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Abstract An accurate identification of the retinal arteries and veins is a rele-
vant issue in the development of automatic computer-aided diagnosis systems
that facilitate the analysis of different relevant diseases that affect the vascular
system as diabetes or hypertension, among others.

The proposed method offers a complete analysis of the retinal vascular tree
structure by its identification and posterior classification into arteries and veins
using Optical Coherence Tomography (OCT) scans. These scans include the
near-infrared reflectance retinography images, the ones we used in this work, in
combination with the corresponding histological sections. The method, firstly,
segments the vessel tree and identifies its characteristic points. Then, Global
Intensity-Based Features (GIBS) are used to measure the differences in the
intensity profiles between arteries and veins. A k-means clustering classifier
employs these features to evaluate the potential of artery/vein identification
of the proposed method. Finally, a postprocessing stage is applied to correct
misclassifications using context information and maximize the performance of
the classification process.

The methodology was validated using an OCT image dataset retrieved from
46 different patients, where 2,392 vessel segments and 97,294 vessel points were
manually labelled by an expert clinician. The method achieved satisfactory
results, reaching a best accuracy of 93.35% in the identification of arteries and
veins, being the first proposal that faces this issue in this image modality.
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1 Introduction

The human eye is an anatomical part of the body that is considered as one of
the most complex organs. It is composed of different types of structures whose
main function is the production of visual images that are transmitted instan-
taneously through the optical nerve to the brain [15]. The analysis of these
structures offers a set of biomarkers that allow the identification of several
pathologies that may be present in the eye fundus, as glaucoma [8], diabetic
retinopathy [42] [48], sclerosis [1] or cardiovascular complications [24]. Several
works studied the definition of metrics that measure the vascular morphology
of the retina, particularly between arteries and veins. Among them, we can
find the Arterio-Venular ratio (AVR). AVR measures the ratio between the
arteriolar and venular diameters, and it is one of the most referenced metrics
for the quantification of the changes in the retinal vascular structure [23]. An
accurate and robust identification of both types of vessels is a key issue in
the implementation of automatic Computer-Aided Diagnosis (CAD) systems.
These ophthalmological systems facilitate the early identification and diagno-
sis of different relevant pathologies and help, therefore, the doctors to make a
more accurate diagnosis and treatments, reducing the consequences of incor-
rect or imperfect treatments as the usual side effects of unneeded medication.

In modern medicine, medical imaging involves different capture technolo-
gies that are used for the visualization of the inner body parts, tissues or organs
in order to facilitate the medical diagnosis, treatments and the corresponding
clinical monitoring [13]. In particular, in the field of ophthalmology, Optical
Coherence Tomography (OCT) plays an important role as a source of infor-
mation about the retinal layers that is increasing its popularity [43]. OCT is a
non-invasive imaging technique that generates, in vivo, a cross-sectional visual-
ization of the retinal tissues in the posterior part of the eye [16]. This technique
uses low-coherence interferometry to produce a two-dimensional image by se-
quentially collecting reflections from the lateral and longitudinal scans of the
retina [36] [47]. The provided cross-sectional images are extremely useful in
the identification of the different structures that are present in the human eye
anatomy, such as the optic disc [33], the retinal vasculature [31] or the retinal
layers [19]. The information that is provided by this image modality can help,
specially, in the analysis of diseases that affect the retinal layers, as can be the
epiretinal membrane, macular edema or age-related macular degeneration [2]
[32] [40].

Common procedures such as screening require a deep analysis of a large
amount of visual information, implying an exhaustive and repetitive process
for the clinical expert. These activities are particularly tedious in terms of time
and resources that could be used, instead, to increase the quality of clinical
diagnosis and patient care routines. Given the importance of this issue, many
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efforts were done in the development of automatic CAD tools that help and fa-
cilitate significantly the work of the specialists. Nowadays, many CAD systems
were implemented to achieve these goals along the large variability of clinical
specialities. Regarding ophthalmology, Yu et al. [51] presented a multi-screen
real-time telemedicine system, allowing the collaboration between ophthalmol-
ogists from different medical centers to perform a more accurate diagnosis of
a patient. Others also proposed telemedicine tools that allow the coopera-
tion of specialists in different geographic locations, as in the works of Gémez
et al. [18] or Bellazzi et al. [4]. Ortega et al. [34] implemented the SIRIUS
platform, a web-based system for the analysis of classic retinographies. This
framework is composed of a set of image processing algorithms that are struc-
tured as independent modules. Although most of the proposed CAD systems
were developed in specific contexts, none of them considered the automatic
classification of the retinal vasculature between arteries and veins using the
near-infrared reflectance retinographies that are included in the OCT scans.

