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Analog Transmission of Spatio-Temporal Correlated
Sources over MAC with Modulo Mappings

Pedro Suárez-Casal, Oscar Fresnedo, Luis Castedo

Abstract—Modulo mappings are an appealing scheme for
the analog transmission of spatially correlated discrete-time
analog source symbols over Multiple Access Channels (MACs).
In this work, we show that modulo mappings are also useful
to exploit temporal correlation with zero-delay and without
impairing encoding/decoding computational complexity. Spatio-
temporal source correlation is exploited with a Kalman Filter-
based receiver, coupled with a sphere decoder, that takes into
account the non-linearities of the modulo mappings. We also
explain how to optimize the mapping parameters.

Index Terms—Correlation, Kalman filtering, Multiaccess com-
munication.

I. INTRODUCTION

THE transmission of correlated discrete-time analog infor-
mation over a fading Multiple Access Channel (MAC) is

a fundamental problem in wireless communications. As an ex-
ample, the information sent by the sensors in a Wireless Sensor
Network (WSN), like temperature or humidity measurements,
is typically correlated both spatially, between different users,
and temporally, between consecutive time instants.

In general, analog mappings are an appealing alternative to
traditional digital schemes in scenarios with severe delay con-
straints. In particular, modulo mappings have been proposed
to transmit spatially correlated sources over fading MACs with
zero-delay, hence providing better performance than uncoded
transmissions [1], [2]. In addition, low complexity receivers
based on a sphere decoder were designed for scenarios with
a large number of users [3].

Those works considered only spatial correlation while this
work also looks at temporal correlation with the aid of a
Kalman Filter (KF). KF is a widely known algorithm based
on linear equations to estimate parameters observed during
time [4]. In addition, popular non-linear approximations to
this problem have been addressed in the literature using
alternatives like the Extended Kalman Filter [5], among others.

The contributions of this letter extend [3] on the following
points to exploit temporal correlations with modulo mappings:
• A receiver based on the structure of the KF that integrates

a sphere decoder, providing an accurate model of the
non-linearities of the modulo mapping, as well as low
complexity decoding of the source symbols. This receiver
simultaneously exploits temporal and spatial correlations.
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Fig. 1. Block diagram of a fading SIMO MAC with feedback.

• An optimization strategy for the modulo mappings assum-
ing the existence of a feedback link from the centralized
receiver to the users. Again, this optimization allows
obtaining parameters that take into account both temporal
and spatial correlations.

Notation: Bold lower-case and upper-case letters are used
for vectors and matrices, respectively, while regular letters
denote scalars. For a given matrix A, AT represents the trans-
pose operation, A+ =

(
AT A

)−1
AT is the pseudo-inverse, |A|

denotes the determinant, and [A]i, j is the element in the i-th
row and j-th column. N(µ,Σ) denotes a multivariate Gaussian
distribution with mean µ and covariance Σ, pN(s; µ,Σ) its
corresponding probability density function (pdf), and E[x]
is the expectation of a random variable x. The operator
diag(·) constructs a diagonal matrix with the arguments in
its main diagonal. b·c is the element-wise floor operation and
mod(a, b) = a/b − ba/bc. Finally, 0 and 1 denote the vectors
of zeros and ones of the right dimension, respectively.

II. SYSTEM MODEL

Fig. 1 shows the block diagram of the fading Single-Input
and Multiple-Output (SIMO) MAC model considered in this
work. A group of K single-antenna users transmits discrete-
time analog Gaussian source symbols to a common receiver
over the fading MAC. The receiver is equipped with NR

receive antennas, and a feedback link from the receiver to
the users is available to send information about the encoder
configuration.

Vectors of K source symbols during T consecutive time
instants are assumed to be correlated both spatially and tem-
porally according to the following autoregressive model

st = Fst−1 + gt, ∀t = 1, 2, . . .T (1)

where st ∈ R
K is the vector of source symbols at the t-th time

instant, F is a state transition matrix and gt ∼ N(0, G) is the
noise component of the autoregressive model, with covariance
G. We assume st ∼ N(0,Cs) with Cs its covariance matrix
and s0 = 0.

Source symbols are encoded on a per-user basis with a
non-linear mapping z(·) to produce the symbols xt = z(st ) =
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Fi g. 2. E x a m pl e of m o d ul o m a p pi n g wit h α 1 = 4 a n d α 2 = 2 . E a c h c o m p o n e nt
of t h e l v e ct or r e pr es e nts t h e i nt er v al w h er e t h e s y m b ol of e a c h us er f alls, i n
t his c as e l = [0 , − 1 ]T (fr o m [ 3]).

