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Lattice-Based Analog Mappings for Low Latency
Wireless Sensor Networks

Pedro Suárez-Casal, Óscar Fresnedo, Member, IEEE, Darian Pérez-Adán, Student Member, IEEE, and Luis
Castedo, Senior Member, IEEE

Abstract—We consider the transmission of spatially correlated
analog information in a wireless sensor network (WSN) through
fading single-input and multiple-output (SIMO) multiple access
channels (MACs) with low latency requirements. A lattice-based
analog joint source-channel coding (JSCC) approach is consid-
ered where vectors of consecutive source symbols are encoded at
each sensor using an n-dimensional lattice and then transmitted
to a multi-antenna central node. We derive a minimum mean
square error (MMSE) decoder that accounts for both the multi-
dimensional structure of the encoding lattices and the spatial
correlation. In addition, a sphere decoder is considered to
simplify the required searches over the multi-dimensional lattices.
Different lattice-based mappings are approached and the impact
of their size and density on performance and latency is analyzed.
Results show that, while meeting low-latency constraints, lattice-
based analog JSCC provides performance gains and higher
reliability with respect to the state-of-the-art JSCC schemes.

Index Terms—Wireless sensor networks, source-channel cod-
ing, low latency transmission, lattices, MMSE estimation, source
correlation.

I. INTRODUCTION

THE transmission of correlated information over fading
single-input and multiple-output (SIMO) multiple access

channel (MAC) is a relevant problem in wireless communi-
cations, which is helpful to model many practical situations
in wireless sensor networks (WSNs), unmanned aerial vehi-
cles (UAVs), Internet of Things (IoT), etc. Some mission-
critical applications such as driverless vehicles, drone-based
deliveries, factory automation, or artificial intelligence-based
personalized assistants require uninterrupted and robust data
exchange, i.e., ultra-reliable and low latency communications
(URLLC). Hence, efficient transmission schemes with short-
packet data have to be implemented to meet both the reliability
and latency requirements of wireless communication networks.

Conventional digital communications perform separately the
optimization of source and channel coding according to the
separation principle [1], and they are particularly well suited
for high data rate applications by using long-size codewords.
However, this strategy suffers from many practical issues due
to its high complexity and significant delay, as well as the
need to optimize the encoders for given channel conditions,
which leads to the requirement of accurately tracking the
wireless channel and an adaptive design in time-varying
communications scenarios. For this reason, traditional digital
systems may not be the best solution for real-time applications
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or for wireless transmissions with severe constraints on the
acceptable communication delay. The separation principle also
leads to suboptimal solutions when transmitting correlated
information over MACs [2].

In this sense, joint source-channel coding (JSCC) is an
alternative approach where the source and the channel en-
coding are performed jointly in a single step. While digital
approaches to JSCC have been considered in the literature
[3]–[5], we instead focus in this work on analog JSCC since
sources are discrete-time continuous-amplitude symbols in
most applications related to WSNs or IoT systems. In addition,
analog JSCC is well suited for low-latency IoT and WSNs
communications (see e.g., [6]) due to its capacity to achieve
high transmission rates with very low complexity and almost
zero delay. Analog JSCC techniques are mostly focused on
transforming the continuous-amplitude source symbols di-
rectly into channel symbols by using some analog mapping
based on geometric curves [7]. These mappings have been
shown to closely approach the optimal system performance
when considering the compression of non-correlated sources
in additive white Gaussian noise (AWGN) channels [8], [9],
fading channels [10] and multiuser schemes [11].

In this work, we address the design of analog JSCC
techniques for a WSN SIMO MAC scenario, where non-
cooperative sensors transmit their encoded source symbols
to a centralized multi-antenna receiving node over fading
channels with low-latency and high-reliability requirements
[12]. References [6], [13] are representative works on efficient
mappings to accomplish the stringent requirements of URLLC
in some IoT applications, e.g., control plants in Industry 4.0,
factory automation scenarios, etc. In [13], the authors propose
a short block length digital mapping to improve the decoding
performance while preserving the low latency. The authors in
[6] propose a novel analog JSCC mapping which is well suited
for wirelessly powered sensor nodes in IoT.

Concerning analog mappings, different zero-delay JSCC
schemes (i.e., codewords of size n = 1) have been investi-
gated in the literature for different versions of the considered
scenario. In [14], a zero-delay analog JSCC mapping was
proposed to transmit multivariate Gaussian sources over an
AWGN MAC. The resulting mapping combined the use of a
scalar quantizer and linear transmission which can be seen
as a practical zero-delay approach to the optimal mapping
for such a scenario (assuming infinite block size) [15]. On
the other hand, modulo-like mappings were proposed for the
orthogonal transmission of correlated sources in a single-input
single-output (SISO) MAC [16], [17], and for SIMO MAC
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systems with enough degrees of freedom to exploit the source
correlation at reception [18].

In general, most works on analog JSCC focus on zero-delay
mappings due to the difficulty of designing and optimizing
mappings of larger dimensions. This restriction significantly
limits the practical utility of analog JSCC with respect to
traditional digital approaches which can consider different
encoding block sizes. In addition, these zero-delay mappings
are able to provide satisfactory performance in terms of trans-
mission reliability, but they still remain relatively separated
from the theoretical optimum performance for the considered
WSN scenario. Therefore, a systematic strategy to design low-
latency analog JSCC mappings for codewords of arbitrary size
n is fundamental to extend the utilization of analog JSCC
to a large range of communication scenarios and satisfy the
strict requirements of URLLC applications on transmission
reliability. Moreover, a flexible implementation of analog
JSCC mappings for codeword sizes n > 1 is timely to
obtain higher system performance while keeping low latency
requirements, especially due to the performance degradation
of digital schemes when using very short codeword sizes [19].

In this context, the work in [20] represents a first attempt to
construct analog JSCC schemes with arbitrary codeword size
on the basis of the lattice theory. The authors consider zero-
delay and non-zero delay mappings which use well-known
lattices with different dimensions. Specifically, modulo-like
mappings (n = 1), the D4 lattice (n = 4) [21] and the
E8 lattice (n = 8) [21] are employed for the encoding of
source symbols to be next transmitted over a fading channel.
As commented in [20], D4 and E8 are the densest packing
lattices for n = 4 and n = 8, respectively, and hence
they are suitable candidates to obtain a satisfactory system
performance. However, the parameter optimization is based
on an exhaustive search which is infeasible for large lattice
dimensions. In addition, the decoding operation is performed
by a three-step procedure that first estimates the symbols
of the uncoded sensors and next employs such estimates
as side information for the remaining sensors. Hence, this
strategy does not allow to jointly exploit the source correlation.
Furthermore, [20] only considers lattice dimensions up to
dimension n = 8.

In any way, the results in [20] provide the intuition that the
use of n-dimensional lattices for the design of analog JSCC
mappings is a promising strategy. A comprehensive analysis
for the construction of “good” lattices in different dimensions
can be found in [21], particularly for the sphere packing
problem. The list of the known densest lattices for different
dimensions can also be looked up in [22]. An interesting
example is the Leech lattice [23], which is the unique densest
sphere packing lattice for n = 24 [24]. Unfortunately, the
computational cost of encoding when using the densest lattice-
based mappings exponentially increases with the codeword
size n because it requires to find the closest point in the
n-dimensional lattice space [25]. Hence, alternative lattice
constructions must be considered to balance the system per-
formance and the encoding complexity as the codeword size
n becomes larger.

From this perspective, an attractive type of lattices are the

so-called Craig’s lattices [26]. The mechanism to construct
these lattices allows to adjust their minimal norm and thus
their density for any arbitrary dimension n = p − 1, where
p is a prime number [21]. Therefore, a feasible approach for
the analog encoding of the source symbols is to use Craig’s
lattices with a suitable density for the analog mapping. This
approach reduces the computational effort required to find the
closest lattice points during the encoding operation. Hence, the
use of these lattices can enable the design of practical analog
JSCC schemes that achieve better reliability with reasonable
block sizes for low latency applications.

Leveraging all these previous ideas, we address in this work
the transmission of spatially correlated discrete-time analog
sources in a WSN by means of multi-dimensional lattice-
based analog JSCC mappings. First, blocks of n > 1 source
symbols (or measurements) are encoded at each sensor node
with an analog mapping constructed from a suitable lattice of
dimension n by considering the low latency requirements, i.e.,
we focus on small block sizes (n). The resulting codewords
of size n are next transmitted to a centralized receiver over a
fading SIMO MAC. At this central node, the estimates of the
transmitted symbols are jointly decoded taking into account
the codeword size and the spatial correlation of the source
symbols. Therefore, the main contributions of this work can
be summarized as:

• A lattice-based analog JSCC system is designed and
optimized for the transmission of blocks of symbols with
codeword size n that offers system performance gains
while preserving low latency requirements. The proposed
design hence allows analog JSCC techniques to be a
practical alternative to conventional digital schemes for
URLLC systems. This design is sufficiently flexible, both
in terms of the parameters optimization and the decoding
procedure, to work with different codeword sizes and
efficiently exploit the source spatial correlation.

• Craig’s lattices are considered to reduce the computa-
tional cost of the analog JSCC encoding operation for the
largest codeword sizes. The possibility of adjusting the
lattice density allows us to balance the trade-off between
the system performance and the computational complex-
ity. In addition, we propose an alternative construction of
Craig’s lattices based on using vectors of minimum norm
and exploiting their polynomial nature.

• A performance evaluation by means of computer simu-
lations showing the advantages of the proposed system
design and the use of Craig’s lattices. In particular,
performance gains are determined for scenarios with non-
orthogonal configurations or moderate correlations where
zero-delay mappings exhibit lower performance and thus,
low reliability. In addition, the impact of the block size
and the lattice density on the system performance is
analyzed.

