
Accelerating Binary Biclustering on Platforms

with CUDA-enabled GPUs

Jorge González-Domı́nguez∗, Roberto R. Expósito

Computer Architecture Group, Universidade da Coruña, Campus de A Coruña, 15071 A Coruña, Spain

Abstract

Data mining is nowadays essential in many scientific fields to extract valuable information
from large input datasets and transform it into an understandable structure. For instance,
biclustering techniques are very useful in identifying subsets of two-dimensional data where
both rows and columns are correlated. However, some biclustering techniques have become
extremely time-consuming when processing very large datasets, which nowadays prevents
their use in many areas of research and industry (such as bioinformatics) that have ex-
perienced an explosive growth on the amount of available data. In this work we present
CUBiBit, a tool that accelerates the search for relevant biclusters on binary data by exploit-
ing the computational capabilities of CUDA-enabled GPUs as well as the several CPU cores
available in most current systems. The experimental evaluation has shown that CUBiBit
is up to 116 times faster than the fastest state-of-the-art tool, BiBit, in a system with two
Intel Sandy Bridge processors (16 CPU cores) and three NVIDIA K20 GPUs. CUBiBit is
publicly available to download from https://sourceforge.net/projects/cubibit.

Keywords: Data Mining, Biclustering, CUDA, GPU, Multithreading

1. Introduction

The data analyzed in many scientific areas are often provided in a two-dimensional
way, with information about the magnitude of some attributes (rows) for different samples
(columns). Some examples of such areas are gene expression analyses [25], drug activity [19],
text mining [3], marketing [16], pattern recognition [5], information networks [13], scientific
collaborations [30], analysis of sensor data [20], or social networks [21]. The first step in
order to analyze this data usually consists in applying data mining techniques in order to
find relevant patterns. The most common data mining approach is probably clustering,
which has been applied for decades in order to identify groups of attributes that share
certain relationships [14]. However, traditional clustering fails when trying to find patterns

∗Corresponding author
Email addresses: jgonzalezd@udc.es (Jorge González-Domı́nguez), rreye@udc.es (Roberto R.

Expósito)

Preprint submitted to Information Sciences April 30, 2018

ACCEPTED VERSION
© 2018 Elsevier B.V. All rights reserved. This manuscript version is made available under the CC-BY-NC-ND 4.0
license https://creativecommons.org/licenses/bync-nd/4.0/. This version of the article has been accepted for
publication in Information Sciences. The Version of Record is available online at https://doi.org/10.1016/
j.ins.2018.05.025

https://sourceforge.net/projects/cubibit

among attributes that are only valid for some samples, as usually happens in gene expression
analyses. Biclustering techniques are gaining increasing attention over those kind of scenarios
as they search for subsets of attributes that are only similar for a subset of samples [26].
Biclusters are represented as two-dimensional submatrices of the original input dataset.

Many alternatives have been designed for biclustering [6], each with different advantages
and drawbacks depending on the characteristics of the input datasets. In this work we will
focus on those scenarios where the value for each attribute and sample is binary (zero or
one). These types of datasets are present on several fields such as gene expression anal-
yses [10] (representing whether a gene is differentially expressed in an individual or not),
text mining [22] (each value equal to one indicates that a certain word is included in a text)
or marketing [16] (values are one when a customer buys a certain product). In these sce-
narios the applications can take advantage of the special characteristics of binary datasets
to provide relevant biclusters in lower runtime than generic counterparts [27, 29, 8, 15].
Furthermore, a recent experimental evaluation of several biclustering tools using gene ex-
pression data has shown that binary-based approaches can also be useful for quantitative
data if previously applying a binary discretization [25].

Despite the performance improvement obtained by those tools that are completely fo-
cused on binary biclustering, its computational cost is still prohibitive for large datasets.
Scientists could take advantage of High Performance Computing (HPC) architecture in or-
der to accelerate the biclustering procedure. This paper presents CUBiBit, an application
that accelerates the search for binary biclusters in systems with CUDA-enabled GPUs. It is
implemented following a hybrid parallel approach that uses CUDA and the multithreading
support of C++11 so that: 1) it offers multi-GPU support; and 2) not only the GPUs but
also several CPU cores collaborate in the task of finding the biclusters.

The rest of the paper is organized as follows. Section 2 summarizes the related work and
the state of the art. Section 3 describes the implementation of our parallel tool. Runtime
performance is evaluated and compared in Section 4. Finally, Section 5 concludes the paper
and proposes future work.

