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Abstract

Background and objective The proliferation of toxin-producing phytoplankton

species can compromise the quality of the water sources. This contamination is

difficult to detect, and consequently to be neutralised, since normal water purifica-

tion techniques are ineffective. Currently, the water analyses about phytoplankton

are commonly performed by the specialists with manual routine analyses, which

represents a major limitation. The adequate identification and classification of

phytoplankton specimens requires intensive training and expertise. Additionally,

the performed analysis involves a lengthy process that exhibits serious problems

of reliability and repeatability as inter-expert agreement is not always reached.

Considering all those factors, the automatization of these analyses is, therefore,
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highly desirable to reduce the workload of the specialists and facilitate the pro-

cess.

Methods This manuscript proposes a novel fully automatic methodology to per-

form phytoplankton analyses in digital microscopy images of water samples taken

with a regular light microscope. In particular, we propose a method capable of

analysing multi-specimen images acquired using a simplified systematic protocol.

In contrast with prior approaches, this enables its use without the necessity of

an expert taxonomist operating the microscope. The system is able to detect and

segment the different existing phytoplankton specimens, with high variability in

terms of visual appearances, and to merge them into colonies and sparse spec-

imens when necessary. Moreover, the system is capable of differentiating them

from other similar objects like zooplankton, detritus or mineral particles, among

others, and then classify the specimens into defined target species of interest using

a machine learning-based approach.

Results The proposed system provided satisfactory and accurate results in every

step. The detection step provided a FNR of 0.4%. Phytoplankton detection, that

is, differentiating true phytoplankton from similar objects (zooplankton, minerals,

etc.), provided a result of 84.07% of precision at 90% of recall. The target species

classification, reported an overall accuracy of 87.50%. The recall levels for each

species are, 81.82% for W. naegeliana, 57.15% for A. spiroides, 85.71% for D.

sociale and 95% for the ”Other” group, a set of relevant toxic and interesting

species widely spread over the samples.

Conclusions The proposed methodology provided accurate results in all the de-

signed steps given the complexity of the problem, particularly in terms of spec-

imen identification, phytoplankton differentiation as well as the classification of

the defined target species. Therefore, this fully automatic system represents a

robust and consistent tool to aid the specialists in the analysis of the quality of
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the water sources and potability.
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1 Introduction

Phytoplankton is the basis of the food chain in all the aquatic ecosystems

worldwide, either being fresh water such as rivers or saltwater like oceans.

Phytoplankton carries out photosynthesis producing oxygen and acting as a

carbon sink. It, therefore, holds a significant amount of scientific attention

over those properties.

Phytoplankton is also relevant given that high concentrations of particular

species, known as blooms, produce toxins that contaminate potable water,

with the consequent drastic impact in the involved population. The effects

of these toxins range from gastroenteritis to liver damage, cancer or death

[1]. The main problem derived from these proliferations is that the produced

toxins cannot simply be removed by purification techniques [2], thus needing

continuous monitoring. Moreover, phytoplankton blooming is a phenomenon

that has been linked to many factors but most importantly to global warming.

This will, undoubtedly, increase the frequency and intensity of these dangerous

proliferations in the coming years, increasing the severity of the impact and

the consequences for the dependent populations.

Nowadays, the studies about phytoplankton and other types of aquatic mi-

crobes require exhaustive work by the specialists which results in a big bot-

tleneck to the output and quality of these studies. Water samples must be

collected in situ by the experts, in a time consuming and tedious process.

After that, these samples need to be transported to the laboratory to be con-

centrated and treated for their observation under the microscope. Counting

and classifying the existing specimens is commonly done by direct observation

and manual routine, again, in a tedious and time consuming process. However,
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at this stage, it is possible to directly capture digital images of the samples

for posterior analysis.

It has been shown that the assessment by the experts presents low recall

rates, a 75%, in water with a high amount of debris [3]. The average of correct

species identification rates below 73.7% [4]. Another issue related to the man-

ual assessment of phytoplankton studies is the frequent lack of inter-expert

agreement as well as discrepancies between criteria of the same expert in dif-

ferent time frames, species-wise, etc. It has been reported that the coefficient

of variation between expert cell counts ranges from 8% to 57% depending on

the target species [5]. The high disagreement on some species is explained by

the varying complexity of the specimens, which is severely alleviated when ob-

jective protocols and criteria are established among experts. In other work [6],

it was reported that trained specialists, or ”book experts”, can achieve a self-

consistency of 67-83% in the species identification, and inter-expert agreement

as low as 43%. However, when the same task was evaluated on experienced

taxonomists, who routinely carry out field studies, the intra-expert agreement

rises to 94-99%, and the agreement among peers rises to 84-95% [6]. Again, in

this case, the performance variability depends on the complexity of the specific

target species. These studies evidence, on one hand, that the phytoplankton

identification and analysis is a complex task that requires extensive experience

and knowledge. While, on the other hand, the use of systematic approaches

helps both to improve the repeatability and the accuracy of the analyses. Thus,

these analysis can certainly take advantage of automated computer-based ap-

proaches, that can be systematically applied without relying on experienced

taxonomists. Moreover, the human performance is also influenced by psy-

chological factors, like boredom and fatigue, derived from the repetitive and

tedious manual work of identifying and sorting organisms under microscopes.
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Therefore, plankton studies would benefit from available automatic approaches

to simplify and alleviate the workload of the researchers along with the po-

tential improvement of the results. Also, the continuous monitoring of water

sources further motivates the necessity of consistent and reliable systems. The

current dependency on experienced taxonomists for reliable manual analy-

ses usually derives in an insufficient coverage of these monitoring studies to

effectively prevent public health issues derived from toxic blooms [7].

Regarding computational proposals, partially automated analysis procedures

have already been developed. We can classify the different developed ap-

proaches into two main separate groups: sample gathering and detection of

specimens, and species identification approaches.

The sample gathering group is focused on building contraptions that are able

to gather water data by themselves. The main disadvantage of these methods

is their cost, size and the fact that most of them do not save the water samples,

just images. The images also tend to be of less quality than those produced

by a conventional microscope. Representative examples of these devices are

Video Plankton Recorder (VPR) [8–10], Shadowed Image Particle Profiling

and Evaluation Recorder (SIPPER) [11], FlowCytobot [12] and KRIP [13].

FlowCam [14] stands out as the most widely used device, working differently

than the rest of the previously cited methods. In particular, it requires the

gathering of the water as performed with the laboratory equipment. It pro-

duces higher quality images when compared with other related methods. This

method simplifies the capturing process by passing specimens one at a time

through a small tube. It, however, requires different flow cells depending on

the size of the analysed specimens [15]. Overall, the algorithms that are used

by these methods to detect the different specimens in the images are highly
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(a) (b)

Fig. 1. Input images.

dependent on the specific acquisition features of each particular device and

the specific target subset of phytoplankton species.

