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Abstract

Background and objectives The analysis of the retinal vasculature plays an
important role in the diagnosis of many ocular and systemic diseases. In this
context, the accurate detection of the vessel crossings and bifurcations is an
important requirement for the automated extraction of relevant biomarkers.
Nevertheless, the localization and identification of these vascular landmarks
remains challenging.

Method We propose to formulate the detection of vessel crossings and bi-
furcations in eye fundus images as a multi-instance heatmap regression. In
particular, a fully convolutional neural network is trained in the prediction of
target heatmaps that are automatically derived from the annotated target pixel
coordinates. Then, the network is able to simultaneously estimate the crossings
and bifurcations likelihood maps directly from the raw eye fundus images.

Results The proposed method is validated on two public datasets of reference
that include detailed annotations for vessel crossings and bifurcations in the
corresponding eye fundus images. The conducted experiments evidence that the
propose method offers a satisfactory performance for the simultaneous detection
of crossings and bifurcations. Furthermore, the proposed method outperforms
previous works by a significant margin.

Conclusions The proposed multi-instance heatmap regression allows to suc-
cessfully exploit the potential of modern deep learning algorithms for the simul-
taneous detection of retinal vessel crossings and bifurcations. Consequently, this
results in a significant improvement over previous methods, which will further
facilitate the automated analysis of the retinal vasculature in many pathological
conditions.
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Figure 1: Example of eye fundus image including cropped regions that depict vessel crossings
and bifurcations in detail. The black dots represent crossings whereas the white dots represent
bifurcations.

1. Introduction

The retinal vascular tree is a complex structure formed by arteries and veins
that intersect and bifurcate frequently over all the eye fundus. The analysis of
this structure plays an important role in the diagnosis and follow-up of numerous
diseases. In particular, the retina is the only organ of the human body where the
vascular system can be studied in vivo and without invasive procedures [1]. This
makes the analysis of the retinal vasculature relevant for the clinical assessment
of both ocular and systemic diseases, such as age-related macular degeneration,
diabetes, hypertension, or atherosclerosis, among others [2].

An exhaustive analysis of the retinal vasculature requires the recognition of
the vessel crossings and bifurcations, representing the landmarks where blood
vessels intersect or bifurcate, respectively. As reference, Figure 1 depicts rep-
resentative examples of these characteristic points in the eye fundus. The lo-
calization and identification of these landmarks has important clinical appli-
cations. For instance, the analysis of the bifurcations provides measurements
like the bifurcation angles which have been studied as biomarkers for hyperten-
sion and other cardiovascular diseases [1]. The identification of the crossings,
instead, allows to study the presence of arteriovenous nicking, which happens
when an artery compresses a vein. This pathological condition is associated to
the development of retinal retinal vein occlusion and it is also an indicative of
hypertension, among other relevant diseases [3].

Besides the direct analysis of the vessel crossings and bifurcations, these
characteristic points are commonly used as reference in many heterogeneous
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procedures related to the automated analysis of the retinal vasculature [4, 5].
Moreover, vessel-tracking techniques that are commonly used for the measure-
ment of vessel widths and tortuosity estimation may be affected by an inade-
quate identification of the constituent crossings and bifurcations [6, 1]. Addi-
tionally, these characteristic points can be used as landmarks for the registration
of eye fundus images using point matching algorithms [7]. The complexity of
the retinal vascular tree, which is unique for each eye, also allows the use of
these landmarks as a reliable biometric pattern [8].

The importance of the vessel crossings and bifurcations means that the im-
provements in their identification present a potential carryover to numerous
applications. In that sense, related significative problems such as vasculature
segmentation [9] or microaneurysm detection [10] have benefited from the use
of Deep Neural Networks (DNNs). The deep learning-based approaches do not
require the ad-hoc design of complex algorithms and typically provide an im-
proved performance in comparison with traditional methods [11]. However, the
novel use of DNNs may not always be straightforward.

In the case of tasks such as segmentation or classification, a DNN can be
directly trained by optimizing a similarity metric between the network outputs
and the target binary labels. However, the ground truth labels for the detection
of crossings and bifurcations consist of two independent sets of pixel coordi-
nates. In that case, the selection of the most adequate training objective is not
straightforward. Additionally, both the number of elements in each of these sets
and their approximate spatial distribution are unknown, given that the patterns
described by the retinal vasculature are unique for each eye. Thus, the challenge
of this task is to adequately formulate the problem to take full advantage of the
capacity of a DNN.