2. Related Work

The use of HPC facilities in order to accelerate data mining applications is becoming
frequent due to the continue increase of dataset sizes. Among the different HPC approaches,
acceleration on GPUs is quite popular. These architectures provide computing power that
can be equivalent to a medium-sized supercomputer, which is far more costly and thus
less accessible to many researchers or scientists. GPU versions of some popular data min-
ing algorithms have been previously implemented, such as association rule mining [7, 9],
classification decision trees [11, 12], feature selection [28] or clustering [17, 4].

In literature there are already some previous works that use GPUs for biclustering. Con-
cretely, a GPU version of the geometric biclustering algorithm was satisfactorily applied to
find the common patterns of microarray data for neural processing [18], while an OpenCL
implementation of a method based on Pearson’s correlation can use different hardware accel-
erators to speed up the biclustering of microarray data too [24]. Nevertheless, none of these

2

1 0 1 0 1
1 1 1 0 0
1 1 1 0 1
1 1 1 1 0
0 0 0 1 1

Table 1: Example of a binary matrix with one maximal bicluster.

works are focused on binary data, include multi-GPU or multithreading support and their
resulting codes are not publicly available for their use. The only parallel implementation for
binary biclustering currently available was developed with the MapReduce approach [23],
thus its target HPC facility is completely different to that of CUBiBit. Therefore, up to
our knowledge, CUBiBit is the first available tool for the biclustering of binary data on
multi-GPU platforms. GPUs have been efficiently employed to accelerate other bit-wise
algorithms but not for biclustering [1, 2, 31].

As mentioned in the previous section, several biclustering approaches have been suggested
to deal with binary two-dimensional matrices, Bimax [27] being probably the most commonly
used one. CUBiBit is based on a bit-wise representation already present in BiBit [29], which
makes these tools faster thanks to efficiently using Boolean algebra operations. Moreover, a
recent review of 17 available biclustering methods [25] has proved that the BiBit approach
obtains accurate results for gene expression data, especially on cases with many large biclus-
ters. This work also shows that this approach can be useful for quantitative data if applying
a binarization.

3. CUBiBit Implementation

CUBiBit is a CUDA and C++ based application that searches for biclusters in an input
binary matrix M with dimensions m× n. A bicluster consists of a set of rows and columns
(R,C) so that all the values within that subset are one (i.e. ∀i ∈ R, ∀j ∈ C,M [i, j] = 1).
Like the state-of-the-art tools, CUBiBit only searches for maximal biclusters (i.e. those that
are not entirely contained by any other bicluster) with a minimum number of rows (mnr) and
columns (mnc) specified by the user through command line. For instance, if mnr and mnc
are equal to two, the binary matrix illustrated by Table 1 has only one maximal bicluster of
three rows and columns (between the second and fourth rows, and first and third columns)
while it contains several smaller biclusters of two rows/columns.

3.1. Bit-wise Data Structure for Binary Biclusters

A bicluster is a submatrix of the initial dataset where the attributes represented by its
rows and the samples represented by its columns are correlated. CUBiBit employs a bit-wise
approach to indicate which rows and columns are included within the biclusters. Concretely,
each bicluster is completely represented by two arrays:

• The pattern of the rows (rowPat) with m bits. Each bit in position i indicates whether
the value of attribute i is included or not in the bicluster.

3

• The pattern of the columns (colPat) with n bits. The bit in position j is set to one
when that column j is included in the bicluster.

The terms row and attribute will be henceforth used indistinctly (the same applies to
column and sample). Although the basic unit of digital storage is a single bit, the vast
majority of current general-purpose processors use byte-addressable memory architecture.
This means that the size of the C++ boolean datatype must be 1 byte (8 bits). Instead of
using one boolean to represent each bit of the patterns rowPat and colPat (thus wasting
7 bits per byte), CUBiBit encodes them into arrays of 4-byte integers (32 bits). Thus,
the lengths of these arrays are m

32
and n

32
, respectively, with each integer containing the

information of 32 rows or columns. Thanks to the use of patterns we can determine the
rows and columns that belong to a bicluster just with logical bit-wise operations. For
instance, the pattern p of a subset of rows (r1, r2, ..., rz) can be seen as: p = r1 ∧ r2 ∧ ...∧ rz,
where ∧ is the binary AND operator of the n

32
integers of each row. The colPat of a bicluster

is defined as the pattern of the group formed by all the rows contained in it. Similarly, the
pattern of the group that consists of all the columns within a bicluster defines its rowPat.

