
This is an ACCEPTED VERSION of the following published document:

Montoto, P., Pan, A., Raposo, J., Losada, J., Bellas, F., López, J. (2008). A Workflow-Based
Approach for Creating Complex Web Wrappers. In: Bailey, J., Maier, D., Schewe, KD.,
Thalheim, B., Wang, X.S. (eds) Web Information Systems Engineering - WISE 2008. WISE
2008. Lecture Notes in Computer Science, vol 5175. Springer, Berlin, Heidelberg. https://
doi.org/10.1007/978-3-540-85481-4_30

Link to published version: https://doi.org/10.1007/978-3-540-85481-4_30

General rights:

This version of the article has been accepted for publication, after peer review and is
subject to Springer Nature’s AM terms of use, but is not the Version of Record and does
not reflect post-acceptance improvements, or any corrections. The Version of Record is
available online at: https://doi.org/10.1007/978-3-540-85481-4_30.

https://doi.org/10.1007/978-3-540-85481-4_30
https://doi.org/10.1007/978-3-540-85481-4_30
https://www.springernature.com/gp/open-research/policies/accepted-manuscript-terms
https://doi.org/10.1007/978-3-540-85481-4_30

A Workflow-based Approach for Creating Complex
Web Wrappers

Paula Montoto, Alberto Pan, Juan Raposo, José Losada,
Fernando Bellas, Javier López

Department of Information and Communication Technologies.

University of A Coruña, Spain
{pmontoto,apan,jrs,jlosada,fbellas,jmato}@udc.es

Abstract. In order to let software programs access and use the information and
services provided by web sources, wrapper programs must be built to provide a
“machine-readable” view over them. Although research literature on web wrap-
pers is vast, the problem of how to specify the internal logic of complex wrap-
pers in a graphical and simple way remains mainly ignored. In this paper, we
propose a new language for addressing this task. Our approach leverages on the
existing work on intelligent web data extraction and automatic web navigation
as building blocks, and uses a workflow-based approach to specify the wrapper
control logic. The features included in the language have been decided from the
results of a study of a wide range of real web automation applications from dif-
ferent business areas. In this paper, we also present the most salient results of
the study.

Keywords: web wrappers, data mining, web automation, web information sys-
tems

1 Introduction

Most of today’s Web sources are designed to be easily used by humans, but they do
not offer suitable interfaces to allow software programs to interact with them. During
the last years, a growing interest has arisen in automating the interactions with web
sites. Most previous research works in this field have focused on the concept of wrap-
per. A wrapper abstracts the complexities involved in automating a certain task on a
web source, providing a programmatic interface to external applications. As related
work, see [3],[4],[5],[9],[10],[11],[12],[13],[15],[16]. [8] provides a survey.

Most previous works on web wrappers assume a particular underlying model we
will call ‘query wrapper’ model. Query wrappers consider a web source as a special
kind of database where queries can be posed using a form, obtaining a result set com-
posed of structured data records. The query wrapper model assumes a pre-defined list
of execution steps: first, a navigation sequence is used to automatically fill in some
query form. Secondly, data extraction techniques are used to obtain the list of results
from the response HTML pages. In addition, query wrappers may also support pagi-
nated result listings and accessing ‘record detail’ pages to extract further information.

While query wrappers are useful, they do not fit some important web automation

applications. For instance, many tasks involve taking decisions in function of the
retrieved data to continue the navigation in a way or another.

 The objective of this paper is to propose a graphical language for creating wrap-
pers able to automate any web automation process on a given website. It is important
to note that, in our view, a wrapper automates the interaction with a single website
and for a single purpose. For tasks involving the combination and/or orchestration of
several web sources, our approach consists in enabling the wrappers to participate as
basic components in usual data and process integration architectures such as data me-
diators [14] or Business Process Management systems. Other key objective for our
language is being simple: wrappers should be created graphically and the language
should not include features that introduce unnecessary complexity. Programming-
skills should not be necessary in the majority of cases.