While microscopes are widely available, these automated imaging systems

are expensive and often require other equipment to work, like a boat to tow

them. Our proposed methodology uses, as input, microscopy images taken with

a regular light microscope and, therefore, should be more affordable. Some

examples of input images can be seen in Figure 1. These images include many

specimens, as well as many spurious objects like mineral particles, organic

debris or zooplankton. These objects may look very similar to phytoplankton

specimens in many ways, so they are not easily discernible in many cases.

Thus, the method intends on separating these spurious elements from the

real phytoplankton specimens and later classifying the true specimens of the

relevant species from the rest.

In terms of the detection step, there are few available approaches. Some of

these approaches take regular microscopy images either containing a single

or multiple specimens, as input [16,17] while other approaches, like the al-

gorithm used in the automatic sampler KRIP [13], take the images from a

gathering device. The output usually consists of segmentation masks for each
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individual specimen. In the work of Zheng et al. [16], saliency object detection

is used to distinguish specimens from the background in microscopy images

containing only a single species. Verikas et al. [17] are able to detect round

phytoplankton species through phase congruency and, then, refine these detec-

tions using ensemble classifiers. The algorithm used in the automatic sampler

KRIP [13] applies a Sobel transformation as well as a threshold and morpho-

logical operators to the images captured by this device in order to separate

the phytoplankton.

With respect to the species identification approaches, they are usually focused

on classifying the single specimen images obtained by the previous automatic

image acquisition methods. The input images of the existent approaches usu-

ally consist of the single-specimen images of marine phytoplankton available

in several public datasets [18,19]. Thus the existent methods are focused on

the particular features and characteristics of the images obtained using the

automatic devices, as well as on those of the target species from marine phy-

toplankton. In this regard, it should be noticed that marine phytoplankton

biodiversity is much lower than the fresh water one. Regardless of this, the

prior approaches have explored the extraction of a wide variety of features from

these images, as well as the use of several machine learning techniques [20–

23]. Thus, as reference, the works in the state of the art have approached the

issue with techniques like Support Vector Machines (SVM) [24–26], k Nearest

Neighbour [20], Artificial Neural Networks (ANN) [27–29] or Deep Learning

[21,30–33].

Specifically, among the Deep Learning methods used for this task, some ap-

proaches extract deep features using pretrained CNNs. In the work of Oren-

stein and Beijbom [30], the chosen CNN is AlexNet [34]. Several configura-
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tions are tested, including using the pretrained network as is, fine-tunning

it, or training from scratch. In the work of González et al. [33], the selected

network is resNet [35], it was only tested with pretraining. In both works, the

pretraining is achieved using the ImageNet dataset [36].

There are other techniques, like those based on chlorophyll fluorescence analy-

sis, following a different approach to obtain an approximate count estimation

of phytoplanktae. In this case, they cannot classify species as they only detect

the amount of chlorophyll in water through reflected light. These methods

are not particularly accurate as the readings can be misleading since many

factors are able to affect them. Some of these factors include varying pigment

cell content, cell size, cell agglomeration, water turbidity, temperature, etc.

[1]. However, they prove to be useful for water potability testing despite their

numerous flaws [37]. Thus, fluorescence can be used as a complement to other

imaging techniques [16,38,39], making the differentiation of phytoplankton

and non-phytoplankton specimens easier [40]. That is, phytoplankton con-

tains chlorophyll, thus reflecting light while the rest of objects and artefacts

do not [22].

Overall, the accurate detection and segmentation of phytoplankton specimens

in images represents a challenging task. Phytoplankton presents significant

intra-species morphological variance, that is, vast differences between organ-

isms of the same species. This, coupled with the high degree of morphological

overlapping between species (specimens from different species are very simi-

lar despite belonging to separate species), makes the classification task very

challenging. Morphological differences between individuals may not only be in

shape but also in colour or texture, depending on the many variables that can

affect the different species. Thus, many of the systems that were developed
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over the years perform partial and reduced analysis as each one is specialised

in a subset of plankton. The changes in size and characteristics precludes, cur-

rently, from developing a generalist system that can classify all the plankton

types [41]. Most of the current phytoplankton species classification systems

are centred on target marine species since they are of special interest not only

for the environment but also for food production as red tides can contam-

inate seafood. Despite its importance, freshwater phytoplankton analysis is

still unexplored and many places still lack the capability to carry out such

analysis.

To date, regular microscopy images are not usually considered for automatic

analysis approaches due to the requirement of a biologist to manually cap-

ture them. These images, however, offer much higher quality than most of

the automatic approaches. These images are also more affordable, as regular

microscopes equipped with digital cameras are available in most of the lab-

oratories. To the best of our knowledge, only some few works in the state

of the art have focused on the automatic analysis of regular microscope im-

ages [40,42,43]. Planktovision [40] and PLASA [42] propose to use fluorescence

imaging in combination with brightfield images of multiple focal points. Fur-

thermore, PLASA included input images with multiple magnifications as well.

In order to successfully apply this complex imaging protocol, these two meth-

ods propose to use computerised microscopes during the imaging process. In

[43], instead, a manually adjusted imaging procedure is used to ensure that

each specimen is imaged with the appropriate magnification and focal point.

However, this requires that an experienced taxonomist operates the micro-

scope. While this approach may be suitable for automating the tedious cell

counting and specimen measurement procedures, it is not suitable for releasing

the expert from the imaging, detection and identification tasks.
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In contrast to these previous approaches, in this work, we propose to use a

systematic imaging approach using a fixed focal point and magnification level.

This ensures that the imaging can be performed by a laboratory technician,

not necessarily experienced in phytoplankton identification, as the detection

and identification tasks are completely delegated to the automatic system.

Additionally, the proposed system aims at achieving a fully automatic de-

tection and species classification of freshwater phytoplankton specimens us-

ing these regular microscopy images. In particular, the novel method is able

to detect and, posteriorly, segment the existent phytoplankton specimens in

multi-specimen images and it is able to merge sparse appearance specimens,

as these are common for some freshwater phytoplankton species. Furthermore,

it differentiates true phytoplankton from other similar objects like minerals,

bubbles, zooplankton or detritus of other kinds. Finally, the system is capable

of classifying the identified phytoplankton species into specific target species

of interest.