In this work, we propose to formulate the detection of retinal vessel cross-
ings and bifurcations as a multi-instance heatmap regression. In particular, we
use the sets of annotated pixel coordinates to generate multi-instance heatmaps,
which naturally model the likelihood of a pixel being a landmark location. Then,
a DNN can be easily trained to predict these multi-instance heatmaps using
common regression metrics as loss function. In this setting, the simultaneous
detection of crossings and bifurcations is directly enabled by training the net-
work to predict multiple heatmaps, one for each type of target landmark. The
precise location of the crossings and bifurcations is obtained by extracting the
local maxima in the predicted multi-instance heatmaps. Finally, the proposed
approach allows to use fully convolutional networks and, therefore, to make pre-
dictions using full images of arbitrary sizes. In order to validate our proposal,
several representative experiments are performed using two public datasets of
reference that include ground truth manual annotations for both vessel crossings
and bifurcations.

1.1. Related work

In the literature, several works have approached the detection of vessel cross-
ings and bifurcations in eye fundus images. The most commonly followed strat-
egy is to split the problem into two different tasks: the general detection of vessel
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junctions, and the later classification of the detected junctions as crossings or
bifurcations [12, 13]. Additionally, there are several works that only tackle the
first task, without facing the complex and difficult distinction between both
types of landmarks [14, 15].

Regarding the first task, a recurrent approach for the detection of vessel
junctions is to start by segmenting the blood vessels. Then, a thinning algorithm
is used to obtain the skeleton of the vascular tree, being the vessel junctions
extracted after a topological analysis of this skeleton [16, 17]. In this regard,
Fahti et al. [18] propose to perform a joint analysis of both the skeleton and
the segmented vessels. In these skeleton-based approaches, the most challenging
part corresponds to the identification of the vessel crossings, given that, in the
obtained skeletons, many crossings are represented as two close bifurcations [16].
In that sense, the classification between crossings and bifurcations is typically
performed using geometrical features such as the connectivity [16], the vessel
angles [19], and the vessel widths [19]. Alternatively, the vessel landmarks can
be directly extracted from the segmented vascular tree by using the adequate
combination of shifted Gabor filter responses [15]. Nevertheless, this approach
does not allow to distinguish between crossings and bifurcations.

A common drawback of the methods applied over the segmented vessels
is that their performance critically depends on the accuracy of the previous
vessel tree segmentation. In that sense, several works directly assume that an
accurate vascular segmentation is available and evaluate the proposed landmark
detection algorithms over manually labeled blood vessels [18, 15]. However, in
practice, these ground truth segmentations are not commonly available, being
the manual labeling unfeasible in clinical practice routine. An alternative that
do not requires an explicit segmentation of the vasculature is to use a vessel
tracking algorithm guided by the intensity patterns of the retinal vessels [20].
Additionally, junction likelihood maps can be produced from the eye fundus
images by using wavelets to compute orientation scores [12]. Abbasi et al.
[12] combine this approach with an skeleton-based method to detect the vessel
landmarks. These landmarks are later classified as crossings or bifurcations
using the previously obtained dominant orientations.

The generation of junction likelihood maps has also been attempted by using
DNNs [14]. However, the successful training of this task with common deep
learning approaches is challenging. As reference, Uslu et al. [14] trained a
multi-task network that predicts a rough estimation of the junction patterns.
However, the extraction of the vessel landmarks from the network output still
requires significant post-processing, similar to that applied in skeleton-based
methods.

A different approach to solve the landmark detection with DNNs consists
in training a patch-wise classifier [13]. Then, the predictions of overlapping
patches are aggregated to obtain the final landmark estimations. Pratt et al.
[13] combine this approach with a subsequent network to predict whether the
patches that are identified as containing landmarks correspond to crossings or
bifurcations. In this case, the vessel landmarks are both detected and classi-
fied. However, the method does not take advantage of the DNNs capacity to
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simultaneously perform both tasks, neither of their ability to integrate more
representative information from larger contexts in comparison to the reduced
analysis in small local patches.