The concept of bit-wise pattern was already employed in BiBit [29] to make this tool
significantly faster than the most widely employed tool for binary biclustering: Bimax [27].
However, it was only applied to the columns. As will be seen in Section 3.4, CUBiBit extends
its use also to the rows in order to reduce memory transfers between CPU and GPU.

3.2. General Algorithm

CUBiBit is a command-line application that receives some parameters as arguments such
as the path to the input and output files, the minimum number of rows (mnr) and columns
(mnc), the number of CPU threads or the GPU identifiers. The reference manual of our tool
not only includes an explanation of all the arguments, but also installation and execution
instructions.

Algorithm 1 provides a high-level pseudocode of the approach followed by CUBiBit. The
execution starts by reading the input matrix and encoding its values into 32-bit integer
arrays (Lines 3 and 4, respectively), which is usually negligible in terms of execution time
(i.e. input files are relatively small). The first step with a significant computational cost is
the bicluster initialization, comprised between Lines 5 and 12 in Algorithm 1. This step is
in charge of determining the columns included within each bicluster (i.e. the one values in
colPat) and needs two nested loops to check all possible attribute pairs. A bicluster formed
by these two attributes is valid for the next phase if the pattern fulfills two conditions. On
the one hand, the number of columns in the bicluster (i.e. the number of bits equal to one in
colPat) must be equal or higher than mnc (Line 10). On the other hand, no other bicluster
must have the same column pattern, as we are looking for maximal biclusters (Line 11). The
C++ set container is used to save the colPat of all the biclusters as it works faster than a
list for insertions, deletions and searches when each element can be identified by a unique
key (logarithmic complexity instead of linear). In this case the key is equal to colPat, as
no biclusters with the same pattern are allowed. Therefore, the complexity of the bicluster
initialization is O(m2 · log(m) · n).

4

1 INPUT: Path to the files for input (ifile) and output (ofile)
2 INPUT: Integers mnr and mnc with the minimum number of rows and columns per

bicluster, respectively
3 Read matrix M of dimensions m× n from ifile
4 Encode M into a 32-bit integer matrix D of dimensions m× n

32

5 Initialize empty bicluster set S
6 for Each row i in D from 0 to m− 2 do
7 for Each row k in D from i + 1 to m− 1 do
8 colPat := row i ∧ row k #Bit-wise AND of all columns
9 numCols := number of ones in colPat

10 if numCols ≥ mnc then
11 if No bicluster in S with column pattern equal to colPat then
12 Insert in S a new bicluster with colPat

end

end

end

end
13 for Each bicluster b in S with colPat do
14 Initialize rowPat with all bits to zero
15 numRows := 0
16 for Each row r in D do
17 if colPat ∧ row r == colPat then
18 Set the bit r of rowPat to one # Row included in the bicluster
19 numRows := numRows + 1

end

end
20 if numRows ≥ mnr then
21 Print into ofile the information of b

end

end
Algorithm 1: Pseudocode of CUBiBit.

Nevertheless, the most computationally demanding step starts in Line 13 and consists in
completing the information of all the biclusters that were initialized in the previous phase by
calculating the rowPat (i.e. determining which rows are included into them). As explained
in the previous subsection, CUBiBit only needs n

32
logical AND operations between colPat

and the data of the row to determine whether it belongs to the bicluster or not (Line 17).
In this case rowPat is updated accordingly (Line 18). With nb the number of biclusters
initialized in the previous step, the complexity of the bicluster completion is O(nb ·m · n).
As the number of biclusters can be up to m2, the maximum complexity is O(m3 · n).

Finally, only those biclusters with at least mnr rows are printed into the output file. We

5

use the same output format as BiBit: one line per bicluster with the information of number
of rows, number of columns, rows ids and columns ids separated by semicolons. We refer
again to [29] if further explanation about the general algorithm (even with a comprehensible
example) is necessary.

3.3. Parallel Bicluster Initialization on Several CPU Cores

The bicluster initialization step, where CUBiBit calculates the columns associated to
the biclusters, checks every pair of attributes as indicated between Lines 5 and 12 in Algo-
rithm 1. As far as opportunities of parallelization are concerned, different resources could
compute different row pairs at the same time. However, we must take into account that
several resources simultaneously searching and/or inserting in the set container could lead
to potential race conditions. Therefore, all the set management must be synchronized, thus
limiting the amount of resources that can efficiently work in parallel. This means that the
bicluster initialization step is not suitable to be parallelized in modern GPUs. Note that
these devices currently provide thousands of cores, and the synchronization overhead would
prevent to achieve an efficient parallelization in the GPU.