It should be noted that, contrary to most of the state of the art works, our

system targets fresh water phytoplankton. When compared to salt water, fresh

water has both more biodiversity in terms of species and a higher concentration

of debris, significantly complicating both the detection and classification. On

the same note, state of the art approaches usually focus on single-specimen-

images captured by in-flow cytometry. Instead, we use regular microscope

images, with fixed focal point and magnification, in which several specimens

and debris appear, without needing an expert to select the relevant images

and fine-tune the acquisition. In this sense, the proposed method has been

specifically designed for microscopy images taking into account the particular

features and caveats of these images.
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This manuscript is organised as follows: Section 2 presents the proposed method-

ology and details its main features. Next, Section 3 exposes the testing method-

ology, describing the used dataset and the different combinations of classifiers

and features. Section 4 describes and discusses the results that were obtained

and the main challenges of this work. Finally, Section 5 includes the con-

clusions about the proposed system as well as some potential future lines of

work.

2 Methodology

This proposed system is divided into several steps, each one with an specific

purpose, graphically illustrated in Figure 2. First, the foreground-background

stage binarizes the input image into two separate classes corresponding to the

foreground and the background. The objective is that foreground class includes

all the potential target specimens. Next, every possible candidate region from

the foreground is selected and analysed, discarding some artefacts through the

use of domain-related criteria. To improve the results, a merging algorithm is

proposed to fuse sparse individuals as well as colonies into single detections.

This is a necessary step because several species present a sparse appearance,

as the physical links between their parts are not visually evident in the mi-

croscopy images. Subsequently, the remaining detections are differentiated as

true phytoplankton specimens and other objects using a learning-based ap-

proach that exploits representative complementary features. Finally, a similar

classification strategy is used to identify several target species among the rest

of phytoplankton.

It should be noted that every component in this pipeline has been included
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Fig. 2. Main steps of the proposed methodology.

and designed according to the intrinsic features of the microscopy images. For

instance, methods in the foreground/background separation are specifically

tuned for high recall rates. Another example of this is the colony merging

step, also created with high recall as the objective, which addresses the com-

mon issue of sparse appearance of specimens from several species of freshwater

phytoplankton. Finally, the explored learning strategies and features are in-

tended to capture the appearance and variability, inter- and intra-class, of the

target phytoplankton taxa, as well as the diversity of non target objects in

the image, also with high recall and precision in mind.

2.1 Foreground-background separation

This first step takes the input microscopy images and separates the foreground

from the water background. This step is designed to provide a high recall. In

this sense, the objective is to retrieve all the relevant foreground, even if some

spurious elements like debris or artefacts are included in it. In particular, the

proposed algorithm splits the image into its three RGB channels, threshold-

ing each one of them separately. The results of each one of the channels are

later combined through an OR operator to preserve the highest amount of

13



(a) (b)

Fig. 3. Foreground-background separation. (a) Original image. (b) Binary fore-
ground-background separation map.

information among the three channels.

In this case, an adaptive Gaussian threshold [44] is used as it allows to deal

with the uneven illumination of the images. This algorithm computes the

threshold for each image position using a Gaussian-weighted local average mi-

nus a fixed value C. The spread of the Gaussian windows was set to σ = 75µm,

which is a larger size than all the target specimens. This way, spurious tiny ir-

regularities are not enhanced during the thresholding. The offset is empirically

set to C = 8% of the dynamic range. The output of this step, illustrated in the

example of Figure 3, is a binary map which separates the target foreground

from the rest of the background.

2.2 Specimen candidate detection

Every connected component from the binary foreground map is identified and

analysed separately. To do so, we employ the Suzuki and Abe’s algorithm [45].

This algorithm is able to detect the individual connected regions by tracing

their contours. Each separated contour is considered a specimen candidate but

only their external contour is taken into account, that is, their internal holes
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are filled in.

Once the primary selection of the specimen candidate detections is done, the

results are cleaned up, eliminating the candidates that are too small to be

phytoplankton. We consider expert knowledge about the phytoplankton size

to perform this filtering. Therefore, all the specimens smaller than 5µm2 are

discarded. The parameters of the algorithm are derived accordingly to the

magnification and resolution of the images, which is assumed to be fixed and

known beforehand. The specimens that are in contact with the borders of

the image are also discarded. This is based on the notion that the experts

commonly ignore partial specimens during the manual analysis.

2.3 Sparse specimen and colony merging

The previous steps are able to produce accurate segmentations for most of the

specimens in the analysed images. However, sparse specimens, which physical

links are not visible in the microscopy images, are usually detected as separate

specimens. The same happens with the colonies, which are formed by speci-

mens of the same species, but grouped together. To address these situations, a

colony merging step, that fuses nearby detections with similar colour, is pro-

posed. An example of sparse specimen being detected as several independent

candidates is show in Figure 4.

The proposed algorithm is based on the similarity of the candidates. To anal-

yse this similarity between neighbouring detections, we first create a graph

of all the detections employing a Delaunay Triangulation [46,47] of the candi-

date detection centroids. An example of the result of a Delaunay Triangulation

can be seen in Figure 5. Next, the method measures the similarity between
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Fig. 4. Sparse specimen detected in fragments.

neighbouring detections based on their colour and distance. If the Euclidean

distance between the detection or the distance between the colours of the can-

didates are above a certain threshold, the link is pruned. Those thresholds are

empirically selected corresponding to 105 µm in distance and 15% of dynamic

range per RGB channel. The colour values for the detections are computed

using the average of the RGB pixels inside each candidate segmentation mask.

This prevents the colour distribution from being skewed by the background.

Once all the links have been explored, the nodes that remain connected are

fused into single candidates. Figure 6 shows the final detection result of the

fusion step over the previous presented example of Figures 4 and 5.

2.4 Classification stages

The two last steps of the methodology share the objective of separating the

previously identified specimens in different groups. Firstly, the phytoplank-

ton detection stage separates true phytoplankton specimens from the non-

phytoplankton elements that are present in the images. These non-phytoplankton
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Fig. 5. Example of a Delaunay Triangulation linking detections.

Fig. 6. Result of the fusion step over sparse specimen from Figures 4 and 5.

elements include, but are not limited to, zooplankton, garbage and minerals,

which can be, in many cases, very similar to phytoplankton. Next, from the

filtered true phytoplankton specimens, the target species classification stage

groups the candidates belonging to the species of interest.

Given the huge amount of potential species to be identified, in this work, we

targeted a set of relevant and representative ones. In particular, we selected

a couple of frequent species that produce toxins and a harmless one. The
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(a) (b) (c)

Fig. 7. Examples of relevant species that are classified separately. Images not to
scale. (a) Woronichinia naegeliana. (b) Anabaena spiroides. (c) Dinobryon sp.

selected species subset is representative of the complexity of phytoplankton

species identification. The chosen species, with examples depicted in Figure 7,

are:

• Woronichinia naegeliana : The most representative species that pro-

duces toxins, which is very frequent in the analysed samples. It represents

the majority of the biomass of toxin-producing cyanobacteria.

• Anabaena spiroides : Another toxic species, characterised by their elon-

gated shape and differences in size. It is also numerous in the water samples

and has several challenging image features to analyse.