A. Organization

The remainder of this paper is structured as follows. In
Section II, we present a brief review of some preliminary
concepts corresponding to the lattice theory. In Section III,
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the considered SIMO MAC system model for WSNs is de-
tailed. The design of the lattice-based analog JSCC scheme is
addressed in Section IV, where different lattice constructions
and their main parameters are explained. In addition, the
derivation of the optimal minimum mean square error (MMSE)
estimation combined with a sphere decoder to produce the
symbol estimates is also described in this section. The com-
puter experiments to evaluate the system performance and the
obtained results are discussed in Section V. Finally, Section VI
is devoted to the conclusions.

B. Notation

The following notation is employed: a is a scalar and a is a
vector, [A]i,j is the entry on the i-th row and the j-th column
of the matrix A. Transpose and conjugate transpose of A are
AT and AH , respectively. ∥ A ∥ represents the 2-norm of A.
The operations tr(·), diag(·), ⌊·⌉ and ⌊·⌋ stand for the trace of
a matrix, the diagonal matrix with the argument in the main
diagonal, the element-wise rounding and the floor operation,
respectively. The operator | · | represents the absolute value
for a scalar argument, the matrix determinant in case of a
matrix argument, and cardinality in case of set arguments.
ℜ(·) represents the real part of a complex-valued argument.
Finally, the expectation is denoted by E[·] and ⊗ represents the
Kronecker product. Table I summarizes the notation employed
throughout this paper.

TABLE I
NOTATION.

Symbol / Operator Description
(•)T , (•)H Transpose, conjugate transpose
∥ • ∥, ∥ • ∥F 2-norm, Frobenius norm
ℜ(•), ℑ(•) Real part, imaginary part
R, C Set of real numbers, set of complex numbers

IN ,0N
Identity matrix with size N, all zeros matrix with
size N

[A]i,j Entry on the i-th row and the j-th column of A
[A]i,:, [A]:,j i-th row of A, j-th column of A

tr(A), diag(•) Trace of A, diagonal matrix with the argument in
the main diagonal

⌊•⌉, ⌊•⌋, ⌈•⌉ Element-wise rounding, floor operation, ceiling op-
eration

| a |, | A |, | A | Absolute value of a, determinant of the matrix A,
cardinally of the set A

mod (a, b) Element-wise modulo operation that returns for
each vector element

NC(µ,C)
Circularly-symmetric complex normal distribution
with mean µ and covariance matrix C

⊗ Kronecker product
E[•] Statistical expectation

II. FUNDAMENTALS OF LATTICES

This section introduces the theoretical fundamentals of lat-
tices that will be used throughout this work. An n-dimensional
lattice Λ is defined as a discrete set of vectors in Rn which
form a group under vector addition. These vectors will be
referred to as the lattice points. A lattice Λ will be defined
by its generator matrix M = [ν1, . . . ,νn] ∈ Rn×n, where

the column vectors νj , j = 1, . . . , n are the basis vectors.
Therefore, the i-th lattice point will be generated as xli = Mli,
∀i = 1, . . . ,M , where li ∈ Zn is a vector of integers
and M is assumed to be large enough. Lattice points are
usually the representation points of a surrounding region
having a particular shape (cubic, hexagonal, sphere, ...) in the
n-dimensional space. A shape that allows to tile the entire
n-dimensional space with the aggregation of the surrounding
regions of all the lattice points is termed a fundamental region
of the lattice. The Voronoi region is the fundamental region
which contains all points in an n-dimensional euclidean space
closer to its representation lattice point than to any other lattice
point. The different possibilities of partitioning or covering an
n-dimensional euclidean space with a lattice lead to different
well-known problems in algebra such as the sphere packing,
the covering packing or the quantization problem.

A. Sphere Packing

Sphere packing seeks to fill the n-dimensional space with
non-overlapping equal-sized spheres. Unlike cubic regions,
there is always some wasted space when packing spheres.
The minimization of such wasted space is still an unsolved
problem which can be stated as follows: determine the largest
number of balls with the same radius r that can be packed into
a largely empty n-dimensional region. As observed in Fig. 1,
the wasted space between spheres, also known as deep holes,
corresponds to the points whose minimum distance to any
point in the lattice rt is larger than the radius of the spheres,
i.e., rt > r.

In the sphere packing problem, the lattice points Λ =
{xl1,xl2, . . . ,xlM} correspond to the central points of the
spheres. The lattice density is defined as the ratio between the
space that is occupied by the spheres and the total volume,
i.e.,

∆ =
V1p

n
r

V (Λ)
, (1)

where V1 is the volume of an n-dimensional sphere of radius
r = 1, V (Λ) is the volume of the lattice Λ, which is
determined as [21]

V (Λ) = det
(
MMT

)1/2
, (2)

and pr is the packing radius defined as half of the minimal
distance between lattice points, i.e., pr = 1

2

√
µ(Λ), where

µ(Λ) = mini̸=j{∥ xli − xlj ∥2}, ∀ xli,xlj ∈ Λ is the
minimum norm of the lattice. Another important parameter
is the center density which is defined as

ψ =
∆

V1
=

pnr
V (Λ)

. (3)

Note that the center density provides a more intuitive idea of
how dense a packing lattice is. For instance, in packings with
unitary-radius spheres, the center density directly indicates the
number of centers (lattice points) per unit volume.
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deep hole

r
rt

Fig. 1. Circle packing problem and deep holes.

B. Lattice-Based Quantization

In general, quantization consists in partitioning an n-
dimensional space into M non-overlapping regions each of
them represented by a representation point usually termed
centroid that will be interpreted as a point in a lattice.
Typically, quantization regions are Voronoi regions. This way,
each point in the source space is quantized to the closest point
in the lattice and the quantization error is minimized.

An n-dimensional lattice-based quantizer comprises a lattice
Λ = {xl1,xl2, . . . ,xlM} ⊂ Rn, defined via a generator matrix
M, and a quantization function QΛ(·) which maps any input
vector s ∈ Rn into the closest lattice point xli ∈ Λ. The
quantization region associated to the i-th lattice point xli =
Mli, ∀i = 1, . . . ,M , will be its Voronoi region defined as

ΩΛ (xli) = {s : ∥s− xli∥ ≤ ∥s− xlj∥}, ∀i ̸= j. (4)

Therefore, the quantization function is mathematically defined
as QΛ(s) = xli, ∀ s ∈ ΩΛ (xli).

A possible metric to measure the quantization error, by
considering M to be a very large number, is the average mean
squared error (MSE), i.e.,

ε =
1

n

M∑
i=1

∫
ΩΛ(xli)

∥s− xli∥2 p(s) ds, (5)

where the factor 1/n is introduced for fair comparison among
quantizers of different dimensions.

Although quantization and sphere packing are different
lattice design problems, there is an intrinsic relation between
them. A “good” packing lattice implies efficiently covering the
region of interest with non-overlapping spheres, minimizing
the deep holes, and thus minimizing the probability of having
points very distant from the lattice points. Therefore, this fea-
ture apparently leads to the minimization of the quantization
error in (5) if those “good” packing lattices were used to solve
the quantization problem. In this sense, optimal lattice-based
quantizers are only known for low dimensions while sphere
packing is a widely studied problem in multi-dimensional
lattice theory. Indeed, the densest sphere packing lattices have
been shown to provide satisfactory performance when used for
quantization [21].

On the other hand, quantization with extremely dense lat-
tices leads to a huge computational effort when considering

Central node

Nr

h1

sK

s1

^

^

hK

fK (sK)

f
1 (s1)

sK

s1
Sensor 1

Sensor K

Fig. 2. Block diagram of the considered analog JSCC communication system.

relatively large dimensions (n values above 16). There exist
several algorithms in the literature to alleviate this problem but
in any case, their computational cost exponentially increases
with the dimension n and the lattice density. Therefore, there
is a trade-off between quantization error minimization and
computational complexity which can be balanced through the
lattice density factor defined in (1).

III. SYSTEM MODEL

Let us consider the uplink of a communication system as
shown in Fig. 2, where K single-antenna nodes transmit their
source information over a fading MAC to a central node with
Nr antennas. This communication system can be used to model
practical scenarios of WSNs and IoT systems. Henceforth, we
will refer to this model as a K × Nr SIMO MAC system.
In this scenario, the complex-valued analog source symbol
transmitted by the k-th sensor at the discrete-time instant t
is denoted by sk,t. The source symbols transmitted by the
K sensors at the time instant t are represented by the
vector st = [s1,t, · · · , sK,t]

T ∈ CK , which is modeled as a
multivariate circularly symmetric complex-valued zero-mean
Gaussian distribution with covariance matrix Cs = E

[
sts

H
t

]
.

The elements [Cs]i,j = ρi,j represent the spatial correlation
between the i-th and j-th source symbols of st. Without loss of
generality, we assume that ρi,i = σ2, ∀i. We also consider that
the source symbols at different time instants t are statistically
independent so that we only consider the spatial correlation
between the sensors. Such spatial correlation is assumed to
not depend on the time instant, i.e., remains constant for
a sufficiently long period of time. The probability density
function (pdf) of st is therefore given by

pst(s) =
1

πK |Cs|
exp

(
−sHC−1

s s
)
. (6)

A block of source symbols is individually encoded at each
sensor prior to its transmission by means of an analog mapping
function. We employ lattice-based mappings which transform
the continuous-amplitude source symbols into the complex-
valued encoded symbols to be transmitted. In particular, a
vector of n/2 consecutive complex-valued source symbols sk
corresponding to the k-th sensor is mapped with the function
fk(·) : Cn

2 → Cn
2 to produce the encoded vector xk =

fk(sk), ∀k = 1, . . . ,K, with sk = [sk,1, sk,2, . . . , sk,n2 ]
T and

xk = [xk,1, xk,2, . . . , xk,n2 ]
T . The encoded vectors are next

transmitted to the common central node over the fading MAC
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by using n/2 channel uses to produce the received signal
vectors yt ∈ CNr as

yt =
K∑

k=1

hkxk,t + nt, ∀t = 1, . . . , n/2, (7)

where hk ∈ CNr is the channel response from the k-th sensor
to the central node, and nt = [n1,t, . . . , nNr,t]

T ∼ NC(0, σ
2
n I)

is the AWGN component. The channel responses are assumed
to remain the same at least during the transmission of a block
of n/2 symbols. Each sensor is also subject to an individual
power constraint such that E[|xk,t|2] ≤ PTk, ∀k = 1, . . . ,K .