However, powerful multicore CPUs are also available in most current platforms. CUBiBit
can take advantage of these dozens of CPU resources to parallelize the bicluster initialization
step using the built-in multithreading support provided by C++11. Several computation
threads can be executed over different CPU cores in order to simultaneously calculate the
colPat of different attribute pairs. More concretely, CUBiBit uses a cyclic distribution over
the first loop (see Line 6). It means that the thread with id tidx works over all pairs
that start with attributes tidx, tidx + numTh, tidx + 2 · numTh, etc., being numTh the
total number of CPU threads. The set is stored in a position of the main memory that is
accessible to all CPU cores. Moreover, a mutex is employed to serialize the accesses and
insertions in the set in order to avoid the race conditions when two threads simultaneously
try to insert biclusters with the same pattern.

3.4. Parallel Bicluster Completion on Several GPUs

As previously mentioned, the detection of the rows that belong to each bicluster is the
most computationally demanding step of the algorithm, especially in those scenarios as gene
expression analysis where there are more attributes than samples. All rows must be analyzed
for each bicluster that was initialized in the previous step. This phase is very suitable for
parallelization as the work for each bicluster is independent. The checking of different rows
for the same bicluster can also be developed in parallel. A two-level parallelization approach
with CUDA and C++11 multithreading was included in CUBiBit so that it is able to exploit
several GPUs installed in a shared-memory platform during this step.

All the computation for bicluster completion is included in one CUDA kernel, whose
pseudocode is represented in Algorithm 2. The inputs are the encoded data matrix and the
colPat of each bicluster found in the initialization step, while the outputs are the rowPat of
those biclusters. After the kernel execution by the GPU, the CPU is responsible of writing
into the output file the results of those complete biclusters with at least mnr rows. All the

6

1 INPUT: Encoded transposed matrix D
2 INPUT: An array with the colPat of the biclusters
3 Copy to shared memory the colPat of the bicluster associated to the block
4 Synchronize the threads of the block
5 # Each thread with index tidx of the block (with numTh threads) in parallel:
6 32-bit integer myRowPat := 0
7 for Each integer i from 0 to 31 do
8 if Row (tidx + numTh · i) in D ∧ colPat == colPat then

The row belongs to the bicluster
9 myRowPat := myRowPat + 1 #Set the bit to 1

end
10 myRowPat := myRowPat · 2 # Move to the next bit to update

end
11 rowPat[tidx] := myRowPat
12 OUTPUT: rowPat of the bicluster

Algorithm 2: Pseudocode of the GPU kernel for biclustering completion. Each CUDA
block is in charge of one bicluster.

colPat and rowPat values are consecutively stored in memory in order to perform the CPU-
GPU transfers at once. Note that the use of 32-bit integer-based patterns, with only one
bit to represent whether each attribute or sample belongs to the bicluster, reduces the GPU
memory requirements and the performance impact of the memory transfers. Concretely, the
total amount of memory transferred from CPU to GPU is m · n bits for the encoded data
matrix, and nb · n bits for the colPat of the initial biclusters (nb again being the number
of initialized biclusters). The memory transferred from GPU to CPU are the nb · m bits
necessary to store the rowPat of those biclusters.

Each bicluster is completed by one CUDA block, and its threads analyze in parallel
whether different rows belong to the associated bicluster or not. In case that the amount
of biclusters numBi that passed the initialization step is higher than the maximum number
of CUDA blocks (231 − 1 in current NVIDIA GPUs), CUBiBit requires numBi

231−1
calls to the

kernel. As can be seen in Line 7, each thread of the block is responsible of 32 rows, i.e.,
one 32-bit integer element of rowPat (Line 11). Only the logical AND operations shown
in Line 8 are necessary to find whether the attributes belong to the cluster. In that case,
the bit is set to one (Line 9) and next row is considered (Line 10). As modern NVIDIA
GPUs limit the maximum number of threads to 1,024, CUBiBit can only work with datasets
with a maximum of 1, 024 · 32 = 32, 768 samples. Nevertheless, this amount of columns is
more than enough on realistic scenarios, especially for gene expression analyses, where the
number of attributes is usually significantly higher than the number of samples.

Note a number of optimizations included in our CUDA implementation in order to in-
crease the performance of CUBiBit:

• The colPat of the bicluster is copied to GPU shared memory (Line 3). This is a small

7

Figure 1: Overlapping between GPU and CPU work. The GPU computes one kernel while the CPU writes
the results provided by the previous kernel call.

portion of memory (tens of KB) accessible to all the threads within each block but
independent among blocks. This type of memory presents a much higher bandwidth
than GPU global memory. Consequently, CUBiBit performs highly efficient memory
accesses to colPat (32 accesses per thread). One synchronization among the threads
of the block (Line 4) is necessary to guarantee that the whole pattern has been copied
before starting the computation.

