in A of the maximum (min-
imum) value. In our application, we will need to store A for other reasons, but our
array A will have long runs of nonincreasing or nondecreasing values. We can exploit
this regularity to design smaller range query data structures (Gagie et al. 2017). Let
us consider rMq; the case of rmq is similar. We use a bitmap B[1..n] that has 1s only
at the positions where there is a local maximum. A local maximum occurs at position
i of A if A[i′] < A[i] > A[i+ 1], where i′ < i is the largest position where A[i′] 6= A[i]
(assume A[0] = A[n+ 1] = −∞). The rMq structure will be built on an array A′ that
stores the values A[i] at local maxima (recall that A′ will not be stored). For example:

A : 1, 3, 2, 2, 2, 5, 8, 9, 7, 6, 7, 3, 6, 7, 8, 7, 7, 5, 3, 2

B : 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0

A′ : 3, 9, 7, 8

Now, for a given range A[i..j], the maximum value is either a local maximum within
that interval or one of the values at the extremes, A[i] or A[j]. We therefore map
A[i..j] to the corresponding area A′[i′..j′] where the local maxima in A[i..j] lie, find
the maximum in A′[i′..j′], and compare it with A[i] and A[j]. The interval in A′ is
computed as i′ = rank1(B, i − 1) + 1 and j′ = rank1(B, j) and the value of A′[k′] is
obtained with A[select1(B, k′)].

In our example, to find rMq(A, 5, 15), we first compute i′ = rank1(B, 5−1)+1 = 2
and j′ = rank1(B, 15) = 4. The query rMq(A′, 2, 4) = 2 tells that the largest local
maximum in A[5..15] is A[select1(B, 2)] = A[8] = 9. We compare it with the extremes,
A[5] = 2 and A[15] = 8 to conclude that rMq(A, 5, 15) = 8.

Instead of the 2n+ o(n) bits of the classical rMq structure, we use n+ 2n′ + o(n)
bits, where n′ < n is the number of local maxima in A.

3.4. k2-trees

The k2-tree (Brisaboa et al. 2014) is a compact data structure for binary matrices.
It can be regarded as a space- and time-efficient version of a region quadtree (Samet
1984), that is, a spatial index. Indeed, the k2-tree is the basis of the spatial index used
in ContaCT to store the object locations at selected time instants.

The k2-tree is a k2-ary tree built by recursively splitting the binary matrix into k2

submatrices of equal size. In level i, the size of these submatrices is n2/k2i. In the first

9

0 1 2 3 4 5 6 7 8 9 10 11 12 13 1 0

15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

13 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

5 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

4 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

T

:

0 1 0 1 1 0 0 0 1 1 1 0 0 0 0 1 0 0 1 0 0 0 1 0 0 0 0 1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

L

:

1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 1

0 0

0 0 0 01 1 1 1

0 0 0 0 0 0 0 0 0 0 0 0

0 00000000000

1

1 1 1 1

111

11

Figure 1. A k2-tree.

step, the matrix is split and sorted from left to right and from top to bottom. Each
submatrix corresponds to a child of the root node, whose value is 0 if the submatrix
is full of 0s, and 1 otherwise. The procedure continues recursively for each child with
value 1 until reaching a submatrix full of 0s or the individual cells (submatrices of size
1× 1).

Therefore, each internal node stores k2 bits, and this is sufficient to describe the
binary matrix. The structure is stored in two bitmaps, T and L. The bits of internal
levels are concatenated in T following a level-wise traversal, and L stores the last level
of the tree. The bitmap T is provided with rank and select functionality. See Figure 1.

We can efficiently collect the 1s of a region of the matrix by traversing the appro-
priate subtrees using rank operations on T . For example, given a 1 (i.e., a node) at
position p in T , its k2 children start at position rank1(T, p)× k2 of T : L. Similarly a
bottom-up traversal can be simulated with select operations on T . For example, given
a position p of T : L, its parent is located at position select1(T, bp/k2c) of T .

In ρ dimensions, the k2-tree is generalized to a kρ-tree, where each internal node
stores kρ bits according to the subgrids into which its grid is partitioned. In this paper
we use k = 2 and, in most cases, ρ = 2.

4. Constant time access trajectories

Our proposal Constant time access trajectories (ContaCT) also uses a raster represen-
tation of the space and a discretization of the time, storing discretized object positions
at regular time intervals. The cell size and time interval span can be configured de-
pending on the domain. There is a trade-off between accuracy and data size: if the cell
size or the time interval span decrease, the trajectory accuracy increases, but the size
of the dataset grows.

The use of a raster model introduces some imprecision and errors, when we compare
the original trajectory with the one obtained from the raster representation. Those
errors can be bounded depending on the type of query (Cao et al. 2006). Assume
the raster model uses cells of size c × c. Every time our structure obtains a cell, if
it reports its center as the corresponding point, the maximum distance between the
original point and the retrieved one is half of the diagonal of a cell, c/

√
2.

That error bound directly affects queries related to the trajectory of an object (i.e.,
obtaining the position of an object, its trajectory, or computing its MBR), where every
returned point can vary by at most c/

√
2 units. On the other hand, for region queries,

10

9

8

7

6

5

4

3

2

1

0

0 1 2 3 4 5 6 7 8 9

X

Y

t0

t1

t2

t4

t5

t8

t6

t7

t9

t3

Figure 2. Example trajectory of an object over a two-dimensional space.

the input region [x1, x2] × [y1, y2] can partially intersect some cells of the raster. By
including those cells, our index can retrieve some spurious objects from the expanded
region [x1 − c, x2 + c] × [y1 − c, y2 + c]. Finally, in nearest neighbor queries we can
return objects that are off being the nearest ones by at most c

√
2. This worst case

occurs when two objects are located in a diagonal at the nearest and farthest corners
of the same cell, so they are indistinguishable after discretizing their positions.

In ContaCT, the input data are already in raster form, with the cell size defined
depending on the kind of objects to handle. Therefore, those error bounds are as-
sumed by the domain. In our experimental evaluation, we show how the size and time
performance of ContaCT evolves with different cell sizes.

ContaCT is structured into snapshots of the space at regular time intervals and logs
to represent the movements of each object trajectory. Unlike in GraCT, the log of
ContaCT on its own is sufficient at answering object and trajectory queries (as well
as the new MBR queries); the snapshots are used only to speed up range and nearest
neighbor queries.

Each snapshot is represented using the kρ-tree data structure described in Sec-
tion 3.4. The log data for an object is, in essence, the description of its consecutive
movements along each coordinate using the constant-time partial sums data struc-
ture described in Section 3.2. This allows reconstructing the position of any object at
any time instant in constant time. Further, the logs are enriched with the rmq/rMq
structures described in Section 3.3. These allow computing the MBR containing the
positions of any object during any period of time, which is useful for speeding up range
queries and, as explained, it is interesting in itself as an independent query.

We now describe the log and snapshot structures in detail.

4.1. The log representation

The movements of each object along each dimension D is a sequence of positive and
negative values (i.e., increasing or decreasing the object position along that dimen-
sion). We represent them in unary using two bitmaps, Dp and Dn. For each positive
movement of c cells, we append c 0s and a 1 to Dp, and a 1 to Dn. For each negative
movement of c cells, we append a 1 to Dp and c 0s followed by a 1 to Dn. A zero

11

movement implies then appending a 1 to both Dp and Dn.
This allows us to easily compute the position of the object along dimension D in

time instant t in constant time, as shown in Section 3.2:

d0 + (select1(Dp, t)− t)− (select1(Dn, t)− t) = d0 + select1(Dp, t)− select1(Dn, t),

where d0 is the position at time t = 0.
Figure 2 shows an example trajectory in dimensions X and Y , along time instants

t0 to t9. The absolute positions of the object along those time instants are:

AX [0..9] = 0, 1, 2, 3, 4, 5, 6, 6, 4, 8

AY [0..9] = 1, 3, 2, 4, 7, 6, 5, 3, 3, 1

and these correspond to the following differential movements (AD[i] − AD[i − 1]),
starting from position (x0, y0) = (0, 1) at time instant t0:

∆X [1..9] = 1, 1, 1, 1, 1, 1, 0,−2, 4

∆Y [1..9] = 2,−1, 2, 3,−1,−1,−2, 0,−2

We then represent the trajectory with the following four bitmaps: two for dimension
X and two for dimension Y :

Xp = 0101010101011100001

Xn = 11111110011

Yp = 0011001000111111

Yn = 1011101010011001

For instance, the position (x6, y6) = (6, 5) of the object at t6 is found with

x6 = AX [6] = x0 + select1(Xp, 6)− select1(Xn, 6) = 0 + 12− 6 = 6,

y6 = AY [6] = y0 + select1(Yp, 6)− select1(Yn, 6) = 1 + 13− 9 = 5.

Since we can compute the position of an object in O(1) time, the snapshots are not
used in ContaCT to compute the position of objects.

4.2. The minimum bounding rectangle support

For each object and dimension D, we include the support for range maxi-
mum/minimum queries described in Section 3.3.1. We choose this arrangement be-
cause objects tend to move in a specific direction for long time periods, therefore there
are few local minima and maxima and the indexes tend to be small.

Let the array AD be the array A of Section 3.3.1, which stores the absolute object
positions in dimension D. ContaCT then represents (in principle, see later) the bitmaps
BmaxD and BminD marking the local maxima and minima, respectively, and will
simulate access to their associated arrays Amax′D and Amin′D by exploiting the fact

12

that it has access to AD through bitmaps Dp and Dn:

Amax′D[i] = AD[select1(BmaxD, i)− 1]

= d0 + select1(Dp, select1(BmaxD, i)− 1)− select1(Dn, select1(BmaxD, i)− 1),

Amin′D[i] = AD[select1(BminD, i)− 1]

= d0 + select1(Dp, select1(BminD, i)− 1)− select1(Dn, select1(BminD, i)− 1),

with the assumption that select1(D, 0) = 0.
Continuing our example above, the corresponding structures for the arrays of posi-

tions AX and AY are:

BmaxX = 0000000101 Amax′X = 6,8
BminX = 1000000010 Amin′X = 0,4
BmaxY = 0100100000 Amax′X = 3,7
BminY = 1010000001 Amin′Y = 1,2,1

We can then, for example, compute Amax′X [2] = AX [select1(Bmax, 2) − 1] =
AX [9] = x0 + select1(Xp, 9)− select1(Xn, 9) = 0 + 19− 11 = 8.

The coordinate range of the MBR of a trajectory between time instants t and t′ is
then found as

[AD[rmq(A, t, t′)], AD[rMq(A, t, t′)]].

The MBR of our example trajectory between time instants t3 and t8 is then found
as

[AX [rmq(AX , 3, 8)], AX [rMq(AX , 3, 8)]]× [AY [rmq(AY , 3, 8)], AY [rMq(AY , 3, 8)]]

= [AX [3], AX [7]]× [AY [3], AY [5]]

= [2, 6]× [2, 7].

Figure 3 illustrates the technique on the dimension Y of the trajectory of Figure 2,
where a query on the interval [t, t′] = [1, 6] is mapped onto Amax′Y [1..2] for the maxima
and Amin′Y [1..1] for the minima.

Note that for each coordinate, D, the rMq and rmq operations on AD are carried
out with the bitmaps BmaxD and BminD, using together 2|AD| bits, and with the
structures of 2|Amax′D| bits (for rMq) plus 2|Amin′D| bits (for rmq) built on the arrays
Amax′D and Amin′D. Access to the arrays A′D and AD themselves is provided with
the bitmaps Dp and Dn, as explained.