The expression in (7) can be rewritten in a more compact
way as

yt = Hxt + nt, ∀t = 1, . . . , n/2, (8)

where H ∈ CNr×K stacks all the channel responses, i.e., H =
[h1, · · · ,hK ], and xt = [x1,t, . . . , xK,t]

T contains all sensors
encoded symbols at a given time instant t.

At the central node, an estimate of the transmitted sensor
symbols ŝt is obtained from the MAC signal yt by using an
appropriate decoding function that jointly decodes the symbols
received during the corresponding n/2 channel uses. Since
we are considering the analog encoding and transmission of
the source information, the sensor information will always be
recovered with a certain level of distortion which is measured
in terms of the MSE between the source and the estimated
symbols, i.e., ξ = E[||ŝt − st||2]. In this case, the MMSE
estimator constitutes the optimal decoding strategy.

A. Real-Valued Equivalent Model

In the considered system model, the variables corresponding
to the source symbols, channel matrices and AWGN compo-
nents are complex-valued with uncorrelated real and imag-
inary parts (circularly symmetric). However, analog lattice-
based mappings work in the real domain as the lattices are
defined as a group in Rn. Following the same approach as in
[18], the complex-valued system model will be transformed
into an equivalent real-valued one. For this, the real and
imaginary parts of the different variables are separated and
stacked into a unique vector with twice the size, whereas
the equivalent real-valued channel matrix is rearranged as
H̃ = ℜ(H) ⊗ I2 + ℑ(H) ⊗ E, with E = [0 − 1; 1 0]. In
addition, the source and noise covariance matrices must be
adapted such that s̃ ∼ NR(0,Cs̃), with Cs̃ = Cs ⊗ 1

2I2, and
ñ ∼ NR(0,

σ2
n
2 I).

IV. MULTI-DIMENSIONAL LATTICE-BASED ANALOG
JSCC

Along this work, we will assume that sensors in the K×Nr
SIMO MAC system under consideration use analog JSCC
mappings to encode their source symbols individually. As
shown in [18], modulo-like mappings provide satisfactory
performance when the block size is n = 1 (i.e., zero-delay).
The symbols encoded with modulo-like mappings are the
difference between the source symbols and the central point

of their corresponding interval. In the following, this idea is
extended to the consideration of an arbitrary dimension n > 1

Let us consider the real-valued equivalent model in Sec-
tion III-A. The parametric definition of the multi-dimensional
lattice-based mapping functions is stated as

x̃k = fk(s̃k) = δk (s̃k −QΛ(s̃k)) = δk(s̃k − αkMlk), (9)

where s̃k ∈ Rn and x̃k ∈ Rn comprise the real and the imag-
inary parts of the k-th sensor source and encoded symbols,
respectively. The operator QΛ(·) determines the lattice point
(centroid) closest to its argument. Note that this quantization
step depends on the considered lattice Λ which is generated by
the matrix M and scaled with the parameter αk. The mapping
parameters δk and αk are used to fulfill the power constraint at
the sensors and to adjust the distance between any two lattice
points, respectively, whereas lk ∈ Zn is the index vector which
represents the coordinates of the specific Voronoi region where
the vector of source symbols falls into during the encoding
process (cf. [27]). It is worth remarking that the same lattice
Λ is employed for all the K sensors but with different scaling
factors {αk, δk}, k = 1, . . . ,K .

The encoded symbols are obtained by determining the
difference vector between the source symbols and their corre-
sponding centroid. In this sense, the system performance im-
proves when the difference vectors have the smallest possible
norm as long as the correct decoding of the source symbols
is guaranteed. For given power constraints, this fact results
in the use of larger power factors at each sensor, δk, and
thus minimizes the resulting decoding distortion. Hence, an
adequate optimization of the mapping parameters {αk, δk} is
essential to ensure the lattice-based system works properly.

The lattice-based mappings for all the K sensor symbols
can be rewritten in a compact way as

x̃c = f(s̃c) = D(s̃c −Bl), (10)

where the vector s̃c ∈ RnK stacks the real and imagi-
nary parts of the blocks of n/2 complex-valued symbols
for all the K sensors, i.e., s̃c = [s̃T1 , s̃T2 , . . . , s̃TK ]T ,
D = diag(δ1, . . . , δK) ⊗ In, whereas B = U ⊗ M with
U = diag(α1, . . . , αK). Note that the vector s̃c comprises
all the source symbols for the K sensors and for the n/2

channel uses. In turn, the vector l =
[
lT1 , . . . , l

T
K

]T
such that

l ∈ ZnK stacks all the coordinates corresponding to the K
Voronoi regions which the K vectors of source symbols fall
into.

By considering the discrete nature of the lattices, the com-
pact expression for the mapping function f(·) can be rewritten
from an equivalent piece-wise formulation given by

f (̃sc) = fi(s̃c) if s̃c ∈ ΩΛ(li), (11)

where
fi(s̃c) = D(s̃c −Bli). (12)

Note that the vector li ∈ ZnK identifies a specific combination
of K Voronoi regions, one for each sensor, which is denoted
as ΩΛ(li). In particular, the function fi(·) is defined for the
combination of regions corresponding to the K Voronoi re-
gions, ΩΛ(lk,i), where each sensor symbol vector s̃k falls into.
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Recall that lk,i stands for the coordinates vector corresponding
to the lattice point closest to s̃k and ΩΛ(lk,i) represents the
corresponding Voronoi region at the k-th sensor. At this point,
it is also worth remarking that for each feasible combination
of K Voronoi regions, we will have a particular function fi(·)
with the corresponding vector li. For convenience, we will
define the set L containing all the integer-valued vectors of
dimension nK which identify a feasible combination of K
Voronoi regions given the source distribution, i.e., li ∈ L.

The blocks of n/2 complex-valued encoded symbols at
each sensor are transmitted over the MAC by using n/2
channel uses. Accordingly, decoding is applied to the entire
block of n/2 complex-valued received symbols. For that
reason, we extend the compact formulation for the one-shot
MAC signal in (8) to include all the symbols transmitted
by all the sensors during n/2 consecutive channel uses, and
also considering the real-valued equivalent model. Hence, the
compact representation of the received symbols is

ỹc = H̃cx̃c + ñc, (13)

where H̃c = H̃ ⊗ In
2

such that H̃c ∈ RnNr×nK , x̃c =[
x̃T
1 , . . . , x̃

T
K

]T
with x̃c ∈ RnK stacking all the K blocks of

n/2 encoded symbols, and ñc =
[
ñT
1 , . . . , ñ

T
n

]T
is the noise

affecting the received symbols during the n/2 channel uses.
Recall that x̃c is obtained according to (10). The vector of
received symbols, ỹc ∈ Rn×Nr , is employed to produce the
estimates of the K blocks of transmitted symbols by using the
MMSE-based procedure to be explained in Section IV-B.

As mentioned, the encoding operation requires to find
the closest lattice point for each vector of sensor symbols
s̃k. We employ a refined version of the Pohst’s algorithm
[25], which has been shown to be faster than other known
methods like, e.g., Kannan’s algorithm [28] or the conventional
Pohst’s algorithm [29]. This iterative algorithm searches for
the optimal lattice point inside a hypersphere in Rn which
should contain such a point. The search implies exploring all
the lattice points which fall into the considered n-dimensional
hypersphere to determine the one with minimum Euclidean
distance. Therefore, their computational complexity not only
grows with the lattice dimension, but also with the lattice den-
sity since the number of lattice points inside the hypersphere
will be much larger. In practice, the closest point algorithms
are able to efficiently deal with the densest packing lattices up
to n ≈ 24, whereas they exhibit an impractical complexity for
larger dimensions. This issue will be circumvented by using
Craig’s lattices whose density can be properly adjusted for a
given dimension. This fact allows us to increase the encoding
lattice dimension at the expense of reducing the lattice density.
Hence, the use of Craig’s lattices can contribute to improve the
system performance in terms of transmission reliability with
minimum impact on the communication delay as we are still
using reasonable small block sizes.

In the following subsection, we introduce the fundamentals
of Craig’s lattices and present an alternative construction to
reduce the computational complexity of Craig’s lattice-based
encoding.

A. Craig’s Lattices

Craig’s lattices are constructed from the ring of integers in
a cyclotomic field. Let ζp be a primitive p-th root of unity
being p an odd prime. The elements of the ring of integers
Z[ζp] in the cyclotomic field Q[ζp] are represented as

ω = P (ζp) = aζn−1
p +, . . . ,+bζp + c, (14)

where the polynomial coefficients are restricted to be integer
values. In this case, n = p − 1 determines the order of the
elements in the ring and the dimension of the resulting lattices.

An n-dimensional Craig’s lattice, usually denoted as A(m)
n ,

is generated from the elements of the ideal (1 − ζp)
m, with

m a positive integer, in the cyclotomic ring of integers Z[ζp]
[30]. Thus, an n-dimensional Craig’s lattice is given by the
subset of polynomials in the ring of integers Z[ζp] which are
multiples of (1 − ζp)

m. Alternatively, the lattice points can
be obtained as the vector representation of the elements of the
ideal generated by (1−x)m in the quotient ring Z[x]/(xp−1).
Such elements can be obtained as

P (x)(1− x)m = Q(x)(xp − 1) +R(x), (15)

for some polynomial P (x) ∈ Z[x]. With this formulation,
the elements of the ideal generated by (1 − x)m would be
the remainders R(x), and the corresponding lattice points in
A

(m)
n will be the vectors that contain the coefficients of the

polynomials R(x). However, for the encoding operation, we
need to obtain the generator matrix for the Craig’s lattice
A

(m)
n . In the following, we present the standard construction

of this matrix and propose an alternative one based on using
minimum norm vectors which reduces the computational cost
of the encoding operation.