As a source of inspiration for our model, we have studied BPM orchestration pat-
terns [1] and technologies (such as BPMN [7] and WS-BPEL [6]). As in our case,
BPM technologies are also concerned with graphically specifying complex logic.

To base our proposal on firm roots, we have studied a wide range of real web
automation tasks, which are being used by corporations from different business areas,
trying to capture all the requirements needed in real applications. Some of the main
results of the study are also reported in the paper. The language has been implemented
in a fully functional prototype.

The paper is structured as follows. Section 2 reports some of the most important
results and conclusions of the motivating study. Section 3 describes the proposed lan-
guage. Section 4 discusses related work.

2 Motivation

To guide the development of the language, we have studied a wide range of real web
automation applications. We have studied 391 wrappers belonging to 24 applications.
These applications are a sub-set of those developed by a European enterprise special-
ized in web automation applications during the last three years. We have chosen ap-
plications in different business areas to increase the generality of our approach: B2B
web automation (i.e. automating repetitive operations with other organizations
through a web interface), batch data extraction, internet metasearch applications, web
account integration, and technology and business watch (i.e. monitoring web informa-
tion relevant for business and/or research purposes, such as competitor prices).

Previously to the study, we analyzed existing workflow technologies for BPM
(such as [1],[6],[7]) to identify a features which could apply to web automation appli-
cations. Then we analyzed the wrappers in the study to check if they required or could
benefit from them. The features we found useful are: conditional bifurcations, error
management, parallelism, asynchronous events and sub-processes. We also analyzed
if the wrappers conformed to the query wrapper model. Now, we report and discuss
some of the main results of the study:
1. A first conclusion is that only the 57% of the wrappers conform to the query wrap-

per model. The percentage varies in function of the application type: 100% of the
wrappers in metasearch applications conform to that model, while in B2B applica-

tions the percentage only reaches 53%. The study allows concluding that the query
wrapper model is too simple for many real web automation applications.

2. Regarding conditional bifurcations, 54% of the wrappers that do not conform to
the query wrapper model require them. Therefore, the language should support
them.

3. Regarding error management, most of the wrappers considered require or could
benefit from: 1) On the apparition of an error in the process, indicating which ac-
tion to perform: either ignore it or halt the process and return the error to the invok-
ing application, 2) Executing retries (e.g. when executing web navigation se-
quences). In addition, 37% of the wrappers in the B2B application area require or
could benefit from user-defined, application-specific exceptions to return to the
calling application. Therefore, the language includes support for these features.

4. Regarding parallelism, we observed it is very useful in two cases: 1) When a
wrapper needs to process a list of records extracted from a web page, and the proc-
essing of each record involves executing one or more navigation sequences (e.g.
accessing a detail page). Since navigation sequences can be relatively slow, proc-
essing the records in parallel can greatly improve performance, and 2) We have
also observed that some applications execute the same query wrapper multiple
times using different query parameters and then merge the obtained results. There-
fore, it is useful to include in the language specific support to allow specifying the
parallel execution of multiple queries on the same web form, thus alleviating the
invoking application of this task. 84% of the studied wrappers could benefit from
either one or both of these kinds of parallelism. On the other hand, no wrapper re-
quired other types of parallelism. Recall that, in our model, wrappers abstract the
interactions with a single source for a given task. More room for parallelism would
undoubtedly arise if we considered web automation tasks involving the combina-
tion and/or orchestration of several sources. Nevertheless, we follow the common
approach in integration architectures of separating access and coordination layers.
To coordinate and/or integrate several sources (which may or may not be web
sources), our approach consists in enabling the wrappers to participate as compo-
nents in usual data and process integration architectures such as data mediators
[14] or Business Process Management systems. Therefore, we conclude the lan-
guage should not include more general support for parallelism because it would
considerably increase the complexity and its benefits would be unclear.