[z 1 (s 1 t ), . . ., z K (s K t )]T t o b e tr a ns mitt e d o v er t h e f a di n g M A C.
T h e r e c ei v e d si g n al is

y t = H x t + n t, ( 2)

w h er e H ∈ R N R × K is t h e f a di n g M A C r es p o ns e w hi c h r e m ai ns
c o nst a nt o v er t h e tr a ns missi o n of a bl o c k of T s y m b ols, a n d
n t ∼ N ( 0 , σ2n I ) is t h e c h a n n el A d diti v e W hit e G a ussi a n
N ois e ( A W G N). S y m b ols tr a ns mitt e d b y e a c h us er s atisf y a n
i n di vi d u al p o w er c o nstr ai nt s u c h t h at E |z k (s k )|2 ≤ P k , ∀ k .
E q. ( 1) a n d ( 2) c o nstit ut e a n o n-li n e ar K F s etti n g.

We c o nsi d er t h at t h e s o ur c e s y m b ols ar e e n c o d e d
b y m e a ns of m o d ul o m a p pi n gs d e fi n e d as z k (s k ) =
∆ k (m o d (s k + α k / 2 , αk ) − α k / 2 ) , ∀ k . T h e p ar a m et ers α k d e-
t er mi n e t h e s h a p e of t h e m a p pi n g w hil e ∆ k ’s ar e g ai n f a ct ors
t o s atisf y t h e p o w er c o nstr ai nts. T w o e x a m pl es of t his m o d ul o
m a p pi n g ar e s h o w n i n Fi g. 2. As o bs er v e d, t h e m a p pi n gs c a n
b e alt er n ati v el y d e fi n e d b y i nt er v als usi n g li n e ar f u n cti o ns.
E a c h of t h es e i nt er v als is i n d e x e d wit h a n i nt e g er v al u e, a n d
t his all o ws t o r e writ e t h e m a p pi n g f u n cti o n i n v e ct or f or m as

z ( s ) = D ( s − Al ), ( 3)

w h er e l = A − 1 s + 1
2 I ∈ Z K st a c ks t h e K i nt e g er v al u es lk

s u c h t h at s k ∈ [ α k (lk − 1 / 2 ), αk (lk + 1 / 2 )], ∀ k . T h e m atri x A =
di a g (α 1 , . . ., αK ) c o nt ai ns t h e m o d ul o m a p pi n g p ar a m et ers f or
all us ers a n d t h e m atri x D = di a g (∆ 1 , . . ., ∆ K ) c o m pris es t h e
g ai n f a ct ors. B ot h A a n d D s h o ul d b e d esi g n e d t o mi ni mi z e
t h e dist orti o n c o nsi d eri n g t h e c orr el ati o n m o d el i n ( 1).

At t h e r e c ei v er, a n esti m at e of t h e s o ur c e s y m b ols is o b-
t ai n e d fr o m t h e r e c ei v e d si g n al y t b y usi n g a Mi ni m u m M e a n
S q u ar e d Err or ( M M S E) d e c o d er t h at f oll o ws t h e str u ct ur e of
a n o n-li n e ar K F a n d t h at r eli es o n a s p h er e d e c o d er t o r e d u c e
t h e c o m p ut ati o n al c o m pl e xit y. T his filt er is d es cri b e d i n t h e
n e xt s e cti o n.

N ot e t h at t his s yst e m m o d el ass u m es t h at t h e v ari a bl es
ar e r e al- v al u e d. If c o m pl e x si g n ali n g is c o nsi d er e d, it c a n b e
tr a nsf or m e d i nt o a r e al- v al u e d e q ui v al e nt m o d el, d o u bli n g t h e
n u m b er of v ari a bl es of t h e ori gi n al s yst e m fr o m K t o 2 K b y
tr e ati n g s e p ar at el y t h e r e al a n d i m a gi n ar y p arts [ 3].

III. M O D U L O M A P P I N G D E C O D E R

T his s e cti o n d es cri b es a K F- b as e d d e c o d er t h at l e v er a g es
b ot h t h e s p ati al a n d t h e t e m p or al c orr el ati o n of t h e s o ur c e
s y m b ols. T h e d e c o di n g o p er ati o n c o nsists of t w o st e ps: a n
o bs er v ati o n st e p t h at esti m at es t h e s o ur c e s y m b ols usi n g t h e
p ost eri or pr o b a bilit y f or t h e r e c ei v e d si g n al, a n d a pr e di cti o n
st e p t h at g e n er at es pri or i nf or m ati o n f or t h e o bs er v ati o n st e p

i n t h e n e xt ti m e i nst a nt. I n o ur s yst e m, t h e pr e di cti o n st e p is
c o m p ut e d wit h li n e ar o p er ati o ns usi n g F a n d G as