• Dinobryon sociale : This is a harmless species, that is, it does not pro-

duce toxins. However, due to its characteristics like very wide morphological

differences between specimens as well as the fact that it can possess a trans-

parent capsule make this species ideal to benchmark the system.

Both of these steps share the same characteristics as the phytoplankton can

be distinguished by its texture, colour or shape. Therefore, we designed both

steps taking it into account. In order to asses how each image feature is able

to represent the different groupings and impact the overall classification we

designed both steps using the same features. In particular, we use texture and

colour features using a Bag of Visual Words (BoVW) model [48–50] as well
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as deep features from a pre-trained deep convolutional neural network [51].

These features exploit the most representative differences among the different

phytoplankton species as well as the spurious objects.

The features are extracted from the image positions obtained in the previous

steps. The bounding boxes are, however, enlarged by 10% in each direction

to enclose more contextual information. It should also be noted that, for each

feature, a masked and unmasked version are tested. The unmasked version

includes all the information within the bounding box whereas the masked ver-

sion uses the segmentation map to extract only the information belonging to

the specimen, discarding the background. While the masked approach may

facilitate the work of a classifier by only providing the internal specimen ap-

pearance information, it avoids some potentially relevant information derived

from the external context (like shape information), therefore testing is needed

to see which hypothesis is correct.

The previously described features are combined under different configurations

and settings to measure their suitability and impact in the classification pro-

cess of both designed steps. Each feature is tested alone and, then, each clas-

sical feature is tested in conjunction with deep features separately. Finally the

three separate features are tested together. For this two different methods will

be tested, using a single bag of visual words for each, colour and texture de-

scriptors, and using separate bags. Separate bags of words will result in more

features and therefore more information. On the other hand, using a single

bag would create a feature vector containing information about both charac-

teristics which could prove more information-rich than each one separately, as

they are complementary.

These different combinations are tested for both masked and unmasked fea-
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Fig. 8. Pipeline used for the classification steps showing the different possible com-
bination of features.

tures. It should also be noted that, several free parameters are left to be se-

lected empirically during the experimentation, especially regarding the Gabor

filters used in texture descriptors. A visual representation of the novel pro-

posed pipeline can be seen in Figure 8, representing how the different features

are specifically combined.

In terms of classifiers, we test each feature combination with Random Forest

(RF) and Support Vector Machine (SVM) classifiers.

2.4.1 Colour Features

The colour features are obtained using a BoVW model. This model is able

to represent the contents of an image region through histograms of visual

patterns, called words. These visual words are local patterns defined by specific

20



combinations of reference visual features. The specific combinations that define

the visual words are learned using a clustering algorithm, k-means [52] in this

work, that are later stored into a dictionary. This dictionary is used as reference

to compute the histograms.

The colour features are obtained from the RGB values of each image posi-

tion. The RGB values from all the training set boxes are gathered together

and clustered, in this case with k−means, using a specific number of cluster

centres, Kc. The number of centres is left as a free parameter during our exper-

imentation to be empirically selected. The resulting histogram over the visual

words in the dictionary would represent, in this case, the distribution of colours

within the bounding box. It is important to mention that the colours can also

include the background, therefore some implicit shape features should also be

present as the histograms represent the foreground-background proportions of

each box.

2.4.2 Texture Features

The base texture features are extracted using the complex responses to a Ga-

bor filter [53,54] bank for each image position in combination with the BoVW

model described above. The visual words produced by the BoVW model would

represent in this case local shape patterns. The histograms of the patterns for

the whole image regions represent texture in terms of the distribution of local

shape. The used filter bank consists of a series of Gabor filters of a single scale

(central frequency) and bandwidth with a varying number of orientations.

The real and imaginary responses of these filters are taken into account. The

complex response for each filter, given its orientation θ, is
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g(x, y; θ) =
f 2
c

πσ2
efc(

x′2y′2

σ2
)e−j2πfcx

′
, (1)

where fc denotes the central frequency of the filters, j denotes the imagi-

nary unit and σ controls the spread of the isotropic envelope. The x′ and y′

coordinates are a rotated space according to

x′ = x cos θ + y sin θ,

y′ = −x sin θ + y cos θ,
(2)

where θ denotes the rotation angle. The σ value is computed depending on

the central frequency fc according to

σ =
1

πfc
·
√

ln 2

2
· 2B + 1

2B − 1
(3)

where B denotes the filters bandwidth in octaves.

The bank of filters is composed of No filters with θ ∈ {θ, π/No, . . . , π(No −

1)/No)}, corresponding to No evenly distributed orientations. This results in

a total of 2 · No responses for each image position, as we consider both real

and imaginary responses for the filters.

The responses to the filter banks are processed, like the colour features, by

the BoVW model. It should be noted that the image is converted to grayscale

for this procedure and the Gabor filer responses are computed over the whole

image rather than by individual bounding boxes to minimise potential aliasing

effects due to the bounding box boundaries.
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The central frequency fc, the frequency bandwidth B, the number of orien-

tations No and the number of k-means clusters kt are left as free parameters

and their values are selected empirically during the experiments.

2.4.3 Deep Features

To obtain Deep Features, CNNs are employed bypassing their classification

layers. These features can then be used with some classifier to produce the

desired classification. The main advantage of this approach is the use of pre-

trained networks, which are widely available. These networks have already

learned general features without the need to expend a long time training them.

In this work, we use a resNet [35], specifically the resNet50 version, in order to

extract the features from each image position. The particular network that we

used was pretrained in ImageNet [36] and was not finetuned any further. This

pretraining should allow the network to obtain relevant features from our set

of images despite having never seen it. In this work, we take the deep features

from the global average pooling layer, just before the classification layers of

the network. This results in a vector with 2048 components for each specimen

image.

2.4.4 Classifiers

Random Forest is a suitable classifier for this task since it performs well when

there are many features and it is also able to develop complex classification

boundaries. This method combines multiple decision trees in a process called

bagging. This process creates trees independently and combines their classi-

fication through different methods like voting. Each tree only receives a ran-

domly selected subset of features. The combination of these trees allows to
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create a strong classifier from many weaker ones.

Support Vectors Machines separate the data arranged in an n-dimensional

space (each dimension is component of the feature vector) by using hyper-

planes that maximise the classification margin. This method is suitable for

our classification since varying the different parameters of each kernel allows

to obtain complex classification boundaries which may be needed for this task.

SVMs perform well for tasks involving big dimensional spaces although they

can also suffer the curse of dimensionality [55].

3 Experimental Setup

3.1 Dataset

The proposed system is trained, validated and tested using 293 multi-specimen

microscopy images captured from several water samples belonging to different

periods of time. This is done with the intention of capturing a representative

amount of species as their concentration varies influenced by many factors like

seasonality.