To further save |AD| bits of space, we exploit the fact that local maxima and
minima must alternate: we replace BmaxD and BminD by a single bitmap SD,
with SD[i] = 1 iff BmaxD[i] = 1 or BminD[i] = 1 (see Figure 3). If the first
bit of SD came from BmaxD, then Amax′D[i] = AD[select1(SD, 2i − 1) − 1] and
Amin′D[i] = AD[select1(SD, 2i)−1], and the other way if the first bit of SD came from
BminD.

For example, in Figure 3, to obtain the MBR on the interval [t, t′] = [1, 6], with
Sy we observe that the first and last local minima/maxima are at time instants
rank1(Sy, 1 − 1) + 1 = 2 and rank1(Sy, 6) = 4, respectively. Since the first 1-bit
in Sy comes from Bminy, the second and fourth 1-bit correspond to the first and sec-
ond local maxima. Therefore the local maximum is the maximum value in Amax′y[1..2]

13

1 2

Amax’Y 3 7

1 2 3

Amin’Y 1 2 1

0 1 2 3 4 5 6 7 8 9

Bmaxy 0 1 0 0 1 0 0 0 0 0

0 1 2 3 4 5 6 7 8 9

Ay 1 3 2 4 7 6 5 3 3 1

9

8

7

6

5

4

3

2

1

0

0 1 2 3 4 5 6 7 8 9
movement

y

Bminy 1 0 1 0 0 0 0 0 0 1

rMq rmq

0 1 2 3 4 5 6 7 8 9

Sy 1 1 1 0 1 0 0 0 0 1

} }
Figure 3. Illustration of the MBR computation on the Y coordinates.

(i.e., 7). Instead, the third 1-bit represents the second local minimum, thus the local
minimum is Amin′y[2] = 2. By comparing those local minima/maxima with the val-
ues at the extremes, as explained in Section 4.2, we obtain the global maximum and
minimum: 7 and 2.

4.3. Missing information

Each object id stores a tuple F (id) = 〈t0, (x0, y0)〉 with the initial time instant and
position of its trajectory. Given a time instant t, and knowing the time sampling span
d, an algebraic calculation yields the corresponding sample ti, with i = b(t − t0)/dc.
The bitmaps Dp(id) and Dn(id) along each dimension D, plus the information to
support rmq/rMq queries, then suffices to represent the log of each object id.

A complication is that, in some domains, GPS coordinates sent by an object can be
erroneous or incomplete, because of network problems or disconnection of GPS devices.
Although ContaCT does not address the problem of erroneous information (Zheng
2015), it can deal with missing information. In some contexts, the missing coordinates
can be deduced by interpolation, but in others, it may be necessary to represent that
lack of information.

To handle this situation, ContaCT stores an additional bitmap T (id) that stores, for
each time instant, whether there is (1) or not (0) information on the position of object
id at that time instant. Every time interval we query is then first mapped with rank1

operations on T (id) before accessing the information stored. The bitvectors Dp(id)
and Dn(id) and the information on maxima and minima are stored only with respect
to the time instants where there is information on the position of object id.

14

time 10 11 12 13 14 15 16 17 18 19 20 21

X 5 6 6 4 3 2 2 3 4 6

Y 2 4 3 5 8 7 6 4 5 4

1 2 3 4 5 6 7 8 9 10 11

T(id) 1 1 1 0 1 0 1 1 1 1 1

1 2 3 4 5 6 7 8 9 10 11

x(id) 1 0 -2 -1 -1 0 1 1 2

1 2 3 4 5 6 7 8 9 10 11 12 13 14

xp(id) 0 1 1 1 1 1 1 0 1 0 1 0 0 1

1 2 3 4 5 6 7 8 9 10 11 12 13

xn(id) 1 1 0 0 1 0 1 0 1 1 1 1 1

t0 x0 y0

F(id) 10 5 6

Figure 4. Example of log representation with missing information.

Figure 4 shows an example. On top we have a trajectory represented by arrays X
and Y, which contain its coordinates. The bitmap T (id) is then used to mark which
positions have data. The array ∆X(id) is built only on the mapped positions, and the
bitmaps Xp(id) and Xn(id) are used to represent it.

Note that the differences are computed with respect to not exactly consecutive time
instants, for example, ∆X(id)[4] is computed as the difference between time instants
15 and 13 because the information at 14 is missing.

Nevertheless, we can still use our formulas on Xp and Yp to compute the position
of an object. For example, to know where the object is at time instant t8 = 18, we
first map it to rank1(T, 8) = 6. We then recover the position x8 = 3 with AX [8] =
x0 + select1(Xp, 6)− select1(Xn, 6) = 5 + 8− 10 = 3.

4.4. The snapshots

ContaCT stores a snapshot every d time instants. A snapshot at time ts consists of:

• A kρ-tree marking the cells in the space that contain at least one object at time
ts.

• An array perm of integers storing the identifiers of the objects in the cells.
• A bitmap Q that maps the objects in perm to the marked cells.

Recall from Section 3.4 that the nonempty cells of the kρ-tree correspond to 1s in
its bitvector L. We traverse L from left to right and, for each 1 found, which represents
a cell where the objects id1, . . . , idk lie, we append those identifiers to the array perm
and append k−1 1s followed by a 0 to bitmap Q. It is then easy to see that the objects

15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

0

2

1

3

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

T

:

0 1 1 0 1 0 0 0 1 1 1 0 0 0 0 1 0 1 0 0 1 0 0 0 0 1 0 0

6

4
5

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

L

:

1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 1

0 1 2 3 4 5

Q 1 0 1 0 0 0

0 1 2 3 4 5

Perm 3 6 4 5 2 1

Figure 5. Structure of an example snapshot.

corresponding to some L[i] = 1 are perm[l..r], with l = select0(Q, rank1(L, i)− 1) + 1
and r = select next0(Q, l).

The objects lying within a rectangular region R can be reported by simulating a
top-down traversal of the kρ-tree, starting at the root and entering all the nonempty
branches that overlap R. The areas covered by each kρ-tree node are algebraically
computed as we descend. For each nonempty cell we find inside R, we list the corre-
sponding objects as described.

Figure 5 shows the components of a snapshot whose k2-tree is that of Figure 1.
The circles in the grid indicate which objects lie inside each of the 4 nonempty cells.
For example, according to the k2-tree layout, the cell (3, 7) corresponds to L[5]. This
is the second leaf with objects because rank1(L, 5) = 2. Its corresponding values
are then in perm between positions select0(Q, 2 − 1) + 1 = 2 and select0(Q, 2) =
select next0(Q, 2) = 3. Indeed, the objects are perm[2..3] = 〈4, 5〉.

4.5. Total space

Let a dataset consist of m objects on a ρ-dimensional grid of size sρ, moving along
n time instants at a maximum speed smax, and including a events where an object
disappears (and possibly reappears later). Assume we store a snapshot every d time
instants. The breakdown of the space usage of ContaCT is as follows:

• The bitmaps Dp(id) and Dn(id) for each object id add up to n(1 + log smax)
each, for each dimension D. Each movement is written either in Dp or in Dn,
however, so this adds up to n(2 + log smax) for both bitmaps.
• The bitmap SD(id) uses n bits for each object id and dimension D.
• The rmq and rMq data structures use 2n′ bits when there are n′ minima/maxima.

Since it always holds that n′ ≤ n/2, they add 2n bits per dimension and per

16

d Distance between snapshots in number of time instants
smax Speed of the fastest object in the dataset (maximum speed)
St Snapshot that stores the locations of the objects at time instant t
Dp(id) Bitmap that stores in unary the positive movements of the object id along dimension D
Dn(id) Bitmap that stores in unary the negative movements of the object id along dimension D
F (id) Tuple that stores the initial time instant and position of object id
T (id) Bitmap that marks the time instants with data of object id
SD(id) Bitmap that marks the positions of object id that are a local minima or maxima along

dimension D
extend(R, δ) Maximum expansion of region R during δ time instants considering the maximum speed
pa pb Euclidean distance between points pa and pb
R pb Minimum Euclidean distance between pb and any possible point within the region R

R pb Maximum Euclidean distance between pb and any possible point within the region R

Table 1. Summary of notations.

object.
• The bitmap T (id) adds n bits per object.
• Each of the n/d snapshots is a kρ-tree with k = 2, where each node uses 2ρ bits to

signal its children. It then uses in total at most 2ρm log s bits, when each object
induces a separate path (of length log2ρ sρ = log s) in the tree. In addition, we
store perm and Q, adding m(1 + logm) bits per snapshot.
• The a times when objects disappear, and possibly reappear later, use 2a logm

bits.

The maximum space is then

m(ρ(n(2 + log smax) + n+ 2n) + n+ (n/d)(2ρ log s+ 1 + logm)) + 2a logm

= mnρ log smax +mn(5ρ+ 1) + (mn/d)(2ρ log s+ 1 + logm) + 2a logm

bits (plus an ignored sublinear term to support rank, select, and other queries). This
space can be interpreted as follows:

• The component mnρ(1 + log smax) corresponds to a differentially encoded rep-
resentation of the trajectories of all the objects, that is, a clever encoding of the
raw data without support for queries (each movement is in [−smax,+smax] per
coordinate).
• The 4ρ+ 1 bits per movement (e.g., 9 bits in two dimensions) is the extra space

needed to support queries on the trajectories.
• The (2ρ log s + 1 + logm)/d bits per movement is the extra space needed to

support the spatial queries that speed up some operations. This can be controlled
with the parameter d and it becomes small with very reasonable values for d.
• The 2a logm bits can typically be ignored because a tends to be small. In ad-

dition, for every time instant an object is disappeared, we save ρ(5 + log smax)
bits from the trajectory data (Dp, Dn, SD, rmq and rMq structures).

5. Queries

We now describe how the queries are solved in ContaCT. For simplicity, we will as-
sume a two-dimensional space. For the formalizations, let us define the trajectory of
n movements of an object id as Tid = {〈t0, p0〉, 〈t1, p1〉, . . . , 〈tn, pn〉}, where each pair
〈ti, pi〉 stores the position pi of the object id at time instant ti.

17

Algorithm 1: ObjectPosition(id, tq)

1 if tq = F (id).t0 then return (F (id).x0, F (id).y0);
2 if T (id)[tq − F (id).t0] = 0 then return null;

3 j ← rank1(T (id), tq − F (id).t0);

4 dx← select1(Xp(id), j)− select1(Xn(id), j);
5 dy ← select1(Yp(id), j)− select1(Yn(id), j);

6 return (F (id).x0 + dx, F (id).y0 + dy);

5.1. Object position

This query returns the position of the object at a given time instant tq, formally:

Definition 5.1. The Object position query, for an object identifier id and a time
instant tq, returns the location pq such that 〈tq, pq〉 ∈ Tid.

The algorithm follows the procedure shown in the previous section. Algorithm 1
shows the pseudocode; we assume tq is within bounds for simplicity. For example, in
Figure 4, tq can go from t0 = 10 to t11 = 21.

In line 1, the algorithm checks if tq is the first time instant represented by the
log, in which case it returns the position (x0, y0) stored in F . Otherwise, we access
position tq − F (id).t0 in T (id) in line 2. If there is a 0, we have no information, and
the algorithm returns null.

Otherwise, in line 3 the algorithm obtains the number of movements, j, until tq.
Lines 4–5 compute the cumulative movements in both coordinates over the first j time
instants. Finally, in line 6, the position at tq is obtained by adding the cumulative
movements to the initial position.

5.2. Object trajectory

This query returns the positions of a given object id during a time interval [tb, te].

Definition 5.2. The Object trajectory query, for an object identifier id and a time
interval [tb, te], returns the sequence of locations 〈ti, pi〉 ∈ Tid such that tb ≤ ti ≤ te, in
increasing order of ti.

It first uses the basic method of the object position query to find the position of the
object in the first valid time instant, not before tb. It then traverses the bitmaps T ,
Xp, Xn, Yp, and Yn using the fast select next operation (recall Section 3.1) to obtain
each consecutive point until surpassing the time te.