ŝ t |t − 1 = F ŝ t − 1 ( 4)

P t |t − 1 = F P t − 1 F T + G ( 5)

b ut t h e o bs er v ati o n st e p is aff e ct e d b y n o n-li n e ariti es d u e t o t h e
m o d ul o m a p pi n gs. We n e xt s h o w h o w t o m o d el t h e p ost eri or
pr o b a bilit y of t h e r e c ei v e d si g n al w h e n usi n g t h es e m a p pi n gs.
I n t h e f oll o wi n g, t h e ti m e s u bi n d e x t will b e o mitt e d f or cl arit y.

F or a gi v e n pr e di cti o n s̄ = ŝ t |t − 1 a n d t h e c orr es p o n di n g
c o v ari a n c e m atri x P = P t |t − 1 , t h e p ost eri or pr o b a bilit y of
t h e m o d ul o m a p pi n g f or G a ussi a n s o ur c es wit h t h e f or m
s ∼ N ( s̄, P ) c a n b e e x pr ess e d as

p m ( s |y ) ∝ p ( y |s )p ( s )

∝
l ∈ Z K

T l ( y , H D ( s − Al ), σ2n I )p N ( s ; s̄, P ) ( 6)

∝
l ∈ Z K

φ l T l ( s, µ l, Σ ), ( 7)

w h er e

T l ( s, µ , Σ ) =
p N ( s ; µ , Σ ) a l < s ≤ b l

0 ot h er wis e
( 8)

r e pr es e nts a tr u n c at e d G a ussi a n f u n cti o n wit h m e a n µ l =
s̄ + 1

σ 2
n
Σ D T H T ( y + H D Al − H D s̄ ) a n d c o v ari a n c e Σ =

1
σ 2

n
D T H T H D + P − 1

− 1
. T h e v e ct ors a l = A l − 1

2 1 a n d

b l = A l + 1
2 1 r e pr es e nt, r es p e cti v el y, t h e l o w er a n d u p p er

li mits f or t h e c o m bi n ati o n of i nt er v als gi v e n b y l.
Fr o m ( 6) t o ( 7), w e gr o u p e d t h e t er ms n ot d e-

p e n di n g o n s i n φ l aft er r e arr a n gi n g t h e e x p o n e nts i n
( 6) as a si n gl e q u a dr ati c f or m. I n t h at c as e, φ l =

e x p − 1
2 σ 2

n
y + H D Al 2 + 1

2 µ T
l
Σ − 1 µ l , a n d it c a n b e r e writ-

t e n usi n g a n a p pr o a c h si mil ar t o [ 3] as

φ l = e x p − (l + lo )T Λ (l + lo ) + m T (l + lo ) , ( 9)

w h er e

Λ =
1

2
A T D T H T σ 2

n I + H D P D T H T
− 1

H D A , ( 1 0)

m = A T D T H T H D Σ P − 1 s̄, ( 1 1)

a n d lo = (H D A )+ y . W h e n s̄ = 0 , t h e pr e vi o us e x pr essi o ns
a gr e e wit h t h os e o bt ai n e d i n [ 3].

Esti m ati n g t h e s o ur c e s y m b ols r e q uir es t o c o m p ut e t h e m e a n
of t h e w ei g ht e d s u m of tr u n c at e d G a ussi a n f u n cti o ns i n ( 7),
w hi c h is a c o m pli c at e d pr o bl e m [ 6]. A n a p pr o xi m ati o n of ( 8)
c a n b e o bt ai n e d wit h a w ei g ht e d G a ussi a n p df, i n t h e f or m
T l ( s ) ≈ λ l p N ( s ; ŝ l, Σ ), wit h

ŝ l = ar g m a x
s

T l ( s, µ l, Σ ), ( 1 2)

a n d λ l = |2 π Σ |p N ( ŝ l ; µ l, Σ ). I n c as e ŝ l = µ l , t h e f a ct or
λ l = 1 ; b ut if ŝ l µ l it m e a ns t h at ŝ l f alls o utsi d e t h e i nt er v al
[ a l, b l ], a n d t h e f a ct or λ l < 1 h el ps t o r e fl e ct t h e i m p ort a n c e
of t h at t ail. N ot e t h at t his is a s e nsi bl e a p pr o a c h si n c e i n m ost
c as es t h e G a ussi a n f u n cti o ns i n ( 8) wit h si g ni fi c a nt w ei g hts
φ l ar e tr u n c at e d j ust b y t h eir t ails. T h e pr o bl e m i n ( 1 2) c a n
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be efficiently approximated with a quadratic programming
algorithm applied to the problem

ŝl = arg max
s

1
2
sTΣ−1 s − vT s, (13)

s.t . al ≤ s < bl,

where v = 1
σ2

n
(DTHT y+DTHTHDAl)+P−1 s̄. These expres-

sions help to approximate the posterior probability in (7) by
a weighted sum of Gaussian functions as

pm(s |y) ≈
∑
l∈ZK

w̄lpN(s; ŝl,Σ), (14)

where w̄l = wl/
∑
wl , and wl = φlpN( ŝl ; µl,Σ).

