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Under an area-level random regression coefficient Poisson model, this
article derives small area predictors of counts and proportions and introdu-
ces bootstrap estimators of the mean squared errors (MSEs). The maximum
likelihood estimators of the model parameters and the mode predictors of
the random effects are calculated by a Laplace approximation algorithm.
Simulation experiments are implemented to investigate the behavior of the
fitting algorithm, the predictors, and the MSE estimators with and without
bias correction. The new statistical methodology is applied to data from the
Spanish Living Conditions Survey. The target is to estimate the proportions
of women and men under the poverty line by province.
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1. INTRODUCTION

The United Nations (UN) has published that 10 percent of the world’s popula-
tion subsisted on less than $1.90 a day in 2015. Their projections for 2030 sug-
gested that six percent of the population would continue to suffer extreme
poverty. Since 2015, international policies have been guided by the 2030
Agenda and the 17 Sustainable Development Goals (SDGs). Within this com-
mon framework for action, the UN highlights the eradication of poverty as the
first SDG. To achieve this goal, they point out the need to develop systems and
strategies that ensure the social protection of citizens, with a focus on people
who are below the poverty line and in a situation of particular vulnerability
(United Nations 2022). However, the effectiveness of strategies is determined
by an understanding of the structural socio-economic differences inherent in
each country.

Poverty maps are established key tools in supporting policy decisions, as they
facilitate analysis of the geographic distribution of poverty and the degree of
inequality between the territories of a state. Consequently, policymakers require
the estimation of these indicators at an increasingly lower level of aggregation,
leading to potential degradation in precision and reliability. This deficiency can
be addressed by small area estimation (SAE) methods that introduce model-based
predictors for domains where the sample size is small and consequently direct
estimators are imprecise. See Rao and Molina (2015) and Morales et al. (2021)
for comprehensive introductions to SAE.

To estimate domain counts and proportions, SAE uses predictors based on
area-level or unit-level linear mixed models (LMMs) and generalized linear
mixed models (GLMMs). Area-level models are fitted to aggregated data that

Statement of significance

The main milestones achieved in this study are listed below:

• A Poisson area-level model with random regression coefficients is
defined for the first time in small area estimation.

• The best predictors, their empirical versions, and their simplified
versions, as well as the plug-in predictor for estimating poverty pro-
portions are defined and evaluated under an area-level random
regression coefficient Poisson model.

• The mean squared error of poverty proportion estimates is evaluated
using parametric bootstrap estimators with and without bias correction.

• The developed methodology is applied to the study of poverty in
Spain by province and sex, providing valuable poverty maps that
demonstrate key socio-economic differences by geography.
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may contain auxiliary variables from statistical sources other than the sample.
Some examples of applications of area-level LMMs to poverty mapping are
Esteban et al. (2012), Marhuenda et al. (2013, 2014), and Morales et al. (2015).
Concerning GLMMs, binomial and multinomial mixed models for the estima-
tion of proportions were applied by Molina et al. (2007), Ghosh et al. (2009),
Chen and Lahiri (2012), Erciulescu and Fuller (2013), L�opez-Vizca�ıno et al.
(2013, 2015), Berg and Fuller (2014), Militino et al. (2015), Chambers et al.
(2016), Hobza and Morales (2016), Liu and Lahiri (2017), Hobza et al. (2018),
as well as Franco and Bell (2022). The Poisson or Negative Binomial mixed
models were employed to estimate counts or proportions by Tzavidis et al.
(2015), Boubeta et al. (2016, 2017), Chandra et al. (2017, 2019), and Morales
et al. (2022), among others. Zhang and Chambers (2004) proposed log-linear
structural models for estimating cross-classified counts. Wang et al. (2018) and
Esteban et al. (2020) proposed statistical models for compositional proportions.

All these above-cited papers assume that the slopes are fixed even though they
may vary for certain groups of interest. In fact, Swamy (1970) and Demidenko
(2013) noted that models with random regression coefficients are good research
tools in the field of economics. Consequently, this article explores the use of area-
level GLMMs with random coefficients in the SAE context.

Mixed models with random slopes were proposed by Dempster et al.
(1981). Prasad and Rao (1990) gave empirical best linear unbiased predictors
(EBLUPs) under a unit-level random regression coefficient LMM. They fur-
ther derived second-order mean squared error (MSE) approximations and pro-
posed analytical MSE estimators. Moura and Holt (1999) applied these models
to household data from a county in Brazil to predict the Head of Household’s
income as a function of education level and number of rooms. Based on their
simulation and implementation study results, they recommended allowing ran-
dom slopes in the mixture models, noting that restricting random effects to
intercepts does not capture variability as effectively. Hobza and Morales
(2013) introduced unit-level LMMs with random coefficients to estimate aver-
age annual household income. Their simulation studies showed that incorpo-
rating random coefficients can improve the performance of EBLUPs. For
longitudinal studies, chapter 13 of Morales et al. (2021) introduces LMMs
with correlated random coefficients. In summary, there is substantive support
in the statistical literature for including random regression coefficients in
explanatory models when fitting models to “real” datasets. These same studies
provide evidence against requiring fixed slopes in these same situations.

This article introduces a new statistical methodology for poverty mapping,
illustrated by an application to data from the 2008 Spanish Living Condition
Survey (SLCS). This survey is designed to obtain reliable direct estimators in
NUTS 2-type regions (autonomous communities), but the sample sizes are quite
small in NUTS 3-type territories (provinces), according to the current NUTS
classification of EUROSTAT 2016. The target estimates are poverty propor-
tions by sex in the Spanish provinces in 2008. Boubeta et al. (2017) addressed
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this problem by modeling the counts of poor people as an area-level Poisson
regression model with a random intercept. Building on this research, we pro-
pose a model with a random intercept and random slopes, specifically consider-
ing an area-level random regression coefficient Poisson model (ARRCP
model). To assess this model, we develop a Laplace approximation algorithm
to calculate the maximum likelihood (ML) estimators of the model parameters,
derive model-based predictors of domain proportions, and present parametric
bootstrap MSE estimators, each evaluated via extensive simulation studies.

The article is organized as follows. Section 2 describes the case study data
and motivates the use of random slope models for better describing the target
count variable. Section 3 introduces the area-level random regression coefficient
Poisson model. Section 4 derives two predictors of domain proportions and
counts: the empirical best predictor (EBP) and the plug-in predictor. Section 5
presents three simulation experiments patterned upon real data study case. The
first simulation compares the statistical performance of the alternative predic-
tors. The second simulation compares the statistical performance of the model
with random slopes (and intercepts) against the model with only random inter-
cepts (fixed slopes). The third simulation studies the behavior of the parametric
bootstrap estimator of the MSE of the selected predictor with and without bias
correction. Section 6 applies the new Poisson model to data from the 2008
SLCS. Section 7 gives some conclusions.

The article contains supplementary material. Appendix A in the supplemen-
tary data online describes the ML-Laplace fitting algorithm. Appendix B in the
supplementary data online defines a simplified version of the EBP, the empiri-
cal simplified best predictor (BP). Appendix C in the supplementary data
online develops three parametric bootstrap methods to estimate the MSE of
predictors, two of them with bias correction. Appendix D in the supplementary
data online presents four parametric bootstrap methods that can be used to cal-
culate confidence intervals for model parameters. Appendix E in the supple-
mentary data online carries out four additional simulation experiments that
complement the results presented in section 5. Appendix F in the supplemen-
tary data online details the definition, characteristics, and selection of the
ARRCP model in the application to real data.