The images produced by the digital microscope were captured at 10× of mag-

nification, which provided a resolution of approximately 0.67 µm per pixel.

Representative examples of images can be seen in Figure 1. The used dataset

consists in 293 images that contain 1611 phytoplankton specimens from a large

variety of species. The images also contain a significant amount of spurious

objects like zooplankton, minerals or garbage.

For the first steps, detection and merging of colonies, we selected random
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subset of 50 images to act as the training set. The rest are left in the test set

to evaluate the algorithms.

In the classification steps, the multi-specimen images were randomly split 80-

20, with 80% of the images being dedicated to the training and validation

using a 10-fold crossvalidation with grid search to obtain the best parameters

with which the system is then retrained. The remaining 20% of the images

was used as the test set.

The ground truth consists of bounding boxes that enclose the phytoplankton

specimens, with an associated label identifying the species. An experienced

taxonomist manually marked and identified all the target specimens in the

image dataset. The expert consulted other peers in difficult or challenging

cases in order to ensure high quality tagging.

During the species classification step, the chosen set of target species are

classified against a general group, ”others”, which encompasses the rest of

species that also appear in the dataset but are not specifically considered

for classification. Therefore, the resulting classifier has four different classes

in which to group the images. Overall, the dataset employed consists of 175

specimens of W. naegeliana, 41 of A. spiroides and 202 of D. sociale. The rest,

425 specimens, constitute the species grouped under the Other category.

3.2 Evaluation metrics

3.2.1 Specimen detection and merging

In order to evaluate the performance of the first steps, including specimen

detection and colony merging we need to observe the overlapping between the
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bounding boxes marked by the expert and the ones detected by our system.

As gold standard, to count as positives, the detected bounding boxes should

enclose at least 50% of the specimens’ area. The metric used to evaluate the

specimen detection step is False Negative Rate (FNR) as the most important

goal of this step is to capture as many specimens as possible.

The sparse specimen and colony merging step is evaluated by comparing the

amounts of over and under-segmentation before and after its application.

3.2.2 Phytoplankton identification

The phytoplankton identification is evaluated with precision at 90% or 95%

of recall. This metric is chosen because our intention is to preserve as many

true specimens as possible even if that means including some false positives.

Precision Recall (PR) curves are also used to illustrate the performance of this

step. PR curves are used instead of Receiver Operating Characteristic (ROC)

curves due to the class imbalance and the specific relevance of the positive

class in the system’s goals.

3.2.3 Target species classification

This step is proposed as a multi-class classification problem. The main metrics

to evaluate the performance of this step are the overall classification accuracy

and the F1-Score. Additionally, precision, recall, F1-Score and accuracy are

computed for every class. These metrics allow to quantify how the system

performs individually for each species and, therefore, measure the suitability

for each one of them separately.
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Parameter Values

# of estimators 10, 50, 100, 500, 1000

Split Criterion gini, entropy

min. samples per split 2, 5, 8, 10

min. samples per leaf 1, 2, 4

max features # of input features

Table 1
Tested hyperparameters during Grid Search for RF.

Parameter Values

C 0.001, 0.01, 0.1, 1, 5, 10

Kernel linear, polynomial, rbf

Gamma (only polynomial) 0.1, 0.01, 0.001, 0.0001

Table 2
Tested hyperparameters during Grid Search for SVM.

3.3 Classifier parameters

The SVM and Random Forest hyperparameters are optimised using a grid

search each of the classification cases.

For the Random Forest Grid search the candidate parameters to be tested and

chosen by the system are represented in Table 1.

For the SVM Grid search the candidate parameters to be tested and chosen

by the system are represented in Table 2.

3.4 Feature parameters

Both the Gabor filter bank and colour features are subject to the tuning

of several parameters. The best set of parameters for these features will be

selected employing an exhaustive grid search over all the possibilities using the
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Parameter Values

Bandwidth 2, 1.5 ,1 , 0.5

Frequency
0.5, 0.3535, 0.25, 0.177, 0.125, 0.088, 0.0625,

0.0442, 0.03125, 0.0221, 0.0156, 0.01105

Orientations 4, 8

Table 3
Tested parameters for the Gabor filter bank.

phytoplankton identification set, that is, the one where true phytoplankton

specimens are separated from spurious objects.

The parameter for the set of Gabor filter banks to be tested is represented in

Table 3.

For the bag of visual words, the free parameter to be selected during experi-

mentation is the number of bins of the histograms and the number of words

to be clustered using k-means. Both of these are made to coincide so, overall,

the BoVW model only has a single free parameter. The values tested for this

parameter are: 100, 50, 20, 10, 8, 5, 3, 2.

The best parameters obtained for these features in the phytoplankton identi-

fication task are used in the species classification step. This means that the

hand-crafted features will be shared between tests as only a single set of pa-

rameters will be used in both classification steps.

The best results for each of these two features can then be combined with

Deep Features to asses their impact on the robust features from a CNN. This

would provide us with results on whether hand-crafted classical features can

improve the results of a CNN’s deep features.
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4 Results and Discussion

4.1 Specimen detection

The proposed method produced a FNR of 0.4% in the test set. This corre-

sponds to just 5 missed specimens among the 1249 that are included in the test

set for this step. The low FNR meant that several false positives are included,

a total of 1136, which would be later discarded. Considering the high degree

of complexity, we can consider the phytoplankton detection to be accurate

despite the false positive rates that it detects. This is because the system was

designed at this stage to provide the highest possible phytoplankton recall,

allowing the following steps to reduce the false positives.

4.2 Colony merging

Colony merging is evaluated comparing over and undersegmentation met-

rics before and after the merging step. Before the colony merging algorithm,

21.93% of candidates are oversegmented, mainly due to the presence of sparse

specimens. On the other hand, 8.57% of candidates are undersegmented, due

to the overlapping of specimens. After the merging stage, the oversegmen-

tation was reduced to a 3.76% while the undersegmentation increased to a

17.77%. Therefore, the merging process presents an adequate impact in the

ratios as it improves the oversegmentation reducing it by a 18.17%, while only

increasing the undersegmentation by a 9.2%.
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4.3 Phytoplankton identification

The best set of parameters for the texture features using Random Forest are

100 bins for the BoVW model and a bandwidth of 1.5 octaves, a frequency

of 0.25 px−1 and 8 orientations for the Gabor filter bank. The best result for

these features is a 77.35% of precision at 90% of recall, which was obtained

using masked features. Using all the information, that is, unmasked the result

is 75.34%. The best parameters for colour features using RF are 100 bins for

the BoVW model, which results in a top precision of 77.86% at 90% of recall

with, again, masked features. The unmasked version reported a significantly

lower precision, 70.32% at 90% of recall.