5. Regarding asynchronous operations, some web pages may dynamically change its
content without requiring a full reload of the page (e.g. sources which use
Javascript / AJAX technology to update its content). In these situations, it would be
useful if the wrapper could be asynchronously notified of changes in the content of
the areas of interest in the page. 6 wrappers in the study have to deal with these
sources but, since AJAX sources are gaining prominence, we expect this feature to
increase its importance. The wrappers we examined are not notified asynchro-
nously. Instead, they access the target regions at specified intervals (i.e. “polling”).
The reason is that most automatic navigation systems use browsers as basic com-
ponents for navigating and hosting HTML pages, and with current browser APIs it
is difficult to identify content-change events at the desired granularity. Polling can
be easily supported by including a wait activity in the language.

6. Regarding subprocesses, we have detected that the most complex wrappers studied
could be greatly simplified by using sub-processes. We have also observed there
are several structural patterns that occur in a great number of wrappers (e.g. most
wrappers have to deal with different types of results pagination, many wrappers
need to poll a list of results for changes, etc.). These patterns appear many times,
sometimes with slight variations. We conclude a desirable feature for the language
is to allow creating reusable components to support them.

3 Language Description

In this section, we describe the proposed language. Section 3.1 describes the over-
all structure of a workflow in our approach. The pre-defined activities that can be
used in the workflows are described in section 3.2. Section 3.3 describes how users
can create reusable components. Section 3.4 presents an example.

3.1 Workflow Model

The data instances handled in the process flow (we will call them values) belong to a
structured type [2]. A structured type can be atomic, a record type or a list type. The
language specifies support for the atomic types commonly found in programming
languages (string, int, long, double, float, date, boolean, binary, url, money) and for a
specific type called page, which encapsulates the information needed to allow the web
automation system to access a page: that is, an URL and the required cookies .

Figure 1 shows an UML diagram describing the basic structure of the language. A
workflow receives a set of variables as input parameters and returns a single variable
as output. The value of a variable is an instance of a valid data type. The input pa-
rameters can be mandatory or optional. A workflow is composed of a set of ordered
activities. Activities can be either basic or structured. Structured activities include
those used for loops and bifurcations and enclose one ordered sequence of activities
(bifurcations enclose one sequence for each execution path). A workflow can be seen
simply as a sub-class of structured activity. Basic activities perform the actions in the
workflow. Although not shown in the diagram due to space constraints, certain activi-
ties require some of the variables they use to be of a certain data type.

To handle error management, the language leverages on the concept of exceptions,
that can be either pre-defined or user-defined. There exist pre-defined exceptions to
represent generic runtime errors, typical errors produced while executing a navigation
sequence (http error, timeout, connection error) and while extracting data records (e.g.
a record does not match the expected type). User-defined exceptions are generated us-
ing the THROW activity. Each exception has assigned one in a set of pre-defined han-
dlers. Handlers exist for throwing and ignoring the exception. It is also supported to
configure retries before the error is handled.

BasicActivity

Handler
Exception

- name
11

Variable
- name

Workflow

StructuredActivity

Activity
- name

0..*0..*

0..* +mandatory inputs0..*

0..1 +output0..1

0..*

+optional inputs

0..*

1..*1..*

Fig.1. Basic structure of the language

3.2 Pre-defined Activities

This section describes the activities that can be used to create the workflows. We be-
gin describing the basic activities and then describe the structured activities:
• SEQUENCE: An instance of the SEQUENCE activity executes a navigation se-

quence and returns a page value representing the final web page reached. Option-
ally, it can receive the following input parameters: 1) One page value. If provided,
the page is loaded in the automatic navigation component before executing the se-
quence. This is useful if the configured sequence needs to start from a given page.
2) One or more values of either atomic or record type. These are needed because
navigation sequences are often expressed in function of variables. For instance, a
sequence automating a query on an Internet bookshop can receive as input the title
and author to search. Our system uses an extension of the techniques proposed in
[12] to implement the SEQUENCE activity, but any other method could be used.