2. DATA DESCRIPTION

The SLCS measures the incidence and composition of poverty by establishing a
poverty risk threshold, providing information on the personal distribution of
income based on net annual income, on household deprivation, and housing con-
ditions and yields the harmonized indicator of risk of poverty or social exclusion.
The SLCS is an annual statistic harmonized at the European level, carried out by
the Spanish Statistical Office (INE—Instituto Nacional de Estad�ıstica). The data
selected for this study correspond to the 2008 SLCS, with a sample size of
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35,967. Although these data were collected 15 years ago, this data set is widely
employed in the SAE literature of area-level models and is featured in the moti-
vating research presented in Boubeta et al. (2017). Using the same dataset facili-
tates comparison between the different procedures without confounding and
allows us to test model enhancements.

For the area-level models, we construct an aggregated data file with
D¼ 104 domains defined by the crosses of the 52 Spanish provinces (includ-
ing the cities of Ceuta and Melilla) and the two sexes. For each domain, the
target variable of the Poisson model is the count of people with annual
equivalized net incomes below a predetermined threshold established at 60
percent of the median income per consumption unit, indicated in euros (INE
2022). Auxiliary variables are taken from the 2008 Spanish Labour Force
Survey (SLFS), whose covariates are related to the dependent variable (the
number of poor people), a key requirement in SAE. The SLFS data on citi-
zen participation in the labor is strongly associated with the characteristics
of individual living conditions. Our auxiliary data choice is supported by the
existing literature, with the numerous studies utilizing these auxiliary varia-
bles to estimate poverty indicators: see Molina and Rao (2010), Esteban
et al. (2012), Molina et al. (2014), Morales et al. (2015), Benavent and
Morales (2016, 2021), Boubeta et al. (2016), Marhuenda et al. (2017), or
Boubeta et al. (2017), among others.

The SLFS is published quarterly by the INE. It has a much larger sample
size than the SLCS, yielding reliable direct estimates in provinces. The auxili-
ary variables provided by the SLFS are the survey’s direct estimates of the pro-
portions of people in specific categories of unit-level factors. To increase the
precision of the estimates, the four surveys of 2008 were combined. This
avoids the problem of extending the area-level measurement error Poisson
model of Morales et al. (2022) to the case of random regression coefficients.

Specifically, we consider the following unit-level categories:

Age (five categories): �15 years old (age0)

16–24 years old (age1)

25–49 years old (age2)

50–64 years old (age3)

�65 years old (age4)

with age0 as the reference category.

Education (four categories): �16 years old (edu0)

Illiterate persons with incomplete or
complete primary education and/or
lower secondary education (edu1)
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Persons with complete secondary
education and/or postsecondary
education such as baccalaureate or
vocational training (edu2)

Persons with university studies (edu3)

with edu0 as the reference category.

Nationality (two categories): Spanish citizens including those with dual
nationality (c)
Foreign citizenship (cit1)

with c as the reference category.

Labour status (four categories): �16 years (lab0)

Employed (lab1)

Unemployed (lab2)

Inactive (lab3)

with lab0 as the reference category.

Within each unit-level category, the sum of the proportions equals 1. To
ensure unique parameters, we remove the selected reference category values
from the data set.

To account for the divergence in the socio-economic structure of the Spanish
provinces, we follow Tirado et al. (2016), introducing a variable that groups the
provinces into clusters by their average income per household unit. The new
variable, called income group, classifies the provinces into five clusters:

k¼1 average household income of [20,484, 24,096) euros

k¼2 average household income of [24,096, 26,206) euros

k¼3 average household income of [26,206, 28,558) euro

k¼4 average household income of [28,558, 31,364) euros

k¼5 average household income of [31,364, 37,432) euros

That is, k¼ 1 includes the provinces with the lowest aggregated average
incomes per household unit, whereas k¼ 5 includes those with the highest val-
ues. The definition of this variable, as well as a cluster sensitivity analysis, is
extensively detailed in section F.1 in the supplementary data online.

Figure 1 examines the linear relationship between the logarithm of the sam-
ple poverty proportion and the auxiliary variables age3 (left) and lab2 (right)
of the ARRCP model applied in section 6 (see table 4) for each of the five
income group clusters. Note that (1) defines a logarithmic link, as natural for
the Poisson distribution. Therefore, it makes sense to present the logarithm of
the poverty proportion, as it is equivalent to the target natural parameter log pij
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incorporated in that equation. Section F.1 in the supplementary data online
presents similar figures for the remaining auxiliary variables. These figures
show that slopes are not constant and vary by cluster k, k ¼ 1; . . . ; 5.

The variable age3 represents the proportion of people aged 50–64. This
stage is characterized by professional stability, with privileges achieved after a
long career in the labor market. We therefore expect to observe a decreasing
slope for each income group (cluster), logically reasoning that provinces with
higher proportions of people in this age range should exhibit lower proportions
of poverty. Indeed, this is the case for all groups, with the exception of k¼ 2,
which has a notably less steep slope than the other income groups and exhibits
a slightly positive trend visually. This cluster comprises a variety of provinces.
On the one hand, it includes “Empty Spain” territories such as Lugo, where the
population is markedly aged. In such populations, job offers tend to be associ-
ated with optimal conditions, regardless of age group. This group also includes
the autonomous city of Ceuta, whose combined estimates with Melilla have a
significantly greater sampling error than the rest of Spain according to the INE.

The variable lab2 represents the proportion of unemployed people. We
expect positive slopes in each income group cluster, since provinces with a
greater proportion of unemployed population will tend to have greater propor-
tions of poverty. This is confirmed in all clusters, with particularly steep slopes
in the greater income groups of provinces (k¼ 4 and k¼ 5), except in the cluster
k¼ 2, which exhibits a nearly virtually constant slope. Figure 1 shows clear dif-
ferences in slopes by income group cluster for the age3 and lab2 variables, with
especially pronounced differences with the lab2 variable, which has crossed
slopes in clusters k¼4 and k¼5. The age3 variable likewise shows differences
in slope by income group cluster, albeit to a lesser extent. Consequently, we

Figure 1. Log-Poverty-Proportion versus age3 and lab2 by Cluster k; k51; � � � ; 5:
The age3 variable represents the proportion of people who are 50–64 years old in the
group income cluster k; the lab2 represents the proportion of unemployed persons in
the group income cluster.
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posited that the random coefficient associated with the unemployment indicator
variable should explain a large component of the variance of the Poisson model.

Figure 1 and appendix F.1.3 in the supplementary data online demonstrate
deficiencies in area-level Poisson mixed model whose only random effect is the
intercept. This model does not capture all the variability of the current aggregated
poverty data, providing visual evidence for incorporating a random slope coeffi-
cient by income groups. Consequently, the following section defines the empiri-
cal new Poisson model that will be used in the application presented in Section 6.

3. THE ARRCP MODEL

This section introduces the new ARRCP model, along with all necessary nota-
tion. Let yij be a count variable taking values on N [ 0f g, where
i 2 I ¼ 1; . . . ; If g and j 2 J ¼ 1; . . . ; Jf g. Let D ¼ IJ be the total number of y
values. In our application, yij is the number of people below the poverty thresh-
old in a survey sample, the indexes i and j represent province and sex, and D is
the total number of domains defined by crossing of the variables province and
sex. We classify each provide into one of K income group clusters, I1; . . . ; IK

with k(i) designating the specific cluster assignment for province i,
k ið Þ 2 K ¼ 1; . . . ;Kf g. The number of provinces in the cluster Ik is

mk ¼ # Ikð Þ, so that D ¼ J
PK

k¼1 mk. As a particular case, we could consider
no clustering, with mk ¼ 1 for k ið Þ 2 K ¼ 1; . . . ;Kf g, where K¼ I.