• The increase of coalescence in the GPU global memory accesses is one of the most
effective and most common optimization techniques for CUDA codes. It consists in
combining multiple memory accesses into a single transaction and requires that consec-
utive threads access consecutive elements in memory. Instead of using a matrix with
attributes stored in the rows and samples in the columns (like for CPU), the encoded
matrix D transferred to the GPU is transposed in order to increase the coalescence of
the memory accesses (consecutive threads simultaneously access consecutive positions
in D).

• Each thread tidx is only responsible for the tidx − th 32-bit integer of rowPat (Line
11), which guarantees also coalesced accesses to the output array.

• Data on the CPU is stored in pinned host memory, which usually obtains better I/O
performance when copying this data to the device than non-pinned buffers.

• CUBiBit makes efficient use of CUDA streams and asynchronous memory transfers in
order to overlap the kernel computation on the GPU with the writing of the results
performed by the CPU. While the GPU is completing one group of 231 − 1 biclusters,
the CPU writes into the output file the results of the previous group, as illustrated
in Figure 1. Therefore, our tool minimizes the impact of the output printing on
performance.

Finally, CUBiBit can use several GPUs by launching several C++11 threads, each one
associated to one different GPU. The biclusters that pass the initialization step are evenly

8

Name #SMs #CUDA cores Core frequency Memory size
K20m 13 2496 706 MHz 5 GB
K40c 15 2880 745 MHz 12 GB

Table 2: Specifications of the two types of GPUs used for the experimental evaluation.

distributed among the CPU threads. Each thread is responsible of initializing its corre-
spoding GPU, performing the memory transfers, calling the kernel only for those biclusters
distributed to it, and printing the output results. These CPU threads only require synchro-
nization using a mutex to sequentialize the writings into the output file.

4. Performance Evaluation

The performance of CUBiBit has been evaluated on a multicore system with two Intel
Sandy Bridge processors (in total, 16 CPU cores at 2.20GHz) that contains four NVIDIA
Tesla Kepler GPUs: three K20m and one K40c. Table 2 shows some interesting specifications
of these GPUs, such as the number of Streaming Multiprocessors (SM) or the number of
CUDA cores they provide. Our tool is compiled with NVCC version 8.0.61. The evaluation is
focused on performance in terms of execution time, as the biclustering approach of CUBiBit
is equivalent to the one of BiBit and its accuracy was already satisfactorily tested in previous
studies [25]. The input datasets were created by randomly generating one and zero values.
Note that the execution time of CUBiBit and BiBit is independent of the origin of the
input data. As performance depends on the size of the data and the biclusters, synthetic
datasets are as suitable as those with real data for performance evaluation. Similarly to the
performance comparison in the aforementioned study, the number of samples is constant
(200), while the number of attributes varies from 6,400 to 25,600. The percentage of one
values in the simulated datasets is 15%. The results shown in this section were obtained
by searching for biclusters with at least 1% of the input matrix dimensions (i.e. 64 × 2,
128× 2 and 256 × 2 submatrices for the datasets with 6,400, 12,800 and 25,600 attributes,
respectively).

Table 3 compares the total runtime of CUBiBit and the state-of-the-art tool BiBit com-
piled and executed with the Java runtime version 1.7.0 121. As mentioned in Section 1, up
to our knowledge BiBit is the fastest available tool for biclustering of binary data. CUBiBit
runtime includes the impact of intrinsically sequential parts of the code such as I/O op-
erations or CPU-memory transfers. In all the experiments CUBiBit makes use of the 16
CPU cores for the multithreaded bicluster initialization step (as shown in Subsection 3.3).
As can be seen, our tool is on average 48.80, 73.98 and 61.76 times faster than BiBit when
exploiting one K20m, three K20m and one K40c GPUs, respectively. As expected, speedups
increase with the number of attributes as more work must be performed in parallel (for
instance, accelerations obtained on the K40c GPU are 33.92 and 92.00 for 6,400 and 25,600
attributes, respectively).