Algorithm 2 shows the pseudocode; again we assume that [tb, te] is within bounds
for simplicity. It returns in result all the tuples 〈t, (x, y)〉 of trajectory points at time
t and spatial coordinates (x, y). Lines 3–10 obtain the first valid time position, j, not
before tb, and the corresponding positions xp, xn, yp, yn in the bitmaps Xp, Xn, Yp,
and Yn. Those positions suffice to return any desired point. Line 11 also obtains, from
j, the first valid time t ∈ [tb, te]. The algorithm then computes the remaining positions
until the time instant te (lines 12–16). At each iteration, it inserts a new tuple in
results and finds the next valid time t and the next corresponding positions xp, xn,
yp, and yn.

18

Algorithm 2: ObjectTrajectory(id, tb, te)

1 t0 ← F (id).t0; x0 ← F (id).x0; y0 ← F (id).y0;

2 result← ∅;
3 if tb = t0 then

4 j ← 1;
5 xp← 0; xn← 0;

6 yp← 0; yn← 0;

7 else

8 j ← 1 + rank1(T (id), tb − t0 − 1);
9 xp← select1(Xp(id), j); xn← select1(Xn(id), j);

10 yp← select1(Yp(id), j); yn← select1(Yn(id), j);

11 t← select1(T (id), j);
12 while t0 + t ≤ te do

13 result← result ∪ 〈t0 + t, (x0 + xp− xn, y0 + yp− yn)〉;
14 t← select next(T (id), t);
15 xp← select next(Xp(id), xp); xn← select next(Xn(id), xn);

16 yp← select next(Yp(id), yp); yn← select next(Yn(id), yn);

17 return result;

5.3. Minimum bounding rectangle

The Minimum bounding rectangle (MBR) is the minimum rectangular area that con-
tains the trajectory of an object during an interval of time [tb, te]; formally:

Definition 5.3. For an object identifier id and a time interval [tb, te], the MBR query
returns the smallest rectangular area R such that, for every element 〈ti, pi〉 ∈ Tid with
tb ≤ ti ≤ te, it holds that pi ∈ R.

ContaCT can efficiently compute the MBR of a trajectory thanks to the rmq and
rMq data structures, as shown in Section 4.2. This is an interesting query because it
provides summary information about the path followed by an object without comput-
ing the whole trajectory. In addition, it is used as a tool to efficiently compute other
queries.

Algorithm 3 shows how MBR(id, tb, te) returns the smallest axis-aligned rectangle
that contains every point visited by the object id during the time interval [tb, te], which
we assume for simplicity to be within bounds and to satisfy tb < te (if tb = te, the
query boils down to an object position query).

Lines 1–11 compute, using the same technique as for object trajectories, the first
and last positions of the interval, jb and je, after filtering out the invalid positions in
T (id), as well as the object positions, (xb, yb) and (xe, ye), at those extremes of the
time interval of interest.

Once the positions at the extremes are computed, the algorithm looks for the min-
imum and maximum, in both coordinates, among the local minima and maxima, re-
spectively, that occur in the range [jb, je]. The desired values are obtained in lines 12–15
using procedure best, which calculates the smallest (resp. greatest) value from the local
minima (resp. maxima). Line 16 then returns the global maximum and minimum in
each dimension, by comparing the first value, the best of local minima/maxima, and
the last value of the interval.

To compute best, the procedure receives the corresponding bitvector B, the opera-
tion to carry out (Op, which is either rmq or rMq over the corresponding conceptual
array A′), and the structures to compute values of the conceptual array A (d0, Dp,
and Dn). In lines 19–21, it uses B to compute the range [posb, pose] of the array A′

where the local minima/maxima lie (it returns null if no local values exist in the range;

19

Algorithm 3: MBR(id, tb, te)

1 t0 ← F (id).t0; x0 ← F (id).x0; y0 ← F (id).y0;

2 if tb = t0 then
3 jb ← 1; xb ← x0; yb ← y0;

4 else
5 jb ← 1 + rank1(T (id), tb − t0 − 1);

6 xb ← x0 + select1(Xp(id), jb)− select1(Xn(id), jb);

7 yb ← y0 + select1(Yp(id), jb)− select1(Yn(id), jb);

8 je ← rank1(T (id), te − t0);
9 xe ← x0 + select1(Xp(id), je)− select1(Xn(id), je);

10 ye ← y0 + select1(Yp(id), je)− select1(Yn(id), je);

11 if jb > je then return null;
12 xmax ← best(BmaxX , jb, je, rMq(Amax′X), x0, Xp, Xn);

13 xmin ← best(BminX , jb, je, rmq(Amin
′
X), x0, Xp, Xn);

14 ymax ← best(BmaxY , jb, je, rMq(Amax′Y), y0, Yp, Yn);
15 ymin ← best(BminY , jb, je, rmq(Amin

′
Y), y0, Yp, Yn);

16 return [min(xb, xmin, xe),max(xb, xmax, xe)]× [min(yb, ymin, ye),max(yb, ymax, ye)];

17

18 best(B, jb, je, Op, d0, Dp, Dn)

19 posb ← 1 + rank1(B, jb − 1);

20 pose ← rank1(B, je);
21 if posb > pose then return null;

22 jbest ← Op(posb, pose);

23 posbest ← select1(B, jbest);
24 return d0 + select1(Dp, posbest)− select1(Dn, posbest);

we assume null does not participate in the minima/maxima of line 16). In line 22, it
obtains the largest/smallest maximum/minimum position jbest in A′[posb..pose], and
in line 23 it maps jbest to its corresponding position posbest in A. Finally, in line 24 it
returns the corresponding value A[posbest]; recall that we assume select1(D, 0) = 0.

We are using the bitmaps BmaxD and BminD for simplicity in the pseudocode
but, as explained, we actually store a combined bitmap SD. Procedure best should
then receive S instead of B, and compute posb and pose in lines 19–20 over S. They
should then be corrected as follows: if the first bit of S is a minimum/maximum and
we are looking for a minimum/maximum, respectively, then posb ← 1 + bposb/2c and
pose ← dpose/2e. Otherwise, posb ← dposb/2e and pose ← bpose/2c.

5.4. Time slice

Given a rectangular region of the space R and a time instant tq, a time slice query
returns all the objects that are within R at time tq, more formally:

Definition 5.4. For a rectangular region R and a time instant tq, the slice query
returns the set O of object identifiers such that, for each id ∈ O, there exists a pair
〈tq, pq〉 ∈ Tid where pq ∈ R.

ContaCT uses snapshots to efficiently solve this query. Recall that snapshots are
placed at regular time intervals. Since there is likely no snapshot at tq, we use the
closest snapshot to filter the objects that have chances of reaching R at tq; these
objects are called candidates. To check if a candidate is within R at time tq, we simply
compute its position at time tq using the query ObjectPosition.

Finding the smallest possible set of candidates is the key factor for the efficiency
of this query. To do this, we take into account the maximum speed of an object in
our dataset, smax. For example, if an object is at (3, 8) and smax = 1, then after

20

Algorithm 4: TimeSlice(R, tq)

1 l← btq/dc · d;
2 r ← l + d;

3 if tq = l then return Sl.region(R) ;

4 candidates← ∅;
5 result← ∅;
6 if tq − l < r − tq then
7 candidates← Sl.region(extend(R, tq − l)) ∪ Sl.app;
8 else
9 candidates← Sr.region(extend(R, r − tq)) ∪ Sr.dis;

10 for c ∈ candidates do

11 p← ObjectPosition(c, tq);

12 if p ∈ R then result← result ∪ {c} ;

13 return result;

2 time instants the object cannot reach the region [6, 10] × [7, 12]. Since we know
the position of all the objects at the time instant ts of a snapshot, we can obtain
the candidates as those objects that are within the region R′ at time ts, where R′

is the result of expanding R by smax × |tq − ts| positions in all directions. That is,
R′ = extend(R, |tq − ts|), where

extend([bx, ex]× [by, ey], δ) =

[bx − δ · smax, ex + δ · smax]× [by − δ · smax, ey + δ · smax].

Notice that the smaller the time difference δ, the smaller R′ will be, and thus the
smaller the set of candidates will tend to be. Let us define St as the snapshot at time
instant t. In order to minimize the number of candidates, we query the snapshot closest
to tq.

Algorithm 4 implements this query. It first finds the two snapshot times, l and r,
that surround the queried time instant, tq. If tq = l, we simply return the set of objects
in R using the query region(R) on the data structure of snapshot Sl. For the typical
case, lines 6–9 choose the closest snapshot and query it for the extension of R that
captures all the possible candidates. Lines 10–13 then check the candidates one by one
to report those that are inside R at time tq.

Because we do not have position information for all the objects at all time instants,
there may be objects that are within R at time tq, but they have no information at
the chosen snapshot. To handle this problem, we store two additional arrays of object
identifiers, app and dis, for each snapshot St: app contains the identifiers of the objects
that are not in St, but appear in the log after time instant t and before t+ d, whereas
dis stores the objects that are in the log after time t − d and before t, but are not
represented in St. For this reason, in lines 7 and 9, our candidates are extended with
the objects in Sl.app or Sr.dis, depending on the case.

Note that arrays app and dis are closely related with the bitmaps T (id). An object
identifier id is added to St.app when the entry corresponding to t in T (id) is set to
0 and there is a 1 before the next snapshot, that is, within T (id)[t + 1, t + d − 1].
Similarly, to be in St.dis, the 1 has to be within T (id)[t− d+ 1, t− 1].

5.5. Time interval

Time interval queries obtain the objects that were within a rectangular region R at
some time instant of an interval [tb, te], that is:

21

9

8

7

6

5

4

3

2

1

0

0 1 2 3 4 5 6 7 8 9

X

Y

t0

t1

t2

t4

t5

t8

t6

MBR4-9

MBR4-6

MBR7-9

t7 t9t3

R

Figure 6. Example of a time interval query over a trajectory.

Definition 5.5. For a rectangular region R and a time interval [tb, te], the time in-
terval query returns the set O of object identifiers such that, for each id ∈ O, there
exists at least one pair 〈ti, pi〉 ∈ Tid where tb ≤ ti ≤ te and pi ∈ R.

A naive approach to solving this query adapts the TimeSlice algorithm so that (i)
the region is extended considering time instant te (if we use Sl) or tb (if we use Sr),
and (ii) for each candidate, we compute the positions of the trajectory from tb until
the object is inside R or we reach te. This approach, however, is affordable only if te
is close to tb.

A more efficient approach for large timespans makes use of the MBR query. If we
compute the MBR of the object along [tb, te] and it is totally within R, we do know
that the object appears inside R during the interval. Otherwise, if the MBR is disjoint
from R, we do know that the object does not appear inside R during the interval.
Otherwise, the object may or may not appear in R. We then divide the interval in two
halves, [tb, tm] and [tm + 1, te], and proceed recursively in both.

Since computing MBRs requires a number of calculations, we switch to the naive
approach as soon as the length of the time interval falls below a parameter λ.

Figure 6 illustrates an example for [tb, te] = [t4, t9], R = [6, 7] × [2, 4], and λ = 3.
We first compute the MBR enclosing the movements between time instants t4 and t9,
MBR(t4, t9) = [4, 9]× [3, 7]. Since this MBR intersects R, but is not contained in it, we
must split the time interval into [tb, tm] = [t4, t6] and [tm+1, te] = [t7, t9], and consider
both halves. Since MBR(t4, t6) = [4, 6]× [5, 7] is disjoint with R, we can abandon this
time interval. On the other hand, MBR(t7, t9) = [7, 9] × [3, 4] intersects R but is not
contained in it, so we must continue considering this time interval. Now, when this
interval is divided into [t7, t8] and [t9, t9], both are shorter than λ, so we proceed on
them point by point. We finally report the object because it is within R at time t7.