We use this area-level data to model and predict the target variable yij.
Assume that there are p explanatory variables with values
x‘;ij; ‘ 2 P ¼ 1; . . . ; pf g; i 2 I; j 2 J. For models that include an intercept, we
take x1;ij ¼ 1 for all i and j. Hereafter, we present the area-level random regres-
sion coefficient Poisson model that is ultimately applied to empirical poverty
data in section 6.

Let uij, i 2 I; j 2 J be i.i.d. N(0, 1) random variables. Let /‘ > 0 ð‘ 2 PÞ
be unknown standard deviation parameters. Let qrs 2 �1; 1ð Þ (r< s, r; s 2 P)

be unknown correlation parameters. Let vk ¼ v1;k; . . . ; vp;k

� �0ðk 2 KÞ be i.i.d.
random vectors such that

diag
1� ‘� p

/‘ð Þvk � Np 0;V/
vk

� �
;

V/
vk ¼

/2
1 /1/2q12 . . . /1/pq1p

/2/1q12 /2
2 . . . /2/pq2p

..

. ..
. . .

. ..
.

/p/1q1p /p/2q2p . . . /2
p

0BBBBBBBBBB@

1CCCCCCCCCCA
:
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Therefore, the variance matrix of vk is

Vvk ¼ var vkð Þ ¼ diag
1� ‘� p

/�1
‘

� �
V/

vk diag
1� ‘� p

/�1
‘

� �
¼

1 q12 . . . q1p

q12 1 . . . q2p

..

. ..
. . .

. ..
.

q1p q2p . . . 1

0BBBBBB@

1CCCCCCA:

Define the matrix Vv ¼ diag1� k �K Vvkð Þ and the vectors

u ¼ col
1� i� I

col
1� j� J

uij

� �� �
� ND 0; IDð Þ; v ¼ col

1� k �K
vkð Þ � NpK 0;Vvð Þ;

where diag and col are the diagonal and the column operator, respectively. We
assume that u and v are independent. The distribution of the target variable yij,
conditioned to the random effects uij, v‘;k ið Þ ð‘ 2 P

�
is

yijjuij; v1;k ið Þ; . . . ; vp;k ið Þ � Poisson nijpij

� �
; i 2 I; j 2 J;

where the offset parameters nij > 0 are known and correspond to the sample
size when the model is applied to real data, and the binomial probability pij is
the target parameter with range (0,1).

For the natural parameters, we assume

gij ¼ log lij ¼ log nij þ log pij

¼ log nij þ
Xp

‘¼1

b‘x‘;ij þ ruij þ
Xp

‘¼1

/‘v‘;k ið Þx‘;ij; i 2 I; j 2 J; (1)

where lij ¼ E yijjuij; v1;k ið Þ; . . . ; vp;k ið Þ
� 	

. We may write xijb ¼
Pp

‘¼1 b‘x‘;ij,
where b ¼ col1� ‘� p b‘ð Þ is the column vector of regression parameters and
xij ¼ col01� ‘� p x‘;ij

� �
is the row vector of known auxiliary variables. To finish

the definition of the ARRCP model, we assume that the yijs are independent
conditioned on u and v. The variance component parameters are r > 0, / ¼
/1; . . . ;/p

� �0 2 R
p
þ, and q ¼ q12; . . . ; q1p; . . . ; qp�1p

� �0 2 �1; 1ð Þp p�1ð Þ=2,

where Rþ ¼ 0;1ð Þ. The vector of model parameters is h ¼ b0; r;/0; q0ð Þ0.
The total number of random effects is H ¼ D þ pK. Define

yi ¼ col
1� j� J

yij

� �
; i 2 I; y ¼ col

1� i� I
yið Þ; c yð Þ ¼ 2pð Þ�

H
2

YI

i¼1

YJ

j¼1

n
yij

ij =yij!
� �

:
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It holds that

P yijju; v; h
� �

¼ P yijjuij; v‘;k ið Þ
� �

¼ 1
yij!

exp �nijpij


 �
n

yij

ij p
yij

ij ;

pij ¼ exp xijbþ ruij þ
Xp

‘¼1

/‘v‘;k ið Þx‘;ij

( )
;

P yju; v; hð Þ ¼
YI

i¼1

YJ

j¼1

P yijju; v; h
� �

;

P y; hð Þ ¼
Ð
R

H P yju; v; hð Þfu uð Þfv vð Þdudv ¼
Ð
R

Hw y; u; v; hð Þdudv;

where

w y;u;v;hð Þ¼ 2pð Þ�
H

2 exp �1
2
u0u

� 
jVvj�1=2 exp �1

2
v0V�1

v v

� YI

i¼1

YJ

j¼1

exp �nijpij


 �
n

yij

ij p
yij

ij

yij!

¼ c yð Þexp �1
2
u0u

� 
jVvj�1=2 exp �1

2
v0V�1

v v

� 

�exp �
XI

i¼1

XJ

j¼1

nij exp xijbþruijþ
Xp

‘¼1

/‘v‘;k ið Þx‘;ij

( )( )

�exp
Xp

‘¼1

XI

i¼1

XJ

j¼1

yijx‘;ij

!
b‘þ

XI

i¼1

XJ

j¼1

ruijþ
Xp

‘¼1

/‘v‘;k ið Þx‘;ij

( )
yij

( )
:

Given y, the ML estimator of h is

ĥ ¼ argmaxh2HP y; hð Þ; H ¼ R
p � R

pþ1
þ � �1; 1ð Þp p�1ð Þ=2:

To carry out the maximization, we iteratively apply an R function to approxi-
mate the integral in R

H and an R function for optimization. Alternatively, one
could use the Laplace approximation algorithm derived in appendix A dis-
cussed in the supplementary data online. Similarly, one could use the accompa-
nying asymptotic confidence intervals and p-values for to evaluate the model
parameters or use the bootstrap confidence intervals described in appendix D
of the supplementary data online.
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4. PREDICTORS

This section derives predictors of pij and lij under the ARRCP model. Definte

yjk ¼ col
i2Ik

yij

� �
; ujk ¼ col

i2Ik

uij

� �
:

The conditional distribution of y, given u and v, is

P yju; vð Þ ¼
YJ

j¼1

YK

k¼1

P yjkju; v
� �

¼
YJ

j¼1

YK

k¼1

P yjkjujk; vk

� �
;

P yjkjujk; vk

� �
¼

Y
i2Ik

P yijjujk; vk

� �
¼

Y
i2Ik

P yijjuij; vk

� �
;

where

P yijjuij; vk ið Þ
� �

¼ 1
yij!

exp �nijpij


 �
n

yij

ij p
yij

ij

¼ cij exp

(
yij xijbþ ruij þ

Xp

‘¼1

/‘v‘;k ið Þx‘;ij

!

�nij exp xijbþ ruij þ
Xp

‘¼1

/‘v‘;k ið Þx‘;ij

( ))

and cij ¼ 1= yij!
� �

n
yij

ij . The p.d.f. of ujk and vk are

fv vkð Þ ¼ 2pð Þ
�

p

2jVvkj�1=2 exp � 1
2
v0kV

�1=2
vk vk

� 
� Np 0;Vvkð Þ;

fu ujk

� �
¼ 2pð Þ

�
mk

2 exp � 1
2
u0jkujk

� 
� Nmk 0; Imkð Þ:

Recall that pij only depends on uij and vk ið Þ, and that the random effects uij and
vk; i 2 I; j 2 J; k 2 K are independent. Therefore, the components of y that
are not in yjk ið Þ are independent of pij. However, pij is not independent of yjk ið Þ.