1) Standard Construction: The standard construction for
the generator matrix of a Craig’s lattice is based on the idea
of constructing sub-lattices from the well-known An lattice.
In that case, given an n-dimensional lattice Λ, the difference
lattice ∆TΛ satisfies ∆TΛ ⊆ Λ, where

∆T =


1−1 0 · · · 0 0
0 1 −1 · · · 0 0
· · · · · · · ·
0 0 0 · · · 1−1
1 1 1 · · · 1 2


is a n× n matrix. Thereby, the generator matrix of a Craig’s
lattice A(m)

n can be defined as

M(m)
n = ∆m−1Mn, ∀ m ≤ n/2, (16)

where Mn is the generator matrix for the An lattice.
In practice, this procedure is equivalent to considering

the following polynomial sequence {P1(x) = 1, P2(x) =
x, P3(x) = x2, . . . , Pn(x) = xn−1} in (15) to generate the
n basis vectors {ν1, . . . ,νn} corresponding to the n columns
of the generator matrix of the Craig’s lattice. Because of the
polynomial properties, this construction is in turn equivalent
to setting the first column of M

(m)
n to ν1 = P1(x)(1 − x)m

and the remaining columns to cyclic shifts of this primary
vector [21, Ch. 8, Th. 10]. However, note that the norm of ν1

increases as m becomes larger and this negatively impacts
the encoding operation. Several works have shown that a
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desirable property of the generator matrices to optimize the
computational effort of closest point algorithms is the fact
that the scalar product of their columns is as small as possible
[31], [32]. Considering the particular structure of the generator
matrix of a Craig’s lattice, this is equivalent to obtaining a
primary vector with the minimum norm. Inspired by this idea,
we propose in the following an alternative and equivalent
construction for the generator matrix of Craig’s lattices based
on using cyclic shifts of a primary basis vector ν1 with the
minimum norm for a given m.

2) Alternative Construction: According to the lattice theory
[21], the minimum norm of a Craig’s lattice A(m)

n is at least
2m. This result implies that we can always find some lattice
vector with norm 2m. It can be observed that polynomials of
the form

T (ζp) =
∏

j∈J (m)

(ζjp − 1), (17)

where J (m) is the subset of exponent indexes, which depends
on m, and have the ability to produce the desired minimum
norm vectors for practical values of m. Therefore, the elements
of the Craig’s lattice can be obtained by the ideal generated
by T (ζp) instead of the standard ideal given by (1− ζp)

m. In
this case, the generator matrix with minimum norm columns
can be constructed by cyclically shifting the primary vector
ν1, obtained from T (ζp) with (15).

For the previous procedure to result in the same Craig’s
lattice as the standard construction, the ideal generated by
T (ζp) should be equivalent to the one generated by (1−ζp)m.
This condition is guaranteed by the following Lemma.

Lemma IV.1. Given the cyclotomic ring of integers Z[ζp] with
p prime, the ideal G = (T1(ζp) · . . . · Tm(ζp)) ⊂ Z[ζp],
generated by the product of m polynomials in the form
Ti(ζp) = ζki

p −1, ki ≥ 1, is equal to the ideal I = ((1−ζp)m).

Proof. Since we can make the decomposition Ti(ζp) = ζki
p −

1 = (ζp − 1)× (ζki−1
p + . . .+ 1), for any element x ∈ G we

have that x = Q(ζp)×T1(ζp)× . . .×Tm(ζp) = Q(ζp)×(ζp−
1)m × (ζk1−1

p + . . .+ 1)× . . .× (ζkm−1
p + . . .+ 1) ∈ I , and

hence G ⊂ I .
In addition, any element of Z[ζp] with the form zk(ζp) =

(ζkp −1)/(ζp−1) = ζk−1
p +. . .+1 has a multiplicative inverse,

and therefore for any element x ∈ I we have that x = Q(ζp)×
(ζp − 1)m = Q(ζp)× (ζp − 1)m × zk1

(ζp)× z−1
k1

(ζp)× . . .×
zkm(ζp)z

−1
km

(ζp) = Q(ζp)×T1(ζp)× . . .×Tm(ζp)×z−1
k1

(ζp)×
. . .× z−1

km
(ζp) ∈ H . Hence I ⊂ G and I = G.

In practice, we have observed that the alternative con-
struction provides the same performance as the standard con-
struction with a significantly lower computational cost which
enables the use of Craig’s lattices for higher dimensions and
larger values of m.

3) Craig’s Lattice Parameters: In this subsection, we
present important parameters related to the Craig’s lattices.
The determinant of the Craig’s lattice A(m)

n is det
(
A

(m)
n

)
=

(n + 1)2m−1, where n = p − 1, with p an odd prime, and

m < n/2 [21, Chapter 8]. The volume can be computed from
(2) and is hence given by

Vc = V
(
A(m)

n

)
= (n+ 1)(m−1)/2. (18)

The minimum norm for the Craig’s lattice A
(m)
n is at least

2m, i.e., µ
(
A

(m)
n

)
≥ 2m. Therefore, the choice of m directly

impacts on the lattice packing radius which is given by

prc =
1

2

√
µ
(
A

(m)
n

)
≥

√
m

2
. (19)

Using (18) and (19), a lower bound for the density of the
Craig’s lattice is given by

∆c =
V1pr

n
c

Vc
. (20)

As observed, we can obtain different lattice densities depend-
ing on the parameter m. The lower bound given by (20) is
maximized for the value m = m0 where

m0 =

⌊
1

2

n

loge(n+ 1)

⌉
. (21)

This is the value of m for which an n-dimensional Craig’s
lattice achieves its maximum density [21, Chapter 8]. Finally,
the center density (number of lattice points per volume unit)
is

ψc =
∆c

V1
=
pr

n
c

Vc
. (22)

Table II shows the base 2 logarithm of the center density
for Craig’s lattices having different values of n and m. For
the dimension n = 16, the highest value for the center density
is obtained when m = 3, whereas for the dimensions n = 36,
n = 52 and n = 60 the densest Craig’s lattices are obtained for
m = 5, m = 7 and m = 7, respectively. These values agree
with the integers resulting from the formula in (21). Recall that
the computational cost of the closest point algorithms depends
on the number of lattice points in the search region, and the
parameter ψc is an intuitive indicator of this number.

On the other hand, the quantization error for a given lattice
is an interesting metric to predict the performance of the
resulting lattice-based mappings in the considered scenario.
The quantization error for some particular lattices can be
determined analytically but in most cases (like for Craig’s
lattices), it needs to be computed numerically according to
expression in (5). Table III compares the quantization errors
obtained for different lattice constructions. First, we have
considered Craig’s lattices with dimensions n ∈ {16, 36, 52}.
For the dimensions n = 16 and n = 36, we have analyzed
the densest lattice construction, i.e., the parameter m is set to
m = 3 and m = 5, respectively (see Table II). For n = 52, we
have considered m = 3, since other denser lattices for such a
dimension lead to impractical computational complexity.

In addition, lattices based on the construction A [21, Chap-
ter 4] are also analyzed in Table III, since it constitutes a rela-
tively simple lattice implementation based on the use of digital
error correction codes. For this reason, we considered this
approach as an interesting benchmark to show the suitability of
Craig’s lattices for our problem. The lattices obtained with the
construction A are represented as AC[H(r, n)], where H(r, n)
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TABLE II
CENTER DENSITY (ψC ) VERSUS m.

Lattice size (n) m = 2 m = 3 m = 4 m = 5 m = 6 m = 7 m = 8 m = 9 m = 10

16 -6.13 -5.54 -6.31 -7.82 -9.80 -12.11 -14.66 -17.38 -20.26

36 -7.81 -2.49 -0.23 0.35 -0.12 -1.33 -3.07 -5.22 -7.70

52 -8.60 0.89 5.95 8.60 9.71 9.76 9.04 7.73 5.95

60 -8.90 2.72 9.24 12.97 14.93 15.67 15.51 14.69 13.32

TABLE III
QUANTIZATION ERRORS WITH DIFFERENT LATTICE CONSTRUCTIONS.

Lattice E8 BW16 Leech A
(3)
16 A

(4)
36 A

(3)
52 AC[H(5, 16)] AC[H(6, 32)]

Quantization error 0.0710 0.0682 0.0656 0.0688 0.0649 0.0643 0.0929 0.0835

refers to the employed digital code with source block size r
and codeword size n. Given the required small codeword sizes,
we have decided to consider binary cyclic codes such that their
generator polynomial guarantee the largest minimum distance
for the resulting code. In particular, we have considered cyclic
codes with codeword sizes n = 16 and n = 32, and source
block length r = 5, and r = 6, respectively. Finally, the
quantization error achieved by the well-known Leech lattice
(n = 24) [21], [24], the Barnes-Wall (BW16) lattice (n = 16)
[21], and the E8 lattice (n = 8) [20], [21]are also included in
the comparison. While the quantization error provided by this
latter lattice is well-known (cf. [21, Table 2.3]), the error for
the rest of the lattices and those obtained with the construction
A is numerically computed.

As shown in Table III, the A(3)
52 Craig’s lattice leads to the

lowest quantization error, whereas the AC[H(5, 16)] construc-
tion obtains the highest quantization error. In general, lattices
based on the construction A clearly provide the highest quan-
tization errors followed by the E8 and the BW16 lattices. This
behavior suggests that the lattices based on construction A are
a counter-productive choice for the design of analog mappings
in this scenario. On the contrary, it is interesting to remark
that the A

(3)
52 and the A

(4)
36 lattices provide a slightly lower

error than that assessed with the Leech lattice. Therefore, it is
reasonable to consider Craig’s lattices as suitable candidates
to implement lattice-based JSCC schemes.