The best set of parameters for texture features using SVM as the classifier

are 3 bins of the BoVW and, for the Gabor filter bank a bandwidth of 1.5, a

frequency of 0.0312 px−1 and 4 orientations. This combination of parameters

for the texture features, in the case of SVM, report a precision of 69.89%

at 90% of recall while unmasked. For this combination, the masked version

resulted in 67.46% of precision at 90% of recall. In terms of the colour features

for the SVM, the number of bins for the BoVW is 10, which results in top

performance 68.25% of precision at 90% of recall, in this case masking the

features. Using the same feature parameters for colour, the unmasked version

reports a precision of 62.38% at 90% of recall.

These results illustrate the differences in the amount of features that each

classifier is able to extract the most information from. Random Forest is most

robust when using many features, in this case, the maximum for both colour

and texture as they both use 100 bins. On the other hand, SVM tends to use

lower amounts of features, in this case 3 bins in texture and 10 in colour, both
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RF SVM

Prec. 90% Recall Prec. 95% Recall Prec. 90% Recall Prec. 95% Recall

Gabor Filters 75.34% 65.34% 69.89% 63.65%

Colour Features 70.32% 62.99% 62.38% 46.32%

Deep Features 73.43% 67.13% 84.07% 71.02%

Gabor + DF 77.86% 75.58% 84.07% 71.02%

Colour + DF 81.13% 77.78% 84.07% 71.02%

Gabor + Colour +DF 81.70% 78.78% 84.07% 71.02%

Gabor+Colour(same bag)+DF 77.86% 73.58% 84.07% 71.02%

Table 4
Comparison of the different unmasked feature combinations for both classifiers. Best
results are highlighted in bold.

RF SVM

Prec. 90% Recall Prec. 95% Recall Prec. 90% Recall Prec. 95% Recall

Gabor Filters 77.35% 72.28% 67.46% 59.85%

Colour Features 77.86% 62.03% 68.25% 61.11%

Deep Features 67.46% 57.38% 69.06% 54.82%

Gabor + DF 78.92% 71.02% 70.75% 61.72%

Colour + DF 81.13% 77.78% 71.18% 61.72%

Gabor + Colour +DF 78.92% 67.87% 71.18% 61.72%

Gabor+Colour(same bag)+DF 78.93% 75.86% 70.32% 61.72%

Table 5
Comparison of the different masked feature combinations for both classifiers. Best
results are highlighted in bold.

notably smaller than the ones used in RF. A similar point can be made about

Gabor filter orientations as the SVM prefer just 4 when compared to RF that

performs better with 8.

We can see that, in these results, most of the overall best results correspond

to masked features which reveal the importance of giving the classifier only

the relevant information, not skewed by the background. While masking the

features can limit some information, it proved to be beneficial. Except texture

only in the SVM classifier, the rest of the top results use masked features.

The results of the identification of phytoplankton, combining Deep Features

with BoVW features are illustrated in the Tables 4 and 5, complementarily

illustrated in Figures 9 and 10. A comparison between the PR curves for the

best results with each classifier is shown in Figure 11. Finally, representative

examples of this step are shown in Figure 12. These examples were obtained

from the test set and were classified using the best model obtained.
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Fig. 9. Comparison between different classifiers and combinations of unmasked fea-
tures in phytoplankton identification.
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Fig. 10. Comparison between different classifiers and combinations of masked fea-
tures in phytoplankton identification.

Fig. 11. Comparison between the best results for RF (blue) and SVM (orange).

We can see in the provided results that the classification separating phyto-

plankton and spurious objects is successful, despite the complexity of the step
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(a) (b)

(c) (d)

Fig. 12. Representative examples of phytoplankton identification extracted from the
test set. True positives in green, true negatives in blue, false negatives in red and
false positives in magenta.

given the large variability of the large amount of species as well as the hetero-

geneity of the negative class (zooplankton, garbage, minerals, etc.). The top

result using precision at 90% of recall is a SVM that makes use only of Deep

features, resulting in a precision of 84.07%. It should be noted that, in the

case of the SVM, neither Gabor nor colour features increased the precision

any further as the top results stays the same. However, Random Forest did

improve when using both Deep features and classical features, although it did

not reach the performance of the SVM. This is likely due to the low number of

BoVW features when compared to the deep features. While using only colour

features or texture features SVM favoured lower amount of bins than RF.

This means that, when combined with the Deep Features, just 3 components
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RF SVM

Prec. 90% Recall Prec. 95% Recall Prec. 90% Recall Prec. 95% Recall

Gabor+Colour (masked)

and DF (unmasked)
81.13% 77.29% 84.07% 77.02%

Gabor+Colour

(same bag and masked)

and DF (unmasked)

79.46% 74.75% 84.07% 77.02%

Table 6
Combination of best performing features, mixing masked and unmasked.

for texture and/or 10 for colour belong to BoVW features as opposed to 2048

from deep features. This results in these features becoming mostly insignifi-

cant with the SVM classifier due to their low amount when compared with

the deep features.

Considering precision at 95% of recall we obtain a similar high precision,

78.78%, this time using a Random Forest classifier which uses Gabor filter

banks, Deep Features and colour information features. In this case, the texture

and colour features are separated into two bags.

The results also show that masking the deep features reduces the performance

of the system, dropping around a 7% precision for RF and a 15% for SVM. On

the contrary, the BoVW features, often times, perform better being masked.

This motivated some extra tests in which the classical features are masked

while the deep features are left unmasked. They would take the highest per-

forming configuration of each and join them. These results can be seen in Table

6. However, the results do not improve on the previously presented ones, al-

though they come very close in the case of RF and tie in the case of SVM

due to previously explained phenomenon about the irrelevance of hand-crafted

features.

Similarly to the feature masking, joining texture and colour features in the

same BoVW does not improve, most of the times, the results for this phyto-

plankton identification step. The only instance where this happens is using
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RF and masked features, in this case the main difference is at 95% of recall

where both features joined obtain around 7% higher precision. In the rest of

the cases the results were equal or worse combining features.

Overall, we observed that this step is successful in the issue of eliminating

spurious elements from the set of extracted specimens. We have to consider

that the phytoplankton specimens represent a heterogeneous set, complicating

its agglomeration as a single group, and, in many cases, they can be very

similar to the spurious objects. Nevertheless, despite the complexity, this step

showed accurate results even at high levels of recall, which implies few false

negatives, which in turn is the objective of the step.

4.4 Target species classification

The results for the classification of target species are represented in Table 7.

The comparison of results between features can be observed in the graphs

provided in Figures 13 and 14. The overall best results for the classification of

the target species step can be observed in Table 8 and the complete confusion

matrix is shown in Figure 15.
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Fig. 13. Comparison between different classifiers and combinations of unmasked
features in the phytoplankton classification.