In contrast with previous approaches, our proposal allows to succesfully gen-
erated both the crossings and bifurcations likelihood maps from the raw eye
fundus images in a single simultaneous step. Besides the computational bene-
fits, the use of a single network applied over large contexts significantly increase
the feedback for learning the recognition of the vessel landmarks, which benefits
the final performance. This is achieved by training a DNN in the prediction
of multi-instance heatmaps that are automatically derived from the annotated
pixel coordinates.

The use of a heatmap regression as surrogate task for the localization of
landmarks has been previously explored in other domains. In particular, human
pose estimation [21] and facial landmark detection [22] have been successfully
approached by predicting landmark-derived heatmaps. Nevertheless, these tasks
are typically performed over previously detected bounding boxes, which allows
to only target the estimation of a known number of landmarks at a fixed scale. In
contrast, the size of the blood vessels varies throughout the eye fundus whereas
the number of vessel landmarks significantly varies among images. Thus, in our
proposal, the networks learn to detect the required patterns at multiple scales
and to generate output heatmaps containing multiple instances of the same
target landmark type.

2. Materials and methods

2.1. Multi-instance heatmap regression

The detection of vessel crossings and bifurcations in eye fundus images re-
quires the prediction of each landmark location as well as the distinction between
the two possible types of landmarks: crossings and bifurcations. The straight-
forward alternative to tackle the detection of landmarks with fully convolutional
networks would imply the prediction of a binary map where only the pixels cor-
responding to the ground truth location of each landmark are labeled as positive
class. However, those target binary maps are heavily unbalanced given that the
number of landmark coordinates is much lower than the total number of pix-
els in the images. As a consequence, the labels provide limited feedback for
training a DNN and over-penalize wrong but close predictions to the ground
truth landmarks. An improved alternative is to transform the binary ground
truth maps into heatmaps where the maximum values correspond to the labeled
locations and progressively lower values are assigned to the surrounding pixels.
This improved heuristic strategy increases the information from the labels that
is available to the network, improving the feedback for learning the detection
task. Additionally, the heatmap approach takes into account the potential noise
in the labels, transforming the hard binary labels into soft labels that better
model the likelihood of a pixel being a target landmark location. For instance,
in the considered task, the patterns that represent each crossing or bifurcation

5



Figure 2: Generation of the target heatmaps from the annotated pixel coordinates.
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Figure 3: (a) Comparison of the different kernel profiles. ((b),(c)) Kernels represented as a
three-dimensional surface. (b) Gaussian. (c) Radial Tanh.

comprise several pixels and, therefore, the precise labeling of its center is error-
prone, specially for thick vessels that cover a wide region (e.g., Figure 1(A)).
In addition, many of the thin vessels present low contrast, which also makes
difficult the labeling (e.g., Figure 1(B)). Hence, the use of soft labels may be
beneficial in these frequent scenarios.

The generation of the ground truth heatmaps is summarized in the diagram
of Figure 2. In particular, the annotated pixel coordinates are used to create the
binary maps with the target locations labeled as the positive class. Then, the
ground truth heatmaps are generated convolving the original binary maps with
an isotropic kernel of convex and monotonic decreasing kernel profile. Given
that there is no prior evidence of the most adequate specific kernel profile for
the considered task, we explore the use of two different alternatives: a Gaussian
kernel and a Radial Hyperbolic Tangent (Radial Tanh) kernel. The Gaussian
kernel has been previously explored for the localization of landmarks in other
application domains [21] whereas the Radial Tanh kernel is an alternative depict-
ing a sharper profile, which may facilitate the detection task. Figure 3 depicts
a visual comparison between both kernel types. The Gaussian (KG) and Radial
Tanh (KRT ) kernel are defined as:

KG(x, y;σ) = e−
x2+y2

2σ2 (1)
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KRT (x, y;α) = 1 + tanh

(
−π
√
x2 + y2

α

)
(2)

where (x, y) are the pixel coordinates with respect to the kernel center, σ is
the standard deviation for the Gaussian kernel, and α is the saturation distance
for the Radial Tanh kernel. Both the standard deviation of the Gaussian kernel
and the saturation distance of the Radial Tanh kernel allow to control the region
of influence for each landmark. In order to facilitate the comparison between
both alternatives, we define an equivalent saturation distance for the Gaussian
kernel. In particular, we empirically set this parameter to a value of 2.5 standard
deviations, i.e., σ = 0.4α.