• EXTRACTOR: An instance of the EXTRACTOR activity receives a page value and
outputs a list value containing a list of records in the page. Our implementation
uses wrapper induction techniques to generate extraction programs.

• I/O Activities: Set of activities for reading/writing data from/to files and databases.
• WAIT. It causes the workflow to wait the specified number of milliseconds.
• THROW: This activity throws user-defined exceptions.
• EXPRESSION: It receives zero or more values of any data type as input and out-

puts a single value. The output value is computed using an expression that can use
constants, functions and the input values. The implementation of this activity sup-
ports arithmetic operations, text processing and regular expressions, date manipula-
tion, textual similarity functions and functions to manage list values.

• RECORD_CONSTRUCTOR: This is the basic activity for transforming and com-
bining data records. It receives zero or more values of any data type as input and
outputs a record. The workflow creator defines the fields that form the output re-
cord. For each field, she/he needs to provide an expression to compute its value,
expressed in function of the input values. The expressions used should support the
same operations supported by the EXPRESSION activity.

• CREATE_LIST/ADD_RECORD_TO_LIST: The CREATE_LIST activity creates an
empty list value. The ADD_RECORD_TO_LIST activity receives as inputs a list
value and a record value and outputs a list value containing the result of adding the
input record to the input list.

• OUTPUT: This activity produces the workflow output. Although a workflow usu-
ally returns a list of records, the output activity allows returning each data record to
the invoking application as soon as it is available. Since web navigations can be
slow, the lapse between obtaining the first output record and the last can be big.

• Custom Activities: It is useful to allow developers to create new activities by using
a standard programming-language. For instance, this allows invoking external ap-
plications. In our implementation, custom activities are created using Javascript.

The structured activities included in the language are:
• SWITCH: This activity implements conditional bifurcations in the workflow. It re-

ceives as inputs zero or more values of any type. Each output arrow from the activ-
ity represents a possible execution path. Each path has an associated Boolean con-
dition (expressed in function of the input values) which triggers its activation.

• LOOP/REPEAT: These activities allow creating conditional loops. They specify an
exit condition typically expressed in function of the input values.

• ITERATOR: It allows specifying a non-conditional loop by iterating on a list of re
cords. It receives a list value as input and, in each iteration, outputs a record con-
tained in the list. It allows configuring parallel execution of its iterations. Accord-
ing to the results of the experimental study, this is very useful, for instance, to ac-
cess in parallel detail pages of a list of extracted data records.

• FORM_ITERATOR: According to the results of the experimental study, web auto-
mation tasks frequently need to execute several queries on the same web form us-
ing different combinations of query parameters. While this can be done with the
basic activities, it is very useful to have a specific activity for this purpose.

3.3 User-defined Reusable Components

The proposed model allows users to create reusable components of two kinds: binary-
reuse components and source-reuse components. Binary-reuse components allow ex-
porting an existing workflow as an activity (we call such activities “Workflow Activi-
ties”) that can then be used to create new workflows. This way, sub-processes imple-
menting functionality common to several wrappers can be easily reused.

Source-reuse components allow defining reusable templates to represent frequent
structural patterns. Templates are reused at the source level because the implementa-
tion of structural patterns in each wrapper may suffer slight variations that prevent re-
use at the binary level. The remaining of this section describes the use of templates.

At workflow creation time, workflow creators can drag and drop templates to the
workspace and compose several templates to easily create wrappers that need to im-
plement common structural patterns. A template is created in a similar way as a work-
flow, with the following differences:
• The template creator does not need to provide configuration information for every

activity in the template. The configuration of these activities will be “filled in”
when the template is used to create a workflow.