The BP of pij is
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p̂bp
ij ¼ p̂bp

ij hð Þ ¼ Eh pijjy
� 	

¼ Eh pijjyjk ið Þ

h i
¼ Aij

Bk ið Þ
;

Aij ¼
Ð

Rpþmk exp xijbþ ruij þ
Xp

‘¼1

/‘v‘;k ið Þx‘;ij

( )
:

P yjk ið Þjujk ið Þ; vk ið Þ

� �
fu ujk ið Þ
� �

fv vk ið Þ
� �

dujk ið Þdvk ið Þ;

Bk ið Þ ¼
Ð

Rpþmk P yjk ið Þjujk ið Þ; vk ið Þ

� �
fu ujk ið Þ
� �

fv vk ið Þ
� �

dujk ið Þdvk ið Þ:

The EBP of pij is p̂ebp
ij ¼ p̂bp

ij ĥ
� �

and the EBP of lij ¼ nijpij is l̂
ebp
ij ¼ nijp̂

ebp
ij .

The EBP p̂ebp
ij can be approximated by the following Monte Carlo method:

(1) Estimate ĥ ¼ b̂
0
; r̂; /̂

0
; q̂0

� �0
. Set k ¼ k ið Þ.

(2) For s1 ¼ 1; . . . ; S1; s2 ¼ 1; . . . ; S2, generate u s1ð Þ
jk � Nmk 0; Imkð Þ; v s2ð Þ

k

� Np 0; V̂ vk

� �
and u S1þs1ð Þ

jk ¼ �u s1ð Þ
jk ; v S2þs2ð Þ

k ¼ �v s2ð Þ
k , where

V̂ vk ¼ Vvk q̂ð Þ.
(3) Calculate p̂ebp

ij ¼ Âij=B̂k ið Þ, where

Âij ¼
X2S1

s1¼1

X2S2

s2¼1

exp

(X
r2Ik

(
yrj þ dri

� �
xrjb̂ þ r̂u s1ð Þ

rj þ
Xp

‘¼1

/̂‘v
s2ð Þ
‘;k x‘;rj

!

�nrj exp xrjb̂ þ r̂u s1ð Þ
rj þ

Xp

‘¼1

/̂‘v
s2ð Þ
‘;k x‘;rj

( )))
;

B̂k ið Þ ¼
X2S1

s1¼1

X2S2

s2¼1

exp

(X
r2Ik

(
yrj xrjb̂ þ r̂u s1ð Þ

rj þ
Xp

‘¼1

/̂‘v
s2ð Þ
‘;k x‘;rj

!

�nrj exp xrjb̂ þ r̂u s1ð Þ
rj þ

Xp

‘¼1

/̂‘v
s2ð Þ
‘;k x‘;rj

( )))
;

and dri is the delta of Kronecker, that is, dri ¼ 1 if r¼ i and dri ¼ 0 if r 6¼ i.

The EBPs are usually computationally demanding and are not necessarily
unbiased. Another option is to consider the computationally simpler plug-in
predictor of pij, which has the form

p̂in
ij ¼ exp xijb̂ þ r̂ûij þ

Xp

‘¼1

/̂‘v̂‘;k ið Þx‘;ij

( )
; (2)

where ûij and v̂‘;k ið Þ; ‘ ¼ 1; . . . ; p, are the mode predictors taken from the output

of the ML-Laplace algorithm. The plug-in predictor of lij ¼ nijpij is l̂
in
ij ¼ nijp̂

in
ij .
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5. SIMULATIONS

This section presents three simulation experiments, applying the AARCP
model defined in section 3 to simulated data modeled after the empirical data
used in section 6. Simulation 1 compares the performance of the predictors
introduced in section 4. Simulation 2 compares the behavior of plug-in predic-
tors obtained with the ARRCP model (model 1) to that obtained using a model
whose random effects are restricted to intercepts (model 0), with the target data
are generated from either model (0 or 1). Simulation 3 evaluates the behavior
of the parametric bootstrap estimators of the MSEs of the plug-in predictors;
see appendix C in the supplementary data online.

Using the aggregated data file described in section 2 as predictors, we simu-
lated the dependent variable yij for each province i and sex j, using the regres-
sion and variance parameters obtained from the empirical application of the
ARRCP presented in section 6.

The domain target parameter pij corresponds to the domain proportion of
people below the poverty threshold. The model contains p¼ 5 auxiliary
variables: x1 ¼ intercept, x2 ¼ age3, x3 ¼ edu1, x4 ¼ cit1, and x5 ¼ lab2, with
regression parameters b1 ¼ �1:3806; b2 ¼ �4:2120; b3 ¼ 1:0048;
b4 ¼ �1:3491, and b5 ¼ 6:9135. The standard deviation parameters are
r ¼ 0:1414; /1 ¼ 0; /2 ¼ 2:0617; /3 ¼ 0; /4 ¼ 0, and /5 ¼ 2:5985. The
correlation parameters are q25 ¼ �0:9432 and qab ¼ 0 for any other a< b
belonging to the set K ¼ 1; 2; 3; 4; 5f g. The natural parameter of the selected
ARRCP model is

log lij ¼ log nij þ log pij

¼ log nij þ
X5
‘¼1

b‘x‘;ij þ ruij þ /2v2;k ið Þx2;ij þ /5v5;k ið Þx5;ij;

where nij ¼ nij is the sample size in province i and sex j, uij � N 0; 1ð Þ;
v2;k; v5;k
� �0 � N2 0;V25ð Þ; 0 ¼ 0; 0ð Þ0 and V25 q25ð Þ ¼ 1 q25

q25 1

� �
. [Note that

model 0 is a particular case of the ARRCP model, where /2 ¼ /5 ¼ q25 ¼ 0.]
To approximate the BP and the EBP, we take S1 ¼ S2 ¼ 2; 500 in the Monte
Carlo algorithm given in section 4.

Appendix E in the supplementary data online outlines four additional com-
plementary simulation experiments.

5.1 Simulation 1

Simulation 1 evaluates the respective performance of the BP, EBP, and plug-in
predictors over repeated samples. To perform the simulation, we:

(1) Repeat the following steps R ¼ 1,000 times (r ¼ 1; . . . ;R):
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1.1 Generate u rð Þ
ij i.i.d. N(0, 1) and v rð Þ

k i.i.d. Np 0;V25 q25ð Þð Þ; i 2 I; j 2 J;
k 2 K.

1.2 Calculate pðrÞij ¼ exp fxijbþ ruðrÞij þ /2vðrÞ2;kðiÞx2;ij þ /5vðrÞ5;kðiÞx5;ijg;
i 2 I; j 2 J.

1.3 Generate yðrÞij ¼ Poissonðnijp
ðrÞ
ij Þ; i 2 I; j 2 J.

1.4 Calculate ŝðrÞ 2 b1; . . . ; b5;r;/2;/5; q25

 �

and p̂mðrÞ
ij for all j 2 J

where m ¼ BP, EPB, and IN (the plug-in estimator).
(2) For each prediction method m, calculate

Bias (within): BIASm
ij ¼ 1

R

PR
r¼1 p̂mðrÞ

ij � pðrÞ
ij

� �
Absolute Bias: ABIASm ¼ 1

IJ

PI
i¼1

PJ
j¼1 BIASm

ij

��� ���
Root-MSE (within): RMSEm

ij ¼ 1
R

PR
r¼1 p̂mðrÞ

ij � pðrÞij

� �2
� �1=2

Root-MSE: RMSEm ¼ 1
IJ

PI
i¼1

PJ
j¼1 RMSEm

ij

(3) Calculate the corresponding relative performance measures (in percent):

Relative Bias (within): RBIASm
ij ¼ 100� BIASm

ij

�pij

� �
Relative RMSE (within): RRMSEm

ij ¼ 100� RMSEm
ij

�pij

� �
Absolute Relative Bias: ARBIASm ¼ 1

IJ

PI
i¼1

PJ
j¼1 RBIASm

ij

��� ���
Relative Root-MSE: RRMSEm ¼ 1

IJ

PI
i¼1

PJ
j¼1 RRMSEm

ij

where �pij ¼ 1
R

PR
r¼1 pðrÞij

Table 1 shows the absolute and relative performance measures in percent
for the BP, the EBP, and for the plug-in (IN). Also, for a more in-depth analy-
sis, figure 2 illustrates the performance of the EBP and plug-in predictions in
terms of BIASij (left) and RMSEij (right) for each domain, plotted in ascending
order of sample size.