Regarding the distinction between crossings and bifurcations, it is approached
by the prediction of two independent heatmaps, one for each type of landmark.
In this case, the neural network has to generate a two-channel output. Nev-
ertheless, this setting strongly penalizes the misidentification of a crossing as
bifurcation, or vice versa. For instance, using common regression metrics, the
error when predicting a crossing in the bifurcation channel would be higher than
the error when not predicting any landmark at all. Although this seems to be
adequate for the final trained network, it complicates the learning process in
the early stages of the training. Thus, the neural network is trained to predict
a third channel that includes both landmarks, which further encourages the
detection of vessel landmarks regardless of their type.

The simultaneous regression of the three multi-instance heatmaps is trained
using the mean squared error (MSE) between the predicted and the target
heatmaps as loss. Thus, the training loss is defined as:

L(f(x),y;α) = ||f(x)− y ∗K(α)||22 (3)

where x is an eye fundus image, y the corresponding target binary map, f
the transformation given by a DNN that generates the predicted heatmaps, and
K ∈ {KG,KRT } the convolutional kernel used to generate the target heatmaps.

The pixel coordinates of the target landmarks are recovered from the heatmaps
by directly detecting the local maxima. In particular, we use a maximum filter
and an intensity threshold to only retrieved the most salient local maxima. The
threshold is required for the predicted heatmaps given the likely slight back-
ground noise that is produced by the network, preserving only the significative
landmark detections. Additionally, this threshold allows to calibrate the pro-
posed method to different operating points according to the requirements of each
specific application. The half-size of the maximum filter must be, at most, lower
than the minimum expected distance between landmarks of the same type. The
minimum distance between different types of landmarks, i.e., between cross-
ings and bifurcations in this case, does not affect because they are predicted in
different output channels of the network.
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2.2. Network architecture and training

In order to validate the proposed multi-instance heatmap regression for the
identification of crossings and bifurcations, we use an standard network archi-
tecture and training procedure. In that sense, the experiments in this work
are conducted using an U-Net network architecture [23]. This network repre-
sents a reliable baseline, being commonly used in many medical image analysis
procedures. Particularly, U-Net has demonstrated to produce satisfactory re-
sults for related tasks performed on eye fundus images [24, 25]. Hence, it is
expected to be also adequate for the detection of crossings and bifurcations on
the same domain. In brief, U-Net is characterized by an encoder-decoder struc-
ture, including skip connections between the inner layers of the encoder and
the decoder. These skip connections concatenate feature maps taken from the
encoder with those of the same spatial resolution in the decoder. The main
building blocks of the network consists of convolutional layers with 3×3 kernels
and ReLU activation functions, following the idea of the VGG networks. We
use a network of the same size than the original one proposed in [23].

The network parameters are initialized with a zero-centered normal distri-
bution following the method proposed by He et al. [26]. For the optimization,
we use the Adam algorithm [27] with the default decay rates of β1 = 0.9 and
β2 = 0.999. The network is trained with full resolution images and batch size
of one image. The initial learning rate is set to α = 1e − 4, being reduced
by a factor of 10 when the validation loss does not improve for 2500 batches.
The training is early stopped after reaching a final learning rate of α = 1e− 7.
The validation set is composed of the 25% of the available training data. To
avoid overfitting during training, we use spatial data augmentation consisting
of random affine transformations applied to the input eye fundus images and
the ground truth pixel coordinates of the target landmarks. Additionally, we
also use color data augmentation consisting of random transformations of the
image components in HSV color space, similar to the satisfactory application in
the same domain of [28].

2.3. Datasets

The experiments in this work are performed using the publicly available
DRIVE and IOSTAR datasets. In particular, the ground truth annotations for
the identification of crossings and bifurcations in both datasets are provided
by [12]1. The DRIVE dataset [29] comprises 40 color fundus images that are
divided by default into balanced training and test sets of 20 images each. The
images present a field of view of 45o and a resolution of 565 × 584 pixels. In
contrast, the IOSTAR dataset [12] is a collection of 24 scanning laser ophthal-
moscope (SLO) images with a field of view of 45o. The images present varying
resolutions but keep the same scale as the DRIVE dataset. SLO is a variant of
eye fundus imaging that provides increased contrast with respect to traditional

1www.retinacheck.org/datasets
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color fundus. In particular, the images of IOSTAR have been captured using
green and infrared lasers.