• As well as workflows, templates return an output value and can require mandatory
and optional parameters. Nevertheless, when instantiating a template to create a
workflow, the workflow creator may add as many new input parameters as wished.
This is allowed because those additional parameters may be needed as inputs for
the activities of the template left without configuration at template-creation time.

• Templates can include special activities called “Interface Activities”. Interface ac-
tivities specify a list of input parameters and one output result, but they do not
specify any particular implementation. When the workflow creator uses the tem-
plate to create a new workflow, she/he will specify an implementation for the Inter-
face Activity. This implementation can be any activity or complete workflow hav-
ing entries and outputs conforming to the ones defined by the interface activity.
The workflow creator can also implement an Interface Activity by using another
template. As well as with templates, at workflow creation time, the workflow crea-
tor may add as many new input parameters as needed to the Interface Activity.
Now, we introduce some example templates. Figure 2 shows a template called

Simple_Pagination used to process the common kind of paginated result intervals,
where the next interval is accessed by clicking on a ‘Next’ link or button (NOTE: in
all workflow figures, the arrows connecting the activities represent the execution flow
and the dotted lines represent the data flow: that is, how values are produced and con-
sumed by the activities. Also notice the legend on the lower right corner of Figure 2,
indicating how the values of the different data types are represented in the figures).
The template receives as input a page value and returns a list of records. The activities
the workflow creator needs to configure appear in grey in the figure. The template it-
erates through the result listing pages until there are no more intervals left (this is de-
tected by a SWITCH activity). The SEQUENCE activity called Go_to_Next_Interval
navigates to the next result interval. The EXTRACTOR activity obtains the list of data
records in each page. The workflow creator also needs to provide an implementation
for the Process_Record Interface Activity, which is in charge of processing each re-
cord. Now, we consider three example implementations of Process_Record:
• The first one is directly using the OUTPUT activity. This can be used when the

workflow only needs to return the extracted records to the invoking application.
• The second example implementation is built using a template called Fil-

ter_and_Transform (see Figure 3) that: 1) Filters the extracted records according to
a condition specified in the configuration of the SWITCH activity, and 2) Trans-
forms the records that passed the filter according to the expressions specified in a
RECORD_CONSTRUCTOR activity. The template also uses the Process_Record
Interface Activity to allow further processing of the records.

• The third example implementation is a template called Detail (see Figure 3). This
template allows accessing a ‘detail’ page in order to complete the data extracted for
each item. It receives as input the record extracted from the result listing page. The
template starts navigating to the detail page of the item (SEQUENCE activity).
Then, it extracts the detail information (EXTRACTOR activity) and combines it
with the input record to form a single record (RECORD_CONSTRUCTOR activ-
ity). The template uses a Process_Record Interface Activity to process the record
containing the complete item. Therefore, the possible implementations for the in-
terface activity include the three discussed options. For instance, if it is needed to
access several levels of detail pages, the Detail template can be used recursively.

3.4 Example

This section illustrates some of the main features of the language through a wrapper
automating the interaction with a web portal providing information about the inci-
dences reported by the clients of an Internet Service Provider. When an incidence re-
quires an intervention in the user’s home, the ISP subcontracts an enterprise partner to
perform it. The example wrapper is used by an enterprise partner of the ISP to auto-
mate the retrieval of the incidences data that a given worker could attend.

Fig. 2. Simple_Pagination template

 The wrapper has the following inputs: the login/password to access the portal, the
zipcode indicating the current location of the worker of the enterprise partner, the
maximum distance the worker could travel to solve an incidence, and the type of inci-
dences the worker can solve. The wrapper should perform the next steps:
1. Authenticate in the ISP web portal using the login/password pair.
2. Fill in a search form to obtain all the active incidences located near the input zip-

code. The incidence listing is paginated using a ‘Next’ link.
3. Extract all the incidences data. The data shown in the result listing includes the in-

cidence type. If the incidence is of the type the worker can attend, then it is needed
to access a detail page to obtain additional information, such as the distance with

