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Abstract

For decades, public policy has favored the use of land consolidation to
reduce the fragmentation of land ownership. Private actors, on the other
hand, have focused on the purchase, rental and exchange of land plots. Plot
exchange can be very useful in the restructuring of holdings, particularly
when a large number of owners participate; however, the number of possible
exchange combinations grows very quickly with the number of participating
landowners and parcels. Finding an acceptable exchange solution can easily
become challenging. In this paper we evaluate the practical use of a support
system for land exchange processes. The system is based on the use of genetic
algorithms, a particular kind of heuristics that loosely replicate the rules of
evolution and natural selection. We assess the in�uence of the geometric
distribution of parcels in the quality of the solution, as well as usefulness
and performance of the system, via parallelization techniques. The proposed
algorithm (GA-PE, Genetic Algorithm for Parcel Exchange) is tested with re-
gards to several parameters, from several alternatives for certain steps of the
algorithm to the resource distribution for the parallelizations implemented.
We tested the algorithm in 6 di�erent real and representative test cases, and
provide results with di�erent metrics. With the positive results obtained, we
argue that land exchange is a process worth considering for private actors,
and that genetic algorithms can be used to propose fair exchanges, even in
complex scenarios, shortening in a meaningful way the time usually required
to perform administrative procedures associated to land fragmentation prob-
lems.

Keywords: Land ownership, fragmentation, land market, geographic in-
formation systems, land management, land administration, global optimiza-
tion, genetic algorithms

1. Introduction

For decades, agronomists and land planners have proposed measures to
reduce fragmentation of land ownership (Binns, 1950). Very high levels of
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a) No fragmentation
(all land belongs to
the same owner or is
managed by the same user)

b) Several owners/users

c) Poor match between
owners (represented
by colors) and users
(represented by patterns)

d) Several plots
per owner/user

e) Increased distance
among plots

Figure 1: Schematic representation of di�erent types of fragmentation, compared with a
base situation (a). High number of owners or high number of users (b); lack of overlap
between owners and users (c); high number of plots per owner/user (d); high distance
between plots of the same owner/user (e).

fragmentation are considered to be an obstacle for the development of prof-
itable agricultural (Orea et al., 2015; Lu et al., 2018) and forestry sectors
(Rendenieks et al., 2015; Kilgore and Snyder, 2016). Therefore, instruments
designed to reduce land fragmentation are principally �but not only� in-
tended to improve the pro�tability of farms and forest holdings.

Following van Dijk (2003), four di�erent types of fragmentation �not
mutually exclusive� can be described: (1) a situation in which there is a
high number of landowners, resulting in very small holdings; (2) a situa-
tion in which there is a high number of land users, resulting in very small
farm/forest management units; (3) the lack of overlap between the groups
of owners and users; and (4) a high ratio between the number of plots and
the number of users, resulting in very small land plots. A �fth one can be
added: the situation in which the parcels of a given holding are too far away
from each other (Hartvigsen, 2014). Graphical representations of each case
are shown on Figure 1. The concrete scenario in any given region is usu-
ally a combination of these �ve types, and the measures applied to reduce
fragmentation will need to take this into account if they are to be successful.

Usually, private and public initiatives tend to focus on the fourth and
�fth types described, therefore aiming to reduce the average number of land
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plots per landowner and place them as close as possible. The public sector
has often used land consolidation (LC), which can be summarily described
as the process by which the plots of each owner are combined to form a
smaller number of larger pieces of land (Pa²akarnis et al., 2013; Lisec et al.,
2014). When applied in large areas, LC can be very successful in reducing
the average number of plots per owner but it does not necessarily improve
farm productivity or income (Du et al., 2018; Djanibekov and Finger, 2018).
On the other hand, as a completely new division of land plots is a common
result (Lisec et al., 2014; Kupidura et al., 2014), environmentally valuable
features of the previous landscape, like hedgerows and strips of semi-natural
vegetation, tend to be reduced.

Private actors, on the other hand, often combine buying, renting, land
banking and exchanging land plots in order to consolidate holdings (Vranken
and Swinnen, 2006; Sklenicka et al., 2014). All of these agreements have the
potential to allow the restructuring of holdings at a reduced environmen-
tal cost, as the landscape structure remains untouched. Additionally, plot
exchange does not require owners to have �nancial resources available that
would be needed to purchase new pieces of land. The potential bene�ts for
landowners increase greatly when a large number of them are involved in an
exchange agreement as the number of possible solutions grows very quickly.
Unfortunately, in practical terms this makes it di�cult to search for an op-
timal solution, even when relatively small numbers of landowners and land
plots are considered.

In a similar way as to how software can help improve other alternatives
to reduce land fragmentation (Touriño et al., 2003; Porta et al., 2013c), this
work focuses on the practicality of an algorithmic decision support tool to
help in parcel grouping tasks by means of voluntary plot exchange between
multiple owners. The software developed aims to reduce time required for the
principal task in this process: the reassignment of all the plots. The proposed
tool focuses on providing, in short periods of time, �rstly results that can
be directly accepted by participants, or secondly used as a starting point for
negotiation. In both cases, most of the work is performed by the software
(all of the work in the former case). Also, in the second case when some
landowners may not accept some particular assignment, adding small changes
to the proposed solution to reach an agreement between the landowners is
easier. Since it comes from an already satisfactory starting point (the solution
proposed by the algorithm), the technicians can perform these changes in a
reasonable amount of time and e�ort.

3



1.1. Genetic algorithms
The potential bene�ts of multiple parcel exchange are logically greater

when a higher number of owners and parcels are involved in the same ex-
change process, compared to the exchange being done on a one-by-one parcel
basis. The number of possible exchange combinations grows very quickly as
both the number of landowners and parcels involved increase (Borgwardt
et al., 2014). The time needed for trial-and-error performed by a computer,
as well as combinatorial aproaches, grows exponentially with the number of
parcels and owners, rendering them inviable for the cases that interest us.
The use of heuristic algorithms is a common viable option in solving complex
problems involving a large number of possible solutions. These algorithms
reduce the time needed to achieve good solutions at the expense of not always
�nding the best possible solution (performance vs optimality), and could be
easily considered a viable option in this case.