The locations of the crossings and bifurcations have been annotated and
reviewed by three different experts for both datasets [12]. In particular, the
DRIVE dataset presents an average of 100 bifurcations and 30 crossings per
image, whereas the IOSTAR dataset presents an average of 55 bifurcations and
23 crossings per image.

Following the common practices in previous works [12, 14], the DRIVE train-
ing set is used for training the networks, whereas the DRIVE test set and the
IOSTAR dataset are hold out for evaluation purposes.

2.4. Evaluation

The evaluation of the proposed approach is performed by comparing the de-
tected crossings and bifurcations against the ground truth annotations. In that
regard, an independent analysis is performed for each type of landmark (cross-
ings or bifurcations). As gold standard, a detected landmark is considered a
True Positive (TP) when it is located within a specified distance d of a ground
truth landmark and a False Positive (FP) otherwise. Each ground truth land-
mark can only be detected once, i.e., we establish a one-to-one correspondence
between the set of predictions and the set of ground truth landmarks. In case of
several landmarks within the range d of a prediction, the closest one is consid-
ered as its corresponding. The ground truth landmarks that remain undetected
are considered False Negatives (FN). Then, TP, FP, and FN measures are used
to compute Precision and Recall, which are defined as:

Precision =
TP

TP + FP
(4)

Recall =
TP

TP + FN
(5)

Additionally, we compute the F-score (F1), which is the harmonic mean of
Precision and Recall:

F1 = 2 · Precision ·Recall
Precision+Recall

(6)

The described analysis is performed using a distance of 5 pixels (d = 5) as
criteria to consider the detected landmarks as valid, as defined in other works
[14]. This represents a approximate real distance of 125µm and 140µm for the
DRIVE and IOSTAR datasets, respectively [12].

Additionally, we also measure the localization error for the detected land-
marks, which is specially relevant for applications such as registration, vascular
change detection, or authentication. The localization error is computed as the
average euclidean distance between the detected ground truth landmarks and
their corresponding predictions. The higher bound for this localization error is
given by the maximum distance required to consider a detection as valid, which
in this case is 5 pixels.
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3. Results and discussion

Figure 4 depicts representative examples of predicted heatmaps for networks
that were trained using Gaussian or Radial Tanh kernels. In particular, pre-
dicted heatmaps corresponding to varying kernel sizes are depicted for each
kernel type. The different kernel sizes are specified by the saturation distance
parameter defined in Section 2.1. In the examples, the crossings are represented
in the red channel whereas the bifurcations are represented in the green channel.
Each one of the blobs depicted in the images corresponds to an identified cross-
ing or bifurcation, whose most likely location is given by the local maximum
in the center of the blob region. It is observed that for some experiments the
output of the network is nearly constant, which is due to the network failing to
converge during training (see Figure 4 (e),(j)). This only happens for very small
kernels, which make the task very similar to the prediction of the raw binary
targets.

In contrast with the use of binary targets, the prediction of heatmaps offers
more useful output feedback. Regarding the general appearance of the predicted
heatmaps, most of the blobs present similar shape and intensity values, although
some exceptions are observed. In this regard, there are elongated or low intensity
blobs that differ from the model that the network learns during training. Given
that the network learns to generate an specific pattern only when a crossing
or bifurcation is detected, the generation of an altered output may evidence
a less confident prediction. Thus, an elongated blob may indicate uncertainty
in the precise location of the detected landmark (e.g., Figure 4(b)), whereas
the low intensity blobs may indicate uncertainty regarding the presence of that
landmark (e.g., Figure 4(c)). Additionally, the example of Figure 4(d) shows
how the network successfully deals with overlapping crossings and bifurcations.
In this case, the predicted crossing and bifurcation blobs partially overlap, which
results in a yellowish tone in the output of this depicted example.