Considering these results collectively, we note the following. First, the BP
consistently outperforms the EBP in terms of bias and precision. However, the
relative performances of these two approaches are not markedly different,
despite the parameter estimation effects with the EPB. Second, the EBP predic-
tions should (in theory) have similar properties to those of the BP, as the EBP
is unbiased predictor that minimizes the MSE. This is not borne out by the

Table 1. Performance Measures for Predictors

BP EBP IN

103 ABIAS 0.6119 0.7042 0.6119
103 RMSE 25.5329 26.1465 23.1661
ARBIAS 0.2850 0.3339 0.2851
RRMSE 11.5156 11.7813 10.4189
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results. In fact, the biases of corresponding BP and plug-in estimates have simi-
lar magnitude, whereas the EPB biases are larger. In addition, the plug-in pre-
dictor has lower RMSE compared to the other predictors. As expected, the EPB
is unbiased, whereas the plug-in estimator is slightly negatively biased; see the
boxplot on the left. On the other hand, the plug-in predictor is considerably less
variable, with the EPB variability increasing as the sample size decreases.

Recall that we generated S1 ¼ S2 ¼ 2; 500 random variables to approximate
the BP of pij. This predictor requires approximating a multiple integral of
dimension p þ mk, where p is the number of parameters, and mk the number of
domains in each cluster k (between 20 and 22 domains per cluster). The BP
incorporates the Monte Carlo variance, which is high, and has a starting var-
iance underlying the integral estimation; an optimal approximation would
require at least 10,000 iterations. Thus, not only is this problem mathematically
complex, it is computationally very expensive. This simulation required about
nine days of computation time to obtain the BP and EBP estimates.

The plug-in predictor is by definition biased, since its unbiasedness proper-
ties are related to linear functions, and the objective is exponential. However,
the bias is not markedly different from that with the EBP, as shown in figure 2.
Figure 3 plots the plug-in model predictions obtained with (2) against the simu-
lated values. Notice that the deviation from linearity is not strong in this spe-
cific data set. Consequently, although the tendency of all the considered
predictors decrease the RMSEij as the sample sizes increase, we use the plug-
in predictor for our real data application, as it best balances performance and
computational efficiency.

5.2 Simulation 2

Simulation 2 compares the behavior of the plug-in predictors of pij based on
model 0 (random intercepts) and on model 1 (random intercepts and slopes),
denoted by p̂in0

ij (IN0) and p̂in1
ij (IN1) respectively. We follow the steps outlined

in simulation 1, but generate two sets of data (one under model 1, one under
model 0), calculating both predictors IN0 and IN1 in each data set. If either
model fails to converge, the iteration is discarded and and replaced by a new
one as advised by Matuschek et al. (2017).

Figure 2. BIAS (Left) and RMSE (Right) of p̂ij Ordered by Sample Size.
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If model 1 is the true generating model, then the best performance (i.e., low-
est bias and root-MSE) should be obtained by IN1; this expectation is con-
firmed by Table 2 and figure 4. Table 2 and figure 5 show when the data are
generated under model 0 (the most unfavorable conditions for IN1), the per-
formances of both predictors are approximately the same, although predictor
IN0 gets slightly better results.

We conclude that the variance parameters of the random slopes and/or the
correlation parameter between the two play an important role in obtaining
model performance. In this simulation study, IN1 performs well even when the
underlying true conditions are not fully favorable. These results are consistent
with the theory in the literature that frames random slope mixed models as a
more flexible alternative to mixed models with random intercept only. In prac-
tice, after establishing the appropriateness of including random slopes in the
predictons, more analysis is needed to determine the most optimal parameter-
ization of the employed ARRCP model. See section E.3 in the supplementary
data online for simulation that compares plug-in predictors for an example of
such analyses.

5.3 Simulation 3

Simulation 3 studies the behavior of the parametric bootstrap estimator of the
MSE of a predictor p̂ij of pij. More concretely, we use three different bootstrap
estimators to obtain MSEs with the IN1 predictors. Specifically, we consider a
parametric bootstrap approximation without a bias correction (PB) and two
double bootstrap procedures, the Hall and Maiti (2006) bias-corrected boot-
strap (HM) and the Erciulescu and Fuller (2013) bias-corrected bootstrap (EF).
See appendix C of the supplementary data online for more information on the
considered bootstrap estimators. Performance is assessed relative to the empiri-

cal (true) MSE obtained from Simulation 1, where MSEin
ij ¼ RMSEin

ij

� �2
.

Figure 3. Linear Predictor gij versus pij.

16 Diz-Rosales, Lombard�ıa, and Morales

https://academic.oup.com/jssam/article-lookup/doi/10.1093/jssam/smad036#supplementary-data
https://academic.oup.com/jssam/article-lookup/doi/10.1093/jssam/smad036#supplementary-data
https://academic.oup.com/jssam/article-lookup/doi/10.1093/jssam/smad036#supplementary-data
https://academic.oup.com/jssam/article-lookup/doi/10.1093/jssam/smad036#supplementary-data
https://academic.oup.com/jssam/article-lookup/doi/10.1093/jssam/smad036#supplementary-data


The simulation procedure was as follows:

(1) Repeat steps 1.1 through 1.3 independently, R ¼ 500 times (r ¼ 1; . . . ;R)
1.1 Generate a sample ðyðrÞij ; xijÞ; i 2 I; j 2 J in the same way as in simula-

tion 1.
1.2 Calculate the estimators b̂

ðrÞ
1 ; b̂

ðrÞ
2 ; b̂

ðrÞ
3 ; b̂

ðrÞ
4 b̂

ðrÞ
5 ; r̂ðrÞ; /̂

ðrÞ
2 ; /̂

ðrÞ
5 ; q̂ðrÞ

25 .
1.3 Calculate mse�ðrÞij 2 fmse�PBðp̂in

ij Þ;mse�HMðp̂in
ij Þ;mse�EFðp̂in

ij Þg.
(2) For each bootstrap estimator*, calculate

Bias (within): BI�ij ¼ 1
R

PR
r¼1

dMSE
�ðrÞ
ij � MSEin

ij

� �

Figure 5. BIAS and RMSE of Plug-In Predictors under Model 0 (Simulation 2).

Table 2. Performance Measures for Plug-In Predictors under Model 1 and
Model 0 (Simulation 2). The data in columns 2 and 3 are generated with model 1 (ran-
dom intercepts and slopes), whereas the data in columns 4 and 5 are generated with
model 0 (random intercepts only).