Generally, heuristic algorithms optimize a problem by iteratively attempt-
ing to improve a candidate solution with regard to a given measure of quality.
They can be used to approach the solution of complex problems, such as those
commonly found in land management or land administration, which would
otherwise take a very long time to solve. Genetic algorithms (GA) are a
particular kind of heuristics that mimic the principles of natural evolution:
they produce an initial population of solutions which are evaluated using a
�tness function (FF); the best individuals (i.e., those with a higher score in
the FF) are then used to produce a new generation of possible solutions, and
the cycle is repeated until stopping criteria are met.

Evolutionary optimization algorithms are well suited to support multiob-
jective spatial decision making (Bennett et al., 2004; Xiao et al., 2007). Pub-
lished applications include land-use allocation (Porta et al., 2013b; Stewart
and Janssen, 2014; Liu et al., 2015; Santé et al., 2016), automatic delimita-
tion of population settlements (Porta et al., 2013a), open space planning (Xin
and Zhi-xia, 2008; Vallejo et al., 2015) or even traditional land consolidation
(Touriño et al., 2001).

Genetic algorithms have been proposed to support decisions concerning
land reallotment in traditional land consolidation processes (Akkus et al.,
2012; Demetriou et al., 2012; Uyan et al., 2015; Ertunç et al., 2018a). In
all of these cases, GA are used to completely redesign the parcel structure.
In this paper, however, GA are used to propose the most adequate parcel
exchange for a given set of owners and, therefore, the pre-existing parcel
structure remains unchanged.

Although other types of heuristic algorithms could probably suit the re-
quirements of this work (Suárez et al., 2011), we have chosen a conventional
GA, given that, as they have already been proven for similar problems, the

4



drawbacks thereof are not a concern (since the sub-optimal solutions pro-
vided can and are likely to be re�ned by the landowners before material-
izing). Moreover, as GA implies an evolution of possible solutions, these
interim results can be stored for later analysis, or almost straigthforwardly
even reused as a basis for exploring newer ones. Additionally, GAs allow
for further improvements aimed at reducing executions times through paral-
lelization techniques, as can be found on multiple ocassions in the literature.
One of these improvememnts is the cooperation of multiple algorithm exe-
cutions (Porta et al., 2013b), this being one of the parallelization techniques
explored, as explained in detail in Section 3.

2. Genetic algorithm for parcel exchange(GA_PE)

This section introduces the terminology related to genetic algorithms,
their meaning in the �eld of land consolidation (LC), and their application
in this particular case. The goal of the algorithm is to �nd the best landowner
to assign each parcel to, de�ning best landowner as the one that improves a
metric the most.

Genetic algorithms (Goldberg, 1989) are search heuristics that are often
applied to optimization or learning. They often use terms such as 'genes' and
'individuals', and operators such as 'selection', 'crossover' and 'mutation',
similar terminology to that used in natural evolution.

In a GA, an individual encodes a candidate solution for the given prob-
lem: in this case, an individual is formed by the assignment of each parcel to
one of the participating landowners, and we will use the term ownership pat-
tern. Ownership patterns consist of as many genes as the number of parcels
considered: each gene is simply a label that encodes the owner assigned to
that parcel. In Figure 2, an ownership pattern is shown as an array of labels,
each one indicating the owner of a speci�c parcel. A group of ownership pat-
terns or possible solutions is called a population or generation. Ownership
patterns resulting from the exchange of genes (crossover) and the mutation
of some genes between ownership patterns of a population are called the o�-
spring or children; together they form the next generation. Finally, a metric
that represents the value of an ownership pattern according to some criteria
is called a �tness function (FF).

A GA usually consists of four basic steps that are iterated for each
new generation: selection of best ownership patterns from the population,
crossover, mutation and creation of a new population. In our case, we also
de�ne three additional steps to allow more �exibility: ownership pattern
generation, ownership pattern evaluation, and ownership pattern validation.
The steps of generation, evaluation, validation and mutation are implemented
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Figure 2: Individual or ownership pattern representation

in a modular way, while the other three steps use common techniques and
operations. In each modular step, the code that performs the changes needed
is implemented in an isolated function, and the exact function to be used can
be con�gured between several options in each run of the algorithm. This �ex-
ibility also allows the easy implementation and integration of new functions
(new alternative implementations) for each step of the algorithm, in case the
need arises.

2.1. Selection of best ownership patterns

The selection of the best ownership pattern of each population is based
on the �tness value calculated by the evaluation function. In this case, we
select the ownership pattern with the lowest �tness value, since the system
is designed as a minimization problem.

2.2. Creation of new populations

This step is somewhat implicit in the algorithm. The descendants of the
current population are inserted into a list, and when all of the descendants
are created, the list is considered as the new generation or population.

2.3. Crossover operation

The crossover step uses a basic technique, a two-point crossover, to reduce
computational cost slightly. Two parents are selected randomly to create
two di�erent children. Two indexes are selected randomly, and the genes
between those indexes are swapped in the children. A simpli�ed diagram of
the operation in a case with ten parcels and four di�erent owners is shown
in Figure 3. After that, the mutation function (see Section 2.4) is applied
and the best child is selected as the descendant of the parents. To avoid
regression, we apply elitism, taking into account the parents in the �nal
selection; hence, if the children are worse than any of the parents, that parent
is selected for the next generation.
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Figure 3: Crossover operation

2.4. Mutation function

The mutation method plays an important role in the algorithm, as it
a�ects the width of the search and has a notable impact on the speed, since
it can be applied multiple times to each ownership pattern.