A final note is that the interval [tb, te] can span several consecutive snapshots, thus
we can split [tb, te] into several subintervals, according to which is the closest snapshot
for each time instant. In each such snapshot, the region R must then be extended by
at most (d/2) · smax units. All the objects that are in the expanded range R′ of some
intervening snapshot are verified. This yields far fewer candidates than if we take only
one snapshot and extend it according to the whole length of the time interval.

Once we have to verify an object coming from the expanded range R′ of some

22

Algorithm 5: TimeInterval(R, tb, te)

1 checked← ∅;
2 l← btb/dc; r ← dte/de;
3 for i ∈ [l, r] do

4 t← i · d;
5 bwd← max(tb, t− bd/2c);
6 fwd← min(te, t+ dd/2e);
7 if bwd ≤ fwd then
8 candidates← St.region(extend(R,max(fwd− t, t− bwd)));

9 if t > l · d then candidates← candidates ∪ St.dis;
10 if t < r · d then candidates← candidates ∪ St.app;
11 for c ∈ candidates do

12 if c 6∈ checked then
13 if Contained(c, R, tb, te) then result← result ∪ {c} ;

14 checked← checked ∪ {c};
15 return result

Algorithm 6: Contained(c, R, tb, te)

1 if te − tb < λ then
2 T ← ObjectTrajectory(c, tb, te)

3 for 〈t, p〉 ∈ T do
4 if p ∈ R then return true;
5 return false

6 else
7 mbr ← MBR(c, tb, te)
8 if mbr ⊆ R then return true ;

9 if mbr ∩R = ∅ then return false ;

10 tm ← tb + b(te − tb)/2c
11 if Contained(c, R, tb, tm) or Contained(c, R, tm + 1, te) then return true ;

12 return false

snapshot, however, we directly verify it for the whole time interval [tb, te]. We are
careful to not work again on an object that has already been considered in a previous
snapshot, by maintaining a set checked of the already verified objects.

Algorithm 5 gives the pseudocode. Line 2 computes the range of snapshots that sur-
round the interval [tb, tr], which will be queried for the timestamps closest to each. For
each of those snapshots the algorithm obtains the object candidates in the interval of
time [bwd, fwd] (lines 7–10). The procedure continues checking each candidate object
that has not been checked already, reporting those that fall inside R at some time in
[tb, te] (lines 11–14).

The check for candidates is done by Algorithm 6, which is of independent interest.
If the time interval is shorter than λ, it obtains the trajectory of the object and
checks every position one by one, in lines 2–5 (in practice we check if p ∈ R for
every consecutive point as we obtain it from the trajectory, so we may preempt the
extraction of the points). Otherwise, we carry out the described recursive procedure
using MBRs, in lines 7–12.

5.6. Nearest neighbor queries

This query returns the K objects that are nearest to a given point pq at a given time
instant tq, formally:

Definition 5.6. For a point pq at time instant tq, the K-Nearest neighbor query re-

23

turns a set O of objects such that |O| = K and d(pq, id1) ≤ d(pq, id2) for any objects
id1 ∈ O and id2 6∈ O, where d(pq, id) is the Euclidean distance from point pq to the
position of object id at time instant tq (i.e., p such that 〈p, tq〉 ∈ Tid).

The query can be naively solved by computing ObjectPosition(c, tq) for all objects
c and retaining those at minimum distance to pq. While a nearby snapshot should be
useful to focus on some candidate objects only, no simple criterion like the one we
used for TimeSlice can be used here.

From the various methods in the literature, we choose one that enjoys several good
properties, like minimizing the number of distances computed (Bustos and Navarro
2009). It assumes that one has a hiearchical partition of the space at tq (which we do
not have in general). It uses a priority queue of candidate regions, Qc, and a priority
queue of best known results, Qr.

The queue Qr is a max-priority queue that stores objects sorted by their distances
to pq. It retains only the K objects closest to pq seen so far: Once Qr reaches size K,
we remove from Qr the farthest object after every new insertion. That is, we insert
the new object and then remove the first (i.e., largest distance) object from the queue.
The queue also gives, in constant time, the distance to the K-th closest object seen so
far, which decreases as the search progresses.

The queue Qc, instead, is a min-priority queue. It contains nodes of the hierarchy,
where internal nodes stand for regions of the space and leaves stand for individual
objects. The queue sorts the nodes by their minimum possible distance to pq (which
is zero if pq is inside the node region). From Qc we can extract the region closest to
pq at any step.

The algorithm starts with Qc containing the root region and Qr being empty. At
every iteration, it extracts the closest region from Qc. If it is a single object (i.e., a
leaf of the hierarchy), the object is inserted into Qr. Otherwise, the children nodes of
the region are reinserted in Qc. The algorithm stops as soon as the minimum possible
distance from the closest region of Qc is not smaller than the Kth distance to the
results already known in Qr. At this point, Qr is the answer to the query.

The algorithm performs best if one manages to find close results fast. From the var-
ious heuristics to do this (Bustos and Navarro 2009), we choose to break ties between
equally close regions by the maximum possible distance between the regions and pq.

While we do not have a spatial index of the space at time tq, we can obtain an
approximate version from the kρ-tree of the nearest snapshot St. This structure does
induce a hierarchical partition of the space, where regions of the same level do not
overlap. By assuming that the regions are extended by |t− tq| · smax units in all direc-
tions, we obtain a hierarchy of regions that can be used to implement the algorithm
correctly.

To formalize the algorithm we introduce some additional notation:

• pa pb denotes the Euclidean distance between points pa and pb.
• R pb is the minimum Euclidean distance between pb and any possible point

within the region R, being zero if pb ∈ R. It can be easily computed in constant
time.
• R pb is the maximum Euclidean distance between pb and any possible point

within the region R. It can also be computed in constant time.

Given a region R, a time interval [t, tq], and a position pq, the minimum Euclidean
distance to pq that any object within R at time t can reach during [t, tq] can be

computed as extend(R, |t− tq|) pq. The maximum possible distance can be computed

24

Algorithm 7: Knn(K, pq, tq)

1 Qr ← ∅, capped to size K; Qc ← ∅;
2 l← btq/dc · d; r ← l + d;

3 if tq − l < r − tq then

4 t← l;
5 for a ∈ Sl.app do

6 pa ← ObjectPosition(a, tq);
7 Qr.add(〈a, pa pq〉);
8 else

9 t← r;

10 for d ∈ Sr.dis do
11 pd ← ObjectPosition(d, tq);

12 Qr.add(〈d, pd pq〉);
13 Qc.add(〈St.root, 0,+∞〉);
14 while Qc 6= ∅ and (|Qr| < K or Qc.min < Qr.max) do
15 〈node, dmin, dmax〉 ← Qc.extractMin;

16 if node is a kρ-tree leaf then
17 for c ∈ node.objects do

18 pc ← ObjectPosition(c, tq);

19 Qr.add(〈c, pc pq〉);
20 else
21 for nonempty node′ ∈ node.children do
22 R← extend(node′.region, |t− tq |);
23 Qc.add(〈node′, R pq , R pq〉);
24 return Qr;
25

similarly.
Algorithm 7 gives the pseudocode. We insert pairs 〈c, d〉 in Qr, where c is the object

and d its distance to pq at time tq. In Qc we insert triples 〈e, dmin, dmax〉, where e is
an object or a region and dmin and dmax are the minimum and maximum possible
distances, respectively, from the object/region to pq at time tq. The queue Qc sorts by
dmin and breaks ties with dmax.

Lines 1–3 initialize and choose the closest snapshot to use, St. Lines 4–12 collect
the spare objects that are not collected in the snapshot, but could exist in time tq,
and add them directly as candidates in Qr. Line 13 initializes Qc with the root of St
and then we start the iterations, lines 14–23, until we process all the nodes in Qc or
the best candidate in Qc has no better lower bound than the currently known Kth
answer in Qr: Line 15 extracts from Qc the node with the closest region. If it is a
leaf, then lines 17–19 insert its associated objects (node.objects, recall Section 4.4)
in Qr. Otherwise, it is an internal node, and lines 21–23 add its children back to Qc,
extending its regions (node′.region).

Figure 7 shows an example on our running snapshot, at t0. The query asks for the
K = 3 nearest neighbors of point pq = (8, 8) at time tq = t1. On the top left, the figure
shows the hierarchical space partitioning induced by the snapshot k2-tree. On the top
right we show the actual positions of all the objects at t1 (which the algorithm does
not know). We also show the list app of the objects that appear between t0 and the
next snapshot. Assuming smax = 1, the table on the bottom shows the trace of the
query.

First, Qc is initialized with root, which covers the complete space, and Qr includes
those objects in app with information at t1, that is, O8 and O9. The object O7 is not
added to Qr because its position at t1 is unknown.

In the first iteration, the root is extracted and its nonempty children, R1 and R2,

25

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

0

2

1

3
6

4
5

x

R1

R2

R21 R22

R23

R11

R111

R211

R221

R231

1 2 3

app 7 8 9

Id t1

1 <unknown>

2 (14,4)

3 (11,14)

4 (8,6)

5 (9,6)

6 (9,12)

7 <unknown>

8 (8,9)

9 (9,1)

Snapshot at t0

C1

Qc Qr Qr.max

Step 0 〈root, 0〉 〈O8, 1〉, 〈O9, 7.07〉 ∞
Step 1 〈R1, 0〉, 〈R2, 0〉 〈O8, 1〉, 〈O9, 7.07〉 ∞
Step 2 〈R2, 0〉, 〈R11, 3〉 〈O8, 1〉, 〈O9, 7.07〉 ∞
Step 3 〈R21, 0〉, 〈R11, 3〉, 〈R22, 3〉, 〈R23, 4〉 〈O8, 1〉, 〈O9, 7.07〉 ∞
Step 4 〈R211, 2〉, 〈R11, 3〉, 〈R22, 3〉, 〈R23, 4〉 〈O8, 1〉, 〈O9, 7.07〉 ∞
Step 5 〈C1, 2〉〈R11, 3〉, 〈R22, 3〉, 〈R23, 4〉 〈O8, 1〉, 〈O9, 7.07〉 ∞
Step 6 〈R11, 3〉, 〈R22, 3〉, 〈R23, 4〉 〈O8, 1〉, 〈O4, 2〉, 〈O5, 2.24〉 2.24

Figure 7. Example of a nearest neighbor query.

are added back to Qc. Their 8× 8 regions are extended by 1 unit in each direction to
compute their best distance to pq. In Figure 7 the expanded region of R2 is shaded.
In both cases, the best distance is zero because pq belongs to the expanded areas. The
queue will then break the tie with their maximum distance, thus R1 precedes R2.

In Step 2, the algorithm extracts R1, which has only one nonempty child, R11. This
is added back to Qc with best distance 3. Step 3 extracts R2 and reinserts its nonempty
regions of size 4×4: R21, R22, and R23. They are added to Qc with their best distances
0, 3 and 4, respectively. R21 is extracted at Step 4, and it only contains a nonempty
subregion of size 2× 2, R211. This is added to Qc and becomes its head because of its
best distance 2. The next step then splits R211, reinserting only the cell C1, since it
is the only one with objects. Since the best distance of C1 is 2, it is processed in Step
6. At this point, the objects included in C1, O4 and O5, are added to Qr with their
correct distances at t1 computed.

Since Qr is capped to size 3, object O9 is removed and we have for the first time
K = 3 results. From now on, we are not interested in any object farther than pqO5 ≈
2.24 from pq. Because the best possible distance in Qc is 3, we stop and return Qr.