In the results for the species classification, we obtain an overall accuracy of

87.50% for all the 4 classes while using a RF classifier with colour and deep
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RF SVM

ACC F1-Score ACC F1-score
U

n
m

as
ke

d

Only Gabor 80.47% 80.84% 63.28% 61.59%

Only Colour 78.91% 79.73% 61.72% 60.44%

Only Deep Features 80.47% 80.71% 81.25% 81.36%

Gabor + DF 82.03% 82.47% 82.03% 82.13%

Colour + DF 76.56% 77.07% 82.03% 82.15%

Gabor + colour + DF 80.47% 80.84% 82.81% 82.91%

Gabor/colour S.B + DF 82.03% 82.48% 82.03% 82.13%

M
as

ke
d

Only Gabor 78.12% 78.12% 59.38% 57.74%

Only Colour 79.69% 80.00% 60.16% 58.57%

Only Deep Features 83.59% 80.00% 85.94% 86.15%

Gabor + DF 76.56% 77.34% 82.03% 82.50%

Colour + DF 87.50% 87.99% 84.38% 84.75%

Gabor + colour + DF 78.91% 79.80% 82.03% 82.50%

Gabor/colour S.B + DF 78.91% 79.80% 82.03% 82.50%

Table 7
Results for the tests in the target phytoplankton species classification expressed in
overall classification accuracy and F1-Score (weighted). S.B. means same bag. Best
result highlighted in bold.

Accuracy Precision Recall F1-Score

W. naegeliana 94.53% 96.43% 81.82% 88.53%

A. spiroides 97.66% 100.0% 57.15% 72.73%

D. sociale 94.53% 88.89% 85.71% 87.27%

Others 88.28% 82.61% 95.00% 88.37%

Table 8
Results of the target species classification step.

features. Adding texture information significantly worsened the result, in spite

of the BoVW configuration. That is, using a single BoVW or two separate

ones did not influence the results positively as both configurations worsen

then results. The top performance with the SVM is obtained with just deep
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Fig. 14. Comparison between different classifiers and combinations of masked fea-
tures in the phytoplankton classification.

Fig. 15. Confusion matrix corresponding to the best results obtained in the target
classification step.

features which results in 85.94% of overall classification accuracy.

In this stage, the results of masking the features are similar to the ones ob-

tained in the phytoplankton detection step. While in that step both classical

features did benefit from using the masks, in this case the results are not equal.

Gabor filters perform better without masking and the same goes for colour

with the SVM. The only instance of the opposite is colour with RF which,

masked, improves around 1%. On the other hand, the situation of deep features
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is reversed, while previously they always performed better being unmasked,

now the better results are obtained by using the segmentation masks.

Like in the previous step, we obtain mixed results in terms of mixing colour

and texture features in the same bag or using two separate ones. While with

masked features both tie, using unmasked features RF performs better using

a single BoVW for both types of data while SVM obtains better results with

two separate bags.

We can see that W. naegeliana provided the best results among the two dan-

gerous species. A. spiroides, on the contrary, shows the lowest recall metric.

This may be due to the fact that while Woronichinias generally present con-

stant shape and colours in the different specimens, while A. spiroides shows

large variations in size, shape and colour. However, despite the larger intr-

aclass variation of A. spiroides there is a lower number of specimens in the

training dataset.

It is important to note the accurate metrics obtained by D. sociale (85.71% of

recall and 88.89% of precision) despite that they also present a large intraclass

variation. This species can appear alone or in groups, with or without trans-

parent capsule, and its nucleus despite often being oval, can take many shapes.

However, D. sociale is the single most abundant species in the dataset. The

results for this species illustrate the generalisation capabilities of the system,

being able to recognise diverse appearances of the target species if sufficiently

represented in the training dataset.

Overall, the performance for the different species is adequate given the high

complexity of the problem and the variety of characteristics (size, shapes, etc.)

that the specimens typically present. This is specially relevant if we take into
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account the amount of work and experience a taxonomist has to endure in

order to obtain comparable results. Some representative examples of the final

classification stage for several images in the test set can be seen in Figure 16.

Finally, we note that one possible limitation of the presented study is that it

does not include a comparison with prior detection and species identification

computational approaches. This, on one hand, is due to the fact that previous

works do not use an imaging protocol that is similar to ours, therefore making

a fair comparison impossible. As reference, regarding the imaging conditions,

Baek et al. [43] use varying magnification levels and focal points depending on

the imaged species and on a specimen basis. This, along with not releasing the

experienced experts from operating the microscope, simplifies the challenges

to be faced by the automatic methods. Instead, Planktovision [40] and PLASA

[42] use input images of multiple focal points, as well as multiple magnification

levels in the case of PLASA, along with fluorescence imaging as complementary

input to simplify the phytoplankton detection methods. On the other hand,

each work considers different target species, which appearance may further

vary depending on the climatic, seasonal and stage of development conditions.

Therefore, even in the case of similar imaging conditions, the direct comparison

of results from different works that do not share the exact same dataset may

result in misleading conclusions. Thus, due to the aforementioned reasons, we

could not include comparison results.

5 Conclusions

In this work, we propose a novel fully automatic methodology for the detec-

tion and taxonomic identification of phytoplankton specimens in regular mi-
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(a) (b)

(c) (d)

Fig. 16. Representative examples of phytoplankton classification into target species
extracted from the test set. Specimens classified as W. naegeliana in red, A. spiroides
in magenta, D. sociale in green and Others in blue.

croscopy images. The main aim is to take advantage of the automatic image

analysis to improve the repeatability and accuracy of freshwater phytoplank-

ton studies, and releasing the experts from tedious and repetitive work, while

using standard laboratory equipment. To that end, the work herein described

approaches the image acquisition with regular microscopes, using a system-

atic protocol that fixes focal point and magnification for the whole analysis.

This, in contrast to prior approaches, can also release the expert taxonomists

from the image acquisition process, but imposes additional challenges to the

computational analysis of the obtained images.

The proposed computational analysis methodology is a complete processing
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pipeline. It takes as input multi-specimen microscope images, then detects,

segments and identifies the specimens that are present on said images. Thus,

this work presents a fully automatic system that processes microscope im-

ages, detecting the various phytoplankton specimens contained in them and

classifying the target species.

The proposed methods include a novel algorithm, proposed to improve the

detections of sparse specimens and colonies, often detected in parts due to

the absence of visually evident links. Also, the classification stages use flexible

feature extraction techniques, based on Bag of Visual Words and deep features

which allowed to be adapted to the various objectives of the pipeline; i.e.

phytoplankton detection and identification.

The experimental results show that the proposed system offers an accurate

and satisfactory performance in the test set for the three main steps which

are segmentation, phytoplankton detection and species classification. From

the total of 1249 phytoplankton specimens in the test set, only 5 are missed.