B. MMSE Decoding

When considering the transmission of analog sources,
MMSE decoding is optimum as it minimizes the observed
distortion. The MMSE estimator of the source symbols s̃c from
the received symbols ỹc is given by

ŝc = E[s̃c | ỹc] =

∫
s̃c ps(s̃c | ỹc) ds̃c. (23)

By employing the piece-wise definition of the mapping func-
tion in (11) and the compact expression for ỹc in (13), the
conditional probability ps(s̃c | ỹc) can be expressed as

ps(s̃c | ỹc) ∝
|L|∑
i=1

ri(ỹc, s̃c),

where

ri(ỹc, s̃c) ∝
{
ϕi g(s̃c | µi,Σ) if s̃c ∈ ΩΛ(li)
0 otherwise, (24)

with

g(s̃c | µi,Σ) =
((

2π
)Kn|Σ|

)−1/2

× exp
(
−1

2
(s̃c − µi)

TΣ−1(s̃c − µi)

)
,

(25)

ϕi = exp
(
−1

2

(
σ−2

n ∥ ỹc − H̃cDBli ∥2 −µT
i Σ

−1µi

))
,

(26)

µi =
1

σ2
n
ΣDT H̃T

c (ỹc + H̃cDBli), (27)

and

Σ =

(
1

σ2
n
DT H̃T

c H̃cD+C−1
s̃

)−1

. (28)

The steps required to obtain this result are similar to those
explained in [18, Appendix A] for MMSE estimation using
modulo-like functions but considering mapping functions from
n-dimensional lattices.

Recall that the MMSE integral in (23) is decomposed into
a sum of terms weighted by their corresponding factor ϕi. An
important remark is that the function g(s̃c | µi,Σ) actually
represents the pdf of a truncated multivariate Gaussian with
mean µi and covariance matrix Σ, which is restricted to the
corresponding Kn-dimensional region given by the aggregate
of the K Voronoi regions ΩΛ(li). Therefore, we will compute
the MMSE estimates of the sensor symbols as

ŝc =

∑
i ϕiΘ(ΩΛ(li);Σ,µi)∑
i ϕiΦ(ΩΛ(li);Σ,µi)

, (29)

where Θ(ΩΛ(li);Σ,µi) =
∫
ΩΛ(li)

s̃c g(s̃c | µi,Σ) ds̃c is the
mean of a Kn-dimensional multivariate Gaussian truncated
to the region given by ΩΛ(li), and Φ(ΩΛ(li);Σ,µi) =∫
ΩΛ(li)

g(s̃c | µi,Σ) ds̃c represents the cumulative distri-
bution of a multivariate Gaussian variable in the aggregated
region ΩΛ(li).
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Fig. 3 shows an illustrative example of a bi-dimensional
space which is partitioned into four feasible regions ΩΛ(li)
by using lattice-based mappings. For simplicity, we assume
rectangular regions but, in the general case, the shape of
the truncated regions is given by the corresponding Voronoi
regions. The pdf of the truncated Gaussian functions at each
region is represented by contour lines with different colors
indicating different probabilities. According to (24), we have
different Gaussian functions (with mean µi and same co-
variance matrix Σ) weighted by the factor ϕi. As shown,
the maximum value of these functions could fall outside the
truncated region due to the channel and noise effects. Note also
that the size of the truncated regions is given by the parameters
αk within the matrix B.

l1=[-1,0] l2=[0,0]

l4=[0,-1]l3=[-1,-1]

s1

s2

α2 

α1 

(l1) Ω 

Fig. 3. Example of the partition of the source space using bi-dimensional
truncated Gaussian variables.

1) Sphere Decoding with MAP Estimation: The computa-
tion of the MMSE estimates with (29) requires to determine
the integrals of the truncated Gaussian functions over the
Kn-dimensional regions defined by ΩΛ(li). This computation
leads to two important problems:

• The number of potential combinations of Voronoi regions
increases as the lattice dimension n becomes larger, i.e.,
the cardinality of the set L dramatically grows with n.

• The integration of Gaussian functions over Kn-
dimensional regions is an extremely difficult problem
with an unaffordable computational complexity, even for
small values of K and n and considering hyperspheres
with radius pr as integration regions.

The first problem can be alleviated by considering only
those truncated regions ΩΛ(li) with the largest associated
weights ϕi. In such a case, the problem can be formulated
as the search of the candidate vectors li such that their
corresponding weight factor ϕi exceeds a given threshold T ,
i.e.,

ϕi(li) = exp
(
−1

2

(
σ2

n ∥ ỹc + H̃cDBli ∥2 −µT
i Σµi

))
> T.

(30)
Hence, the set of relevant candidate vectors is constructed as
Ld = {li ∈ ZKn | ϕi(li) > T}. This problem was already
approached for the case of modulo-like mapping functions

with Rayleigh channels in [18]. The proposed solution is
based on transforming the Kn-dimensional search space into
a “decoding” lattice Λd whose points correspond to all the
possible vectors li, and then using a sphere decoder to select
those lattice points which fall inside a hypersphere with a
particular radius.

Following an approach similar to that explained in [18,
Appendix B], we obtain the following Gram matrix for the
decoding lattice

Ad =
1

2
BTDT H̃T

c (σ
2
n I+ H̃cDCs̃D

T H̃T
c )

−1H̃cDB, (31)

and the vector

l0 = (BTDT H̃T
c H̃cDB)−1BTDT H̃T

c ỹc

for the center of the sphere where the candidate vectors will be
searched for. Therefore, the generator matrix for the decoding
lattice Λd is given by Md = A

1/2
d .

According to this alternative formulation (30), the points of
the decoding lattices are given by Mdli, and their correspond-
ing ϕi will increase as the Euclidean distance with respect
to Mdl0 decreases. Hence, we can build the set of candidate
vectors as

Ld = {li ∈ ZKn | ||Mdl0 −Mdli)||2 < R2}. (32)

This idea resembles the so-called integer least-square problem
where the sphere decoder has been shown to be an effective
solution [33]. In this case, the application of the sphere decoder
to construct the set Ld is the same as in [18] but considering
the particular lattice structure of Λd, and using the Gram matrix
Ad and the sphere center l0.

After obtaining the set of candidate vectors li corresponding
to those truncated Gaussian regions with a significant weight,
the MMSE estimates are determined as follows

ŝc =

|Ld|∑
i=1

ϕiΘ(ΩΛ(li);Σ,µi)

|Ld|∑
i=1

ϕiΦ(ΩΛ(li);Σ,µi)

. (33)

However, this expression still requires the computation of
2|Ld| integrals of Kn-dimensional Gaussian functions over
complex truncated regions. To circumvent this problem, we
propose to approximate the MMSE integrals in (33) by the cor-
responding maximum a posteriori (MAP) estimates for each
region of the candidate vectors in Ld. In this particular case,
the MAP and MMSE estimators are not strictly equivalent due
to the truncated nature of the conditional posterior probability.
However, for an adequate design of the mapping parameters,
the MAP estimates will be an accurate approximation since the
peak values of the truncated Gaussian functions will mostly
fall into the corresponding truncated regions. Hence, we can
simplify the expression in (33) as ŝc =

∑|Ld|
i=1 ϕi ŝ

MAP
i , where

ŝMAP
i is the MAP estimation for the region ΩΛ(li), which is

the solution to the following maximization problem

ŝMAP
i = arg max

s̃i

p(s̃i | ỹc) = arg max
s̃i

p(s̃i | ỹc) p(s̃i)

p(ỹc)
,

(34)
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where the a priori probability p(s̃i) is given by (6) with a
covariance matrix Cs̃c = Cs̃ ⊗ In

2
, the conditional probability

is given by

p(s̃i | ỹc) =
1

(πσ2
n )

nK
exp

(
− 1

σ2
n
∥ỹc − H̃cD(s̃i −Bli)∥2

)
,

(35)
and the term p(ỹc) can be disregarded as it does not depend
on s̃i. This maximization problem can be reformulated as
the minimization of the arguments of the two exponential
functions in (34) which correspond to the a priori and the
conditional probabilities, respectively. Therefore, the MAP
estimates are determined by solving the following optimization
problem

ŝMAP
i = arg min

s̃i

∥ỹc − H̃cD(s̃i −Bli)∥2 +
σ2

n

2
s̃Ti C

−1
s̃c

s̃i

s.t. ∥s̃i,k −Bli,k∥2 ≤ pr(αk), ∀k, (36)

where the K constraints in (36) are imposed to ensure that the
i-th MAP solution falls into the corresponding truncated region
ΩΛ(li). It is important to remark that these constraints aim at
approximating the corresponding actual Voronoi regions which
cannot be defined analytically for an arbitrary dimension. As
observed, the Euclidean distance between the solution vector
for each sensor s̃i,k and the corresponding centroid Bli,k must
be lower than the covering radius pr(αk) of the scaled version
of the encoding lattice at sensor k.

The problem in (36) can be rewritten in a quadratic form
as

ŝMAP
i = arg min

s̃i

1

2
s̃Ti Qs̃i − vT

i s̃i (37)

s.t. ∥s̃i,k −Bli,k∥2 ≤ pr(αk), ∀k,

where
Q = 2DT H̃T

c H̃cD+ σ2
nC

−1
s̃c

and
vi = 2DT H̃T

c (ỹc + H̃cDBli).

This problem is a variant of a quadratically constrained
quadratic program (QCQP) which can be solved efficiently
by convex optimization techniques.

2) Choice of the Sphere Decoder Radius: In sphere de-
coding, there is a trade-off between decoding complexity and
estimation accuracy that can be adjusted by means of the
sphere radius R. If R is too large, there will be too many
candidates inside the search hypersphere which leads to an
intractable complexity. However, if R is too small, there will
be no points inside the sphere. A reasonable guess for R is
the covering radius of the lattice which constitutes the smallest
radius of the spheres centered at the lattice points that cover
the entire space (without holes). This approach guarantees the
existence of at least one point inside the sphere [34]. However,
determining the covering radius for a given lattice is itself hard.
Therefore, we need to use an alternative strategy to optimize
the value of R.

Let l∗ denote the true vector used to encode the source
symbols s̃c, i.e., dl = ||Mdl0 −Mdl

∗||2 follows a chi-square
distribution X 2 with Kn degrees of freedom [34], i.e., dl ∼

X 2
Kn. Using this result, we can ensure that the optimum lattice

point will fall inside the hypersphere with center l0 and radius
R with a probability 1− ϵ as long as

R2 ≥ F−1
X 2

Kn
(1− ϵ), (38)

where FX 2
Kn

(·) represents the cumulative distribution func-
tion of a chi-square variable with Kn degrees of freedom.
Therefore, the ϵ parameter should be set to a value close
to zero to guarantee that the optimum vector is obtained by
the sphere decoder with high probability. We have checked
experimentally that the criterion in (38) provides a good trade-
off for ϵ ≈ 10−5.