CREATE LIST

EXPRESSION
CONTINUE=TRUE

WHILE
CONTINUE

EXTRACTOR
Extract_Records

ITERATOR

ADD RECORD
TO LIST

END
ITERATOR

SWITCH
More_Intervals

EXPRESSION
CONTINUE=FALSE

SEQUENCE
Go_to_Next_Interval

END
SWITCH

END
WHILE

PROCESS
RECORD

Atomic value

Record value

List value

Page value

CREATE LIST

EXPRESSION
CONTINUE=TRUE

WHILE
CONTINUE

EXTRACTOR
Extract_Records

ITERATOR

ADD RECORD
TO LIST

END
ITERATOR

SWITCH
More_Intervals

EXPRESSION
CONTINUE=FALSE

SEQUENCE
Go_to_Next_Interval

END
SWITCH

END
WHILE

PROCESS
RECORD

Atomic value

Record value

List value

Page value

Atomic value

Record value

List value

Page value

respect to the input zipcode. The returned incidence data must include a derived
field indicating the deadline for attending the incidence; it is computed from two
extracted items: the date when the incidence was open and the maximum number
of days agreed between client and ISP.

4. Return the incidences of the input type having distance less than the input maxi-
mum distance. In addition, the wrapper should be able of dealing with one error
condition: the incidences search form can return a message error when the input
zipcode is outside the area assigned to the partner.

Fig. 3. Filter_and_Transform and Detail templates

The process flow of the wrapper executes two high-level sub-processes: one work-
flow activity (recall section 3.3) called Get_Search_Page and an implementation of
the Simple_Pagination template (see Figure 2). Figure 4 shows the complete wrapper.

The internal workflow of Get_Search_Page is not shown in the figure due to space
constraints. It first performs the authentication process and the search using a
SEQUENCE activity. The sequence accesses the page containing the authentication
form, fills in the LOGIN and PASSWORD fields and submits the form. Then, it exe-
cutes the incidences search by accessing the query form, filling in the ZIPCODE.
Then, a SWITCH activity called is used to check if the page source code contains the
text ‘Incorrect zipcode’. If the message is found, the Throw_Search_Error activity
ends the process returning an exception. Notice that this sub-process could be reused
by other wrappers using the same source and search form but processing the results
differently.

Now, we describe how to fill in the Simple_Pagination template to process the
search results (see Figure 4). The steps needed to fill in the template are:

EXTRACTOR

SEQUENCE

ITERATOR

END
ITERATOR

PROCESS
RECORD

RECORD
CONSTRUCTOR

Filter_and_Transform Template Detail Template

SWITCH

PROCESS
RECORD

END
SWITCH

RECORD
CONSTRUCTOR

EXTRACTOR

SEQUENCE

ITERATOR

END
ITERATOR

PROCESS
RECORD

RECORD
CONSTRUCTOR

EXTRACTOR

SEQUENCE

ITERATOR

END
ITERATOR

PROCESS
RECORD

RECORD
CONSTRUCTOR

Filter_and_Transform Template Detail Template

SWITCH

PROCESS
RECORD

END
SWITCH

RECORD
CONSTRUCTOR

SWITCH

PROCESS
RECORD

END
SWITCH

RECORD
CONSTRUCTOR

EXPRESSION
CONTINUE = TRUE

WHILE
CONTINUE

EXTRACTOR
Extract_Incidences

ITERATOR

CREATE LIST

SWITCH
Is_Valid_Incidence

RECORD CONST.