We use a �xed mutation probability of 100%, due to the need to test
many ownership patterns in order to be able to �nd those that are valid.
After the crossover, the mutation method is applied to the two children,
and if the resulting ownership patterns are not valid, the mutation method
can be applied again. The mutation is executed multiple times until a valid
ownership pattern is found or a maximum number of mutations has been
performed on the same ownership pattern.

The algorithm currently supports two types of mutators: those based on
random parcel assignment and those based on parcel exchange between two
owners. We have developed several methods to see the e�ects in time to reach
good solutions, seeking a good balance between complexity (and mutation
time) and overall speed of the algorithm (or time to reach good solutions).

The mutation function based on random parcel exchange is called Ran-
dom Change. It selects a random parcel and assigns it to a random owner
(an option to repeat the process multiple times in each mutation is also
available).

The second type of mutation functions are based on the exchange of
parcels between two owners: the �rst, Swapping Mutator, simply, exchanges
the owners of two parcels randomly selected, including the option to repeat
the process in each mutation; the second, SwapNPlots, selects two random
owners and exchanges one or more parcels between them (with options to
repeat the process in each mutation). A diagram with an example of mutation
using the Swapping Mutator is shown in Figure 4, for a case with ten parcels
and two di�erent owners.
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Figure 4: Swapping mutation diagram

The algorithm also supports the use of multiple mutation methods, ap-
plying all of them to the two children of a crossover, generating two new
children for each mutation method in use, to broaden the search space at
the cost of time needed to perform the mutation step. In Section 4.1 we test
the three basic mutators mentioned above, seeking a combination that o�ers
good results and speed.

2.5. Generation function

The algorithm supports di�erent generation functions, which are used to
generate the ownership patterns of the �rst population or generation, and to
generate ownership patterns in case of stagnation.

In order to maintain diversity in the population, we have implemented a
mechanism for stagnation detection. When all the ownership patterns of a
population have the same �tness value, over multiple generations, we consider
the population to be stagnated and the corresponding control procedures are
triggered. We use this detection strategy as it is unlikely that two di�erent
ownership patterns will have the exact same �tness value, and is simple and
rapid to check. The amount of generations with no changes and the same
�tness value in all ownership patterns before activating stagnation control
can be con�gured.

When stagnation is detected, the generation method is used to generate
new ownership patterns, after which the best new ownership patterns replace
some of the ownership patterns in the main population. The amount of
ownership patterns generated and the ratio of the main population that is
replaced can be con�gured.

We have developed several generation methods, but we will use one one
of them as it has shown the best results during development. It uses the dis-
tances of each parcel to the reference point of each owner (usually indicating
the location of the owner's farm, or the point where the owner prefers the
parcels to be located), assigning the parcels to the closest reference point. To
introduce diversity, the order the parcels are assigned is random, that way it
can produce di�erent ownership patterns each time a new element is needed.
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2.6. Ownership pattern validation

To be of any use in the parcel exchange process, it was decided that the
search for a better solution by the genetic algorithm should be constrained
by some condition. This restriction is implemented as a function called own-
ership pattern validator, which determines whether an ownership pattern is
a valid solution to the problem.

In its current implementation, there is one such condition, based on the
value of the parcels. The total value assigned to each owner should not change
more than a given percentage of the value prior to the exchange; for example,
+-10% (the increase/decrease percentages can be changed independently, or
even disabled entirely, if desired).

The default value of a parcel is its surface area, although the algorithm
supports the provision of any other numeric values for all parcels. Using this
numeric value allows other types of objectives (monetary or agronomic value)
or even subjective values (value perceived by the owners, for example) to be
considered.

2.7. Fitness function

In traditional LC processes, the euclidean distance from the centroid of
each parcel and the center of gravity of all the parcels assigned to the same
owner has been used as an indicator of success (Crecente et al., 2002). To
provide �exibility and adapt to what the landowners value the most, we
provide multiple metrics of success in parcel exchange (also called �tness
functions in GA terminology) focused on di�erent aspects.

All of these metrics can be summarized in the following groups: metrics
based on the distance between parcels (with variants regarding aggregation
operators and ponderations), metrics based on the distance to a reference
point chosen by the owner (with variants regarding aggregation operators
and ponderations), several combinations of the previous ones, and two mis-
cellaneous ones explained in detail below. In the mathematical expressions
of each one, LO is the number of owners present, no the number of parcels
of owner o, PDo,i,j the distance between parcel i and j of the owner o, RDo,i

the distance from parcel i of the owner o to the reference point of the owner
o, and WTPD, WAPD, WTRD and WARD the weights given to the �rst, second,
third and fourth evaluation methods, respectively.

The �rst group of �tness functions are based on the distance between
parcels:

• TPD: Total Parcel Distance, which calculates the total of the distances
between each pair of parcels of each owner. Equation 1.
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• APD: Average Parcel Distance, which is the average distance between
each pair of parcels of each owner. Similar to the �rst one, but using
the average with regards to the number of parcels of each owner instead
of the sum of all distances. Equation 2.∑o=LO

o=1

{∑i=n,j=n
i=1,j=i PDo,i,j

}
LO

(1)

∑o=LO
o=1

{∑i=n,j=n
i=1,j=i PDo,i,j

no

}
LO

(2)

The ones on the second group are based on the distance to a reference
point chosen by the owner:

• TRD: Total Reference point Distance, takes the total distances from
each parcel to the reference point chosen by the owner. Equation 3.