The main drawback of the representations in (7) and (14)
is that l spans over a potentially large set but its cardinality
can be significantly reduced by searching for l vectors with
large associated weights φl [3]. Therefore, we are interested
in vectors l such that their corresponding exponent in φl (see
(9)) is below some threshold R, i.e.

h (l) =
(
l̃ + l̃o

)T
Λ̃

(
l̃ + l̃o

)
< R, (15)

with R a parameter that sets the maximum considered weights,
and where the original terms l, lo, m and Λ are transformed
into lattice form as

Λ̃ =

( 1
4 m

TΛ−1m − 1
2 m

T

− 1
2 m Λ

)
, (16)

l̃ =
[
1, lT

]T
and l̃o =

[
0, lTo

]T
. Now, a sphere decoder can be

applied over the lattice represented by Λ̃ to recursively obtain
a set of feasible l vectors as LR = {l |h(l) < R}. In particular,
decomposing Λ̃ = LTL where L is a lower triangular matrix,
feasible integers for the k-th component of l can be found as

[lo]k − dk −
√

R − ck
[L]k,k︸                      ︷︷                      ︸

Ik (l)

≤ [l]k ≤ [lo]k − dk +
√

R − ck
[L]k,k︸                      ︷︷                      ︸

Ok (l)

(17)

with

dk =
k−1∑
i=1

[L]k,i
[L]k,k

([l]i + [lo]i) ,

ck =ck−1 +

(
k−1∑
i=1
[L]k−1,i([l]i + [lo]i)

)2

where c0 = 0. Hence, LR = L
K
R , where

Lk
R ={l ∈ Z

n |

l = [nTn]T , Ik(n) ≤ n ≤ Ok(n), ∀n ∈ Lk−1
R }, (18)

and L0
R = ∅. Finally, thanks to this set, the expression in (14)

can be accurately described with a small number of vectors l.
Recall that KF is based on linear equations. However, its

structure can be adapted for this scenario to consider the non-
linearities of the modulo mapping. In particular, the posterior
probability is approximated by its mean and its covariance
matrix, which can be computed at a low cost by exploiting
its structure as a sum of Gaussian functions given by (14).
We define a decoding algorithm with the elements defined

above, as shown in Algorithm 1. A more accurate model could
consider, for instance, to use the weights wl and the vectors ŝl
in a Gaussian Sum Filter (GSF) [7] but at the cost of a larger
computational complexity.

Algorithm 1 KF-based decoder for modulo mappings.
ŝ1 |0 ← 0, P1 |0 ← Cs

A1 ← diag(α1, . . . , αK ),D1 ← diag(∆1, . . . ,∆K ) for P1 |0
for all t ∈ [1,T] do
Σ←

(
1
σ2

n
DT

t H
THDt + P−1

t |t−1

)−1

LR ← (18) on yt assuming a N( ŝt |t−1, Pt |t−1)
for all l ∈ LR do

ŝl ← Solve (13)
µl ← s̄ + 1

σ2
n
ΣDT

t H
T (yt + HDtAt l − HDt s̄)

wl ← φlpN( ŝl ; µl,Σ)
end for
ŝt ←

∑
l∈LR

w̄l ŝl
Pt ← Σ +

∑
l∈LR

w̄l ( ŝl − ŝt )( ŝl − ŝt )
T

ŝt+1 |t ← F ŝt
Pt+1 |t ← FPtF

T + G
Update At+1,Dt+1 for Pt+1 |t with (19). {Feedback the
(α1, . . . , αK ) to the users}

end for

A. Parameter Optimization
The modulo parameters αk can be optimized at the receiver

assuming that the channel is known and that the source
covariance is given by Pt+1 |t . As shown in [3], the ∆k gain
factors increase if their corresponding αk’s are lower and this
reduces distortion when using modulo mappings. Thus, lower
values for αk are desirable to lower the distortion in general,
but too low values may prevent the correct decoding of the
source symbols. In the latter case, several decoded symbols
could be equally feasible, which mathematically translates into
similar weights φl for different l in the posterior probability
in (7). Thus, the optimization of the αk parameters should
consider this trade-off, which will depend on the channel state
and the source correlation. To address this problem we will
follow an approach similar to [3].