Regarding the comparison between Gaussian and Radial Tanh kernels, it
is observed that, for the same kernel scale, the Gaussian kernel results in the
generation of apparently larger and blurrier blobs. This effect is due to the
more disperse distribution produced by the Gaussian kernel in comparison to
the sharper one produced by the Radial Tanh variant, being the latter more
concentrated around the specific identified landmark location.

In order to quantitatively evaluate the final objective of the proposed method-
ology, we perform the analysis described in Section 2.4. The local maxima are
extracted from the predicted heatmaps as indicated in Section 2.1. In this case,
we use a variable threshold, which allows to plot the Precision-Recall (PR)
curves represented in Figure 5. The curves are depicted for both Gaussian and
Radial Tanh kernels, as well as for different kernel scales. Additionally, the
maximum F-score is computed for every experiment, which provides a represen-
tative operating point for subsequent comparisons. Simultaneously, we measure
the average localization error for each experiment and threshold value in the PR
curves. Figure 6 depicts these results by plotting the localization error against
the recall measures. To facilitate the comparison with other results, the points
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(a) (b) (c) (d)

(e) α = 1 (f) α = 5 (g) α = 9 (h) α = 13 (i) α = 17

(j) α = 1 (k) α = 5 (l) α = 9 (m) α = 13 (n) α = 17

Figure 4: Examples of predicted heatmaps where crossings are represented in the red channel
and bifurcations in the green channels. (a) Eye fundus image from the DRIVE test set. (b-d)
Regions cropped from (a) that depict both the original image and the predicted heatmaps
in detail. (e-i) Predicted heatmaps for (a) using the Gaussian kernel at progressive varying
kernel scales. (j-n) Predicted heatmaps for (a) using the Radial Tanh kernel at progressive
varying kernel scales.
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(b) Radial Tanh kernel

Figure 5: Precision-Recall curves for the detection of crossings and bifurcations in the DRIVE
test set at progressive varying kernel scales. The green dots represent the operating points of
maximum F-score.
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(b) Radial Tanh kernel

Figure 6: Localization error (in pixels) against Recall for the detection of crossings and bifur-
cations in the DRIVE test set at progressive varying kernel scales. The green dots represent
the operating points of maximum F-score.
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of maximum F-score are also indicated.
As previously seen in the examples of Figure 4, the experiments with the

smallest kernels do not converge and result in almost zero precision for any
applied threshold. This matches with the constant output depicted in Figures
4(e),(j). Also, for those experiments, the localization error is 5 pixels, which is
the maximum for the performed evaluation. However, once the kernel size is
increased to the minimum required for convergence, the performance improves
drastically. In this regard, it should be noticed that the smallest kernels will
produce little change in the original binary maps, resulting in almost binary
heatmaps that provide limited feedback for training the networks. However,
slightly increasing the kernels size, the region of influence for each landmark is
also increased. This results in an improved heuristic for learning the detection
task.

In the case of the Gaussian variant, the best performance is obtained for the
smallest kernels (after removing the non-convergence case) and it is gradually
reduced with the increase of the kernel size. This happens in terms of both
PR analysis and localization error. In contrast, for the Radial Tanh variant, a
similar performance is obtained for the different kernel sizes. The only exception
is the largest kernel when evaluating the detection of crossings. Nevertheless,
if the analysis is reduced to the high recall region, the smaller kernels are able
to produce higher recall values. This trend is similar to that of the Gaussian
kernels, albeit on a smaller scale.

Figure 7 depicts representative examples of detected crossings and bifurca-
tions over an analyzed eye fundus image from the DRIVE test set. The detected
landmarks are represented with crosses whereas the ground truth landmarks are
represented with circles. At the same time, the black color denotes crossings
and the white denotes bifurcations. The provided examples correspond to the
operating points of highest F-score, which are marked in the plots of Figures 5
and 6. These examples show that the method detects the majority of the land-
marks, while it simultaneously distinguish between crossings and bifurcations.
Regarding the missing landmarks and false detections, most of them correspond
to secondary tiny vessels (as reference, see Figure 7(c)). In these cases, the cross-
ings and bifurcations are very difficult to appreciate and, therefore, their analysis
is typically not considered in the clinical practice. Moreover, the small size and
low contrast of these tiny vessel also makes the labeling more error-prone, which
complicates both the training and evaluation. Discarding these extreme scenar-
ios, in general, the method offers and adequate performance for both main and
secondary branches of the vascular tree. Additionally, the examples show that
the results obtained with the two different kernels are similar, at least when an
adequate kernel scale is selected. In particular, many of the missing landmarks
and false detections are the same for both variants.