• ARD: Average Reference point Distance, calculates the average dis-
tance from each parcel to the reference point of the owner. Similar
to the �rst one, but using the average with regards to the number of
parcels of each owner instead of the sum of all distances. Equation 4.∑o=LO

o=1

{∑i=n
i=1 RDo,i

}
LO

(3)

∑o=LO
o=1

{∑i=n
i=1 RDo,i

no

}
LO

(4)

The third group comprises speci�c combinations of the previous �tness
functions. These functions allow weights to be given for each one of the
�tness functions they combine. For ease of use, if no weights are provided,
they perform an automatic weight balancing. This weight balancing aims to
give the same relevance to all the parts, taking into account the di�erences
in magnitude of each �tness function (functions using the total values have
less weight than the ones using the average values, as they have much higher
absolute values). They are the following:

• TDC: Total Distances Combined, a combination of TPD and TRD.
Equation 5.

• ADC: Average Distances Combined, a combination of APD and ARD.
Equation 6.
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• 4DC: 4 Distances Combined, the combination of the �rst four ones
(TPD, APD, TRD and ARD). Equation 7.∑o=LO

o=1

{
WTPD ∗

∑i=n,j=n
i=1,j=i PDo,i,j +WTRD ∗

∑i=n
i=1 RDo,i

}
LO

(5)

∑o=LO
o=1

{
WAPD ∗

∑i=n,j=n
i=1,j=i PDo,i,j

no
+WARD ∗

∑i=n
i=1 RDo,i

no

}
LO

(6)

∑o=LO
o=1

{
WTPD∗

∑i=n,j=n
i=1,j=i

PDo,i,j+WAPD∗

∑i=n,j=n
i=1,j=i

PDo,i,j
no

+WTRD∗
∑i=n

i=1 RDo,i+WARD∗
∑i=n

i=1 RDo,i
no

}
LO

(7)
Lastly, the miscellaneous group which contains two �tness functions de-

signed to be used together. The �rst one is the number of parcels present
(Number of PLots, NPL), equation 8. Actually, the geometries and num-
ber of parcels do not change in the algorithm, so in order to use this �tness
function properly, we have had to implement a way of allowing change in the
geometries to change the number of parcels. This geometric transformation
is performed in the second miscellaneous �tness function.

o=LO∑
o=1

no (8)

This second miscellaneous �tness function performs a geometric union of
the parcels of each owner and then applies another �tness function, using the
value returned by it. This means that two or more adjacent parcels will be
considered as one when computing the �tness value, but will remain separated
outside the �tness function (allowing for ownership to change independently
of each other at a later point), at the expense of an important increase in
the computational cost of the �tness function. Implementing the geometric
transformation this way, we can use it with every �tness function, not only
the previous one.

Other authors have expressed the owners' preference for keeping most
of their parcels -or at least the largest ones, the most productive ones, or
simply those in which they have �xed investments in place such as buildings
or greenhouses- excluded from the exchange or LC process (Cay et al., 2010;
Cay and Uyan, 2013). This is supported natively by the algorithm, allowing
the selected parcels that must not be subject to the exchange process to be
indicated (these parcels will however be taken into account for the �tness
value).
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2.8. Implementation
Fig. 5 and Fig. 6 show the pseudocode and a �owchart of the GA-

PE algorithm, respectively. In the following paragraphs, all the steps are
explained using the numbered lines of the pseudocode as reference. Let P
be the population with M ownership patterns (algorithm solutions), Pi an
ownership pattern with size N (parcels) whose genes are represented by Pik

with k = 1..N (gene k represents the landowner of parcel i). F (Pi) represents
the value of the �tness function of Pi.

In our implementation, an initial population (P ) is created using the gen-
eration method selected (Section 2.5), accepting only valid solutions (lines
1-6). The algorithm then enters the main evolution loop, selecting two own-
ership patterns (Pi, determined by the loop index, Pj, randomly selected)
from P (line 10), and applies the crossover (Section 2.3) to generate two
children (lines 11-13). Then these two new children are mutated (applying
the mutation function selected, see Section 2.4) (lines 14-25). If a child is not
valid, it is mutated again, until a maximum number of mutations, in which
case that child is discarded. After evaluating the remaining (valid) children
(through the �tness function selected, see Section 2.7), the best ownership
pattern among the children and parents is selected (line 26) and added to
a new population (the next generation). This process is repeated for each
ownership pattern in the population, until the new population is complete
(the same amount of ownership patterns as in the previous generation) and.
If the stopping criteria are satis�ed (line 7), the algorithm returns the best
ownership pattern as solution of the problem (line 31). While the stopping
criteria are not satis�ed, the new population is used starting the next itera-
tion of the algorithm. Usually, two possible stopping criteria are de�ned for a
genetic algorithm: a threshold value of the �tness function, or a given amount
of processing time. In this case, establishing a threshold is not viable, since
the optimal value is not known in each situation, so only processing time
limit was used. To avoid spending resources when the population has al-
ready achieved a good �tness value and does not improve further, when the
algorithms detects stagnation (a number of generations with all the elements
with almost the same �tness value) several times, it can stop by itself. The
amount of generations without changes and the number of times it has to be
detected before stopping can be con�gured.

The algorithm was implemented using the Java programming language
and it has been adapted to be executed from a command-line interface, in a
server through a GIS Web Application, or in an external server (GeoServer).
In the former case, the application uses local data and the computational
resources of the client. In the second case, the user can visualize the input
and output data using a GIS viewer integrated with the algorithm, allowing

12



Figure 5: Sequential GA_PE pseudocode.