In any case, the choice of the radius R is not critical in
terms of the system performance, since if no candidates are
found for a given ϵ, R can be increased and the sphere decoder
is applied again with the new value. Conversely, the value of
R does impact the computational cost of the decoding phase.
It is thus important to prevent the use of excessively large R
values in the decoding operation.

C. Parameter Optimization

The optimization of the mapping parameters {αk, δk} is
fundamental to achieve good performance. Recall that αk

determines the distance between the lattice points at the k-th
sensor, whereas δk parameters correspond to the power factors
employed to satisfy the transmit power constraints. Reducing
αk decreases the size of the associated Voronoi regions and
thus the norm of the encoded vectors as they are given by
the difference vector between the source vectors and their
centroids. This in turn impacts on the power factors δk which
can be determined as δk =

√
PTk/ek(αk), where ek(αk) is

the resulting quantization error for the k-th sensor. Note that
ek(αk) will decrease when lowering αk, which will allow to
use larger δk values for a given power constraint PTk. In this
way, the optimization procedure will focus on selecting an
adequate value of the scaling factors (αk) at each transmitter
since the corresponding power factors (δk) can be computed
subsequently from αk and the available transmit power PTk.

On the other hand, it is worth remarking that large val-
ues of δk reduce the symbol distortion at reception since
the error covariance matrix Σ in (28) inversely depends on
D = diag(δ1, . . . , δK)⊗ In. This is clear in the ideal situation
where one unique candidate li has a significant weight ϕi
and no decoding ambiguities occur. However, when using too
small αk values, the fading MAC and the noise will cause
decoding ambiguities which will severely degrade the system
performance.

These ideas can be summarized in the following two points:
• Decreasing the value of αk implies that the lattice points

will be closer to each other, the Voronoi regions will
be “smaller”, and hence the quantization error will also
be smaller. As a result of all this, the norm of the
encoded vectors will be lower and the resulting power
factor δk will be larger. Thus, we can scale the encoded
vectors by a large factor for the same transmit power.
According to equation (28), the estimation error will
hence be smaller as the covariance matrix Σ inversely
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depends on the power factors δk. This statement is true
as long as the right vector candidate l∗ is chosen in the
decoding procedure with the sphere decoder.

• Decreasing the value of αk implies that the lattice points
will be closer to each other, and hence either the channel
distortions or the noise can move the source symbols
away from their corresponding centroids or even to other
Voronoi regions. The smaller the distance between the
lattice points, the greater the probability of this situation
happening. This can have a negative impact on the
decoding operation, either creating “ambiguities” (two
or more candidate vectors with similar probability) or
causing decoding to fail.

Therefore, when optimizing αk, an adequate trade-off is
essential to minimize the system distortion. The intuitive idea
is to use the minimum possible αk values which minimize the
probability of decoding ambiguities. Recall that the decoding
ambiguities are caused by the presence of several candidate
vectors li with relevant and similar weights. In the alternative
lattice-based formulation, this implies that there are several
points in the decoding lattices with a similar distance to the
center point given by l0. Therefore, an adequate criterion for
the optimization of αk is to guarantee that the separation
among the points in the decoding lattice Λd is larger than
a certain threshold S, i.e.,

||Mdli −Mdlj ||2 ≥ S, ∀ li ̸= lj . (39)

Note that the lattice expression in (31) depends on B which
includes the diagonal matrix U = diag(α1, . . . , αK). This
way, we can formulate an iterative procedure similar to [18]
which alternatively updates the values of αk and δk until
the criterion in (39) is satisfied. The proposed optimization
procedure requires the knowledge of the different channel
responses since we need such information to construct the
generator matrix Md for the decoding lattice.

Finally, an appropriate value for the threshold S should be
selected. A conservative value is S = 2R2 to ensure that the
probability of finding other lattice points at a distance equal or
smaller than to the optimum one will be negligible. As shown
in the previous subsection, the probability that the distance
between the optimum vector l∗ and the center point l0 is
greater than R2, i.e., dl > R2, is below ϵ according to (38). By
selecting the sphere radius with small ϵ values (e.g. ϵ = 10−5),
the distance between the lattice point corresponding to the
optimum vector l∗ and the point corresponding to l0 in the
decoding lattice will be smaller than R2 with very high
probability. This implies that the distance from l0 to any other
lattice point will be greater than R2 as the distance between
two lattice points is at least 2R2. Therefore, the probability
of decoding ambiguities vanishes when selecting S = 2R2.
However, we have experimentally observed that this threshold
can be reduced even to S ≈ R2 without causing detrimental
decoding ambiguities.

V. SIMULATION RESULTS

In this section, we present the results of computer simula-
tions carried out to evaluate the performance of the proposed

lattice-based analog JSCC system in a K × Nr SIMO MAC
scenario. As mentioned, our focus is on WSN scenarios
with low latency requirements, and hence we will consider
significantly small block sizes compared to traditional digital
systems.

At each time instant, the vector of K source symbols is
generated from a zero-mean multivariate circularly symmetric
Gaussian distribution with covariance matrix Cs. We assume
a correlation model where the source symbols are normalized
and the cross-correlation between any two symbols is the
same, i.e., [Cs]i,i = 1 ∀i = 1, . . . ,K and [Cs]i,j = ρ ∀i ̸= j.
This assumption is adopted for simplicity. However, we high-
light that the correlation exploitation in the decoding stage is
independent of the correlation model. As mentioned, blocks
of n source symbols are encoded at each sensor via an analog
JSCC lattice-based mapping where the parameters are properly
optimized as in Section IV-C to avoid decoding ambiguities.
The resulting encoded symbols are sent to the central node
over a fading SIMO MAC, where the channel coefficients
follow a Rayleigh distribution. The fading channel response
is assumed to remain constant during the transmission of Bs
blocks of n source symbols. At the central node, the vector
ỹc, with all the received symbols corresponding to a block, is
employed to estimate the source symbols of all sensors with
the help of the sphere decoder. This simulation procedure is
repeated for CR different channel realizations.

The system performance is evaluated in terms of the
signal-to-distortion ratio (SDR) obtained for a given range
of signal-to-noise ratio (SNR) values. The SDR is defined as
SDR (dB) = 10 log10(1/ξ̂), where

ξ̂ =
1

CRBsnK

CR∑
l=1

Bsn∑
j=1

K∑
k=1

|sk,j,l − ŝk,j,l|2 (40)

is the average MSE between the source and the estimated
symbols. Hence, the SDR is a suitable metric to illustrate
the reliability in the transmission of the information mea-
sured/acquired by the sensors. For simplicity, we assume
that the available power at the K sensors is the same, i.e.,
PTk = PT, ∀k, whereas the noise component is σ2

n = 1.
Therefore, the system SNR is SNR (dB) = 10 log10(PT).

A. Performance Evaluation of the Lattice-Based Analog JSCC

The following lattices have been considered in the simula-
tion experiments carried out:

1) Craig’s lattices with dimensions n ∈ {16, 36, 52} and
constructed as in Section IV-A2. The parameter m is
chosen to obtain the densest possible lattices for each
n with an affordable encoding computational cost. For
dimensions up to 36, we consider the densest Craig’s
lattices, i.e., m = 3 for n = 16 and m = 5 for n = 36
whereas for n = 52, m = 3 is considered since the
densest lattice in this high dimension leads to impractical
computational complexity in the encoding process.

2) The Leech lattice (n = 24) [21], [24], [35].
3) The Barnes-Wall (BW16) lattice (n = 16) [21].
4) The E8 lattice (n = 8) [20], [21].
5) The bi-dimensional hexagonal lattice (n = 2) [27].
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Fig. 4. SDR (dB) for different sizes of a Craig’s lattice-based mapping (n ∈
{16, 36, 52}) with m = 3 for n = 16, m = 5 for n = 36 and m = 3 for
n = 52, respectively, and for the (BW16) lattice in a 4 × 20 WSN SIMO
MAC setup with ρ = 0.95.

6) The modulo-like mappings (n = 1) [18], [20].

The lattices corresponding to the construction A have been
disregarded because of their poor performance as was antici-
pated by their quantization errors (see Table III). In addition to
the above schemes, two performance bounds were considered
as benchmarks. One results from “uncoded” transmission
which provides the best performance achievable assuming
a zero-delay linear strategy. In uncoded transmission, each
source symbol is multiplied by a complex-valued scalar to
exploit both the channel information and the spatial corre-
lation while satisfying the individual power constraints (c.f.
[36]). The other is the Optimum Performance Theoretically
Attainable (OPTA), which corresponds to the best performance
achievable by any communication system designed according
to the separation principle. The OPTA can be determined by
equating the source rate-distortion region and the capacity
region of the MAC [18, Appendix C]. Finally, we have
also considered a non-lattice JSCC scheme based on channel
optimized vector quantization (COVQ) [37] to compare the
performance of the proposed JSCC lattice-based system with
another state-of-the-art encoding strategy. In particular, we
have adapted the Linde-Buzo-Gray (LBG) algorithm [38] to
produce an optimized channel codebook for the considered
WSN SIMO MAC scenario.

Fig. 4 plots the SDR obtained in a 4×20 SIMO MAC with
correlated sources (ρ = 0.95). This first experiment was set up
to analyze the performance obtained with Craig’s lattices of
increasing block size. Three Craig’s lattices with dimensions
n ∈ {16, 36, 52} were considered. According to Table II,
the values of m which lead to the densest Craig’s lattices
are m ∈ {3, 5, 7}, respectively. Note that we have taken the
optimal values of m for n = 16 and n = 36 while for n = 52,
m = 3 was selected because is the largest value leading to
a reasonable encoding cost for the considered system. We
also remark that the proposed alternative construction makes it
affordable to perform Craig’s lattice encoding for larger values
of m when n = 36, and for some values of m when n = 52.