First, we assume the decomposition ∆k = pkδk with
pk, δk ∈ R. We then set pk =

√
Pk and initialize δk = 1, ∀k.

Finally, using Pt+1 |t as the source covariance matrix at each
time instant, and decomposing the matrix Ξ = A−1ΛA−1 as
Ξ = QTQ, the parameters αk are obtained as

αk =

√
S

[Q]k,k
, (19)

for some design parameter S that will be of the same order of
magnitude as the radius chosen during the decoding stage. The
αk parameters can be fed back to the users before they transmit
their next symbol. Each δk is updated from the corresponding
αk according to [3, Eq. (7)], and the resulting values are used
to compute the gain factors ∆k . Better performance could be
achieved by considering optimal power allocations pk ∈ C, but
this goes beyond the scope of this work. This strategy relies
on an accurate description of the error covariance, and it does
not require the actual transmitted symbols st .
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Fig. 3. SDR vs SNR for a 10×10 scenario, ρ = 0.95 and different decoders.

B. Computational Complexity

The main computational burden of Algorithm 1 is on the
generation of the LR̃ set with the sphere decoder. A general
analysis of the sphere decoder algorithm is provided in [8], and
it relies on estimating the number of lattice points enclosed
by a sphere of a given radius. In our case, this number is
proportional to the number of users and inversely proportional
to the αk values. In fact, a lower bound on the overall
computational complexity can be defined for αk parameters
arbitrarily large (i.e. αk � [Cs]k,k), since it would match that
of the linear KF. This would allow choosing larger αk values
than the optimal ones to lower the computational cost.

IV. SIMULATION RESULTS

In this section, the performance of the proposed decoding
algorithm based on the KF is evaluated by means of computer
simulations. The results are obtained considering a particular
correlation model where F = ρI and G =

(
1 − ρ2) Cs , with

[Cs]i,i = 1 and [Cs]i, j = ρ, ∀i, j, i , j, with 0 ≤ ρ < 1. The
parameters of the modulo mappings are optimized following
the strategy described in Section III-A. The power constraints
are set to Pk = P, ∀k, hence the Signal-to-Noise Ratio (SNR)
in the plots is defined as SNR = P/σ2

n . Blocks of size T =
1000 symbols are considered, a size large enough to show that
the decoder does not diverge after the successive decoding of
the received samples. Also, for very low values (e.g. T < 10),
the gain of this decoder would be negligible with respect to
ignoring the spatial correlation. Finally, the fading MAC is
modeled according to a Rayleigh distribution.

Performance is measured in terms of Signal-to-Distortion
Ratio (SDR), computed as the inverse of the Mean Squared
Error (MSE) given by ξ = 1

KT

∑
t ‖ st− ŝt ‖

2, hence SDR[dB] =
10 log(1/ξ).

Figure 3 shows the SDR obtained for the scheme with
modulo mappings and the proposed KF-based decoding in
a scenario with K = 10 users, nR = 10 antennas and a
correlation factor ρ = 0.95. This strategy is compared to other
three approaches: 1) uncoded scheme with the linear MMSE
decoder that only considers spatial correlation, 2) uncoded
scheme with a linear KF that incorporates spatial and temporal
correlation; and 3) modulo mappings with a MMSE decoder

Fig. 4. SDR vs SNR for 10 × 10 scenario with different correlation factors
using the KF-based receivers with uncoded and modulo mappings.

that ignores temporal correlation [3]. As observed, modulo
mappings reach the uncoded scheme with KF receiver only on
high SNRs, while the modulo with KF receiver provides gains
along all the SNR values. Also, if this scheme is compared to
uncoded transmissions with KF, gains up to 8 dB are obtained.

Figure 4 shows the SDR for uncoded and modulo mappings
combined with the KF-based receiver for different correla-
tion factors. As observed, the performance gain of modulo
mappings increases with the correlation factor, especially for
medium and high SNRs. This gain goes from 0.5 dB for
ρ = 0.8 up to 10 dB for ρ = 0.99.

V. CONCLUSION

We have studied the design of modulo mappings to exploit
both the temporal and the spatial correlation of source symbols
transmitted over a fading SIMO MAC. This task encompasses
both the decoding strategy and the parameter design. Sim-
ulation results show that significant gains are obtained with
respect to uncoded schemes, and also against a modulo-based
transmitter that only considers spatial correlation.
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