1 for i = 1 to M do

2 Create Pi;
3 while Pi is not valid do

4 Pi = Create Pi;
5 end

6 end

7 while execution_time ≤ max_time do

8 i = 1;
9 while i ≤M do

10 Select Pj where 1 ≤ i, j ≤M and i 6= j;
11 Add Pi and Pj to o�spring candidates;
12 Randomly select k0 and k1 where 1 ≤ k0 ≤ k1 ≤ N ;

13 P̃i = Pi1 ...Pik0
Pjk0+1

...Pjk1
Pik1+1

...PiN ;

14 P̃j = Pj1 ...Pjk0
Pik0+1

...Pik1
Pjk1+1

...PjN ;

15 Mutate P̃i;
16 mutations_made = 1;

17 while P̃i is not valid and mutations_made ≤Max_mutations do

18 Mutate P̃i;
19 mutations_made = mutations_made+ 1;

20 end

21 if P̃i is valid then

22 Add P̃i to o�spring candidates;
23 end

24 Mutate P̃j ;
25 mutations_made = 1;

26 while P̃j is not valid and mutations_made ≤Max_mutations do

27 Mutate P̃j ;
28 mutations_made = mutations_made+ 1;

29 end

30 if P̃j is valid then

31 Add P̃j to o�spring candidates;
32 end

33 P ′
i = ownership pattern with best �tness value from o�spring candidates;

34 i = i+ 1;

35 end

36 P = P ′;

37 end

38 return P̂γ where F (P̂γ) = max{F (P0), ..., F (PM )};

the algorithm to be started and stopped, and the status of executions thereof
checked. The last case uses the Web Processing Service (WPS) de�ned by
the Open Geospatial Consortium (OGC) to allow integration with existing
servers and applications. The last two cases allow users to send the input
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Figure 6: Flowchart representing the steps followed by GA-PE

data from their client computers, let the server carry out the calculations,
and receive the results once they are produced.

2.8.1. GA_PE Input/Output

The input of the algorithm consists of several �les, these being the con-
�guration �le, the parcel data, and (optional in some cases) the reference
points for each owner. The algorithm produces data in the same format as
the input, with a di�erent (potentially) landowner assigned to each parcel.
The con�guration �le determines all the parameters involved in the algo-
rithm, from population size, to the evaluation or generation method to use,
allowing for full customization depending on the speci�c case and needs of
the landowners.

The format selected for the geometric information of the input data, and
the results produced, is the ESRI shape�le format. The input �le containing
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the parcel data must have at least one �eld in its attribute table, an identity
code to represent the landowner before the exchange process. Optionally, it
can have two more attributes: �rstly, the value of the parcel (if not present
the surface value of the parcel will be used), and secondly, whether or not
the parcel should be excluded from exchanges (but taken into account for
the metric); if not present all parcels are available for exchanging.

In some cases (if the selected evaluation method is based on distances
to the reference points) another additional �le is required, also in shape�le
format, containing the reference point for each landowner. As the parcel �le,
the landowner code attribute is mandatory, with another optional attribute:
the total value for that landowner, before the exchange process. If the total
value is present, the validity of the ownership patterns will be checked against
that value, otherwise, the total value will be calculated using the parcels
assigned to the landowner in the input data.

When the algorithm starts, this information is processed, and the dis-
tances between parcels and to the reference points are calculated and stored,
since they do not change during the execution of the algorithm, to improve
performance eliminating repeated geometric operations.

The output of the algorithm is saved in the ESRI shape�le format, with
the geometries and landowners assigned. If the value of the parcel has been
provided in the input �le, it will be included in the output �le. Likewise,
the information about excluding parcels from the exchange process is saved
if initially provided. During the execution, the algorithm saves progress data
in a log �le, the ownership patterns of the �rst and last generation. It also
has support for stopping the execution or saving the current population (and
best ownership pattern at that moment) on demand.

3. Performance considerations: parallelization of GA-PE

Depending on the size of the problem (number of parcels and landown-
ers involved) and on the con�guration in use (especially if the parcel union
is active) the computational time needed to reach a good solution may be
excessive (upwards of 5 hours to achieve most of the �tness improvements
using fast con�gurations, and increases with the size of the problem). Since
the aim is to provide a useful tool to end users, a number of improvements
focused on performance increase have been incorporated, taking advantage
of parallel processing techniques.

The �rst improvement is the parallelization of the calculation of the next
generation of ownership patterns, using the multithreaded capabilities of cur-
rent microprocessors, and shared memory parallel programming. The steps
of crossover, mutation, validation and evaluation are grouped and isolated
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for each ownership pattern. Using the threads available (which can be con-
�gured), they are computed until the new population is completed. With
this approach, in the event that one ownership pattern takes more time than
others, the rest of the threads can continue with other ownership patterns
(as long as there are ownership patterns pending for the next generation),
thus reducing idle times. This parallelization strategy increases the depth of
the search, as more generations can be computed in the same time.

The second improvement is the parallelization of the algorithm as a whole.
In this approach, multiple populations are created and assigned to di�erent
threads, and each one evolves independently of each other, with occasional
communication of the best ownership patterns found. Each population can
be con�gured independently of each other, allowing the user to try di�erent
con�gurations in the same execution. In regular intervals (every nth genera-
tion, each population can have di�erent values) a population sends its best
ownership patterns to the other populations, and adds the ones sent to it
to the next generation, replacing the worst ownership patterns. This com-
munication is asynchronous, since the sender population does not wait until
the other populations receive the elements, and when receiving elements, if
it has not received any new ownership patterns, it continues with the next
generation. These ownership pattern communications allow the cooperation
of the populations: if one population �nds a good ownership pattern, it will
send it to the others, allowing them to get out of a local optimum, or speed
up their evolution. When using this parallelization, the stop by stagnation
only occurs when all populations have stagnated the required times at the
same time, since some populations can help others move out of the stag-
nation state sending new ownership patterns. This parallelization has been
designed in a way that can be adapted to other types of parallel programming
paradigms (distributed computing, for example) with minor changes needed
on the algorithm. Increasing the number of parallel populations, the algo-
rithm makes a wider search, as each population can follow a di�erent search
path. While computation time reduction is not the focus of this approach,
the cooperation of the di�erent populations has a slight positive e�ect, and
can reduce the time needed to achieve the same �tness values.