In summary, the obtained results demonstrate that the multi-instance heatmap
regression approach is adequate for the detection of crossings and bifurcations in
eye fundus images. In the performed experiments, the use of very small kernels
led to the networks failing to converge during training. However, as said before,
the smallest kernels in our experiments are almost equivalent to not using any
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(c) Cropped regions in detail

Figure 7: Examples of detected crossings (in black) and bifurcations (in white) over an eye
fundus image from the DRIVE test set. The circles denote ground truth annotations whereas
the crosses denote detected landmarks. (a-b) Complete eye fundus images. (c) Cropped
regions from (a) and (b) depicting representative examples of missing landmarks and false
detections.
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kernel at all and, instead, directly training the prediction of the binary target
maps. This means that it is precisely the proposed approach which makes pos-
sible the detection of vessel crossings and bifurcations using fully convolutional
networks.

Regarding the comparative between both types of kernels, the main differ-
ence is the higher dependency of the Gaussian variant with respect to the kernel
size. In that sense, even if the same or superior performance can be achieved
using the Gaussian kernel, in practice its use requires more tuning of the ker-
nel scale. Therefore, its use for related applications depends on the availability
of sufficient data, time and computational budget for the validation. In that
sense, the advantage of the Radial Tanh kernel is due to the sharper profile. This
kernel produces well-defined maxima even when the kernel size is significantly
increased. At the same time, it still facilitates the training of the detection task.
A trend that is observed for both kernels in the high recall region of the PR
curves (Figure 5) is the reduction in recall with the increase of the kernel size.
This may be explained by a less defined maxima when the generated blobs get
larger as well as the possible overlap of very close landmarks of the same type,
which makes extremely complicated to differentiate each one of them. Never-
theless, this happens to a lesser extent for the Radial Tanh kernel, given the
mentioned genuine sharper profile.

3.1. Comparison with the state-of-the-art

In this section, we compare the performance of the proposed approach against
those state-of-the-art works that were evaluated on the same public datasets.
To that end, we select the kernel sizes that provide the best performance by
means of maximum F-score on the DRIVE training set. Then, the comparison
is performed for both the DRIVE test set and the IOSTAR dataset. As refer-
ence, Figure 8 depicts examples of detected crossings and bifurcations for the
IOSTAR dataset.

In contrast with the proposed approach, previous works typically address
the detection of junctions followed by their classification between crossings and
bifurcations. This is reflected in their evaluation, which is independently per-
formed for these two steps (detection and classification). To provide an ad-
equate comparison, we reevaluate the trained networks as junctions detectors
by merging the predicted sets of crossings and bifurcations. Additionally, the
performance as binary classifiers is evaluated over the set of correctly detected
junctions. In this case, the crossings are considered as positive samples and the
bifurcations as negative ones [12, 13].

Figure 9 depicts the comparison for the detection of junctions. It is ob-
served that the proposed method significantly outperforms previous approaches
in both the DRIVE and IOSTAR dataset. Furthermore, the improvement is
independent of the selected operating point, given that the performance of the
other approaches is always under the PR curves of the proposed method.

In the literature, there are some additional works that reported competi-
tive performance regarding the detection of junctions. However, it should be
considered that, in some cases, the evaluation datasets present significantly
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(a) Gaussian kernel (α = 5) (b) Radial Tanh kernel (α = 13)

Figure 8: Examples of detected crossings (in black) and bifurcations (in white) over an eye
fundus image from the IOSTAR dataset. The circles denote ground truth annotations whereas
the crosses denote detected landmarks.

less detailed annotations [16], whereas, in others, the methods are applied over
manually segmented vessels [18]. In that regard, Uslu et al. [14] evaluate their
method on both eye fundus images and manually labeled vessels. However, in
order to produce an even comparison among all the methods, we do not include
the results corresponding to the manual segmentations. Additionally, regarding
the provided comparisons, Pratt et al. [13] report individual results for the
annotations of three different experts. In this case, we only include the results
with the highest accuracy, which is provided by the first expert in their work.