The presented algorithm is different from the one used in GraCT (Brisaboa et al.
2019), where Qc only contains objects and the procedure is divided into two phases:
(i) traversal of the snapshot and (ii) traversal of the log from the time instant of the
snapshot until tq. In the first phase, Qc is filled with those objects in app/dis and the
candidates obtained by traversing the snapshot, in increasing distance of the nodes
towards pq. Objects in Qc are stored along with their position at their first time instant
(that of the snapshot, except for the objects in app/dis). In the second phase, when
an object is extracted from Qc, the net movement of the next nonterminal of the log

26

is added, obtaining a new position, and then it is inserted back in Qc with a new
priority. When a candidate reaches time tq, it is inserted in Qr as in our algorithm.
The algorithm stops when no candidate, even moving at maximum speed, can get
closer to pq, at time tq, than the current Kth candidate.

Notice that the main difference between both algorithms is in the priority queue of
candidates Qc. In the experimental evaluation we compare GraCT and both algorithms
on ContaCT.

6. Experimental evaluation

We compare ContaCT with GraCT and MVR-tree. GraCT (Brisaboa et al. 2019) is
a representative of the modern compact data structures, which combine compression
and fast access to the data, whereas MVR-tree (Tao and Papadias 2001b) is one of the
best exponents of the classical approaches, where the speed is the main goal, without
worrying too much about space. MVR-tree is a spatio-temporal index designed to
solve range and nearest neighbor queries. It can be combined with other structures,
as done with MV3R-tree (Tao and Papadias 2001b), which adds auxiliary 3DR-trees
for speeding up basic queries like retrieving the trajectory of an object.

For our experimental evaluation, we implemented ContaCT in C++, using
components from the SDSL library2 (Gog et al. 2014). We used the author’s
implementation of GraCT, also in C++ using SDSL library. This implementation uses
a balanced version of Re-Pair by G. Navarro3 to build the grammar, and represents
the extra information on nonterminals using DACs (Brisaboa et al. 2013) with an
unlimited number of levels and without a predefined chunk size. We used the MVR-
tree of the spatialindex library with default parameters (the capacity of each node set
to 10 records and the fill factor set to 70%).4 The experiments were conducted on an
Intel R© CoreTM i7-3820 CPU @ 3.60GHz (4 cores) with 10MB of cache and 64 GB of
RAM, running Debian GNU/Linux 9 with kernel 4.9.0-8 (64 bits), gcc version 6.3.0
with -O9 optimization.

For supporting rank operations on bitmaps represented in plain form, we use an
implementation that requires 6.25% of additional space. The bitmaps Dp and Dn

are represented either in plain form or using a representation for sparse bitmaps
called sdarray (Okanohara and Sadakane 2007), depending on the magnitude of the
differential values. Bitmaps T (id) and Sc tend to be sparse, thus they are always
implemented with sdarray. The rmqs and rMqs are implemented following the latest
results (Ferrada and Navarro 2017).

6.1. Datasets

During the experimental evaluation, we used four sources of data, three containing
real-world data and the other with pseudo-real data:

• Ships: a real dataset obtained from MarineCadastre.5 The data contain the
location of 4,461 vessels traveling inside the UTM Zone 10 during one month of
2017.

2https://github.com/simongog/sdsl-lite
3http://www.dcc.uchile.cl/gnavarro/software/repair.tgz
4http://libspatialindex.github.io
5http://marinecadstre.gov/ais

27

Ships Planes Taxis Ciconia

Total objects 4,461 2,263 24 88
Total points 63,093,559 36,741,877 46,677,278 4,390,159
Max x 6,000 229,010 1,074,480 4,073,661
Max y 647,755 46,872 340,142 2,995,928
Max time 44,639 172,547 2,102,639 505,573
Size Plain 1,413.47 MB 809.00 MB 1,024.00 MB 107.09 MB
Size Bin 541.54 MB 350.40 MB 426.08 MB 41.87 MB
Size p7zip 57.88 MB 85.40 MB 86.91 MB 12.06 MB

Table 2. Datasets and their dimensions.

• Planes: real flight data of 2,263 aircrafts from 30 different airlines between 30
European airports. Altitude is not considered, only latitude and longitude are
represented in our dataset. The original data can be obtained from OpenSky
Network.6

• Taxis: a pseudo-real dataset containing trajectories of 433 taxis in New York
City during 2013. Since the original dataset only includes the origin and
destination of each trip, the trajectory was computed as the shortest path
between them by taking into account the road network. The original data are
available at NYC Taxis: A Day in the life.7

• Ciconia: a small and non-repetitive real dataset of 88 white storks traveling
between Europe and North Africa from 2013 to 2019. The original data can be
obtained from MoveBank Data Repository (Flack et al. 2016, Cheng et al. 2019).

ContaCT deals with raster data, that is, every position is stored into a discrete
grid. Every location sent by an object is then represented by the corresponding cell
of that grid. The size of the cell is chosen depending on the application, with smaller
cells when more detail is required. In our datasets, following recommendations that
depend on the sizes of objects we index,8 the sizes were set to 10×10 meters in Ships,
100×100 meters in Planes, and 1×1 meters in Taxis and in Ciconia. The impact of
the precision of the cells in the space and time performance is discussed in Section 6.4.
The time also requires a normalization because each object emits its location with
different frequency, and our structure needs to synchronize those positions at regular
time instants. We used regular intervals of 1 minute for Ships, 15 seconds for Planes
and Taxis, and 6 minutes for Ciconia, which matches the (approximate) frequency
in the actual data (and we used the smallest of the sampling intervals for Taxis).

After the discretization, we detected some errors in several locations of our real
datasets (Ships, Planes and Ciconia), because some movements would require
extremely high speed. To filter these errors, a maximum speed parameter was set for
each dataset: 800 km/h in Planes, 234 km/h for Ships and 54 km/h in Ciconia. As
a consequence, those signals that imply exceeding the maximum speed were removed:
0.01%, 0.83% and 0.42% of the signals were deleted from Ships, Planes and Ciconia,
respectively. In addition, an object can emit its signals with different frequency; for
example, in Ships, the frequency is lower when they are in a port. The asynchronism
between the frequency of emission of GPS devices and the regular time instants
considered in ContaCT makes it possible that there are some time instants without

6https://opensky-network.org
7http://chriswhong.github.io/nyctaxi/
8https://en.wikipedia.org/wiki/Decimal degrees

28

Index ContaCT GraCT
d 30 60 120 240 360 720 30 60 120 240 360 720

Ships

Size 141.82 131.44 126.23 123.62 122.74 121.87 121.92 82.43 62.33 52.25 48.85 45.40
Snap 20.86 10.48 5.27 2.66 1.79 0.91 23.96 12.03 6.05 3.05 2.04 1.04
Log 120.96 120.96 120.96 120.96 120.96 120.96 97.95 70.40 56.28 49.20 46.81 44.36
R-plain 10.0% 9.30% 8.93% 8.75% 8.68% 8.62% 8.63% 5.83% 4.41% 3.70% 3.46% 3.21%
R-bin 26.19% 24.27% 23.31% 22.83% 22.67% 22.50% 22.51% 15.22% 11.51% 9.65% 9.02% 8.38%

Planes

Size 197.91 182.78 175.22 171.41 170.15 168.88 205.74 136.39 101.66 84.21 78.41 72.57
Snap 30.40 15.28 7.71 3.91 2.65 1.37 35.59 17.87 9.00 4.56 3.08 1.58
Log 167.51 167.51 167.51 167.51 167.51 167.51 170.15 118.51 92.65 79.66 75.33 70.98
R-plain 24.46% 22.59% 21.66% 21.19% 21.03% 20.87% 25.43% 16.86% 12.57% 10.41% 9.69% 8.97%
R-bin 56.48% 52.16% 50.00% 48.92% 48.56% 48.20% 58.72% 38.92% 29.01% 24.03% 22.38% 20.71%

Taxis

Size 192.05 160.54 144.77 136.88 134.25 131.61 149.52 104.76 83.78 73.21 69.67 66.13
Snap 63.07 31.56 15.79 7.90 5.27 2.64 66.88 33.46 16.75 8.38 5.59 2.79
Log 128.97 128.97 128.97 128.97 128.97 128.97 82.64 71.30 67.03 64.83 64.09 63.33
R-plain 18.75% 15.68% 14.14% 13.37% 13.11% 12.85% 14.60% 10.23% 8.18% 7.15% 6.80% 6.46%
R-bin 45.07% 37.68% 33.98% 32.13% 31.51% 30.89% 35.10% 24.59% 19.66% 17.18% 16.35% 15.52%

Ciconia

Size 37.25 30.17 26.97 25.02 24.37 23.72 44.31 30.91 24.10 20.54 19.35 18.16
Snap 14.19 7.11 3.90 1.95 1.30 0.65 15.27 7.65 4.20 2.10 1.40 0.70
Log 23.07 23.07 23.07 23.07 23.07 23.07 29.04 23.26 19.91 18.44 17.95 17.46
R-plain 41.38% 28.18% 25.18% 23.36% 22.76% 22.15% 34.79% 28.86% 22.51% 19.18% 18.07% 16.95%
R-bin 88.98% 72.07% 64.41% 59.75% 58.20% 56.65% 105.8% 73.83% 57.57% 49.06% 46.22% 43.36%

Table 3. Structure sizes (in MB) and compression ratios.

information about the position of the object. In the cases where the difference between
two consecutive signals is less than 15 time instants (of those actually considered by
ContaCT), we interpolate the locations of those time instants.

Trajectories are usually stored in a plain text file composed of four columns: object
identifier, time instant, x coordinate, and y coordinate. To obtain a fair comparison,
we stored all this information in binary form by using the minimum number of bytes
required for each column. For example, in Ships, two bytes are used to represent the
first column (max value 4,461), two for the time instant column (max value 44,639),
two for the x-axis (max value 6,000), and three for the y-axis (max value 647,755).

Table 2 shows a description of the datasets, their binary and plain text size, and
their size after compressing them with p7zip. The last row gives us an idea of how
compressible the data is; we observe that p7zip compresses the data to 10%–30%9 of
its binary representation.

6.2. Compression

We first analyze the compression ratios of ContaCT and compare them with those of
GraCT. We applied ContaCT and GraCT on each dataset, using distances between
snapshots d = 30, 60, 120, 240, 360, and 720 time instants. The value d can be adjusted
depending on the type of application, as it provides a space/time tradeoff. As we show
below, as d decreases the size of the structure increases and its time performance
improves in most of the queries. Thus, an application that focuses on performance
may choose the smallest d that allows keeping the whole structure within the available
memory, whereas if the goal is compression one can use the maximum d that yields
acceptable time performance.

In Table 3, the first row of each collection shows the size of each configuration
depending on their d value, whereas the second and third rows break down the total
space into that required by the snapshots and the compressed log. ContaCT represents
Dp and Dn using plain bitmaps on Ships and sparse bitmaps on Planes, Taxis and

9The values are the size of the compressed file as a percentage of the size of the original file.

29

Ciconia. We observe that most of the space is occupied by the compressed log.
In the case of GraCT, the log reduces its size when d increases but, as expected,

this does not occur in the case of ContaCT. In GraCT, the quotient of the log space
with d = 720 versus d = 30 is 0.4 on Planes, whereas with ContaCT it is 1.0. As
d increases, the length of the sections of the log (between snapshots) also increases,
thus GraCT’s grammar compressor finds more repetitiveness. ContaCT, instead, does
not exploit this redundancy. As we see soon, this higher space usage is well used by
ContaCT to provide much faster evaluation of some queries.

The last two rows of each dataset show the compression ratios computed with
respect to the plain and binary representations, respectively. As explained, GraCT
exploits the redundancy of trajectory data to obtain better compression. With d = 720,
it uses 1.3–2.7 times less space than ContaCT and 75%–85% of the space needed by
p7zip. The exception is Ciconia, which is not repetitive and makes GraCT use 50%
more space than p7zip, and over 75% of the space of ContaCT.