Finally, the two parallelization strategies can be combined, using multi-
ple threads for each population. This allows more �exibility using all the
resources available, providing means to assign them as desired. The number
of threads to use in each population can be con�gured independently, so users
can balance the depth and the width of the search. It can also be used to
focus on a known good con�guration, but having other populations in paral-
lel with fewer resources to provide diversity to the main one, attempting to
reduce stagnation by reaching a local optimum.
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4. GA_PE validation results

In this section we will analyze the results obtained, using an extensive set
of tests, each one focused on one aspect of the algorithm. The �nal goal is
to acquire a global understanding of certain good practices to achieve good
results using our algorithm.

First, in order to demonstrate the capabilities of the algorithm in an ideal
situation, in Fig 7a a synthetic parcel holding is shown, with equally sized
adjacent parcels and 10 owners. In Fig 7b the result of the algorithm is
shown. For this initial test the development computer was used (4 cores, 8
threads), with less than ten minutes of execution time and a con�guration
that showed its e�ciency during testing. We used 4DC as the �tness function,
for reference.

In Figure 7c the result of one execution using the PDA �tness functions
is displayed. While the variability of the 4DC is low according to internal
testing, this is not the case for every �tness function. For example, PDA is not
aware of the reference points, so the groups of parcels can be anywhere in the
parcel holding; they happen to be close to the corresponding reference point
because the generation method used does take into account the reference
point.

Lastly, in Figure 7d the result when using the Number of Parcels is shown.
This �tness function does not take into account distances, so the shape of
the parcel groups is very irregular. Additionally, using by itself this �tness
function struggles with isolated parcel groups. If the number of parcels sep-
arating two groups of the same owner is greater than a few, the mutation is
not able to change all the them to the same owner in order to join the two
groups.

Moving on to real test cases, in Fig. 8 three real cases to be used for
testing are shown, color-coded by the landowner of each parcel. The cases are
representative of a variety of real situations, such as adjacent parcels and good
land coverage (high percentage of land available for the exchange process)
vs more disperse parcels, isolated groups of parcels versus only one group of
parcels, regularly-shaped parcels versus irregular shapes and similarly-sized
parcels versus big parcels alongside with small parcels. Although only 3 test
cases could be considered a small test set, we are quite con�dent that they
cover the majority of representative situations of land fragmentation present
in the region under study: Galicia, Spain. All test cases have been executed
on a system equipped with an AMD Threadripper 1950X, a CPU with 16
cores. Table 1 contains a summary of the details of each test case.

The testing procedure to be performed in this section is divided into
several stages, each one providing information that is useful for the next ones.
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(a) Original synthetic parcel distribution

with random owners.
(b) Algorithm results using 4DC �tness

function.

(c) Algorithm results using average dis-

tance between parcels �tness function

(PDA).

(d) Algorithm results using number of

parcels �tness function (NPL).

This way, at the end we will have a few recommendations to maximize the
bene�ts of the results obtained. We will start testing the mutation methods,
to determine which one has greater potential. Once that is determined, that
mutator will be used in the following tests. Next we will assess shortly the
parallelization techniques and several �tness functions, to determine the best
con�guration for general use.

Using the best mutation method, the best hardware resources distribution
and the best overall evaluation function, we will run the algorithm on the real
test cases, and analyze the results obtained. Finally, we will see the potential
of the use of heterogeneous architectures, using multiple populations with
di�erent algorithm parameters in parallel.

4.1. Mutation methods evaluation

Since the mutation method plays an important role in the evolution of
the algorithm, we will study which of the mutation methods implemented
provides the best results. The testing is based on several executions of the
algorithm using each mutation method, keeping the other parameters un-
changed to reduce the variability present in the problem to the mutation
method in use. We test the three mutation methods explained in section 2.4
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Test cases Municipality Parcels Owners Characteristics

Test case 1 Ribadeo 329 12

Low size variation
Low land coverage

High parcel dispersion
High reference points dispersion

Test case 2 Aranga 155 8

Low size variation
Average land coverage

Average parcel dispersion
Low reference points dispersion
Two parcel groups far away

Test case 3 Pol 146 20

Low size variation
High land coverage

Low parcel dispersion
Average reference points dispersion

Table 1: Test cases information

(a) Test case 1, Ribadeo

(b) Test case 2, Aranga

(c) Test case 3, Pol

Figure 8: Real test cases. Each color represents an owner.

19



using two di�erent combinations of them. The algorithm was con�gured to
allow up to 100 consecutive mutations of the same ownership pattern if the
result is not valid. The rest of the parameters are set to values that provided
acceptable results during development and initial testing.

When using more than one method, each mutation is applied to both
children resulting from the crossover This technique generates 2N children,
N being the number of mutation methods to apply and in case remutations
are needed, the next mutation method is applied in consecutive mutations.
For example, child one is mutated with �rst mutator; if not valid, second
mutator is applied; if still not valid, third mutator is applied, and so on.
When all of them were applied and more mutations are still needed, the
process is started again with the �rst of all mutation methods.

The �rst combined method uses the Swapping and Random Change sim-
ple mutators. In this case, the swapping mutator performs one parcel swap,
and the random change performs two random changes. The second mutation
method tested is a combination of SwapNPlots and Random Change. The
SwapNPlots is con�gured to select two random owners and exchange two
parcels of each one, while the Random Change mutator performs 2 changes.

In Figure 9 the results are shown. Each con�guration was run ten times,
and the average �tness value of the ten executions is displayed in the graph,
taking measurements in a 15-second interval. The graph shows that the
combined con�guration that uses the Swapping and Random Change (�rst
con�guration) mutation methods is the fastest one, while also capable of
achieving lower �tness values, thus providing greater potential. The second
con�guration gets close in terms of �tness value achievable, but takes more
time to reduce the �tness value.

4.2. Parallelization evaluation

To evaluate the parallelizations implemented, and their e�ect on the al-
gorithm results, we tested the e�ciency when increasing computational re-
sources. For this testing we used the same approach as in the previous
section, 10 runs and averaging the results. To avoid overextending in the
paper and since this testing falls outside the �eld of the journal, we will keep
this section short and focused on the conclusions.

We tested di�erent distributions of the computational resources between
number of populations and resources for each population. The results re-
vealed that the best approach is a balanced distribution of resources, in this
case 4 populations using each of them 4 of the available threads. This distri-
bution presents an average behavior regarding execution time until stagna-
tion, but achieves the best �tness value. On the following tests we will use
this resource distribution.
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Figure 9: Fitness evolution with di�erent mutation methods

4.3. Fitness functions evaluation

The best �tness function is notably subjective, as it depends on the needs
and priorities of the group of landowners. For our testing, we opted for a
balanced �tness function that has positive e�ects on multiple aspects of the
parcel holding. That way we can recommend a generic con�guration that
works in the majority of situations, and for those that have special needs or
priorities, the user can choose the �tness function that �ts better.

After our testing, the 4DC �tness function has proven to be the one that
improves the four basic ones based on distances (between plots and to the
reference point). According to the synthetic testing, it is also the most stable,
providing more repeatable results. For this reasons, we will use this �tness
functions for testing from now on.

4.4. Real case testing

Using the knowledge acquired in the previous testing, we proceed to ap-
ply our best strategies to real situations. Using the best mutation strategy
found in Section 4.1 (Swapping + Random Change), the best resource distri-
bution found in Section 4.2 (4 populations of 4 threads) and the best overall
evaluation function found in Section 4.3 (4DC), we run the algorithm one
time for each test case, with a maximum execution time of 24 hours. The
rest of the algorithm parameters are the same as in the previous section.

First, in Table 2, values of the �tness function using the chosen best strat-
egy for our GA_PE algorithm (4DC) together with those calculated using
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the �tness functions based on distances, and the number of plots are shown
(six �tness functions in total). Table 2a shows, for each test case described in
Table 1, the �tness value at the starting situation and the value of the best
solution achieved, for each �tness function shown. We provide the �tness
functions values in addition to 4DC values in order to facilitate the reader
translating those results to the real world. When combining multiple �t-
ness functions it is more di�cult to extract conclusions, because the e�ect of
each ownership pattern �tness function to the combined result is not known.
A positive result may hide a negative change in some of the other �tness
functions that form a combined �tness function (see test cases 3 and 4).

Table 2b shows the relative improvement between the initial and �nal
values. A value of 30% indicates a reduction of 30% in the evaluation func-
tion. As can be seen, a minimum reduction of at least 38.64% is achieved in
all cases using 4DC �tness function, with some cases reaching a reduction of
almost 70% in the value of the evaluation function. In some cases, the total
distance between parcels is increased (the source of the negative value in the
table), as that test case has some parcels far away from others, and they are
assigned to a owner with a high number of parcels, so the distance to all
of them adds up. Since the weight of that evaluation function is very low
compared to the others, if a change improves the other evaluation functions
a little, it can o�set that increase in the total distance between parcels, and
provide a reduction in the total �tness value.

Starting values Final values
TPD APD TRD ARD NPL 4DC TPD APD TRD ARD NPL 4DC

Test case 1 749,019.0 1,289.4 34,802.4 1.053.3 320.0 1582.76 411,026.7 681.5 21,874.7 662.4 265.0 929.80
Test case 2 354,505.5 1,183.2 19,660.7 859.6 151.0 1233.37 411,847.5 520.7 18,153.5 543.7 117.0 756.71
Test case 3 26,349.7 552.1 3,571.4 447.4 146.0 528.47 8,107.1 113.4 1,878.2 168.8 89.0 161.68

(a) Changes on the �ve basic �tness functions and 4DC in each test case
Improvement (%)

TPD APD TRD ARD NPL 4DC
Test case 1 45.1 47.1 37.1 37.1 17.2 41.25

Test case 2 -16.2 56.0 7.7 36.7 22.5 38.64

Test case 3 69.2 79.5 47.4 62.3 39.0 69.40

(b) Improvement of each �tness function in each test case

Table 2: Changes on the �tness functions in each test case

Lastly, in Figures 10 to 12, the e�ects on the �nal distribution of the
parcels are shown visually. The parcels with diagonal black lines are parcels
that are taken into account for the evaluation function but which were not
allowed to change ownership during the algorithm. On the left the initial situ-
ation is shown, color-coded by landowner, and on the right, the best solution
found by the algorithm. As can be observed, there is a signi�cant parcel
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Figure 10: Case 1: Similar size and disperse parcels, low land coverage.

Figure 11: Case 2: Similar size with all reference points together. The parcels in the
rectangles are located far away in the direction indicated. They are displayed out of their
real place for visualization purposes.

distribution improvement, displaying a good amount of grouped parcels as
Table 2 numerically indicated, especially in cases with high land coverage.

The best improvements was made in case 3, with an improvement of over
60% on 4DC and the best improvements in number of parcels. This is due to
the high coverage ratio, and the high percentage of contiguous fragments of
land involved in the exchange process. This situation allows multiple parcels
to be joined, forming larger pieces of land assigned to the same owner, greatly
reducing some of the metrics.

The worst improvement was in case 2, with 38.64% of improvement. Even
this case reduces the number of parcels, but the groups of parcels far away
from the rest have a signi�cant impact of some of the metrics (TPD and
TRD). Due to the fact that all the owners' reference points are close together,
every owner competes with the others for the same parcels, and the metrics
involving the reference points show the lowest improvement values in this
case. On average, the algorithm achieves a reduction of 49.76% on the value
of 4DC.
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Figure 12: Case 3: Similar size adjacent parcels, high land coverage.

4.4.1. GA_PE versus farmers experience

The solutions produced for some of the test cases were presented to a
group of the landowners involved, during individual interviews. Most of
the interviewed participants expressed interest in the proposed solution, in
general, indicating that it would be preferable to the current situation. Nev-
ertheless, most of them also suggested small deviations from the proposal,
usually involving speci�c parcels which on second thought, they would rather
not include in the exchange process. Less commonly, some owners identi�ed
small changes in the solution that would be preferable owing of reasons not
originally included in the computation process (e.g., ease of access to a block
of parcels assigned to them by the proposed solution). This was in line with
our expectations that the solution produced by the algorithm could not be
immediately implemented in the �eld, but it showed clearly that it was a
good starting point for negotiation.

Analyzing the results obtained, we can extract a number of relations
between the �tness functions and the di�erent possible situations that can
be encountered when using the algorithm.

First, the algorithm achieves better results in situations with high land
coverage and adjacent parcels (case 3). This is due to the higher probability
of forming large groups of adjacent parcels assigned to the same owner, which
considerably reduces the �tness value of 4DC. This is the best possible sce-
nario for the algorithm, particularly if the �tness function that joins adjacent
parcels of the same owner is involved.

Secondly, situations where the reference points are close together can
decrease the improvement achieved (case 2 with TRD is a good example).
In this case, it is better to employ �tness functions that do not use the
reference points, since di�erent owners will compete for the same parcels and
cause the closest parcels to be fragmented among each other. At the very
least, the user should combine that �tness function with other ones that also
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take into consideration other parameters. The algorithm can then use those
parameters to determine which possible ownership pattern is better.

In situations with low land coverage and dispersed parcels and reference
points (case 1), �tness functions that use the distance to the reference point
provide good results, given the intrinsic limitations of the situation. Fitness
functions that only take into account distance between parcels may form
parcel groups that are far away from the owner's reference point, but closer
together than assigning parcels nearer to the reference point.

4.5. Cooperation testing

To close the results section, we will test how our implementation can
bene�t from the use of di�erent algorithm parameters in each parallel popu-
lation. We will use the best mutation method, the best resource distribution
and the best overall �tness function (trying some variations) found in previ-
ous sections, with GA_PE being executed using the second test case. Results
shown in Figure 13 come from the average of ten runs.

The best resource distribution uses 4 populations, and we will consider
several combinations with regards to the �tness functions assigned to each
population. On the one hand, we will use the 4DC �tness function (referred to
as fast); and on the other hand, to test a �tness function with high execution
times requirements we will use 4DC but applied to the union of the parcels
of the same owner (referred to as slow). The results are shown in Figure
13. The series naming indicates the number of populations using the fast
and slow �tness functions, F4P_S0P indicates that all 4 populations use the
fast (F) �tness function and none the slow (S) one, while F1P_S3P indicates
that 1 population uses the fast (F) �tness function and the other 3 use the
slow (S) one. The _4DC su�x indicates that the �tness value is reported by
the fast �tness function, and the _U su�x indicates that the �tness value is
reported by the slow one (the parcel union was performed).

The fast metric alone (F4P_S0P) quickly converges to an almost steady
�tness value, and stagnates, while the slow metric alone (F0P_S4P) has
not reached a stagnation value by the end of the allowed time. However, in
any of the con�gurations where both metrics are used, there is a remarkable
reduction in the �tness value reported by the slow �tness function; this be-
havior is mainly due to the �rst communication between populations, when
the ownership patterns of the population that uses the fast metric, which
have achieved a notable improvement of their �tness, are inserted into the
population that uses the slow metric (another smaller reduction takes place
during the second communication). On the other hand, the use of the two
metrics has very little impact on the evolution of fast populations.
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Figure 13: Heterogeneous con�guration resource distribution comparison

Although allowing more execution times could still improve the metric
when using the slow �tness function (downward trend when it stops), there
is a remarkable improvement using the two �tness functions, especially if they
are synergetic (an improvement in one tends to cause an improvement in the
other). For this reason we encourage the use of di�erent �tness functions
when using our GA_PE algorithm.

5. Conclusions

A genetic algorithm for parcel exchange (GA_PE) has been designed.
Tests performed have allowed us to determine a basic con�guration with re-
gards to mutation and evaluation methods, and a recommendation about the
computational resource distribution (balanced approach between populations
and threads per population). These recommendations can be used as default
con�guration when employing the algorithm, but the user is encouraged to
test other options to check whether they are a better �t for their test case.
Finally, a heterogeneous con�guration has demonstrated their potential in
our testing, improving the results notably when using di�erent synergetic
evaluation methods.

The use of an evolutionary algorithm makes parcel exchange among mul-
tiple landowners a viable tool for reducing the internal fragmentation of ex-
isting holdings as it helps to overcome its main practical limitation: �nding
an adequate exchange solution in reasonable time. A solution that groups
each landowner's parcels as close as possible could be easily implemented on
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the �eld with no modi�cation of current parcel structure and with little vari-
ation of the total area managed by each owner. Nevertheless, in the real test
cases explored in this paper, it was common for owners to propose small de-
viations from the solution produced by the algorithm, but these departures
usually involved a small number of parcels and could be easily negotiated
among participants. Accordingly, the solution produced by the algorithm
appeared as a solid base for negotiations that could not be achieved in the
initial situation.

As future work, there are possible improvements to be made, for instance
adding a new step in the algorithm to perform a local search on certain own-
ership patterns. This search can be more computationally intensive, as it
would not be applied to all ownership patterns, and not on every generation.
To avoid doing work on already explored ownership patterns, a taboo list
could be used. Another possible improvement would be to apply a similar
technique to the one explained in Ertunç et al. (2018b), changing the muta-
tion con�guration based on the stagnation detected, by either changing the
mutation method con�guration, changing to more aggressive mutation meth-
ods or a combination thereof, using more conservative and faster mutation
options when the algorithm evolves fast.
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