Model 1 Model 0

IN1 IN0 IN1 IN0

103 ABIAS 0.6805 0.9964 0.9526 0.9760
103 RMSE 23.2990 27.1146 25.7758 25.7204
ARBIAS 0.3005 0.4518 0.4385 0.4508
RRMSE 10.4265 12.2292 11.8440 11.8163

Figure 4. BIAS and RMSE of Plug-In Predictors under Model 1 (Simulation 2).
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Absolute Bias: AB� ¼ 1
IJ

PI
i¼1

PJ
j¼1 BI�ij

��� ���
Root-MSE (within): RE�

ij ¼ 1
R

PR
r¼1

dMSE
�ðrÞ
ij � MSEin

ij

� �2
� �1=2

Root-MSE: RE� ¼ 1
IJ

PI
i¼1

PJ
j¼1 RE�

ij

(3) Calculate the corresponding relative performance measures (in percent).

Relative Bias (within): RB�
ij ¼ 100

BI�ij
MSEin

ij

� �
Relative RMSE (within): RRE�

ij ¼ 100� RE�
ij

MSEin
ij

� �
Absolute Relative Bias: ARB� ¼ 1

IJ

PI
i¼1

PJ
j¼1 RB�

ij

��� ���
Relative Root-MSE: RRE� ¼ 1

IJ

PI
i¼1

PJ
j¼1 RRE�

ij

See appendix C of the supplementary data online for details on the imple-
mented simulation study and for more information on algorithms and appropri-
ate modifications.

In this simulation we used B1 ¼ 500 replicates in the first level, as all considered
procedures converged with this number of iterations. For the two double bootstrap
approaches (HM and EF), we take B2 ¼ 2 and B2 ¼ 1 replicates, respectively.

Table 3 shows the performance measures and computational times required. As
expected, corrected bootstrap estimators (HM and EF) have lower relative and
absolute biases than their uncorrected counterpart (PB). However, consistent with
this decrease in bias, the RE increases with the bias corrections. Nevertheless, the
improvement in bias compensates for the corresponding increases in variance. Both
bias corrected bootstraps have comparable performance, with the EF correction
showing a slight edge in term of bias and having the added advantage of greater
speed, with runtimes more comparable to the uncorrected PB.

Since the performance measures presented in Table 1 are averaged over the
500 bootstrap samples, it is worth examining the distribution of the relative
biases and relative root-MSEs. Figure 6 presents boxplots of these measures
for the three considered bootstrap methods. The large reduction in bias with
the HM and EF bootstrap estimators offsets the corresponding observed
increases in the RREij.

Table 3. Comparative Performance of mse* ðp̂inij Þ estimators for B1 5 500

AB (x103) RE (x103) ARB (%) RRE (%) Time

PB 0.0398 0.1329 6.1007 21.7383 3.5613 min
HM 0.0249 0.1489 4.1405 24.8549 11.0111 min
EF 0.0217 0.1579 3.8079 26.3079 7.4624 min
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Given its substantive bias correction, trivial variance increase, and relatively
low computation requirements, we selected the EF method for the application
presented in section 6, employing a B1 equal to or greater than 500 and a B2 ¼
1. We note that all three approximations presented have optimal properties for
estimating the RMSE of poverty proportions.

6. APPLICATION TO REAL DATA

For the real data application, we utilize the following the ARRCP model (see
(1)): yij is the sample count of people below the poverty threshold in province i
and sex j (the dependent variable), nij ¼ nij is the sample size, x1;ij is the inter-
cept and x2;ij; x3;ij; x4;ij, and x5;ij are the values of age3, edu1, cit1, and lab2,
respectively, defined in section 2. The selected model contains only two ran-
dom slopes for x2;ij and x5;ij, so that the corresponding model parameters and

random effects are /2; /5, q25, and uij � Nð0; 1Þ, ðv2;k; v5;kÞ0 � N2ð0;V25Þ; 0

¼ ð0; 0Þ0, and V25ðq25Þ ¼
1 q25
q25 1

� �
. The natural parameter is

gij ¼ log lij ¼ log nij þ
X5
‘¼1

b‘x‘;ij þ ruij þ /2v2;k ið Þx2;ij þ /5v5;k ið Þx5;ij;

and the selected model has a cAIC of 744.71 (d.f.¼ 48.33, conditional loglike-
lihood ¼ �324.02). Candidate models with small cAIC were evaluated based
on the following criteria: (1) social-economic interpretability and statistical sig-
nificance of fitted regression parameters, (2) nonzero variance parameters of
random effects, (3) convergence of the ML-Laplace approximation algorithm,
and (4) validity of model assumptions. For more information on model selec-
tion in SAE, see Vaida and Blanchard (2005) and Lombard�ıa et al. (2017)

Figure 6. RB and RRE of Each mse� p̂inij
� �

with B15 500 and B25 2 (HM) or
B25 1 (EF).
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among others. Appendix A in the supplementary data online provides details
on the model selection process.

Table 4 presents the regression parameter estimates and the basic percentile
confidence intervals at a¼ 5 percent discussed later in this section. The esti-
mated regression parameters can be interpreted from a socio-economic
perspective. A higher percentage of unemployed (lab2) or less educated (edu1)
population is positively associated with poverty, whereas higher proportions of
late-career population (age3) or foreign citizens (cit1) are associated with
reduced poverty rates: see Molina and Rao (2010), Esteban et al. (2012),
Molina et al. (2014), Morales et al. (2015), Benavent and Morales (2016),
Boubeta et al. (2016), and Marhuenda et al. (2017). In the paragraphs below,
the socio-economic interpretation of the realized model parameters is
discussed in more detail.

As the population ages, employment tends to be characterized by job stabil-
ity and higher income (reduced poverty risk), as reflected latest INE statistics.
In 2020, population between 45 to 64 years old had the highest average house-
hold income (for both men and women), followed by the population aged 65
and above. This trend corresponds to the 2008 pattern presented in INE
(2020a). This poverty reduction effect of is reflected by the b̂2 value of
�4.2120.

Higher levels of attained education are associated with better job opportuni-
ties and salaries; conversely, lower levels of attained education are associated
with increased poverty risk. In the 2020 SLCS, people with incomplete pre-
school, primary, and/or secondary education have the highest percentage of
relative poverty risk (28.7 percent), compared to people with completed secon-
dary education (18.6 percent in the edu2 category) and people with tertiary
education (9.1 percent in the edu3 category). This is pattern is quite like that in
2008 SLCS case study data, which has 21.2 percent of the population at risk of
poverty for edu1, 12.9 percent for edu2, and 7.0 percent for edu3; see INE
(2020d). Recall that x3,ij in our ARRCP model represents the ed1 category
(illiterate, with complete or incomplete primary education or with incomplete
secondary education). Consistent with the expected increase in poverty associ-
ated with this low education attainment category, b̂3 is 1.0048.

Table 4. Regression Parameter Estimates and Basic Percentile Confidence
Intervals (a5 5 Percent), for the ARRCP Model Used in the SLCS SAE Real
Data Application.

b1 b2 b3 b4 b5 r /2 /5 q25

2.5% �2.0939 �8.4242 0.1903 �2.1321 3.6580 0.1102 0.9589 0.4625 �1.0000
Estimate �1.3806 �4.2120 1.0048 �1.3491 6.9135 0.1414 2.0617 2.5985 �0.9432
97.5% �0.6107 �0.2015 1.8523 �0.5056 10.3916 0.1901 3.8284 5.0808 �0.8864
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A higher percentage of foreign citizens in the population tends be associated
with a reduction in poverty, possible because people move to the Spanish prov-
inces that offer greater employment opportunities. The province with the high-
est number of foreigners in 2008 was Madrid, followed by Barcelona, which is
the province with the highest income group (k ¼ 5); see INE (2020c). The pov-
erty reduction effect is reflected by the b̂4value of�1.3491.