Still, ContaCT obtains competitive compression ratios: the version with d = 720
uses 10%–25% of the space of a plain representation of the data, 20%–60% of the
space of a binary representation, and about twice the space used by p7zip (which
just compresses the data; it cannot solve any query without decompressing the whole
dataset). To compare with another system that uses differential compression (and also
does not support queries), we built Trajic (Nibali and He 2015), which used 177.91
MB on Ships (46% more than ContaCT), 242.61 MB on Planes (44% more than
ContaCT), and 22.43 MB on Ciconia (5% less than ContaCT).10

6.3. Query performance

We now compare the response times of ContaCT and GraCT on the queries described
in Section 5. As in the first experiment, we use different distances between snapshots,
d = 30, 60, 120, 240, 360, and 720. The response times reported are the average of
the user times spent by the algorithms to solve a set of queries of the same type. We
consider eight queries:

• ObjectPosition: We compute a set of 20,000 queries for randomly chosen objects
and time instants.
• ObjectTrajectory : We average 10,000 queries for randomly chosen objects and

intervals. The difference between tb and te is set to 2,000 time instants.
• TimeSlice S : We perform 1,000 queries for small random regions, of 40×40 cells,

and a random time instant tq.
• TimeSlice L: The same, but on large regions, of 320 × 320 cells.
• TimeInterval S : We perform 1,000 queries for a small random region of 40× 40

cells during a random interval of 100 time instants.
• TimeInterval L: The same, but with a random region of 320 × 320 cells and a

time interval of length 800.
• MBR: We perform 1,000 queries for randomly chosen objects along random time

intervals of 200 instants.
• Knn: We average over 1,000 queries for random positions at random time

instants. The value of K is chosen at random between 1 and 50. We also show
experiments for fixed K = 1, K = 10, and K = 100.

Figures 8 to 11 show the average query time versus compression ratio (with respect

10It crashed when building on Taxis.

30

to the binary representation) for these queries. For each structure we show a line
with six points, corresponding to the different values of parameter d (30, 60, 120, 240,
360, and 720; the higher d, the lower the space usage). ContaCT refers to the variant
that uses plain bitmaps for Dp and Dn, and ContaCT-S to the one that uses sparse
bitmaps. ContaCT with plain bitmaps is excluded from Ciconia because it uses more
than 400% space.

6.3.1. Object position

Figure 8(a) shows the space-time tradeoffs for ObjectPosition. ContaCT answers this
query in around 200–600 nanoseconds, whereas GraCT needs a few microseconds,
being an order of magnitude slower.

Such a difference is expected. To solve this query, GraCT must obtain the absolute
position of the object at the closest snapshot, and then traverse the grammar-
compressed log while accumulating differences. When it reaches the nonterminal
containing tq, it must enter the grammar tree until reaching the desired leaf. On a
log of d time instants, this takes at least O(log d) time. ContaCT, instead, directly
computes the position of the object in O(1) time, without even having to consult a
snapshot or traversing a trajectory.

The dependence of GraCT on the value of d is also clear in the figure: as d increases
the response times decline because the portion of log to traverse is larger, up to d

2 .
The time of ContaCT, instead, remains constant as d changes.

6.3.2. Object trajectory

Figure 8(b) shows that ContaCT obtains about the same performance as GraCT on
this query. The reason is that, once reaching the first position of the object (where
ContaCT is much faster), both GraCT and ContaCT take O(1) amortized time per
extracted position.

The reason why the times of GraCT improve as d increases is that every new
snapshot reached along the trajectory must be accessed to find the new absolute
position of the object. ContaCT, instead, is completely independent of the snapshots.

6.3.3. Time slice

ContaCT does not obtain significant improvements on time slice queries. As shown in
Figure 9, ContaCT is much faster when using the least-space configuration, but GraCT
obtains better performance when using the same space of ContaCT. The exception is
Ciconia, where ContaCT stays significantly faster even when GraCT gets to use the
same space.

Since this query consists of traversing the closest snapshot and verifying all the
candidates found with ObjectPosition, one would expect a large difference in perfor-
mance as we obtained for that query. This is not the case, however, because GraCT
can do better, without necessarily computing the position of each object at time tq.
After processing each nonterminal of the log in the way to tq, GraCT computes the
extended region with respect to the current object position, in order to determine if
the object still has chances of being within the queried region at tq. If not, the object
is discarded immediately. The difference with respect to the constant-time computa-
tion of the object position at tq made by ContaCT is then not as large as for the
ObjectPosition query.

Figure 9 shows that the time performance worsens on both structures as d increases.

31

(a) ObjectPosition

(b) ObjectTrajectory

Figure 8. Space and time for ObjectPosition and ObjectTrajectory queries, in microseconds per query.

32

(a) TimeSlice S

(b) TimeSlice L

Figure 9. Space and time for TimeSlice queries, in milliseconds per query.

33

The main reason of that slope of the times in ContaCT is the number of candidates. As
d increases, the expanded region that contains the candidates increases proportionally
along each direction, more precisely depending on the distance between the snapshot
and the queried time instant. Besides, in GraCT, computing ObjectPosition requires
reading up to d

2 entries from the log.

6.3.4. Time interval

Figure 10 shows the average times of time interval queries, using λ = 20 for ContaCT.
We observe that ContaCT is faster than GraCT in all cases, except on Planes and
Ships. In the first dataset, when the space is similar for both structures, GraCT is
1.3–1.6 times faster than ContaCT. Although in Ships, when querying large regions
and intervals, ContaCT clearly outperforms GraCT, in TimeInterval S GraCT is as
fast as ContaCT and still uses 80% of its space. In the other cases, comparing the
fastest configuration of both structures, ContaCT is 1.7–3.4 times faster in Taxis, and
1.2–2.3 in Ciconia.

The reason why ContaCT outperforms GraCT on this query more sharply than for
TimeSlice, especially on large intervals, is twofold. On the one hand, it is less likely
that GraCT can preempt the traversal of the log by determining that the object is not
in the spatial region at any time in [tb, te]. On the other hand, once GraCT arrives
at the region, it is also harder to verify the whole interval, and ContaCT is better at
this.

A surprising effect in ContaCT is that, in some cases, time worsens when the space
increases (i.e., d decreases). The reason is that we minimize the size of the spatial
windows where we collect candidates, by using all the intermediate snapshots. This
aims to minimize the number of candidate objects to verify, at the cost of querying
more snapshots. When there are few candidate objects, it is better to just test them
instead of working too much on the snapshots trying to discard them. In those cases,
we can ignore some intermediate snapshots and increase the window size, so that the
curves are nonincreasing with the space. This is an optimization parameter that a
sophisticated deployment can introduce.

Both indexes use a hierarchical verification based on the MBRs. However, since
ContaCT can compute any MBR on the fly, it can apply a perfect binary search
on the whole interval [tb, te]. GraCT, instead, must follow the partitioning given by
the grammar, where each nonterminal stores its MBR. It may require traversing
several nonterminals to cover the queried interval, and even several snapshots on large
intervals.

The reason why the time of GraCT is not always decreasing as it uses more snaphots
is that, although the extended regions where we find candidates decrease in size, it
has to run the spatial query on more snapshots.

6.3.5. Minimum bounding rectangle

This is a new query enabled by ContaCT in O(1) time, which has independent interest.
In GraCT, computing the MBR requires traversing the portion of the log involved
in the queried time interval and taking the union of the MBRs of the maximal
nonintervals that cover [tb, te], which costs at least O(log d).

Figure 11(a) confirms that the difference in time is very significant, as expected:
ContaCT solves the query in a few microseconds, outperforming GraCT by a factor
of 4.5–8.8 in all datasets. As in ObjectTrajectory, the performance of GraCT worsens

34

(a) TimeInterval S

(b) TimeInterval L

Figure 10. Space and time for TimeInterval queries, in milliseconds per query.

35

(a) MBR

(b) Knn

Figure 11. Response time for MBR and Knn queries.

36

(a) Knn with K=1

(b) Knn with K=10

Figure 12. Response time for Knn with different values of K, in milliseconds per query.

37

Figure 13. Response time for Knn with K=100.

when d is smaller, because of the costs of obtaining the absolute position of the object
in each snapshot covering [tb, te].

6.3.6. Nearest neighbor

In order to study this query, we implemented two variants of the query: (v0) the original
algorithm of GraCT (Brisaboa et al. 2019) and (v1), the one presented in Section 5.

In our experiments, we run GraCT with its original setup (v0) and with the
algorithm we present in this paper (v1). We also present ContaCT with our own
algorithm (v1). In addition, we present a variant of v0 adapted to ContaCT: We traverse
the snapshot and insert all the objects found in Qc (which now stores objects), plus
those in app/dis, with their current distance to tq. We then extract consecutive objects
from Qc and directly evaluate their position at tq (in ContaCT, it makes no sense to
advance progressively in the log as we do in v0 of GraCT). The queue Qr maintains
the best candidates found at time tq. We stop extracting candidates from Qc when
their known position, even if they move towards the query at maximum speed, cannot
outperform the Kth closest candidate we have in Qr.

As shown in Figure 11(b), version v1, which we introduce in this paper, always
outperforms v0, more noticeably in GraCT. In general, GraCT obtains the same time
performance of ContaCT with its maximum-space configuration, where GraCT uses
70%-80% of the space of ContaCT. In Ciconia, however, ContaCT is always slightly
faster. Both versions sharply worsen their performance when d increases. During the
process of adding the candidates to Qc, the algorithm extends the regions represented
by each traversed node by an extension that increases linearly with d along each
direction. Thus, the larger d, the higher the uncertainty about where the objects of
each node can reach, and thus more candidates have to be considered. GraCT depends
even more sharply on d because the position of each candidate has to be computed,

38

which requires scanning, at most, d
2 entries from the log.

Figures 12 and 13 show the times for Knn queries with different values of K, using
only the variant v1. As it can be seen, ContaCT becomes better than GraCT as we
look for more objects. This is expected, because ContaCT is better than GraCT at
computing the position of a candidate object, and those become more numerous as K
grows.

6.4. Precision considerations

In the preceding experiments, we chose the size of the grid to match that of the
objects to track, as explained. This choice may vary depending on the application
needs, however. In this section we study how the precision of the raster model affects
the size and query performance of ContaCT and ContaCT-S. We built both structures
fixing the distance between snapshots to the minimum-space configuration, d = 720,
and using different cell sizes: 1×1, 10×10, 100×100, 1,000×1,000, and 10,000×10,000
meters (recall that our defaults are 10× 10 for Ships, 100× 100 for Planes, and 1× 1
for Taxis and Ciconia).

Figure 14 shows how the space requirements of ContaCT and ContaCT-S evolve
as the sizes of the cells grow. In all datasets, ContaCT is highly dependent on the
cell size. Indeed, the quotient between the size of the maximum and minimum space
configuration on Ships is 13, on Planes is 250, on Taxis is 8, and on Ciconia is
38. That quotient is much smaller on ContaCT-S, being around 1.8–3 in all datasets.
The main cause of that difference between both structures is the implementation of the
log. When the cells are smaller, the distances in cells between consecutive positions are
larger, and thus the bitmaps of the log are longer and sparser. The space of ContaCT
grows proportionally to the bitmap lengths. Instead, since ContaCT-S exploits the
sparsity of bitmaps, it handles small cells better. As the cell size grows, the bitmaps
become shorter and denser, and trying to exploit sparsity is even counterproductive.

The figure also includes the space obtained by Trajic (which does not support
queries), except on Taxis, where it could not be built, as explained. The space of
Trajic is similar to that of Contact-S, except on Ciconia with large cells. At this
granularity, the objects barely move, which Trajic compresses very well. ContaCT-S,
instead, is not optimized to handle many consecutive time instants without movement.
We verified that the peak of Trajic for the largest cells in Ships is correct.