WORKFLOW ACTIVITY
Get_Search_Page

SEQUENCE
Goto_Detail

END
WHILE

END
SWITCH

EXPRESSION
CONTINUE = FALSE

SEQUENCE
Goto_Next_Interval

SWITCH
Is_More_Intervals

END
ITERATOR

ADD RECORD
TO LIST

END
SWITCH

END
ITERATOR

END
SWITCH

OUTPUT
Return_Result

RECORD CONST.
Result_Incidence

SWITCH
Is_Nearby_Incidence

RECORD CONST.
Detailed_Incidence

ITERATOR

EXTRACTOR
Extract_Detail

EXPRESSION
CONTINUE = TRUE

WHILE
CONTINUE

EXTRACTOR
Extract_Incidences

ITERATOR

CREATE LIST

SWITCH
Is_Valid_Incidence

RECORD CONST.

WORKFLOW ACTIVITY
Get_Search_Page

SEQUENCE
Goto_Detail

END
WHILE

END
SWITCH

EXPRESSION
CONTINUE = FALSE

SEQUENCE
Goto_Next_Interval

SWITCH
Is_More_Intervals

END
ITERATOR

ADD RECORD
TO LIST

END
SWITCH

END
ITERATOR

END
SWITCH

OUTPUT
Return_Result

RECORD CONST.
Result_Incidence

SWITCH
Is_Nearby_Incidence

RECORD CONST.
Detailed_Incidence

ITERATOR

EXTRACTOR
Extract_Detail

Fig. 4. Full wrapper using the Simple_Pagination template

1. We need to “fill in” the template by configuring the Go_to_Next Interval
SEQUENCE activity with the sequence for navigating to the next result interval
(e.g.. clicking on an anchor) and the Extract_Records EXTRACTOR activity with
the needed extraction rules to obtain the incidences list from the search result.

2. The Process_Record Interface Activity of Simple_Pagination can be implemented
using an instance of the Filter_and_Transform template to filter the incidences of
the input type using the SWITCH activity. It is not needed to configure the
RECORD_CONSTRUCTOR activity since its default settings are valid.

3. The Process_Record Interface Activity from the Filter_and_Transform template
used in step 2 can be implemented using the Detail template (the incidence detail
page is accessed only for the incidences of the input type). We need to provide the
sequence for navigating to the detail page and the extraction rules to obtain the de-
tail data. We also need to configure the SWITCH activity to filter the incidences
according to the input DISTANCE, and the RECORD_CONSTRUCTOR activity to
add the additional field DEADLINE_DATE.

4. The Process_Record Interface Activity from the previous Detail template can be
implemented using again Filter_And_Transform to filter all the incidences of the
input type verifying that its distance is less than the input maximum distance. Fi-
nally, the Process_Record Interface Activity from the Filter_And_Transform tem-
plate is implemented by simply using the OUTPUT activity.

4 Related Work

Most previous works on wrapper generation have focused on the building blocks for
web automation: web data extraction and automatic web navigation. The web data ex-
traction problem has been addressed for instance in [4],[5],[9],[10],[11],[12],[15],
[16]. [8] provides a survey. Techniques for automatic generation of web navigation
sequences were proposed in [3] and [12]. These works do not consider the problem of
how to specify the logic of the complete wrapper. Nevertheless, they provide the
foundations for the SEQUENCE and EXTRACTOR activities of the proposed model.
There are two kinds of works addressing the problem of building complete wrappers:
• Some works such as [10] define specialised languages for programming wrappers.

Our proposal has several advantages: 1) it allows graphically specifying the wrap-
per logic: this way, wrappers are simpler to create and maintain and programming
skills are not required; 2) it encapsulates the data extraction and automatic naviga-
tion tasks, leveraging on semi-automatic methods.