Fig. 5. SDR (dB) obtained with m ∈ {2, 3, 4, 5} by considering a Craig’s
lattice-based mapping (with size n = 36) in a 4 × 20 WSN SIMO MAC
setup with spatial correlation ρ = 0.95.

As observed in Fig. 4, the best performance is obtained by
the Craig’s lattice with the largest dimension n = 52. This
is a very interesting result as it shows that the transmission
reliability is improved when increasing the codeword size in
spite of not using the best packing lattices. Fig. 4 also shows
that Craig’s lattices are a good choice for encoding since the
lattice A(3)

16 provides the same performance as BW16 which
is the densest lattice for n = 16 [21]. Finally, Craig’s lattices
allow to reduce the gap of the linear approaches (uncoded
transmission) w.r.t. the OPTA from 10 dB to only 2 or 3 dB.
Nevertheless, note that OPTA is actually an optimistic upper
bound since infinite block length is assumed for the source
and channel encoders, and the constraints for the individual
rates are disregarded.

Next, we evaluated the impact of the lattice density on
the system performance. Fig. 5 shows the SDRs achieved
in the same communication scenario as before when con-
sidering Craig’s lattice-based mappings for n = 36 and
m ∈ {2, 3, 4, 5}. As observed, the SDR improves with the
lattice density. Indeed, the best performance is achieved for
m = 5, i.e., the densest A(5)

36 lattice provides the highest SDR.
This result illustrates the importance of optimizing the lattice
density for a given codeword size n. In any case, the gain
obtained when moving from m = 4 to m = 5 is minimum
because the increase of the lattice density is also relatively
small (see Table II). We have also observed that the system
performance starts to decrease for m values above the optimal
one m0.

Table IV shows the SDR values obtained with the proposed
lattice-based analog JSCC approach when using different
block sizes (and delays) for the encoding of correlated sources
with ρ = 0.95 in a fading 4 × 20 SIMO MAC system. We
consider the best packing lattices for each dimension until
n = 24 and two different Craig’s lattices for n = 52 and
n = 36, namely A

(3)
52 and A

(4)
36 . As seen in the previous

experiments, these Craig’s lattices provide an appropriate
balance between performance and computational cost. We
have also included the results obtained for the OPTA bound,
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TABLE IV
SDR (DB) OBTAINED WITH THE DIFFERENT JSCC MAPPINGS FOR DIFFERENT SNRS AND ρ = 0.95.

SNR (dB) Sep. Bound A
(3)
52 A

(4)
36 Leech BW16 E8 Hexagonal Modulo Uncoded COVQ8

0 21.07 16.86 16.66 16.39 16.23 16.06 15.55 15.05 14.26 16.77

5 25.90 22.05 21.88 21.52 21.17 20.76 19.97 19.23 17.82 21.87

10 30.84 27.50 27.23 26.64 26.15 25.77 24.71 23.95 22.09 26.70

15 35.82 32.54 32.25 31.61 31.21 30.76 29.68 28.81 26.72 31.52

20 40.82 37.37 37.03 36.33 35.92 35.38 34.24 33.28 31.21 36.35

25 45.73 42.49 42.10 41.31 40.89 40.32 39.11 38.21 36.10 41.17

30 50.62 47.46 47.07 46.21 45.90 45.24 44.12 43.21 40.99 45.91

35 55.48 52.42 52.00 51.25 50.93 50.18 49.06 48.25 45.91 50.69

Fig. 6. SDR (dB) obtained with different analog lattice-based mappings in a
4× 20 WSN SIMO MAC setup with correlation ρ = 0.95.

the linear system based on uncoded transmission and the non-
lattice JSCC scheme based on COVQ with the LBG algorithm.
This latter scheme was implemented by assuming dimension
n = 8 as larger block sizes lead to a prohibitive computational
complexity because of the huge number of centroids required
for a fair comparison with the proposed scheme. In addition,
Fig. 6 illustrates the system performance for the A(3)

52 mapping,
the modulo-like mapping, the uncoded transmission and the
OPTA bound. In the figure, we can appreciate an SDR gain
of about 2 dB by using the optimized modulo-like mappings
instead of the uncoded transmission. This gain is due to the
non-linearity of the modulo functions which makes them more
suitable for the zero-delay transmission of correlated sources
[16]. The improvement w.r.t. the modulo-like mappings when
using the Craig’s lattice A

(3)
52 is significantly larger (around

5 dB at high SNR values) which is due to the utilization
of a suitable lattice with larger block sizes. Therefore, the
proposed lattice-based system is able to improve the reliability
of transmission while preserving the delay at a low level. It
is also remarkable that lattice-based analog encoding is able
to significantly reduce the gap from the separation bound
by assuming practical block sizes in scenarios with low la-
tency requirements, which are significantly smaller than those

normally used for digital encoding. Note that the results in
Table IV support these conclusions for all the considered SNRs
and block sizes. In this sense, it is also worth highlighting that
COVQ-based scheme provides slightly better performance that
its counterpart E8 lattice. However, the resulting SDR values
are below those obtained with the Craig’s lattices despite the
higher computational cost required to optimize the centroid’s
distribution for each channel realization.

In order to complete this analysis and evaluate the behaviour
of the proposed lattice-based scheme in more practical sit-
uations we consider the geometric-based stochastic channel
model COST2100 [39]. The channel model parameters have
been selected to represent an illustrative transmission of infor-
mation in a WSN. In particular, SIMO channel realizations are
generated according to an scenario “IndoorHall 5Ghz” with
NLoS, carrier frequency of 5.3 GHz and channel bandwidth
of 20 MHz. We also consider a 10×10 m square room where
the 4 transmit nodes are placed at the corners of the room
and the central node is located at the center. The central
receiver is assumed to be equipped with 20 antennas with
a half wavelength separation. Finally, the transmit power is
properly adjusted at each node to ensure a certain average
SNR at the receiver.

Fig. 7 shows the obtained results for the A(3)
52 Craig map-

ping, the modulo-like mapping, the uncoded transmission, and
the OPTA bound. As observed, the behavior of the different
analog JSCC schemes quite resembles the one obtained with
Rayleigh channels. The performance gain resulting from the
use of lattice-based schemes with larger codewords is similar
and the gap with respect to the OPTA bound remains around 3
or 4 dB, although the performance of all considered schemes
becomes worse for all the SNR values. This is due to the
fact that the channel realizations for the selected COST2100
channel model present larger attenuation and lower spatial
diversity than in the Rayleigh case. This effect is particularly
visible for low SNR values, where the gain provided by
increasing the codeword size is minimum.

We next analyzed performance for different levels of spatial
correlation among sensors. Fig. 8 plots the SDR obtained
in a fading 4 × 20 SIMO MAC system with two different
correlation values, namely ρ ∈ {0.80, 0.99}, and different
analog lattice-based mappings. For the lowest correlation level,
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Fig. 7. SDR (dB) for different lattice-based mappings in a 4 × 20 SIMO
MAC setup with correlation ρ = 0.95 and assuming the indoor COST2100
channel model.

A

Fig. 8. SDR (dB) obtained with different analog JSCC schemes in a WSN
SIMO MAC setup with Nr = 20, K = 4 and ρ ∈ {0.80, 0.99}.

ρ = 0.8, modulo-like mappings and E8 lattices provide
negligible gain w.r.t. uncoded transmission. In this case, the
use of larger encoding blocks is necessary to exploit the spatial
correlation among the sources. For example, the lattice A(4)

36

already achieves an SDR improvement of about 4 dB. This
is a remarkable result as one of the major limitations of
modulo-like mappings is that they only perform adequately
in high correlation scenarios. This behavior changes when
the correlation factor becomes larger since the SDR gains
over uncoded transmission are noticeable even for zero-delay
modulo-like mappings. Such gains gradually increase with the
block size. On the other hand, the gap of the analog JSCC
systems w.r.t. the separation bound apparently increases with
the sources correlation level, e.g., with A(3)

36 , the gap goes from
2 dB to 4 dB. This result hence suggests that analog lattice-
based JSCC would need larger block sizes to efficiently exploit
high correlation levels in the source symbols.

The communication scenarios considered in the previous
experiments were favorable for zero-delay modulo-based map-
pings and uncoded transmissions since the receiver had enough

A

Fig. 9. SDR (dB) obtained with different analog JSCC lattice-based mappings
in a SIMO MAC setup with Nr = 20, K ∈ {4, 10} and ρ = 0.95.

Fig. 10. SDR (dB) obtained with different analog JSCC schemes in a WSN
SIMO MAC setup with Nr = 10, K = 10 and ρ = 0.95.

degrees of freedom to handle the potential interference caused
by the simultaneous transmission of several sensors. However,
we next analyze if the encoding with larger block sizes can
help to mitigate the performance degradation observed for
scenarios with higher levels of interference (i.e., less orthog-
onal). Fig. 9 shows the performance obtained for correlated
sources with ρ = 0.95 and two different WSN SIMO setups:
4×20 and 10×20. It is interesting to observe that the system
with modulo-like mappings (and uncoded transmission) leads
to higher performance for the 4 × 20 SIMO setup than for
the 10× 20 configuration. Thus, higher levels of interference
prevent the system to efficiently exploit the spatial correlation
present in the information measured by the sensors, and there-
fore the performance degrades when there are more sensors
in the system. Conversely, the Craig’s lattice-based schemes
lead to better performance for the 10 × 20 SIMO MAC in
spite of having fewer degrees of freedom to cancel the sensor
interference. This behavior is similar to that of the upper bound
which suggests that the separation-based schemes are able to
deal properly with the interference while exploiting the higher
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overall correlation for the 10×20 configuration if the number
of sensors increases. This is another relevant result as it allows
us to circumvent other of the major limitations of the zero-
delay mappings and approximate with small block sizes the
behavior of conventional digital separation-based systems.