Finally, higher percentage of unemployed persons is associated with
increases in poverty, or alternatively, a high percentage of labor activity is a
key factor in minimizing the risk of exclusion and poverty. In the 2008 SLFSS
data, the highest unemployment rates are in the Andalucia and Extremadura
provinces, which are classified into the income group classes with the lowest
mean average income; see INE (2020b). Consistent with the expected increase
in poverty associated with high percentages of unemployed persons, b̂5 is
6.9135.

After establishing their consistent socio-economic interpretations, the signif-
icance of the fixed and random effects parameters’ is assessed by computing
confidence intervals. For this, we use basic percentile method to obtain a
1� að Þ% bootstrap confidence interval for our parameter vector; see appendix
D in the supplementary data online for more information. Following the guide-
lines given by Davison and Hinkley (1997), we used 999 bootstrap replicates
to attain a 95 percent confidence level. None of the confidence interval pro-
vided in Table 4 contain zero, providing support for the inclusion of the ran-
dom coefficients in the ARRCP model. Notice that the widest intervals are
associated with b2 and b5 and /2 and /5, which may further support the
important contribution of the random coefficients to the variance of the
ARRCP model.

The last step of the ARRCP model validation/assessment procedure is to
assess goodness of fit. For this, we calculated, the Pearson residuals of the

model as: rij ¼
lij�l̂ ijffiffiffiffi

l̂ ij

p ; i 2 I; j 2 J:

Figure 7 plots the residuals against the predicted poverty values (left) and
plots the predicted values against the observed poverty values (right). The
residuals are randomly centered around the line y¼ 0, with the majority of val-
ues falling between 1 and �1, without responding to any particular pattern.
However, there are 7 residuals around the�2 range; see table 5.

All seven residuals have large negative values. In the studied data, these
domains have the lowest proportion of poverty and the highest average
income, with one exception. Residual 85 (position 20) belongs to the k ¼ 3
income group, but also has a small number of poor people. That said, its mod-
eled values appear to provide a good fit to the actual counts as shown in figure
7. See section F.2. in the supplementary data online for more details on the
model validation process, particularly with respect to the assessment of random
effects.
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To assess the improvements in the model by including random coefficients,
figure 8 plots the Pearson residuals of model 0 (random intercept) and model 1
(random intercept and random slopes) against the five income groups.
Including the random coefficients in the model improves the model fit,

Figure 7. Goodness of Fit of the ARRCP Model.

Table 5. Descriptive of the Highlighted Seven Residuals (Outliers)

d k Province Sex rij nij yij pij

61 5 Navarra 1 �1.7754 571 34 0.0595
33 5 Gerona 1 �1.7111 178 13 0.0730
87 4 Teruel 1 �1.6684 82 6 0.0732
23 5 Castell�on 1 �1.5768 129 9 0.0698
62 5 Navarra 2 �1.5577 633 45 0.0711
88 4 Teruel 2 �1.4340 81 8 0.0988
85 3 Tarragona 1 �1.3666 162 21 0.1296

Figure 8. Distribution of Pearson Residuals by Income Group k; k51; � � � ; 5:
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especially in the k¼ 1, k¼ 2, and k¼ 5 income group clusters. Having vali-
dated the model on all stated criteria, we use it to obtain plug-in predictions
from the SLCS data file to obtain the poverty proportion estimates and associ-
ated RMSEij.

Figure 9 (left) plots the plug-in predictions (SAE) and the classic H�ajek esti-
mates (direct estimates) of the poverty proportions. Figure 9 (right) gives the
estimates of the model-based and design-based root MSEs, respectively. In the
case of the plug-in predictors, the parametric bootstrap incorporated the EF
bias correction with B1 ¼ 500 and B2 ¼ 1 replications.

Figure 9 (left) demonstrates the divergence of the direct estimator and the
plug-in predictors diverge for domains with smaller sample sizes, as the direct
pij estimates are considerably larger than their plug-in counterparts. Both sets
of estimates converge as the domain sample size increases. This trend is con-
sistent with the estimated root MSEs plotted in figure 9 (right). With the plug-
in predictor, the estimated root MSEs decrease smoothly as sample size
increases. The root MSEs for the direct estimates are considerably larger and
more variable, with large peaks especially near the origin. The corresponding
sets of root MSEs converge as the sample size increases.

Delving a bit deeper, we examine the domain-level RRMSEij’s for the
smallest and largest domains, respectively. The largest direct-estimate
RRMSEij (19.2340 percent) corresponds to the male population in Soria
(domain 83). The corresponding plug-in prediction is less than five percent.
The largest direct estimate RRMSEij (5.0311 percent) corresponds to the
female population in Barcelona (domain 16). The corresponding plug-in pre-
diction is nearly equivalent.

As mentioned in the introduction, poverty proportion maps are a widely
used tool to inform socio-political actors, who use them to develop necessary
system reforms. Figure 10 shows two maps. On the right, the five different
shades distinguish between estimated poverty proportion ranges. On the left,
the five different shades distinguish between the income group categories.

In general, there is strong correspondence between income group and pov-
erty proportion, with some minor differences. For example, in the Cadiz,
Salamanca, Soria, Lerida, Santa Cruz de Tenerife, and Las Palmas regions, the

Figure 9. Poverty Proportions Estimates p̂ij and Associated RMSEij, Ordered by
Sample Size. Modeled estimates are represented as IN; direct estimates are repre-
sented as DIR.
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income groups change slightly, increasing from k ¼1 to k ¼2. L�erida is of par-
ticular interest. Usting the 2008 SLCS data, L�erida is classified in income
group cluster, k¼ 1 (the lowest average income per household unit). However,
its surrounding areas are characterized as high-income groups, such as
Barcelona. Indeed, the substantively lower income category or Lerida com-
pared to the other provinces of Cataluna is present in the most recent data
release from Spanish Tax Agency, which provides gross and average income
by Autonomous Community. The ARRCP prediction for this province still dis-
tinguishes it from its neighbors. The same results were obtained by Molina and
Rao (2010) which utilized a nested error regression model.

The analysis for Lerida exemplifies the utility of poverty maps. It is reason-
able to assume that areas within the same province will have similar economic
structures. This example contradicts this assumption, offering insight into inef-
fective policies that could result from a generalist localization of funds.
Broadening the focus to all the provinces, we can draw several conclusions.
First, the situation in Spain is alarming to say the least, as more than 40 percent
of the provinces are located in the groups with the highest proportion of pre-
dicted poverty. However, predicted poverty is not equally distributed across
Spain. There are clear patterns. The provinces with the highest poverty ratios
are located in the southern and western fringe of the Peninsula, with a total of
11 provinces with a poverty ratio value above 0.31: Zamora, Salamanca,
C�aceres, Badajoz, Huelva, C�adiz, C�ordoba, Ja�en, Granada, Almer�ıa, Ceuta,
and Melilla. At the opposite end, the provinces with the lowest proportion of
the population below the poverty line are Cantabria, Vizcaya, Guip�uzcoa,
�Alava, Burgos, Zaragoza, Gerona, Barcelona, Castell�on, and Madrid. Molina
and Rao (2010) and Boubeta et al. (2017) obtained similar results using the
2008 SLCS data.