These detections presented a characteristic oversegmentation due to the ap-

pearance of the sparse specimens. The proposed merging algorithm allowed

to successfully address this issue. Phytoplankton detection, that is, separat-

ing true phytoplankton specimens, yields a performance of 84.07% precision

at 90% of recall. Finally, the target species classification results obtains an

overall accuracy of 87.50%. The levels of recall for each class or species are of

81.82% for W. naegeliana, 57.15% for A. spiroides, 85.71% for D. sociale and

95% for the Other species. These results were achieved thanks to an exhaustive

comparison of several automated feature extraction procedures, which could

be easily adjusted for future goals.

The results prove to be satisfactory in every step, demonstrating good perfor-
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mance despite the inherent difficulties of the process like similarities between

species, high amounts of phytoplankton-like garbage or overlapping specimens.

Overall, we can conclude that the system is able to successfully perform its

task.

Future work includes the extension of the methodology with more sophisti-

cated procedures, like deep learning methods. The current study using classi-

cal machine learning methods allowed to identify the specific requirements for

the detection stage in order to achieve a high precision at high recall, along

with the evidence that the high variability of phytoplankton and non-target

object appearances can take advantage of advanced texture representations

and deep features in the classification stages. Thus, the application of deep

learning methods represent the logical next step for this work. Deep learning

has had success in similar biomedical domains, therefore it should allow to

improve the current methodology. Moreover, it is planned to extend the study

to more target species (even considering marine phytoplankton), and to in-

clude a larger number of water samples labelled by multiple experts to achieve

more reliable performance estimations. This would allow to further improve

the system and extend its ability to detect a wider variety of dangerous species

of phytoplankton with high reliability.

Conflict of interest

The authors declare no conflicts of interest.

42



Acknowledgements

This work is supported by the European Regional Development Fund (ERDF)

of the European Union and Xunta de Galicia through Centro de Investigación

del Sistema Universitario de Galicia, ref. ED431G 2019/01.

References

[1] A. Zamyadi, F. Choo, G. Newcombe, R. Stuetz, R. K. Henderson, A review

of monitoring technologies for real-time management of cyanobacteria: Recent

advances and future direction, TrAC Trends in Analytical Chemistry 85 (2016)

83–96.

[2] H. W. Paerl, V. J. Paul, Climate change: Links to global expansion of harmful

cyanobacteria, Water Research 46 (5) (2012) 1349–1363.

[3] M. R. First, L. A. Drake, Performance of the human ”counting machine”:

Evaluation of manual microscopy for enumerating plankton, Journal of

Plankton Research 34 (12) (2012) 1028–1041.

[4] M. G. Kelly, M. M. Bayer, J. Hürlimann, R. J. Telford, Human error and quality

assurance in diatom analysis, in: H. du Buf, M. M. Bayer (Eds.), Automatic

Diatom Identification, Vol. 51 of Series in Machine Perception and Artificial

Intelligence, World Scientific, 2002, pp. 75–91.

[5] K. Vuorio, L. Lepistoe, A.-L. Holopainen, Intercalibrations of freshwater

phytoplankton analyses, Boreal Environment Research 12 (2007) 561–569.

[6] P. Culverhouse, W. R, B. Reguera, H. V, S. González-Gil, Do experts make
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Asencio, S. M. Méndez, M. Vargas, N. F. Chow-Wong, L. R. Valerio-Gonzalez,

H. Enevoldsen, M.-Y. Dechraoui Bottein, Addressing the problem of harmful

algal blooms in latin america and the caribbean- a regional network for early

warning and response, Frontiers in Marine Science 5 (2018) 409.

[8] C. Davis, S. Gallager, M. Berman, L. Haury, J. R. Strickler, The video plankton

recorder (vpr): Design and initial results, Arch. Hydrobiol. Beih. Ergebn.

Limnol. 36 (1992) 67–81.

[9] C. S. Davis, S. M. Gallager, M. Marra, W. Kenneth Stewart, Rapid visualization

of plankton abundance and taxonomic composition using the Video Plankton

Recorder, Deep Sea Research Part II: Topical Studies in Oceanography 43 (7)

(1996) 1947–1970.

[10] C. S. Davis, S. M. Gallager, A. R. Solow, Microaggregations of Oceanic Plankton

Observed by Towed Video Microscopy, Science 257 (5067) (1992) 230–232.

[11] S. Samson, T. Hopkins, A. Remsen, L. Langebrake, T. Sutton, J. Patten, A

system for high-resolution zooplankton imaging, Oceanic Engineering, IEEE

Journal of 26 (2001) 671 – 676.

[12] R. Olson, A. Shalapyonok, H. Sosik, An automated submersible flow cytometer

for analyzing pico- and nanophytoplankton: Flowcytobot, Deep Sea Research

Part I: Oceanographic Research Papers 50 (2003) 301–315.

[13] Y. Nagashima, Y. Matsumoto, H. Kondo, H. Yamazaki, S. Gallager,

Development of a realtime plankton image archiver for AUVs, in: 2014

IEEE/OES Autonomous Underwater Vehicles (AUV), 2014, pp. 1–6.

[14] C. Sieracki, M. Sieracki, C. Yentsch, An imaging-in-flow system for automated

analysis of marine microplankton, Marine Ecology-progress Series - MAR

ECOL-PROGR SER 168 (1998) 285–296.

44



[15] N. Barteneva, I. Vorobjev, D. Basiji, A. Lau, T. T.W.Wong, H. C. Shum,

K. Wong, K. Tsia, M. Hildebrand, A. Davis, R. Abbriano, H. Pugsley, J. Traller,

S. Smith, R. Shrestha, O. Cook, E. Sanchez-Alvarez, K. Manandhar-Shrestha,

B. Alderete, Imaging Flow Cytometry: Methods and Protocols, Methods in

Molecular Biology, vol. 1389, Springer, New York, 2016.

[16] H. Zheng, N. Wang, Z. Yu, Z. Gu, B. Zheng, Robust and automatic cell detection

and segmentation from microscopic images of non-setae phytoplankton species,

IET Image Processing 11 (11) (2017) 1077–1085.

[17] A. Verikas, A. Gelzinis, M. Bacauskiene, I. Olenina, S. Olenin, E. Vaiciukynas,

Phase congruency-based detection of circular objects applied to analysis of

phytoplankton images, Pattern Recognition 45 (4) (2012) 1659–1670.

[18] Woods hole oceanographic institution plankton,

https://darchive.mblwhoilibrary.org/handle/1912/7341, accessed: 2020-

07-29.

[19] Kaggle national data science bowl,

https://www.kaggle.com/c/datasciencebowl/data, accessed: 2020-07-29.
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