However, not all the acceleration is achieved thanks to the parallelization of the algo-
rithm, but also because of using C++ more efficient memory management than the Java one

9

Tool GPUs
Number of rows

6,400 12,800 25,600
BiBit - 31.55 214.27 1541.89

seq-CUBiBit - 10.83 73.64 504.85

CUBiBit
1 K20m 1.06 4.42 22.62
3 K20m 0.86 3.13 13.20
1 K40c 0.93 3.61 16.76

Table 3: Runtimes (in minutes) of CUBiBit on an Intel Sandy Bridge system with 16 CPU cores and different
GPU alternatives: one K20m, three K20m and one K40c. The runtime of a sequential custom-made C++
counterpart (seq-CUBiBit) and BiBit are also included for comparison purposes. All tools look for biclusters
with dimensions at least 1% of the input dataset size. The number of samples and the percentage of one
values in the input dataset are constant: 200 and 15%, respectively.

included in BiBit. In order to provide an insight about how good is our parallel approach,
we have developed a C++ sequential version (denoted as seq-CUBiBit in Table 3) that is
completely similar to CUBiBit but without any parallelization (neither C++11 multithread-
ing in the bicluster initialization nor CUDA kernel for bicluster completion). This sequential
implementation, compiled with the GNU compiler version 4.9.2, is on average 2.96 times
faster than BiBit. By comparing the runtime of CUBiBit and this sequential version we can
assert that the overall acceleration provided by the parallelization is 16.40, 24.79 and 20.72
using one K20m, three K20m and one K40c, respectively. Note that these speedups are
higher for the largest scenario, where the percentage of time spent in the CUDA-parallelized
step (biclustering completion, see Subsection 3.4) is higher. For instance, CUBiBit using
16 CPU cores and three K20m GPUs is able to find all the biclusters of the dataset with
25,600 rows in around 13 minutes, while the sequential C++ counterpart requires more than
8 hours (speedup of 38.25) and BiBit more than one day (speedup of 116.81).

Although the increase of speedup when using several K20m compared to only one GPU
does not seem too impressive, it is not due to a bad collaboration between CPU threads and
CUDA kernels, but because only the bicluster completion step benefits from it. The graphs
in Figure 2 show the runtime breakdown for CUBiBit using one and three K20m GPUs,
as well as that of the C++ sequential version. While biclustering completion is the most
computationally demanding step in the sequential implementation (on average, 93.74% of the
total runtime), its impact is reduced to a mere 50.84% using one K20m GPU. Therefore, the
potential benefit of using several GPUs is limited to only around half of the execution time,
and it is even worse for small datasets (only 33.32% of the runtime is dedicated to bicluster
completion with one K20m GPU when analyzing the dataset with 6,400 attributes). The
performance breakdown proves that the CUDA optimizations described in Subsection 3.4
make the CUBiBit kernel highly scalable. In fact, the average runtime reduction of the
bicluster completion step on one K20m GPU compared to the same step in the sequential
C++ counterpart is 30.03. This average speedup is increased to 69.39 when using three
K20m GPUs (with a maximum speedup of 82.14 for the largest dataset). The benefit of
the multithreaded approach implemented in the bicluster initialization step is more limited

10

 0

 100

 200

 300

 400

 500

 600

 700

seq-CUBiBit CUBiBit 1 K20m CUBiBit 3 K20m

T
im

e
 (

s
e

c
o

n
d

s
)

6,400 attributes

I/O and other
Bicluster initialization
Bicluster completion

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

seq-CUBiBit CUBiBit 1 K20m CUBiBit 3 K20m

T
im

e
 (

s
e

c
o

n
d

s
)

12,800 attributes

I/O and other
Bicluster initialization
Bicluster completion

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

seq-CUBiBit CUBiBit 1 K20m CUBiBit 3 K20m

T
im

e
 (

s
e

c
o

n
d

s
)

25,600 attributes

I/O and other
Bicluster initialization
Bicluster completion

Figure 2: Performance breakdown of CUBiBit and the custom-made C++ sequential counterpart. Both
versions look for biclusters with dimensions at least 1% of the input dataset size. The number of samples
and the percentage of one values in the input dataset are constant: 200 and 15%, respectively.

11

because the CPU resources are not so powerful as GPU ones. Furthermore, the CPUs require
a synchronization when accessing the C++ set as mentioned in Subsection 3.3. As expected,
the runtime of intrinsically sequential steps such as input reading and memory/structures
initialization is constant for seq-CUBiBit and CUBiBit. The analysis of these results also
explains the reason why the speedup obtained by CUBiBit increases with the number of
attributes: the bicluster completion step has more impact on the runtime of the whole
algorithm.