The performance of constant-time queries, like ObjectPosition and MBR, varies very
little as we change the cell size, but the other queries generally speed up with larger
cells. Figure 15 shows the response times of TimeInterval and Knn queries when
varying the cell sizes. In TimeInterval queries, we compute the objects within a region
of size 320× 320 meters during an interval of 800 time instants. In Knn queries we set
a random value of K between 1 and 50. Other queries yield analogous results.

Both ContaCT and ContaCT-S improve their performance as the size of cells
grows, except for the two smallest cell sizes on Planes. The reason for the general
improvement is that, with larger cells, the grids of the snapshots are smaller. The
number of k2-tree nodes traversed to collect all the candidates that fall in a region
is proportional to the number of candidates recovered and to the perimeter of the
region measured in number of cells (Navarro 2016, Sec. 10.2.1). The latter decreases
proportionally to the cell size, which explains the roughly straight diagonals in most
plots. The contrary effect, namely having more candidates to verify due to coarser
cells in the snapshot, turns out to be not significant: between the structures with cells

39

Figure 14. Evolution of the space of ContaCT, ContaCT-S, and Trajic with different cell sizes.

of 1× 1 and 10, 000× 10, 000 meters, the candidates grow by around 0.01% in all the
datasets, except on Ciconia, where they grow by 2.5%.

Regarding the first two points of Planes, the reason lies in the implementation
of operation select on the plain bitmaps used by ContaCT (select support mcl in
the SDSL library). When the bitmaps are very sparse, ContaCT uses a lot of space
(recall Figure 14), but in exchange it precomputes and stores all the select answers in
the sparse regions. The probability of having the desired select answer directly stored
then increases, and so decreases the average time to obtain the position of any object.
These very sparse areas appear especially on Planes with cell sizes 1× 1 and 10× 10,
due to the high speed of its objects. The performance of select on the remaining
configurations varies by around ±5% only.

6.5. Scalability

We study the scalability of our structure in terms of compression ratios and query
times by generating larger Taxis datasets from the same source, with sizes 5,120 MB,
10,240 MB, and 20,480 MB. The resulting four datasets then have approximately 1, 5,
10, and 20 GB of data (in plain form). While we expect ContaCT to retain its constant
time in ObjectPosition, ObjectTrajectory (per item returned), and MBR queries, the
time of range and nearest neighbor queries should grow linearly with the dataset size,
because the number of candidates to verify grows linearly.

Figure 16(a) shows the evolution of the compression ratio, building the indexes
with distance d = 720 between snapshots. We can observe that ContaCT (with sparse
bitmaps) essentially maintains the same compression ratio as the dataset grows, only
decreasing from 31% to 27%. Since GraCT exploits repetitiveness due to its grammar
compression, and repetitiveness increases in our dataset as it grows, the compression

40

(a) TimeInterval

(b) Knn

Figure 15. Response time for TimeInterval and Knn queries with different cell sizes, in microseconds per
query.

41

(a) Compression ratio. (b) Query times for ObjectPosition and MBR.

(c) Query times of ObjectTrajectory. (d) Other query times, over input size.

Figure 16. Evolution of compression ratio and query times as the dataset grows. Solid and dashed lines
correspond to ContaCT and GraCT, respectively

ratio of GraCT decreases significantly, from 15% to 9%.
Figures 16(b) and 16(c) show that, as expected, ContaCT retains constant time

for the queries where it has O(1) time complexity (per returned point, in the case of
trajectories). Its times range from a few nanoseconds to a few microseconds, depending
on the query. GraCT, instead, shows a logarithmic increase in query times, which is
proportional to the height of the parse tree of its grammar. Indeed, the average heights
of the nonterminals that form the logs, from the smallest to the largest dataset, are
2.21, 2.47, 2.61, and 2.76.

The rest of the queries are shown in Figure 16(d), with the query time divided by
the dataset size in GB. As expected, the query times grow linearly with the data size
in both indexes (GraCT grows superlinearly for large TimeInterval queries). In the
case of ContaCT, all the times are below 0.2 milliseconds per GB.

6.6. Comparison with a spatio-temporal index

The MVR-tree (Tao and Papadias 2001b) is composed of several R-trees, each one
called a version. Each version is associated with a different interval of time and

42

(a) TimeSlice (b) TimeInterval

(c) Knn (d) Growing TimeInterval queries on Ships

Figure 17. Query time comparison of ContaCT with the MVR-tree, running in main memory.

represents the positions of all the objects during that interval. Often, the differences
between two versions are small, in fact, they can contain identical nodes. The MVR-
tree exploits this feature by sharing common nodes between consecutive R-trees. This
structure can efficiently solve TimeSlice, TimeInterval, and Knn queries: the algorithm
traverses the versions involved in the queried time interval, following those nodes
that intersect the spatial point or region of the query. On the other hand, solving
ObjectPosition and ObjectTrajectory queries is costly.

In our experimental setup, we built MVR-trees on Ships and on Planes, with sizes
12.16 GB and 11.72 GB, respectively. In our experiments, both ContaCT and MVR-
tree run entirely in main memory. ContaCT was configured with the same settings
used in the previous experiments, fixing d = 30. Note that even this maximum-space
configuration of ContaCT uses 88 times less space on Ships, and 61 times less space
on Planes, than MVR-tree.

Figure 17 shows the times for the queries supported by the MVR-tree, comparing
it with the maximum-space configuration of ContaCT. We observe that ContaCT is
as fast as, and up to 6 times faster than, MVR-tree on most queries. The exception
are the TimeSlice and Knn queries on Ships, where MVR-tree is up to 3 times faster.
Those are the most efficient queries for the MVR-tree, because it needs to traverse
one R-tree only.

TimeInterval queries, instead, involve an interval of time, and thus MVR-tree needs
to traverse multiple versions. These are the queries where ContaCT outperforms MVR-

43

tree more sharply, see Figure 17(b). In order to study the turning point of TimeInterval
queries on Ships, we run queries varying the span of their time interval. As the span
increases, both structures slow down, but the times of MVR-tree increase much faster.
Indeed, ContaCT outperforms MVR-tree when the length of the time interval surpasses
65 time instants. Therefore, ContaCT is not as dependent on the length of the time
interval as MVR-tree, outperforming it on long intervals.

7. Conclusions

We have introduced a new compact data structure, called ContaCT, that indexes
compressed trajectories of freely-moving objects. Although it can be regarded as a
differential compressor and each trajectory is encoded separately as a sequence of
consecutive positions, it is novel in that the differences between those positions are
stored such that in constant time we can find the position of a given object at a given
time, and the minimum bounding rectangle of a given object’s trajectory for a given
time interval. In combination with some auxiliary compact data structures, we use
these constant-time queries to speed up other queries, such as finding the objects in a
given spatial range at a given time instant or interval, or the closest objects to a given
point at a given time instant.

Our experiments show that ContaCT compresses datasets to 20%–60% of the
space of their uncompressed representations, which is about twice the space obtained
by compressors like p7zip. While previous systems like GraCT (Brisaboa et al.
2019) use 1.3–2.7 times less space by exploiting similarities in the trajectories,
ContaCT is significantly faster: it is 4–14 times faster than GraCT at finding objects’
positions (taking a few nanoseconds), and 4–9 times faster for computing minimum
bounding rectangles (taking a few microseconds). An effect of solving the minimum
bounding rectangles so quickly is that ContaCT is up to 3.5 times faster than
GraCT in finding the objects that are inside a spatial window within a time interval
(taking a few tenths of milliseconds per GB of data). In the other queries, ContaCT
also outperforms GraCT, but the latter can obtain similar time by adjusting its
space/time trade-off while staying smaller than ContaCT. We note, however, that
the compression results of ContaCT are more robust because they rely on the only
fact that consecutive movements in a trajectory are relatively small, whereas GraCT
requires that trajectories of different objects are similar. This difference shows up in
a database of bird trajectories, where the space usage of both indexes are closer and
ContaCT offers much better space/time trade-offs.

Compared to a classical spatio-temporal index (MVR-tree (Tao and Papadias
2001b)), ContaCT uses two orders of magnitude less space and it is competitive in
query times, being even up to 6 times faster in some cases. For instance, in queries
that find the objects within a region during a time interval, ContaCT is 3 times slower
in some datasets when the queried time is just one time instant, but it becomes faster
as soon as the time span surpasses 65 time instants.

For simplicity, we have assumed that all the trajectories are sampled at the same
regular time instants. In practice, some objects may naturally emit more samples
than others, and one may like to sample them differently. Since ContaCT stores
each trajectory independently, it can easily use different time sampling rates for each.
Solving most queries requires some assumptions, however, like a linear interpolation
of the positions at query times tq, and the time instants t at which the snapshots
St are built. Note that GraCT would not perform well in this scenario, because its

44

compression relies on global similitude between different trajectories.
Future work involves using ContaCT to handle more complex queries, particularly

more sophisticated variants of nearest neighbor queries. Two such queries directly
extend our basic nearest neighbor query. The first one transforms the queried time
instant into an interval of time, and considers the closest distance of an object to
a point along the time interval (Gao et al. 2007). The second one considers the
nearest neighbors of a trajectory (Tang et al. 2011), that is, computing the trajectories
most similar to a given one according to a trajectory distance measure (Su et al.
2020). Besides, there are other queries focused on data mining, like moving-together
patterns (Gudmundsson et al. 2004), which detects objects that travel together; or
trajectory clustering (Lee et al. 2007), which looks for the most common patterns
of movement. In all these queries, the ability of ContaCT for efficiently computing
the trajectory-summarization primitive MBR will be key for detecting similarity and
proximity between trajectories.

Data and Codes Availability Statement

Data and codes that support the findings of this study are available with the identifiers
at the private link https://figshare.com/s/6780c0aea935c8e9b10e.

Acknowledgements

We thank the reviewers for their valuable comments, which helped improve our
presentation considerably.

Funding

This work was supported by Xunta de Galicia/FEDER-UE under Grants [IN848D-
2017-2350417; IN852A 2018/14; ED431C 2017/58]; Xunta de Galicia and European
Union (European Regional Development Fund- Galicia 2014-2020 Program) with the
support of CITIC research center under Grant [ED431G 2019/01]; Ministerio de
Ciencia, Innovación y Universidades under Grants [TIN2016-78011-C4-1-R; RTC-2017-
5908-7]; G.N. was supported by ANID - Millennium Science Initiative Program under
Grant [ICN17 002]; and Fondecyt under Grant [1-200038]. T.G. was supported by
NSERC under grant [RGPIN-2020-07185].

References

Becker, M., et al., 2015. Viztrails: An information visualization tool for exploring
geographic movement trajectories. In: Proc. 26th ACM Conference on Hypertext &
Social Media. 319–320.

Bell, T.C., Cleary, J., and Witten, I.H., 1990. Text compression. Prentice Hall.
Botea, V., et al., 2008. Pist: An efficient and practical indexing technique for historical

spatio-temporal point data. GeoInformatica, 12 (2), 143–168.
Brisaboa, N., Ladra, S., and Navarro, G., 2013. DACs: Bringing direct access to

variable-length codes. Information Processing and Management, 49 (1), 392–404.

45

Brisaboa, N.R., Ladra, S., and Navarro, G., 2014. Compact representation of web
graphs with extended functionality. Information Systems, 39 (1), 152–174.

Brisaboa, N.R., et al., 2019. GraCT: A grammar-based compressed index for trajectory
data. Information Sciences, 483, 106 – 135.

Bustos, B. and Navarro, G., 2009. Improving the space cost of k-nn search in metric
spaces by using distance estimators. Multimedia Tools and Applications, 41 (2),
215–233.