Table 1 depicts the results and comparison for the binary classification be-
tween crossings and bifurcations. Given that the classification is evaluated over
the correctly detected junctions, the results can vary depending on the operat-
ing point for the detection of junctions. Thus, we report classification results for
several recall levels in the detection of junctions. These results show that the
proposed method outperforms previous approaches at the same level of detec-
tion sensitivity. Additionally, our approach also keeps an adequate performance
when the detection sensitivity is increased, i.e., when more landmarks are de-
tected.

In summary, the proposed approach leads to a remarkable improvement over
the previous existing methods. In that sense, although the use of DNNs had been
previously explored, existent works did not achieve a significant improvement
over other methodologies. This evidences that the advantage of the methodology
in our experiments is due to the proposed multi-instance heatmap regression.
This represents a novel alternative to successfully exploit the DNNs capacity for
the detection of relevant vascular landmarks as vessel crossings and bifurcations
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Figure 9: Precision-Recall curves for the detection of vessel junctions without considering their
distinction between crossings and bifurcations. Comparison of state-of-the-art works and the
proposed approach.

Table 1: Performance for the binary classification between crossings (positive samples) and
bifurcations (negative samples). Comparison of state-of-the-art works and the proposed ap-
proach. Acc, Sp, and Sn denote accuracy, specificity, and sensitivity, respectively.

Method Acc (%) Sp (%) Sn (%) Support set

Evaluation on DRIVE

Abbasi et al. (2016) [12] 83.00 91.00 59.00 Detected with 61.00% recall
Pratt et al. (2018) [13] 80.27 84.82 69.89 All*

Ours – Gaussian
93.56 96.91 85.88 Detected with 60.90% recall
93.83 97.09 86.17 Detected with 71.01% recall
95.93 97.42 92.27 Detected with 82.61% recall

Ours – Radial Tanh
94.39 97.22 87.53 Detected with 59.24% recall
93.82 96.62 87.05 Detected with 70.94% recall
94.93 96.60 90.76 Detected with 81.55% recall

Evaluation on IOSTAR

Abbasi et al. (2016) [12] 83.00 93.00 67.00 Detected with 57.00% recall
Pratt et al. (2018) [13] 64.79 61.27 74.35 All*

Ours – Gaussian
94.22 95.87 90.37 Detected with 59.14% recall
92.83 95.22 87.36 Detected with 70.76% recall
95.59 97.70 90.57 Detected with 80.19% recall

Ours – Radial Tanh
93.93 96.17 88.60 Detected with 61.20% recall
92.72 94.60 88.24 Detected with 71.23% recall
95.29 96.53 92.29 Detected with 81.43% recall

* The classifier was evaluated on the whole set of ground truth annotations.
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in eye fundus images.
Finally, the results provided in this section show that the performance for

the detection of junctions on the IOSTAR dataset is not as good as that on
the DRIVE test set. In this case, it should be considered that these datasets
correspond to two slightly different image modalities, namely color fundus and
SLO. Moreover, following the approach of previous works [14, 13], we reserve
the whole IOSTAR dataset for evaluation due to its small size. Hence, there is
a certain domain shift between training and test in the case of the evaluation
on IOSTAR.

4. Conclusions

The automated detection of vessel crossings and bifurcations in eye fundus
images represents an important task with numerous practical applications. In
that sense, despite the direct analysis for clinical purposes, the detection of
these representative landmarks is commonly required as an intermediate step
for several automated procedures. In this work, we propose a novel approach for
the detection of crossings and bifurcations in eye fundus images. In particular,
we reformulate the detection task as a multi-instance heatmap regression which
can be performed using a fully convolutional neural network. This allows to
simultaneously predict the crossings and bifurcations likelihood maps directly
from the raw eye fundus images.

Several experiments are conducted to analyze the proposed approach, includ-
ing the study of different alternatives to construct the multi-instance heatmaps
for training the neural networks. In order to validate the proposal, we use two
public datasets of reference with detailed annotations of vessel crossings and
bifurcations. Finally, the obtained results demonstrate the advantages of our
proposal over the previous existing methods. In that sense, the multi-instance
heatmap regression approach allows to further take advantage of modern deep
learning algorithms. This leads to a significant improvement in the detection of
crossing and bifurcations in eye fundus images.
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