5. Conclusions

This work has presented CUBiBit, a high-performance C++-based biclustering tool to
process very large binary datasets on multi-GPU platforms. In fact, our tool follows a hybrid
parallelization approach that takes full advantage of the abundant computing resources
provided by CUDA-enabled GPUs as well as multicore CPUs. The experimental results have
shown significant speedups when compared to a representative Java-based biclustering tool,
reducing the execution of BiBit by up to 116x when using three K20 GPUs and two 8-core
CPUs. Moreover, the scalability of CUBiBit has been assesed by comparing it to a custom-
made C++ sequential implementation. These experiments indicate that our parallelization
provides a maximum speedup of 38 when processing a dataset with 25,600 genes. CUBiBit
is publicly available to download from https://sourceforge.net/projects/cubibit.

As future work, we aim to include in CUBiBit a more general (although maybe less
efficient) GPU kernel that can work with datasets that contain more than 32,768 samples.
The tool should choose the proper kernel to execute in the GPU depending on the size of
the input dataset. Moreover, we will explore the use of GPUs to accelerate biclustering
techniques for quantitative data.

Acknowledgments

This work was supported by the Ministry of Economy, Industry and Competitiveness of
Spain and FEDER funds of the European Union [grant TIN2016-75845-P (AEI/FEDER/UE)],
as well as by Xunta de Galicia (Centro Singular de Investigacion de Galicia accreditation
2016-2019, ref. EDG431G/01).

References

[1] Abell, S., Do, N., Lee, J.J., 2016. GPU-LMDDA: a Bit-Vector GPU-Based Deadlock Detection Algo-
rithm for Multi-Unit Resource Systems. International Journal of Parallel, Emergent and Distributed
Systems 31, 562–590.

[2] AlBdaiwi, B.F., AboElFotoh, H.M., 2017. A GPU-Based Genetic Algorithm for the P-Median Problem.
The Journal of Supercomputing 73, 4221–4244.

[3] Amancio, D.R., 2015. A Complex Network Approach to Stylometry. PLoS One 10, e0136076.
[4] Arefin, A.S., Riveros, C., Berretta, R., Moscato, P., 2012. GPU-FS-kNN: A Software Tool for Fast and

Scalable kNN Computation Using GPUs. PloS ONE 7, 1–13.
[5] Blondel, V.D., Guillaume, J.L., Lambiotte, R., Lefebvre, E., 2008. Fast Unfolding of Communities in

Large Networks. Journal of Statistical Mechanics: Theory and Experiment 2008, P10008.

12

https://sourceforge.net/projects/cubibit

[6] Busygin, S., Prokopyev, O., Pardalosa, P.M., 2008. Biclustering in Data Mining. Computers and
Operations Research 35, 2964–2987.

[7] Cano, A., Luna, J.M., Ventura, S., 2013. High Performance Evaluation of Evolutionary-Mined Associ-
ation Rules on GPUs. The Journal of Supercomputing 66, 1438–1461.

[8] Chen, H.C., Zou, W., Tien, Y.J., Chen, J.J., 2013. Identification of Bicluster Regions in a Binary
Matrix and Its Applications. PLoS ONE 8, 1–13.

[9] Djenouri, Y., Bendjoudi, A., Mehdi, M., Nouali-Taboudjemat, N., Habbas, Z., 2015. GPU-Based Bees
Swarm Optimization for Association Rules Mining. The Journal of Supercomputing 71, 1318–1344.

[10] Eren, K., Deveci, M., Küçüktunç, O., Çatalyürek, Ü.V., 2013. A Comparative Analysis of Biclustering
Algorithms for Gene Expression Data. Briefings in Bioinformatics 14, 279–292.

[11] Jian, L., Wang, C., Liu, Y., Liang, S., Yi, W., Shi, Y., 2013. Parallel Data Mining Techniques
on Graphics Processing Unit with Compute Unified Device Architecture (CUDA). The Journal of
Supercomputing 64, 942–967.

[12] Jurczuk, K., Czajkowski, M., Kretowski, M., 2016. Evolutionary Induction of a Decision Tree for
Large-Scale Data: a GPU-Based Approach. Soft Computing 21, 7363–7379.

[13] Kaya, M., Alhajj, R., 2014. Development of Multidimensional Academic Information Networks with a
Novel Data Cube Based Modeling Method. Information Sciences 265, 211–224.

[14] Kerr, G., Ruskin, H.J., Crane, M., Doolan, P., 2008. Techniques for Clustering Gene Expression Data.
Computers in Biology and Medicine 38, 283–293.