• Other works such as [5],[9],[11],[13] propose techniques to create complete wrap-
pers without needing programming skills. Nevertheless, these systems implicitly
assume the query wrapper model. As it has been previously discussed, this model
is not suitable for a substantial number of web automation applications.
In the industrial arena, many web automation tools have appeared. QL2

(http://www.ql2.com) and NewBie (http://www.newbielabs.com) follow the approach
of providing specialised programming languages. Our proposal has the same advan-
tages over these tools already mentioned for the research systems using the same ap-
proach. Another interesting tool is Dapper (http://www.dapper.com) which allows

creating and sharing wrappers between final users. The wrappers that can be created
using Dapper are roughly equivalent to those supported by the query wrapper model.
As it has been already discussed, this is not enough for enterprise-class web automa-
tion. The Kapow Robomaker tool (http://www.openkapow.com) also uses a workflow
approach for web automation. The approach proposed in this paper has a number of
advantages with respect to Robomaker: 1) Robomaker does not encapsulate complex
data extraction tasks in activities. The extraction of a list of data records requires an
activity in the workflow to extract each record field. Optional attributes in the records
require bifurcations in the workflow. This leads to large workflows even for relatively
simple tasks. In addition, their model does not support using semi-automatic methods
for extraction, 2) Robomaker does not support defining reusable components, 3)
Robomaker does not support other functionalities such as user-defined exceptions.

References

1. W. Aalst, A. Hofstede, B. Kiepuszewski, A. Barros. Workflow patterns. Distributed and Par-
allel Databases 14(1): 5-51 (2003).

2. S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison Wesley, Reading,
Massachussetts, 1995.

3. Vinod Anupam, Juliana Freire, Bharat Kumar, Daniel F. Lieuwen: Automating Web naviga-
tion with the WebVCR. Computer Networks 33(1-6): 503-517 (2000)

4. A. Arasu, H. Garcia-Molina, Extracting Structured Data from Web Pages, in: Proceedings of
the 2003 ACM SIGMOD International Conference, 2003, pp. 337-348.

5. R. Baumgartner, S. Flesca, G. Gottlob. Declarative Information Extraction, Web Crawling
and Recursive Wrapping with Lixto, in: Proceedings of the 6th International Conference on
Logic Programming and Nonmonotonic Reasoning (LPNR), 2001.

6. Oasis WS-BPEL. Web Services Business Process Execution Language. http://www.oasis-
open.org/committees/tc_home.php?wg_abbrev=wsbpel.

7. BPMN: Business Process Modelling Notation. http://www.bpmn.org.
8. Chia-Hui Chang, Kayed M. Girgis, M.R., Shaalan, K.F. A Survey of Web Information Ex-

traction Systems. IEEE Transactions on Knowledge and Data Engineering 18 (10), pp.
1411-1428. 2006

9. R. Doorenbos, O. Etzioni, D. S. Weld: A Scalable Comparison-Shopping Agent for the
World-Wide Web. Agents 1997: 39-48

10. T. Kistlera, H. Marais. WebL: A Programming Language for the Web. En Proceedings of
the 7th International World Wide Web Conference, 1998, pp 259-270.

11. C.A. Knoblock, K. Lerman, S. Minton, I. Muslea, Accurately and Reliably Extracting Data
from the Web: A Machine Learning Approach, in: Bulletin of the IEEE Computer Society
Technical Committee on Data Engineering, 1999.

12. A. Pan, J. Raposo, M. Álvarez, J. Hidalgo and A. Viña. Semi Automatic Wrapper-
Generation for Commercial Web Sources. Proceedings of IFIP WG8.1 EISIC. 2002

13. A. Sahuguet, F. Azavant. WysiWyg Web Wrapper Factory (W4F). Proceedings of the 8th
International World Wide Web Conference, 1999.

14. G. Wiederhold. Mediators in the architecture of future information systems. Computer,
25(3), March 1992.

15. Y. Zhai, B. Liu, Structured Data Extraction from the Web Based on Partial Tree Alignment.
IEEE Trans. Knowl. Data Eng. 18(12): 1614-1628 (2006).

16. Y. Zhai, B. Liu, Extracting Web Data Using Instance-Based Learning. Proceedings of the
16th International World Wide Web Conference. 2007

	PortadaRUC_declaracionDerechos.pdf
	This is an ACCEPTED VERSION of the following published document:
	General rights:

