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Abstract

Biclustering techniques are gaining attention in the analysis of large-scale datasets as they

identify two-dimensional submatrices where both rows and columns are correlated. In this

work we present ParBiBit, a parallel tool to accelerate the search of interesting biclusters on

binary datasets, which are very popular on different fields such as genetics, marketing or

text mining. It is based on the state-of-the-art sequential Java tool BiBit, which has been

proved accurate by several studies, especially on scenarios that result on many large biclus-

ters. ParBiBit uses the same methodology as BiBit (grouping the binary information into

patterns) and provides the same results. Nevertheless, our tool significantly improves per-

formance thanks to an efficient implementation based on C++11 that includes support for

threads and MPI processes in order to exploit the compute capabilities of modern distrib-

uted-memory systems, which provide several multicore CPU nodes interconnected through

a network. Our performance evaluation with 18 representative input datasets on two differ-

ent eight-node systems shows that our tool is significantly faster than the original BiBit.

Source code in C++ and MPI running on Linux systems as well as a reference manual are

available at https://sourceforge.net/projects/parbibit/.

Introduction

The amount of data that can be collected and stored in several research and industry fields has

significantly increased during the last years. This information is often described in a two-

dimensional way, where rows and columns represent the measured attributes and samples,

respectively. The analysis of these data is a complex and computationally expensive procedure

that often requires data mining techniques to extract valuable information and transform it

into an understandable structure for further use. A widely spread data mining approach is

the clustering, that allows to identify some patterns and structures between the attribute and

sample relationships. However, traditional clustering techniques are not able to provide infor-

mation to understand local relationships between both samples and attributes. In this case,

biclustering approaches should be used in order to identify a subset of rows (attributes) that

exhibit similar patterns on a subset of columns (samples) in a two-dimensional data matrix.

There exist several biclustering techniques, with different advantages and drawbacks

depending on the characteristics of the input datasets and the research field where the
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approach will be used [1]. Gene expression analyses are probably nowadays the most common

application of biclustering techniques. In this case datasets contain information about the

expression level of many genes on several individuals under different experimental conditions.

Rows and columns represent genes and samples, respectively. Biclustering is able to diagnose

genes responsible of certain diseases only on a group of individuals. Many research works have

focused on analyzing the best biclustering approaches for gene expression data [2–4]. Other

fields where biclustering has been satisfactorily applied are drug activity [5], text mining [6],

information theory [7] or marketing [8].

Among the different alternatives for biclustering, some algorithms are especially designed

for binary data so that they are able to obtain results with better accuracy in lower runtime

over these very common datasets. For instance, in genetics the data can be simplified so that

each value one or zero represents whether a gene is differentially expressed in an individual or

not. A recent survey has proved that binary biclustering can provide high precision results for

gene expression data analyses [9]. Binary data matrices are also useful in text mining (values

are one only when certain word appears in a document) or marketing (each value represents

whether a costumer buys a product or not).

Despite binary biclustering techniques are usually faster than those for quantitative data,

the computational cost of the available methods that provide accurate results is still prohibitive

for large datasets. This paper presents ParBiBit, a parallel application that exploits computa-

tional capability of modern distributed-memory systems to accelerate the search of biclusters

on binary datasets. It is implemented with a hybrid approach that uses MPI [10] to work on

different nodes connected through a network, with the multithreaded support of C++11 [11]

to exploit several cores within the same node.

Related work

Several biclustering approaches have been suggested to deal with binary two-dimensional

matrices. Among all of them, we have selected the Java-based application BiBit [12] as basis for

our tool due to several reasons:

• A recent review of 17 available biclustering methods [9] has proved that BiBit obtains accu-

rate results for gene expression data, especially on cases with many large biclusters. This

work also shows that the BiBit approach can be useful for quantitative data if applying a

binarization.

• BiBit exploits the binary nature of the data by efficiently using Boolean algebra operations.

This makes it faster than Bimax [13], probably the most commonly employed binary biclus-

tering tool.

• Although in the last years several algorithms not tested in the aforementioned review have

been presented for binary biclustering [14–16], their related publications do not include

tests that prove that any of these novel approaches are more accurate than BiBit. Further-

more, these implementations are not publicly available for further testing.

ParBiBit is significantly faster than BiBit thanks to an efficient C++ implementation and its

ability to exploit the computational capabilities of large systems with several multicore nodes

connected through a network (also known as CPU clusters). Previous works that address the

biclustering on this type of facilities are available for quantitative datasets following either the

message-passing paradigm [17, 18] or the MapReduce approach [19, 20]. The only work

focused on binary data [21] is implemented with this last MapReduce paradigm. However, all

these previous works seem preliminary implementations as their parallel software have not
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been released. Consequently, up to our knowledge, ParBiBit is the first publicly available tool

to accelerate binary biclustering on multicore CPU clusters. Finally, implementations designed

for other type of high performance computing architectures such as GPUs [22–24] or FPGAs

[25, 26] have also been presented, but none of them dedicated to binary data.

Background

This section describes the main concepts and technologies on which ParBiBit relies on, and

thus are necessary to understand the behavior and implementation of our tool.

Binary biclustering: The BiBit approach

A bicluster in a binary matrix M with dimensions m × n consists of a set of rows and columns

(R, C) so that all the values within that subset are one. A formal definition can be: 8i 2 R, 8j 2
C, M[i, j] = 1. Additionally, most tools search for only maximal biclusters, i.e., those that are

not entirely contained by any other bicluster.

Similarly to BiBit, our tool uses the concept of bit-pattern in order to find the biclusters of a

binary matrix with a minimum number of rows (mnr) and columns (mnc) specified by the

user. The joint pattern of a subset of rows consists of n bits (one per column) where the bit k is

set to one if the binary value of column k in all the rows of the subset is equal to one. Other-

wise, the bit is set to zero. It means that the joint pattern p of a subset of rows (r1, r2, . . ., rz) can

be defined as: p = r1 ^ r2 ^ . . . ^ rz, where ^ is the binary AND operator. The pattern of a

bicluster is the joint pattern of all the rows contained in it. BiBit works as follows (we refer to

the BiBit main publication [12] for more details):

1. Initializes an empty list of bicluster structures.

2. For each pair of rows (ri1, ri2) from the input matrix M:

a. Creates a new bicluster with pattern p = ri1 ^ ri2 and rows ri1, ri2.

b. Checks that the number of ones in the pattern is equal or higher than mnc and the pat-

tern has not been used for any bicluster already inserted in the list. Otherwise, the biclus-

ter is discarded and the algorithm returns to step 2.a for new pair.

c. All rows ri3 different than ri1 and ri2 are compared to p, and those that satisfy that p ^ ri3 =

p are included in the bicluster.

d. The bicluster is inserted in the list if the number of rows is equal or higher than mnr.

3. The information of the list is printed in the output file. The rows that belong to each biclus-

ter were directly saved in the structure, while the columns can be obtained as those elements

in the pattern equal to one.

However, the dependencies among the iterations of the loop in step 2 (each iteration checks

whether the pattern has already been used) make the BiBit algorithm not adequate for parallel

computing. Thus, it had to be modified in ParBiBit as will be explained in following sections.

Multithreading with C++11

Historically, there have been several C and C++-based libraries that support multithreading

over several CPU cores that share memory. Some examples are POSIX Threads [27] or Intel’s

Threading Building Blocks [28]. This heterogeneous software landscape made it difficult to

write platform-portable C/C++ codes. With the release of C++11 [11] and its novel multi-

threading API it is finally possible to write platform-independent code in C++ that is
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supported by compilers from both the Linux/UNIX world and the Windows ecosystem with-

out the need for third party libraries.

When a C++ program is executed, only one main thread exists. An arbitrary number of

software threads can be spawned by the main thread of a system process, and are repre-

sented in C++11 with an object of class thread. It is even possible to recursively spawn

threads from within already spawned ones. The actual number of concurrently running

threads should be adjusted to roughly match the amount of physical cores of the system

since the OS might serialize their execution using expensive context switches if their num-

ber exceeds the amount of available cores. All threads share the resources of the parent

system process, i.e., they can access the same memory space. This is advantageous since

threads can be spawned with low latency and benefit from lightweight inter-thread commu-

nication using shared registers and arrays. The instruction flow of the main thread contin-

ues independently of the work accomplished in the spawned threads until the end of the

main function is reached. In order to ensure that all spawned threads have finished their

work, the main thread should wait for them. This is accomplished with a call to the method

join of the class thread.

As all threads share the same memory space, one of the most common causes of errors are

the race conditions, i.e., situations where two or more threads want to access the same data

and they try to change it simultaneously. As the thread scheduling algorithm can swap between

threads at any time, we do not know the order in which the threads will attempt to access the

shared data. Therefore, the result of the change in data would be dependent on the thread

scheduling algorithm, i.e., both threads are racing to access/change the data. The solution in

C++11 consists in using an object of the class mutex to restrict the execution of critical sections

to a certain thread in a mutually exclusive manner. A mutex can be locked by a specific thread,

i.e., the subsequent code fragment can only be executed by the issuing thread until the mutex

is released. While being locked a mutex cannot be locked or unlocked by other threads which

have to wait for its release causing an implicit synchronization of threads. Nevertheless, it is

not advisable to abuse of the use of mutexes as its synchronization leads to some performance

overhead (some threads stop their execution and remain idle). In ParBiBit, mutexes are used

to serialize the modification of the list of biclusters to ensure that all threads have the most

updated information when they check whether the pattern has already been used (see point 2.

d in the background subsection that describes the BiBit approach).

Message passing interface (MPI)

The target parallel architecture of this work are distributed-memory systems that consist of

several nodes interconnected through a network, each of them with a memory module and

several CPU cores (see Fig 1). Parallel computing on this kind of systems usually follows the

Single Program Multiple Data (SPMD) style, i.e., it splits the workload into different tasks that

are executed on multiple CPUs so that all nodes and cores collaborate to accelerate computa-

tion. The computational capability of the cluster depends on factors such as the number of

nodes, the number of cores per node, the network characteristics, the memory bandwidth, etc.

The most common programming model for high-performance cluster systems is message-

passing. MPI [10] is established as a de-facto standard for message-passing as it is based on the

consensus of more than 40 participating organizations, including vendors, researchers, soft-

ware library developers, and users. MPI provides a portable, efficient, and flexible standard for

message-passing. Note that it is only a definition of an interface, that has been implemented by

several developers for different architectures. Nowadays there exist several implementations

whose routines or functions can be directly called from C, C++, Fortran or Java code.
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A parallel MPI program consists of several processes with associated local memory. In a

pure MPI program each process is linked to one core. In hybrid MPI and multithreaded pro-

grams as ParBiBit each process is usually mapped to one node and it has several associated

threads launched with the C++11 multithreading support (often the same number of threads

as cores within the node). We should remark that each process has its own memory address

space that cannot be directly accessed by other processes. If one process needs information

stored in a remote memory module data communication must be performed, which is usually

the main performance overhead. The traditional MPI communication style is two-sided,

where the source and destination processes must be synchronized through either send and

receive functions or collective routines for communications that involve more than two pro-

cesses. Nevertheless, ParBiBit improves the efficiency of the internal data exchanges by making

use of the Remote Memory Access (RMA) one-sided communications included in MPI since

its 3.0 version. These kind of routines have been proved more efficient than two-sided commu-

nication on several scenarios, thanks to avoiding synchronizations between source and desti-

nation processes [29, 30].

Methods

ParBiBit is a command line tool that receives as arguments some configuration parameters

such as the path to the input and output files, the minimum number of rows (mnr) and col-

umns (mnc) per bicluster, etc. An explanation of all the arguments, as well as installation and

execution instructions, are included in the reference manual of the tool. Although BiBit intro-

duces the bit-pattern approach used in our tool, its algorithm is not adequate for parallel

Fig 1. Abstraction of a distributed-memory system with several cores and one memory module per node.

https://doi.org/10.1371/journal.pone.0194361.g001
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computation. Therefore, instead of having one only loop with dependencies among all its iter-

ations, ParBiBit divides the computation into the following phases:

1. Input reading. Read the two-dimensional data matrix with the input values for m attributes

and n samples from a file with ARFF extension.

2. Binarization (optional). Although our tool is designed for binary biclustering, it also accepts

real values in the input data file. In this case it applies a binarization procedure where all

values higher than a certain threshold are set to one, and otherwise to zero. This threshold

is also indicated as a parameter by command line. This approach has been used in previous

analyses with satisfactory results [9].

3. Encoding. Instead of saving in memory a m × n matrix with the binary values, ParBiBit
encodes the values associated to each attribute into an array of 32-bit integers with length n

32

(each integer contains the information of 32 samples). Working with encoded values accel-

erates the procedure of checking whether a row must be included in a bicluster (see point 2.

c in the background subsection that explains the BiBit approach): for each 32 samples we

only need one 32-bit AND operation, which is much faster than 32 1-bit AND operations.

This encoding technique had already been applied in BiBit but with a 16-bit basis that is less

effective than our 32-bit approach. The use of 64-bit (or even larger) encoded values was

discarded as one 64-bit AND logic operation is not faster than two 32-bit AND operations

on most computing platforms.

4. Bicluster initialization. Create one bicluster structure for each pair of rows with the follow-

ing information: the joint pattern and the id of the two rows of the pair. Insert in a set all

the structures that correspond to biclusters with different patterns.

5. Bicluster completion. For each bicluster with rows (ri1, ri2) available in the set from the

previous phase, complete its information by checking whether all rows ri3 (with i3 6¼ i1,

i2) belong to the bicluster. Include the id i3 in the structure when the condition is

satisfied.

6. Output writing. The information of the biclusters found in the previous steps is written into

an output file that follows the same format as for BiBit, i.e., one line per bicluster with the

following values separated by semicolons:

a. An integer with the number of rows in the bicluster (nr).

b. An integer with the number of columns in the bicluster (nc).

c. A list of nr strings with the names or ids of the attributes included in the bicluster. They

are explicitly stored in the structure.

d. A list of nc strings with the names or ids of the samples included in the bicluster. They

can be obtained from the pattern, as those elements with bit one in the pattern represent

columns included in the bicluster.

The impact of binarization and encoding on the total runtime is negligible, while the read-

ing/writing of the input/output are I/O intensive phases without chances for parallelization.

Therefore, we have focused on accelerating the phases that initialize and complete the biclus-

ters (steps 4 and 5), which are the most computationally demanding ones (more than 98% of

the total runtime when executing on one core). Finally, remark that the sequential C++ code

of ParBiBit is more efficient than the BiBit one with Java, especially thanks to better memory

management.
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Parallel bicluster initialization

Algorithm 1 shows the pseudocode of this phase, that receives as input the encoded data and

the minimum number of columns, and whose goal is to provide a set of all the bicluster struc-

tures with only two row ids that have different patterns. The information of all these initialized

biclusters will be extended in the next step. Each bicluster is represented as a structure with a

list of attribute ids (integers) and a pattern (i.e., an array with n
32

32-bit integers where a bit

equal to one in position j represents that the value of the j-th sample is one in all the rows that

belong to the bicluster). The C++ set container is used to save all bicluster structures as it

works faster than a list for insertions, deletions and searches when each element can be

identified by a unique key (logarithmic complexity instead of linear). In this case the key is

equal to the pattern, as no biclusters with the same pattern are allowed. The C++ set is ini-

tially empty and is stored in shared memory so all threads can insert the structure and check

whether the pattern is repeated.

Algorithm 1: Pseudocode of the multithreaded approach to initialize the biclusters.
1 INPUT: m� n

32
32-bit integer matrix D with the encoded data

2 INPUT: Integer mnc with the minimum number of columns per bicluster
3 Initialize empty bicluster set S
4 Initialize mutex x
5 # Multiple threads responsible of different i indexes
6 for Each row i from 0 to m − 2 do
7 for Each row k from i + 1 to m − 1 do
8 Initialize pattern p as empty array of 32-bit integers
9 Initialize num1 ≔ 0
10 for Each encoded column j from 0 to n

32
do

11 p[j] ≔ D[i][j] ^ D[k][j]
12 num1 ≔ num1 + popcount(p[j])

end
13 if num1 � mnc then
14 Create bicluster structure b with p, i and k
15 Lock x
16 if No bicluster structure with pattern p in S then
17 Insert b in S

end
18 Unlock x;

end
end

end
Two loops that iterate among the rows of the encoded matrix D are necessary to work over

all the pairs of attributes (Lines 6 and 7). The pattern of each pair is calculated by applying one

32-bit logical AND (^) operation for each encoded value (Line 11). The number of ones in the

pattern represents the number of samples that are included in the bicluster. Therefore, only

those patterns with higher number of one values than mnc are useful (Line 13). The function

popcount of Line 12 represents a custom-made routine that efficiently counts the number of

positive bits of a 32-bit integer on a x86-based computing system.

The second condition that must be fulfilled in order to insert a new bicluster in the set is

that no previous structure has the same pattern. Remark that several threads searching and/

or inserting biclusters with the same pattern at the same time could lead to race conditions.

A mutex is employed to serialize these accesses and thus avoid that two threads could simul-

taneously insert biclusters with the same pattern (Lines 15-18). In order to minimize the

amount of serial work, the creation of the bicluster of Line 14 was removed from the critical

section.
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No MPI parallelization has been included in this step as its performance would not be satis-

factory on distributed-memory nodes. Every time that one structure is initialized the process

should check in the setwhether the pattern is repeated. It could be performed either with a

centralized container or with a copy of the set on each process. Nevertheless, both solutions

would be extremely inefficient due to the large amount of MPI communications needed to

synchronize each insertion in the set. Therefore, at the end of this phase only one process has

the information available in its local memory.

Bicluster completion

Bicluster completion consists in finding which rows belong to each of the already initialized

biclusters. In this stage ParBiBit launches several MPI processes that work over different

biclusters at the same time, applying a static distribution where the same amount of biclus-

ters are assigned to each process. This distribution provides a well-balanced workload

among processes as the computational cost of each bicluster completion is similar. Algo-

rithm 2 illustrates the work performed by each process. It starts by copying the initial

encoded data to the memory of all processes (Line 4), as this data is initially only available

on the main process (the only one that worked during the previous phase) but will be needed

by all of them. We use the MPI_Bcast collective that is usually faster than point-to-point

communications [31, 32]. Although this data replication leads to memory overhead, it allows

ParBiBit to reduce communication. In order to limit the memory overhead and make it

affordable for current systems, ParBiBit does not create one MPI process per core (each one

with its own copy of the encoded data). Instead, each process is related to a group of cores

and launches several C++11 threads that are able to access shared memory, use the same

copy of the data and collaborate to complete the biclusters assigned to their parent process.

This hybrid model has already been satisfactorily applied to other fields such as bioinformat-

ics [33], molecular dynamics [34] or linear algebra [35]. Our implementation is flexible

enough to allow the users to specify the desired number of MPI processes and threads (see

the reference manual).

Algorithm 2: Pseudocode of the hybrid MPI/multithreaded approach on each process

(with id myId) to complete the biclusters.
1 INPUT only in Process 0: m� n

32
32-bit integer matrix D with the

encoded data
2 INPUT only in Process 0: Set S with nb initialized biclusters
3 INPUT: Integer mnr with the minimum number of rows per bicluster
4 MPI_Bcast with D from Process 0 to the others
5 Calculate myIniB and myLastB
6 if myId == 0 then
7 Create MPI_Window W with nb _ð2þ n

32
Þ 32-bit integers accessible to all

processes
8 for Each bicluster b in position j of S do
9 Copy the id of the first attribute of b in W 2þ n

32

� �
� j

� �

10 Copy the id of the second attribute of b in W 2þ n
32

� �
� jþ 1

� �

11 Copy the n
32
integers of the pattern of b in W 2þ n

32

� �
� jþ 2

� �

end
12 MPI_Win_fence to guarantee that copies to W are completed

end
else

13 MPI_Win_fence to guarantee that the necessary initial bicluster
information is in W

14 Get the information of W from myIniB _ð2þ n
32
Þ to myIniB _ð2þ n

32
Þ
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15 Create a list with the information copied from W in the previous
line

end
16 # Multiple threads responsible of different biclusters
17 for Each bicluster b from myIniB to myLastB do
18 nr ≔ 2
19 for Each row i from 0 to m do
20 if i is not one of the initial row ids of b then
21 p equal to the pattern of b
22 j ≔ 0
23 while (j < n) ^ (p[j] == p[j] ^ D[i][j]) do
24 j ≔ j + 1

end
25 if j == n then
26 Insert row i as part of b
27 nr ≔ nr + 1

end
end

end
28 if nr < mnr then
29 Remove b from the list of biclusters

end
end

Similarly to the encoded data, at the beginning of the phase the information of the initial-

ized bicluster structures is only available on the main process memory. In this case it must be

distributed (not replicated) among all processes so that each one only saves the information of

those biclusters that it will work with. It is performed with one-sided RMA routines which in

general are more efficient than two-sided counterparts, as mentioned in the MPI background

subsection. RMA communications work with windows, i.e., arrays of data that belong to one

process but are directly accessible to the other, without requiring any synchronization between

senders and receivers. This window is created in the memory of the main process (Line 7) with

enough space to store all the initial information of the bicluster structures: the id of the two

rows that are already included as well as the n
32
Þ integer pattern. The information of each biclus-

ter is consecutively stored in the window (Lines 8-11). Then, each process accesses to their

associated data just with one get routine (Line 14) after a synchronization that guarantees

that the data has been effectively copied to the window (Lines 12-13). Fig 2 illustrates with an

example the procedure of the bicluster distribution.

Once all processes have the necessary information, each one can start the completion of its

associated biclusters by launching several threads (each thread responsible of different biclus-

ters). No synchronization is needed among processes or threads as the procedure is completely

independent among biclusters. Assume that the initial pair of rows of a certain bicluster is (r1,

r2). Then we must analyze all the rows rx different than r1 and r2 (loop between Lines 19 and

27). As explained for BiBit a row must be included in the bicluster when the result of the logical

AND operations between the bicluster pattern and the row data are the same (Lines 23-26).

Every time that ParBiBit adds a new row it updates the variable nr with the number of rows

per bicluster (Line 27). Once all rows different than r1 and r2 have been tested, we remove the

bicluster from the list if the number of rows nr is lower than mnr (Lines 28-29). Finally, each

process prints the information of their associated biclusters into the output file.

Experimental results

Two Intel platforms with different characteristics are used to evaluate the efficiency and scal-

ability of ParBiBit, as well as to compare its performance to the original BiBit. Table 1
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summarizes their characteristics. Both GNU compilers support the C++11 standard, and all

the experiments are compiled with the -O3 flag. The evaluation shown in this section is

focused on performance in terms of execution time, as the biclustering approach of ParBiBit is

the same as in BiBit and its accuracy was already satisfactorily tested in previous studies [9].

The input datasets were created by randomly generating one and zero values. We vary the

number of samples (100 and 200), the number of attributes (12,800, 25,600 and 51,200), and

the percentage of one values (10% and 15%). The percentage of one values has significant

influence on the speed as different amount of biclusters are found for the same dataset dimen-

sions. The more biclusters are found with not repeated pattern, the more analyses must be

made in the computationally intensive bicluster completion phase of the algorithm. The results

shown in this section were obtained by searching for biclusters with at least 2 samples and 1%

of the attribtes (i.e., 128, 256 and 512 for the datasets with 12,800, 25,600 and 51,200 attributes,

respectively).

Fig 2. Example of a bicluster distribution for a program with three MPI processes using RMA windows. The main

process (Proc. 0) copies the whole data to the window and, after a synchronization that guarantees that the copies have

been completed, the other processes directly get only the information of their associated biclusters.

https://doi.org/10.1371/journal.pone.0194361.g002

Table 1. Characteristics of the test platforms used in the experimental evaluation.

Platform1 Platform2

Nodes 8 8

CPU type Intel Sandy Bridge Intel Haswell

CPUs per node 2 2

Cores per CPU 8 12

Clock frequency 2.20GHz 2.50GHz

Memory per node 64GB 128GB

Network InfiniBand FDR

MPI Compiler Open MPI 1.7.2

C++ Compiler GNU 4.9.2 GNU 5.3.0

https://doi.org/10.1371/journal.pone.0194361.t001
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The experimental evaluation started by finding the best configuration of the number of

threads and MPI processes for ParBiBit on each system. Fig 3 shows the runtime on a single

node of each platform (16 and 24 cores on the Sandy Bridge and Haswell systems, respectively)

for different configurations. The datasets with 12,800 attributes and 200 samples with both

10% and 15% of one values are used in this case as illustrative examples. An intermediate con-

figuration is the best option on both platforms: two processes and eight threads on the Sandy

Bridge system, while four processes and six threads on the second machine. The performance

differences are mainly generated during the phase of biclustering initialization as we must find

a balance between using more threads to increase parallelization in this step (remind that only

one process is used to do so) and reducing the number of threads to limit the overhead due to

mutex synchronization. During the biclustering completion, increasing the number of MPI

processes leads to more communication operations for the encoded data replication and the

Fig 3. Runtime of ParBiBit on one node of each system with different configurations of processes and threads when searching biclusters on the

datasets with 12,800 attributes and 200 samples.

https://doi.org/10.1371/journal.pone.0194361.g003
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initial bicluster distribution. Nevertheless, the increase of communication overhead is not sig-

nificant compared to the total runtime of this phase. Figs 4 and 5 show the partial runtime of

the initialization and completion steps for the different configurations on each platform to

illustrate the previous assertions. As a rule of thumb, using as many processes as CPUs per

node and as many threads as cores per CPU is a good starting point for achieving optimal or

quasi-optimal performance on most systems. From now on all the experimental results shown

in this manuscript were obtained with the best configuration for each platform.

Table 2 shows a comparison of the runtime (in minutes) of the original BiBit tool and Par-
BiBit using different amount of cores and nodes. The first conclusion that can be obtained is

that ParBiBit is significantly faster than BiBit even when using the same amount of resources

(one core). In fact, ParBiBit is on average 2.70 and 3.35 times faster on the Sandy Bridge and

Haswell platforms, respectively. Furthermore, ParBiBit is able to complete the biclustering of

the largest dataset (51,200 rows, 200 columns and 15% of one values) while BiBit was not able

Fig 4. Partial time of the bicluster initialization and completion steps on one node of the Sandy Bridge system for different configurations of

processes and threads. ParBiBit searches for biclusters on the datasets with 12,800 attributes and 200 samples.

https://doi.org/10.1371/journal.pone.0194361.g004
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to finish in the maximum computation time allowed to the users on the clusters (four days).

Two are the reasons for this performance improvement on one core: 1) a more efficient mem-

ory and I/O management of our C++ implementation compared to the Java one of BiBit; and

2) the use of 32-bit logical AND operations for the encoding data instead of being based on

16-bit integers.

Furthermore, the use of our two-level parallelization on a multicore cluster significantly

reduces runtimes. For instance, BiBit needs more than four days to process the dataset with

51,200 attributes, 200 samples and 15% of one values, while ParBiBit reduces the runtime to

only around 94 and 30 minutes on one and eight nodes of the Haswell system, respectively.

Figs 6 and 7 provide an insight of the benefit in terms of performance that can be obtained

by our tool compared to the state of the art. As expected, the acceleration is higher on the Has-

well platform as it provides more resources (24 instead of 16 cores per node). In an attempt to

show the adequacy of ParBiBit to different scenarios, experiments with 40% of one values and

Fig 5. Partial time of the bicluster initialization and completion steps on one node of the Haswell system for different configurations of processes

and threads. ParBiBit searches for biclusters on the datasets with 12,800 attributes and 200 samples.

https://doi.org/10.1371/journal.pone.0194361.g005
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selecting 20 samples per bicluster have also been executed. For simplicity, acceleration is repre-

sented in Fig 8. It is worth noting that this paper does not include a comparison to other paral-

lel tools because, as mentioned in the related work section, up to our knowledge there is no

publicly available tool to accelerate the biclustering procedure of binary data on parallel

architectures.

It was not possible to include in these figures the speedups over BiBit for the most computa-

tionally expensive dataset. As mentioned before, the original Java tool did not finish in four

days (the maximum allowed runtime of the systems). Instead, Table 3 shows the scalability of

our tool for this dataset using as baseline the runtime of ParBiBit on only one core. These

results (and the ones in Figs 6 and 7) prove that our tool scales in all scenarios at least up to

eight nodes. In our opinion, the parallel approach included in ParBiBit provides good scalabil-

ity. Its main strength is that we focused on obtaining very high performance during the most

computationally demanding phase with the hybrid MPI/multithreaded parallelization: more

than 90% of parallel efficiency during bicluster completion even using the eight nodes. As

drawbacks we should mention that some parts cannot be parallelized (I/O routines, data

encoding), the bicluster initialization is only parallelized with threads, and some communica-

tions (with their associated overhead) are compulsory.

Finally, the acceleration was also tested in a scenario with non-binary real data. Authors in

[12] explain a method to work with data that is not binary: 1) standardize the data, generating

Table 2. Runtimes (in minutes) of ParBiBit using up to eight nodes with the best configuration of threads and MPI processes per platform. The runtime of the

sequential BiBit tool are also included for comparison purposes. Both tools look for biclusters with at least 2 samples and 1% of the attributes present in the input dataset.

− means that BiBit was not able to finish the biclustering in the maximum time allowed for computation (four days).

Platform Att. Sam. % of ones Bicl. BiBit ParBiBit
1 core 1 node 8 nodes

Sandy Br. 12800 100 10 2359 7.41 5.51 0.48 0.39

15 4950 29.48 11.50 1.37 0.79

200 10 9510 49.88 18.50 1.82 0.96

15 19900 214.27 73.64 7.49 3.31

25600 100 10 2313 40.52 24.25 2.02 1.44

15 4950 159.18 59.70 5.87 2.75

200 10 9357 243.65 117.99 9.23 3.96

15 19900 1541.89 505.57 43.88 14.19

51200 100 10 2283 249.19 101.23 7.62 5.67

15 4950 1069.27 318.97 31.79 11.36

200 10 9855 2354.67 474.06 41.21 14.63

15 20137 - 1540.39 118.40 31.16

Haswell 12800 100 10 2359 5.58 1.62 0.45 0.34

15 4950 28.07 10.54 0.85 0.47

200 10 9510 51.59 12.50 1.00 0.54

15 19900 200.97 58.06 4.12 1.91

25600 100 10 2313 28.31 7.97 1.58 1.29

15 4950 150.80 56.25 3.90 1.88

200 10 9357 313.16 100.11 5.19 2.16

15 19900 1564.62 531.15 25.04 8.73

51200 100 10 2283 103.18 36.16 6.22 5.02

15 4950 1123.99 311.25 17.38 7.74

200 10 9855 1869.82 424.97 27.67 9.21

15 20137 - 1660.45 94.53 29.71

https://doi.org/10.1371/journal.pone.0194361.t002
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a real value matrix with a mean of zero and a variance of one; 2) data discretization to establish

12 different levels of gene expression values; and 3) execution of BiBit or ParBiBit over this

dataset by applying the optional binarization step (point 2 in “Methods”). In order to provide a

fair comparison with BiBit the same real dataset used in its manuscript [12] for this last perfor-

mance evaluation (i.e., a central nervous system embryonic tumor gene expression dataset

obtained from DNA microarray technology [36] with 40 tumor samples and 7,129 genes). The

runtime of BiBit to complete the biclustering of the 11 binary matrices that are generated by

this real dataset on both platforms is higher than seven hours. Each of the 11 matrices has a dif-

ferent percentage of one values. ParBiBit is also beneficial for this real dataset as it reduces the

runtimes to less than two minutes.

Conclusions

Current biclustering data mining algorithms allow to extract useful biclusters from large

binary datasets. Even though these algorithms can provide highly accurate results, the

Fig 6. Speedups of ParBiBit over BiBit for varying number of nodes on the Sandy Bridge platform. Each line represents a different number of

attributes (the number of samples is fixed to 200) and each graph is associated to a different percentage of one values.

https://doi.org/10.1371/journal.pone.0194361.g006
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procedure of extracting those biclusters is a very time-consuming task, which can represent a

significant performance bottleneck in some fields such as gene expression data analyses. To

overcome this issue, we propose to take advantage of parallel architectures as the modern dis-

tributed-memory systems to alleviate this runtime bottleneck, thus being able to process very

large binary datasets within reasonable times.

In this paper we introduce ParBiBit, a parallel biclustering tool that significantly speeds up

the procedure of discovering interesting biclusters from binary data. Our tool benefits from a

two-level parallelism strategy by combining message-passing with multithreading in order to

fully exploit the computing resources of multicore CPU clusters. This hybrid approach has

been evaluated on two representative systems, showing experimental evidence of significant

performance improvements when compared with the original BiBit tool. In fact, ParBiBit
reduces the execution time of BiBit by up to 203x when processing a dataset with 51,200

attributes on a 8-node Intel Haswell-based cluster. The experimental results also indicate that

Fig 7. Speedups of ParBiBit over BiBit for varying number of nodes on the Haswell platform. Each line represents a different number of attributes

(the number of samples is fixed to 200) and each graph is associated to a different percentage of one values.

https://doi.org/10.1371/journal.pone.0194361.g007
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our tool provides good scalability. The source code of the parallel tool described in this paper

is distributed as free software, being publicly available under an open-source license at https://

sourceforge.net/projects/parbibit/.

As future work, we aim to adapting ParBiBit to exploit other parallel architectures such as

GPUs and/or Intel Xeon Phi coprocessors, as well as developing a counterpart to run non-

binary biclustering on multicore clusters.

Fig 8. Speedups of ParBiBit over BiBit for varying number of nodes. Each line represents a different number of attributes (the number of samples is

fixed to 100, while the percentage of one values is 40%).

https://doi.org/10.1371/journal.pone.0194361.g008

Table 3. Speedups of ParBiBit for varying number of nodes using as baseline the runtime on a single core. The

input dataset contains 51,200 attributes, 200 samples and 15% of one values.

Num. Nodes Sandy Bridge Haswell

1 13.01 17.57

2 21.66 26.40

4 35.35 46.12

8 49.44 55.88

https://doi.org/10.1371/journal.pone.0194361.t003
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