[15] Lee, S., Huang, J.Z., 2014. A Biclustering Algorithm for Binary Matrices Based on Penalized Bernoulli
Likelihood. Statistics and Computing 24, 429–441.

[16] Li, T., 2005. A General Model for Clustering Binary Data, in: 11th ACM SIGKDD International
Conference on Knowledge Discovery in Data Mining (KDD 2005), Chicago, IL, USA. pp. 188–197.

[17] Li, Y., Zhao, K., Chu, X., Liu, J., 2010. Speeding Up K-Means Algorithm by GPUs, in: 10th IEEE
International Conference on Computer and Information Technology (CIT 2010), Bradford, United
Kingdom. pp. 115–122.

[18] Liu, B., Xin, Y., Cheung, R.C., HongYan, 2014. GPU-Based Biclustering for Microarray Data Analysis
in Neurocomputing. Neurocomputing 134, 239–246.

[19] Liu, J., Wang, W., 2003. Op-cluster: Clustering by Tendency in High Dimensional Space, in: 3rd IEEE
International Conference on Data Mining (ICDM 2003), Melbourne, FL, USA. pp. 187–194.

[20] Liu, Y., Nie, L., Han, L., Zhang, L., Rosenblum, D.S., 2015. Action2Activity: Recognizing Complex
Activities from Sensor Data, in: 24th International Joint Conference on Artificial Intelligence (IJCAI
2015), Buenos Aires, Argentina. pp. 1617–1623.

[21] Liu, Y., Zhang, L., Nie, L., Yan, Y., Rosenblum, D.S., 2016. Fortune Teller: Predicting Your Career
Path, in: 13th AAAI Conference on Artficial Intelligence (AAAI 2016), Phoenix, AR, USA. pp. 201–
207.

[22] Mimaroglu, S., Uehara, K., 2007. Bit Sequences and Biclustering of Text Documents, in: 7th Interna-
tional Conference on Data Mining (ICDM 2007), Omaha, NE, USA. pp. 51–56.

[23] Nisar, A., Ahmad, W., Liao, W.K., Choudhary, A., 2015. An Efficient Map-Reduce Algorithm for
Computing Formal Concepts from Binary Data, in: 2015 IEEE International Conference on Big Data
(IEEE Big Data 2015), Santa Clara, CA, USA. pp. 1519–1528.

[24] Orzechowski, P., Boryczko, K., 2015. Rough Assessment of GPU Capabilities for Parallel PCC-Based
Biclustering Method Applied to Microarray Data Sets. Bio-Algorithms and Med-Systems 11, 243–248.

[25] Padilha, V.A., Campello, R., 2017. A Systematic Comparative Evaluation of Biclustering Techniques.
BMC Bioinformatics 18, 55.

[26] Pontes, B., Giráldez, R., Aguilar-Ruiz, J.S., 2015. Biclustering on Expression Data: a Review. Journal
of Biomedical Informatics 57, 163–180.

[27] Prelic, A., Bleuler, S., Zimmermann, P., Wille, A., Bühlmann, P., Gruissem, W., Hennig, L., Thiele,
L., Zitzler, E., 2006. A Systematic Comparison and Evaluation of Biclustering Methods for Gene
Expression Data. Bioinformatics 22, 1122–1129.

[28] Ramı́rez-Gallego, S., Lastra, I., Mart́ınez-Rego, D., Bolón-Canedo, V., Beńıtez, J.M., Herrera, F.,

13

Alonso-Betanzos, A., 2017. Fast-mRMR: Fast Minimum Redundancy Maximum Relevance Algorithm
for High-Dimensional Big Data. International Journal of Intelligent Systems 32, 134–152.

[29] Rodŕıguez-Baena, D.S., Pérez-Pulido, A.J., Aguilar-Ruiz, J.S., 2011. A Biclustering Algorithm for
Extracting Bit-Patterns from Binary Datasets. Bioinformatics 27, 2738–2745.

[30] Viana, M.P., Amancio, D.R., da F Costa, L., 2013. On Time-Varying Collaboration Networks. Journal
of Informetrics 7, 371–378.

[31] Zhang, J., Zhu, Y., Pan, Y., Li, T., 2016. Efficient Parallel Boolean Matrix Based Algorithms for
Computing Composite Rough Set Approximations. Information Sciences 329, 287–302.

14

	Introduction
	Related Work
	CUBiBit Implementation
	Bit-wise Data Structure for Binary Biclusters
	General Algorithm
	Parallel Bicluster Initialization on Several CPU Cores
	Parallel Bicluster Completion on Several GPUs

	Performance Evaluation
	Conclusions