Cao, H., Wolfson, O., and Trajcevski, G., 2006. Spatio-temporal data reduction with
deterministic error bounds. The VLDB Journal, 15 (3), 211–228.

Cao, H., Mamoulis, N., and Cheung, D.W., 2005. Mining frequent spatio-temporal
sequential patterns. In: Proc. 5th IEEE International Conference on Data Mining
(ICDM). 82–89.

Chakka, V.P., Everspaugh, A., and Patel, J.M., 2003. Indexing large trajectory data
sets with SETI. In: Proc. Conference on Innovative Data Systems Research (CIDR).

Cheng, Y., et al., 2019. “Closer-to-home” strategy benefits juvenile survival in a long-
distance migratory bird. Ecology and evolution, 9 (16), 8945–8952.

Cudre-Mauroux, P., Wu, E., and Madden, S., 2010. Trajstore: An adaptive storage
system for very large trajectory data sets. In: Proc. 26th IEEE International
Conference on Data Engineering (ICDE). 109–120.

Douglas, D.H. and Peuker, T.K., 1973. Algorithms for the reduction of the number of
points required to represent a line or its caricature. The Canadian Cartographer, 10
(2), 112–122.

Ferrada, H. and Navarro, G., 2017. Improved range minimum queries. Journal of
Discrete Algorithms, 43, 72–80.

Fischer, J. and Heun, V., 2011. Space-efficient preprocessing schemes for range
minimum queries on static arrays. SIAM Journal on Computing, 40 (2), 465–492.

Flack, A., Fiedler, W., and Wikelski, M., 2016. Data from: Wind
estimation based on thermal soaring of birds. Available from:
http://dx.doi.org/10.5441/001/1.bj96m274.

Gagie, T., et al., 2017. Document retrieval on repetitive collections. Information
Retrieval, 20, 253–291.

Gao, Y.J., et al., 2007. Efficient k-nearest-neighbor search algorithms for historical
moving object trajectories. Journal of Computer Science and Technology, 22 (2),
232–244.

Gog, S., et al., 2014. From theory to practice: Plug and play with succinct data
structures. In: Proc. 13th International Symposium on Experimental Algorithms
(SEA). 326–337.

Gudmundsson, J., Laube, P., and Wolle, T., 2008. Movement patterns in spatio-
temporal data. Encyclopedia of GIS, 726, 732.

Gudmundsson, J. and van Kreveld, M., 2006. Computing longest duration flocks in
trajectory data. In: Proc. 14th Annual ACM International Symposium on Advances
in Geographic Information Systems (GIS). 35–42.

Gudmundsson, J., van Kreveld, M., and Speckmann, B., 2004. Efficient detection
of motion patterns in spatio-temporal data sets. In: Proc. 12th Annual ACM
International Workshop on Geographic Information Systems. 250–257.

Gutiérrez, G., et al., 2005. A spatio-temporal access method based on snapshots and
events. In: Proc. 13th ACM International Symposium on Advances in Geographic
Information Systems (GIS). 115–124.

Guttman, A., 1984. R-trees: A dynamic index structure for spatial searching. In: Proc.
ACM International Conference on Management of Data (SIGMOD). 47–57.

46

Huang, S., et al., 2014. R-HBase: A multi-dimensional indexing framework for cloud
computing environment. In: Proc. Workshops of the IEEE International Conference
on Data Mining (ICDM). 569–574.

Hughes, J.N., et al., 2015. Geomesa: A distributed architecture for spatio-temporal
fusion. In: Proc. SPIE. vol. 9473.

Lee, J.G., Han, J., and Whang, K.Y., 2007. Trajectory clustering: a partition-and-
group framework. In: Proc. ACM International Conference on Management of Data
(SIGMOD). 593–604.

Leontiadis, I., et al., 2011. On the effectiveness of an opportunistic traffic management
system for vehicular networks. IEEE Transactions on Intelligent Transportation
Systems, 12 (4), 1537–1548.

Li, Z., et al., 2010a. Swarm: Mining relaxed temporal moving object clusters. Proceed-
ings of the VLDB Endowment, 3 (1-2), 723–734.

Li, Z., et al., 2011. Movemine: Mining moving object data for discovery of animal
movement patterns. ACM Transactions on Intelligent Systems and Technology, 2
(4), 1–32.

Li, Z., et al., 2010b. Incremental clustering for trajectories. In: Proc. International
Conference on Database Systems for Advanced Applications. 32–46.

Lin, X., et al., 2017. One-pass error bounded trajectory simplification. Proceedings of
the VLDB Endowment, 10 (7), 841–852.

Liu, J., et al., 2015. Bounded quadrant system: Error-bounded trajectory compression
on the go. In: Proc. 31st IEEE International Conference on Data Engineering
(ICDE). 987–998.

Ma, Q., et al., 2009. Query processing of massive trajectory data based on MapReduce.
In: Proc. 1st International Workshop on Cloud Data Management (CloudDB). 9–16.

Ma, S., Zheng, Y., and Wolfson, O., 2013. T-share: A large-scale dynamic taxi rideshar-
ing service. In: Proc. 29th IEEE International Conference on Data Engineering
(ICDE). 410–421.

Mahmood, A.R., Punni, S., and Aref, W.G., 2019. Spatio-temporal access methods: a
survey (2010-2017). GeoInformatica, 23 (1), 1–36.

Meratnia, N. and de By, R.A., 2004. Spatiotemporal compression techniques for
moving point objects. In: Proc. 9th International Conference on Extending Database
Technology (EDBT). 765–782.

Muckell, J., et al., 2011. SQUISH: an online approach for gps trajectory compression.
In: Proc. 2nd International Conference on Computing for Geospatial Research &
Applications. 1–8.

Muckell, J., et al., 2014. Compression of trajectory data: a comprehensive evaluation
and new approach. GeoInformatica, 18 (3), 435–460.

Munro, J.I., 1996. Tables. In: Proc. 16th Conference Foundations of Software Tech-
nology and Theoretical Computer Science (FSTTCS). 37–42.

Nascimento, M.A. and Silva, J.R.O., 1998. Towards historical R-trees. In: Proc. ACM
Symposium on Applied Computing (SAC). 235–240.

Navarro, G., 2016. Compact Data Structures – A practical approach. Cambridge
University Press.

Ni, J. and Ravishankar, C.V., 2007. Indexing spatio-temporal trajectories with efficient
polynomial approximations. IEEE Transactions on Knowledge and Data Engineer-
ing, 19 (5), 663–678.

Nibali, A. and He, Z., 2015. Trajic: An effective compression system for trajectory
data. IEEE Transactions on Knowledge and Data Engineering, 27 (11), 3138–3151.

Nishimura, S., et al., 2013. MD-HBase: design and implementation of an elastic data

47

infrastructure for cloud-scale location services. Distributed and Parallel Databases,
31 (2), 289–319.

Okanohara, D. and Sadakane, K., 2007. Practical entropy-compressed rank/select
dictionary. In: Proc. 9th Workshop on Algorithm Engineering and Experiments
(ALENEX). 60–70.

Pfoser, D., Jensen, C.S., and Theodoridis, Y., 2000. Novel approaches to the indexing
of moving object trajectories. In: Proc. 26th International Conference on Very Large
Data Bases (VLDB). 395–406.

Popa, I.S., et al., 2015. Spatio-temporal compression of trajectories in road networks.
GeoInformatica, 19 (1), 117–145.

Potamias, M., Patroumpas, K., and Sellis, T., 2006. Sampling trajectory streams with
spatiotemporal criteria. In: Proc. 18th International Conference on Scientific and
Statistical Database Management (SSDBM). 275–284.

Samet, H., 1984. The Quadtree and Related Hierarchical Data Structures. ACM
Computing Surveys, 16, 187–260.

Schmid, F., Richter, K.F., and Laube, P., 2009. Semantic trajectory compression. In:
Proc. 11th International Symposium on Spatial and Temporal Databases (SSTD).
411–416.

Su, H., et al., 2020. A survey of trajectory distance measures and performance
evaluation. The VLDB Journal, 29 (1), 3–32.

Ta, N., et al., 2016. Semantic-aware trajectory compression with urban road network.
In: Proc. International Conference on Web-Age Information Management. Springer,
124–136.

Tan, H., Luo, W., and Ni, L.M., 2012. CloST: A Hadoop-based storage system for
big spatio-temporal data analytics. In: Proc. 21st ACM International Conference
on Information and Knowledge Management (CIKM). 2139–2143.

Tang, L.A., et al., 2011. Retrieving k-nearest neighboring trajectories by a set of point
locations. In: Proc. International Symposium on Spatial and Temporal Databases.
223–241.

Tao, Y. and Papadias, D., 2001a. Efficient historical R-trees. In: Proc. International
Conference on Scientific and Statistical Database Management (SSDBM). 223–232.

Tao, Y. and Papadias, D., 2001b. MV3R-tree: A spatio-temporal access method for
timestamp and interval queries. In: Proc. 27th International Conference on Very
Large Data Bases (VLDB). 431–440.

Trajcevski, G., et al., 2006. On-line data reduction and the quality of history in moving
objects databases. In: Proc. 5th ACM International Workshop on Data Engineering
for Wireless and Mobile Access. 19–26.

Vazirgiannis, M., Theodoridis, Y., and Sellis, T.K., 1998. Spatio-temporal composition
and indexing for large multimedia applications. ACM Multimedia Systems Journal,
6 (4), 284–298.

Wang, L., et al., 2008. A flexible spatio-temporal indexing scheme for large-scale GPS
track retrieval. In: Proc. International Conference on Mobile Data Management
(MDM). 1–8.

Worboys, M.F., 2005. Event-oriented approaches to geographic phenomena. Interna-
tional Journal of Geographical Information Science, 19 (1), 1–28.

Xiao, X., et al., 2010. Finding similar users using category-based location history.
In: Proc. 18th SIGSPATIAL International Conference on Advances in Geographic
Information Systems. 442–445.

Xu, X., Han, J., and Lu, W., 1990. RT-tree: An improved R-tree index structure for
spatiotemporal databases. In: Proc. 4th International Symposium on Spatial Data

48

Handling. vol. 2, 1040–1049.
Yang, S., He, Z., and Chen, Y.P.P., 2018. GCOTraj: A storage approach for historical

trajectory data sets using grid cells ordering. Information Sciences, 459, 1–19.
Ye, Y., et al., 2009. Mining individual life pattern based on location history. In: Proc.

10th International Conference on Mobile Data Management: Systems, Services and
Middleware. 1–10.

Zaharia, M., et al., 2016. Apache Spark: A unified engine for big data processing.
Communications of the ACM, 59 (11), 56–65.

Zhang, Z., et al., 2017. TrajSpark: A scalable and efficient in-memory management
system for big trajectory data. In: Proc. 1st International Joint Conference APWeb-
WAIM, Part I. 11–26.

Zhao, Y., et al., 2018. Rest: A reference-based framework for spatio-temporal trajec-
tory compression. In: Proceedings of the 24th ACM SIGKDD International Confer-
ence on Knowledge Discovery & Data Mining. 2797–2806.

Zheng, B., et al., 2018. Sharkdb: an in-memory column-oriented storage for trajectory
analysis. World Wide Web, 21 (2), 455–485.

Zheng, Y., 2015. Trajectory data mining: an overview. ACM Transactions on Intelli-
gent Systems and Technology (TIST), 6 (3), 1–41.

Zheng, Y. and Zhou, X., eds., 2011. Computing with Spatial Trajectories. Springer.
Zhou, P., et al., 2005. Close pair queries in moving object databases. In: Proc. 13th

Annual ACM International Workshop on Geographic Information Systems (GIS).
2–11.

49

	PORTADA NIEVES
	2023_Brisaboa_An index for moving