In the ensuing experiment, we aimed at providing more
insight into the previous issue. We considered an extreme
setup with K = Nr, namely a 10 × 10 SIMO MAC. In
this case, the A

(4)
36 lattice-based mapping, the Leech lattice-

based mapping, the E8 construction, and the modulo-like
mappings were employed to encode correlated sources with
ρ = 0.95. From the results in Fig. 10, we can derive two
important conclusions: 1) the use of non-zero delay mappings
provides larger gains w.r.t. zero-delay mappings than in the
previous (more orthogonal) configurations, and 2) the gap w.r.t.
the OPTA is also larger. The first point becomes clear by
comparing the performance of modulo-like mappings to that of
the A(3)

36 lattice in Figs. 9 and 10. The gain of using the Craig’s
lattices goes from 5 dB to 8 dB when considering a 10× 10
setup instead of a 10×20 one. The second claim is confirmed
by comparing the gap between the SDR curve for the Craig’s
lattice and the one for the OPTA. This gap goes from 3 dB to
almost 10 dB when we move to the 10×10 setup. This analysis
supports that the use of larger block sizes helps to mitigate the
impact of high levels of interference. Nevertheless, it would be
required to further increase the block size to closely approach
the OPTA at expense of penalizing the communication delay.

B. Optimization of lattice-based analog JSCC system

In this subsection, we consider some details about the opti-
mization of the proposed lattice-based analog JSCC approach
and the complexity of the decoding operation.

1) Parameter S: As commented in Section IV-C, the opti-
mization of the mapping parameters is fundamental to achieve
adequate system performance. The trade-off between reducing
the symbol distortion and avoiding decoding ambiguities when
selecting the αk parameters is managed by the threshold S. In
Section IV-C, we provide some insight into an adequate choice
of S. However, in the following, we experimentally evaluate
the accuracy of this choice.

Fig. 11 shows the SDR versus reasonable values for the
parameter S when using the Craig’s lattice A(4)

36 and the Leech
lattice in a 4 × 20 SIMO MAC with ρ ∈ {0.80, 0.95}. As
observed, the highest system performance is obtained when
S = R2 for both lattices, i.e., a proper value for S is to
be found in the order of R2. These results hence confirm
our initial hypothesis. Fig. 11 also shows that the system
performance dramatically degrades when S < R2 because the
lattice points are too close to each other leading to inevitable
decoding ambiguities. This effect is less severe for S > R2,
but the resulting system performance is not optimal as we are
using too large values for αk parameters. At the same time,
performance seems more sensitive to the adjustment of S for
high levels of source correlation.

2) Parameter R: The sphere decoder radius R is set
according to (38). The choice of R is less critical than that
of S because the sphere decoder can be applied again with a

Fig. 11. SDR (dB) obtained with different values for the parameter S by
encoding with a Craig’s lattice-based mapping (A

(4)
36 ) and the Leech lattice

in a SIMO MAC setup with Nr = 20, K = 4 and ρ ∈ {0.80, 0.95}.

Fig. 12. SDR (dB) vs maximum number of candidates in the decoding
operation with different analog JSCCs mappings in a SIMO MAC setup with
Nr = 20, K = 4, ρ = 0.95 and SNR (dB) ∈ {5, 30}.

larger R if no candidates are found. However, a proper choice
is important to avoid repeating the application of the sphere
decoder and to limit the number of candidates falling into the
sphere. We have observed from the computer experiments that
the criterion in (38) is a good choice for R.

3) Maximum Number of Candidates: The overall computa-
tional complexity of the proposed lattice-based analog JSCC
system is determined by the encoding and decoding stages.
The operations with the highest computational cost are the
search for the closest lattice point given the source vector at the
encoder and the search for the candidate vectors in Ld at the
decoder. In this sense, the system was properly designed to get
a limited number of candidate vectors with a relevant weight
and this, together with the use of MAP estimates, reduces
the decoding computational cost. However, the iterative nature
of the sphere decoder demands the consideration of large
numbers of potential candidates in intermediate iterations,
especially for high dimensions. In those cases, we should limit
the maximum number of candidate vectors at the end of each
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iteration in the sphere decoder but minimizing the probability
of disregarding the optimal vector l∗.

Fig. 12 plots the SDR obtained when varying the maximum
number of candidates considered in the decoding phase for
different lattice-based mappings in a 4 × 20 SIMO MAC
with ρ = 0.95. The system performance obtained when
using the Craig’s lattice A

(4)
36 , the Leech lattice, the E8

construction and the modulo-like mappings are compared for
SNR (dB) ∈ {5, 30}. As observed, Craig’s lattice-based and
Leech lattice-based mappings require a higher number of
candidates to achieve the best behavior at both SNR levels.
This is an expected result because the number of potential
combinations of Voronoi regions significantly increases with
the lattice dimension n. It is also worth remarking that
the impact of excessively limiting the number of considered
candidates is less critical in the low SNR regime. The modulo-
like mappings are the simplest ones for decoding since they
require the smallest number of candidates to reach their best
behavior. Finally, the E8 lattice construction leads to a better
performance than that obtained with the modulo-like mapping
while exhibiting similar decoding complexity.

C. Analysis of other performance indicators
In this section, we briefly analyze other relevant parameters

to complete the performance evaluation of the proposed lattice-
based system. In particular, we will focus on the computational
complexity, the required bandwidth, and the communication
delay.

Regarding the computational cost, the lattice-based encod-
ing procedure and the search for the best candidate vectors
with the sphere decoder are the two operations with the highest
complexity. The remaining operations, including the parameter
optimization and the computation of the MAP estimates,
clearly have lower computational cost. The approaches to
search for the closest centroids in the encoding by using the
closest point algorithm and for the candidate vectors in the
decoding with the sphere decoder actually follow a similar
philosophy. Indeed, both approaches are based on iteratively
evaluating the lattice points which fall inside an n-dimensional
hypersphere. In this sense, the computational complexity for
these searches grows exponentially with the lattice dimension
(codeword size) [25], [34].

However, different strategies can be applied to mitigate the
computational cost corresponding to the standard search on n-
dimensional hyperspheres. On the one hand, the maximum
number of candidates provided by the sphere decoder at
each iteration can be limited depending on the considered
SNR value and the lattice type, as shown in the previous
subsection. This approach significantly reduces the complexity
of the decoding operation as we are restricting the number
of points to be evaluated at each sphere decoder iteration.
The corresponding computational cost still grows with the
lattice dimension since the maximum number of candidates
required to provide satisfactory performance must be larger
(see Fig. 12), but this approach leads to an acceptable compu-
tational complexity at the central node for most applications.

On the other hand, a similar approach could be considered
for the search of the closest lattice point in the encoding

procedure. In addition, the use of Craig’s lattices provides an
additional degree of flexibility to adjust the center density for
a given dimension, and hence the number of lattice points
to be explored with the closest point algorithm. Moreover,
the alternative construction proposed for this type of lattices
in this work allows for further lowering the computational
cost of the encoding operation. The closest point algorithm
is based on recursively representing an n-dimensional lattice
by (n−1)-dimensional parallel translated sub-lattices (layers)
[25]. In this sense, the dimensionality of the problem can be
reduced by “separating” these layers as this minimizes the
number of layers to be explored. It is also desirable that the
zero-dimensional layers are as densely spaced as possible [25].
The use of reduction techniques that guarantee that the scalar
product of the the generator matrix columns is as small as
possible contributes to satisfy these two conditions [40].

In summary, the encoding computational complexity is
generally in the exponential order with the lattice dimension,
but this complexity can be reduced for general lattices by
limiting the number of lattice points to be explored. This way,
the closest point problem can be solved with an affordable
computational cost for the codeword sizes considered in this
work. For Craig’s lattices, the computational cost of searching
the closest lattice point can further be lowered by properly ad-
justing the center density and constructing a suitable generator
matrix.

Another important parameter to assess the system per-
formance is the bandwidth required to transmit the source
information. In this case, the required bandwidth is the same
regardless of the codeword size or the lattice construction used
to encode the source symbols. Assuming that the available
channel bandwidth is B Hz, the proposed lattice-based system
is designed to transmit n source symbols at n/2 channel
uses. Therefore, the transmission rate does not depend on the
codeword size as it can directly be determined as vb = 2/Ts
symbols/s, where Ts corresponds to the channel use duration
and is given by the available channel bandwidth. As a con-
sequence, the spectral efficiency is also equivalent for all the
system configurations.

Finally, the encoding and decoding delays are proportional
to the codeword size, or equivalently to the lattice dimension.
Note that this delay is minimum compared to the traditional
digital systems which use significantly larger codeword sizes.
In this way, we can configure the proposed system to achieve
different communication reliabilities (SDRs) with minimum
impact on the delay, while transmitting the source information
at a constant rate.

VI. CONCLUSIONS

This work studied analog JSCC lattice-based mappings
for the transmission of correlated sources in fading SIMO
MAC systems. These mappings can be particularly suitable
for WSNs and IoT systems where it is important to guarantee
low communication latency. In these scenarios, the proposed
analog JSCC scheme allows the use of lattice constructions
with different dimensions to encode the sources with variable
block sizes. This feature allows for improving the system
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performance by adjusting the codeword size according to the
delay constraints of the application. At the central node, the
MMSE estimates of the source symbols are computed with the
help of sphere decoding and MAP estimation to reduce the
decoding computational complexity. This approach, together
with an adequate optimization of the system parameters,
enables the transmission of reasonable large block sizes with
a good trade-off between performance and computational cost
while preserving minimum latency. In this sense, Craig’s
lattices are particularly attractive since they allow for balancing
the lattice density to improve transmission reliability with an
affordable encoding computational complexity.

Simulation results show that the proposed lattice-based ana-
log JSCC system is able to reduce the symbol distortion, and
thus increasing the system reliability, as the lattice dimension
becomes larger. This improvement is especially remarkable for
scenarios with non-orthogonal configurations and low levels
of spatial correlation. In such scenarios, zero-delay mappings
hardly provided some gains with respect to linear approaches.
The results also validate the suitability of the proposed Craig’s
lattices construction for different applications based on low
latency WSNs.
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