This coincidence in itself is informative, since the studies are carried out
with different years of the SLCS. However, the same divergent pattern appears

Figure 10. Estimated Poverty Proportions in Spanish Provinces by Income
Group.
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in all these studies: the northeaster provinces have a lower proportion of pov-
erty than the south-western provinces, i.e., the “Two Spains.” Tirado et al.
(2016) point out the transcendental importance in these patterns, with this
systematic divergence established and stabilized since 1930. Thus, general
policies do not seem to have led to a reversal of the trend. The authors high-
light important inherent underlying differences, pointing out that the high
economic power of the provinces in the northeast of the Peninsula may be
associated with the importance of proximity to European markets, boosting
the development of the regions employed there. This is an important fact
because the relative poverty of the provinces in the south and west of Spain
is substantially higher than the remaining regions in Spain, with especially
pronounced differences in recent years. To start to alleviate these imbalan-
ces, it is essential to design policies that take into account the specific char-
acteristics of each region.

Finally, we carry out a gender gap analysis. Figure 11 shows the poverty
distribution map by sex. The gender gap is clear. Both maps show the same
trend as figure 10, that is, in the northern and eastern fringe there are lower pro-
portions of poverty than in the southern and central regions of the Peninsula.

However, there are clear differences in poverty mapping by gender. First,
corresponding poverty ratios exhibit consistently higher poverty ratios for
women than men. Moreover, there are fewer providences in the lowest poverty
ratio category for women than for men.

The highest proportion of poverty among men is especially located in the
south, specifically in Ceuta, Almer�ıa, Granada, Ja�en, C�ordoba, C�adiz, and
Huelva, as well as in regions toward the west, such as C�aceres and Badajoz.
Further to the north and to the center, there are isolated cases, corresponding to
Zamora and Cuenca respectively.

For women, the dark blue color expands visibly, with a higher proportion of
poverty in the central and northern provinces, and also at the level of Santa

Figure 11. Estimated Poverty Proportions in Spanish Provinces by Sex.
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Cruz de Tenerife. These results are consistent with Molina and Rao (2010) or
Boubeta et al. (2017) are likewise internally consistent with our stated expecta-
tions for the prediction model.

To complete the gender inequality analysis, we developed confidence inter-
vals to test whether visual differences are statistically significant. Let D̂d ¼ p̂i2

�p̂i1 be the difference in poverty proportions for women (p̂i2) relative to men
(p̂i1), with percentile confidence intervals calculated using a parametric boot-
strap algorithm (see appendix D in the supplementary data online). Figure 12
presents the basic bootstrap percentile confidence intervals at 95 percent (left)
and 90 percent (right) confidence levels, respectively.

Although the poverty proportions are greater for women than for men, at the
95 percent confidence level, only six of these differences are statistically signif-
icant: (from north to south) Palencia, Soria and �Avila (Castilla y Le�on), Murcia
(Regi�on de Murcia), Huelva (Andaluc�ıa), and Santa Cruz de Tenerife (Islas
Canarias).

These results are consistent with those in figure 11. With the exception of
Huelva, the proportion of women in poverty increases within the same provin-
ces. Furthermore, these identified provinces are all in low income groups, with
the maximum of k¼ 3; see figure 10. In summary, we observe significant dif-
ferences between corresponding male and female poverty ratios in the south-
west, a geographic area characterized by higher poverty ratios and lower
average income categories. If we decrease the confidence level to 90 percent,
significant differences are also detected in Valladolid (Castilla Le�on), Cuenca
(Castilla la Mancha), and Granada (Andaluc�ıa), all of which display the same
pattern except Valladolid, which is in a higher income group category (k ¼ 4).

Our results are consistent with other studies. For example, Molina et al.
(2014) presented 95 percent highest posterior density intervals by gender and
Spanish province in a study using data from the 2006 ES SILC.

Figure 12. Basic Percentile Bootstrap Confidence Intervals at 95 and 90 percent
for D̂d:
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The evident differences in women’s living conditions compared to men’s
are the product of a complex reality that is not fully captured by poverty ratio
indicators. Further research is needed to develop other indicators that provide a
more complete picture of inequality and its location to make further progress
in narrowing the gender gap.

Finally, figure 13 shows the RMSEij of the poverty proportion estimates plotted
in figure 11. The poverty ratios with the highest values of RMSEij are concentrated
in regions of Castilla y Le�on and in southern regions, specifically in Andaluc�ıa
provinces, as well as Lerida, whose special features are discussed above.

In general, the RRMSEij of the women’s poverty ratios tend to be higher
than for the male poverty ratios in the same geography. However, there are
exceptions; for example, La Coruna.

Figure 14 maps sample size by province for men and women, respectively.
Examining figures 13 and 14 together, a clear pattern emerges: the larger the
sample sizes, the lower the RMSEij. Thus, this explains the anomaly of La
Coruna. This analysis is consistent with the results presented earlier in figure 9.

Ultimately, there is no reason to restrict our investigation to poverty ratios.
The poverty predictor allows us to detect multiple patterns, but has limitations.
For example, not all provinces share same cost of living but all are assessed
with respect to the same poverty threshold. This does not detract from our find-
ings. It should pique interest expanding this, or other research, to different indi-
cators. Likewise, as proposed by Reluga et al. (2023), the analysis of
simultaneous confidence intervals to detect the existence of significant differ-
ences between provinces could be of interest for fund distribution policies.

7. CONCLUSIONS

Poisson GLMMs have gained popularity in the SAE literature in recent years
due to their relative simplicity and incorporation of inter-area heterogeneity.

Figure 13. Spatial Distribution of Estimated RMSEij in Spanish Provinces by Sex.
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However, statistical inference in mixed models with exclusively fixed regres-
sion coefficients can by excessively rigid when the relationship between
dependent and independent variables varies by domain, as in the case study
presented here. This article analyses the poverty ratio in Spain in 104 domains
corresponding to the crossing of the 52 Spanish provinces (including the cities
of Ceuta and Melilla) and the two sexes, employing an original area-level ran-
dom regression coefficient Poisson model (ARRCP model).

Our ARRCP model includes random effects for two variables, with slopes
differing by income group category. We obtain ML estimators of the model
parameters, with mode predictors of the random effects calculated by a
Laplace approximation algorithm. After defining two theoretical predictors (SP
and BP) and associated empirical version (ESP and EBP), we carry out com-
prehensive simulation studies to assess their statistical properties, in particular
with respect to the case study data. Here, the EPB generally yielded smaller
RMSE and was less computationally intensive, although we believe that the
ESP should be considered in other applications, given the strength of its results
in our simulations. However, the computationally simpler plug-in predictor –
by definition biased – exhibited smaller bias than the EPB in our simulations,
with similar estimated levels of bias to the BP and smoother estimates. For
these reasons, we selected the plug-in predictor for our study.

We considered three different parametric bootstrap estimators of MSE for
the plug-in predictor: one that does not apply a bias correction and two bias-
corrected estimators based on the definition of a double bootstrap. Our simula-
tion studies verified the effectiveness of the bias corrections, which reduced
bias at the cost of an acceptable increase in the RMSE with little additional
computational burden. In our case study, we utilize the EF bias correction,
which was practically unbiased and provided an acceptable RMSE estimate
but is the computationally faster method of the two considered bias-corrected
bootstraps.

Figure 14. Spatial Distribution of Sample Size in Spanish Provinces by Sex.
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We applied our ARRCP model to real data, applied to the 2008 SLCS and
SLFS data, using our recommended plug-in predictor to estimate the poverty
proportions in 104 domains In comparing domain-level relative root MSE of
our SAE predictions to corresponding (direct) Hajek-type estimates, we found
that plug-in estimator had consistently better performance. Finally, we present
our predicted poverty ratios represented in a poverty map, which shows a clear
north-south and east-west pattern of increasing poverty rates in Spain, with
generally higher rates for women.

Supplementary Materials

Supplementary materials are available online at academic.oup.com/jssam.
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