In the literature, we can find approaches that use different strategies to
solve this problem in classical retinographies. As reference, Joshi et al. [26]
designed a methodology based on graph search to identify the vessel segmen-
tation map. Then, the arterio-venular classification is performed by means of
a Fuzzy C-means clustering. Rothaus et al. [39] proposed a semi-automatic
method to propagate the vessel classification using anatomic characteristics
of the retinal vascular structure. Additionally, they used information from
hand-marked vessels to separate arteries and veins. In the work of Relan et al.
[37], the authors proposed an unsupervised method using colour features of
the retinographies to classify arteries and veins. The vascular structure clas-
sification is performed by the use of a Gaussian Mixture Model-Expectation
Maximization (GMM-EM) classifier. In another proposal, Relan et al. [38]
used a Least Square-Support Vector Machine (LS-SVM) classifier to automat-
ically label the retinal vessels. Dashtbozorg et al. [12], proposed an automatic
method for the artery/vein classification based on the analysis of a graph that
represents the structure of the retinal vasculature. In Vazquez et al. [46], the
authors proposed a framework for the automatic classification of arteries and
veins using a k-means clustering. The classification results of all the connected
vessels are combined by a voting system. Yang et al. [50] made use of a SVM
classifier in the separation process between arteries and veins. Kondermann et
al. [28] employed features that were extracted from the retinal vessel profiles
with respect to their centerlines. Then, they used a classification approach
based on SVM and Artificial Neural Networks (ANN). Grisan et al. [20] sug-
gested a new strategy for classifying vessels through the division of the eye
fundus into four concentric regions of interest that are taken around the optic
disc. Additionally, this method exploits features that are extracted from HSL
and RGB color spaces. In the work of Xu et al. [49], the authors proposed
a regularization and normalization stage to reduce the differences in the fea-
ture space of the image. These features are employed for the discrimination
of arteries and veins by means of a k-Nearest Neighbors algorithm (k-NN).
In Simé et al. [44], the authors proposed a Bayesian statistical methodology
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Fig. 1 Example of OCT image. (a) Near-infrared reflectance retinography. (b) Histological
section visualizing the information of a band in the near-infrared reflectance retinography
indicated by the green arrow.

to distinguish arteries, veins, fovea and the retinal background using image
information.

In this work, we propose a complete methodology for the automatic retinal
vasculature extraction and classification into arteries and veins using the near-
infrared reflectance retinography images that are provided in combination with
the histological sections in the OCT scans. For that purpose, we use the k-
means clustering technique with feature vectors obtained from extracted vessel
profiles. A post-processing stage is performed to correct the misclassified points
belonging to the same vascular segment through a voting process. At the
moment, no other work was proposed for this problem facing this imaging
modality. This new methodology allows a more reliable analysis of the retinal
microcirculation that is needed in many processes of clinical diagnosis.

The paper is organized as follows: Section 2 presents the proposed method-
ology and the characteristics of all its stages. Section 3 presents some practical
results and the validation of key steps of the method compared to the manual
annotations of a specialist. Finally, Section 4 includes the conclusions as well
as possible future lines of work.

2 Methodology

OCT images can provide detailed information about relevant anatomical struc-
tures of the retina as the one that is faced in this work, the retinal vessel
tree. The OCT capture device provides a set of two different types of images:
the near-infrared reflectance retinography and the consecutive histological sec-
tions, as presented in Figure 1. In this work, the methodology receives, as in-
put, the near-infrared reflectance retinography image to identify the vascular
tree.

The proposed methodology, illustrated in the diagram of Figure 2, is di-
vided into five main stages: firstly, the retinal vascular tree is extracted from
the input image; secondly, the vessel centerlines are identified as well as the
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intersection points of the vascular segments; a third stage, where all these
intersections are analysed and corrected; a fourth stage, where the region of
the optic disc is identified and removed for the posterior analysis, given the
particular characteristics of these regions that can confuse the system; and
finally, the identified vessels are analysed and classified into arteries and veins.
These classifications are posteriorly propagated to correct individual misclas-
sifications and retrieve a more coherent identification. Further details about
all these stages are going to be discussed next.

2.1 Vessel Segmentation

The first step of our methodology is the automatic extraction of the retinal
vascular structure. We segment the vascular tree region that is posteriorly
used as reference for the analysis and differentiation of arteries and veins. To
achieve that, this stage is inspired in the method proposed by Calvo et al.
[10] as a well-established a robust technique that demonstrated its suitability
in classical retinographies. This strategy applies a combination of different
image processing techniques to separate the retinal vascular structure from
the background. The process is done in two main steps: vascular structure
enhancement and extraction of the retinal vessel tree.

2.1.1 Vascular Structure Enhancement

Firstly, a preprocessing using a top-hat filter [14] is performed to enhance the
retinal vessel tree. In addition, a median filter [22] is applied to reduce the
levels of noise that these images normally present, facilitating the posterior
extraction of the retinal vessels.

The vascular structure enhancement is done using a multi-scale approach
[17]. In particular, geometrical tubular structures of a range of sizes are de-
tected using the eigenvalues, A1 and A3, of the Hessian matrix. Thus, a function
B(p) to measure a pixel p belonging to a vascular structure, is formulated by:

B(p) = {0 A2 <0 1)

exp(—2R3)(1 — exp(f%)) otherwise

where Ry = A1 /A2, ¢ is half of the maximum Hessian norm and S measures
the “second order structures”. The pixels belonging to the vessel structures
are usually characterized by small \; values and large positive Ao values.

2.1.2 Vessel Extraction

Next, we proceed with the vasculature extraction using the enhanced and fil-
tered OCT image. Firstly, an initial segmentation is performed using a method
based on hysteresis thresholding. A hard threshold (7}) obtains pixels with a
high probability of being blood vessel pixels while a weak threshold (T3,) keeps
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Fig. 2 Main stages of the proposed methodology.
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Fig. 3 Segmentation process of the vessel tree. (a) Input image. (b) Final result after pre-
processing, enhancement, hysteresis thresholding and small structure removal stages. (c)
Overlap between the result of the segmentation and the input image.

all the pixels of the vascular tree in the surrounding region. The vascular seg-
mentation is composed by all the pixels included by T3, that are connected to
at least one pixel obtained by T},. Both thresholds, T}, and T, are calculated
from two image properties: the percentage that represents the background of
the OCT image and the percentage that represents the vascular tree. These
thresholds are calculated using percentile values, according to the following
equation:

j % (n/100) — F

Pi=1L;+
J J fj

xec, j=1,2,..,99 (2)

where L; is percentile lower limit j, n illustrates the size of the data set,
F} is the accumulated frequency for j — 1 values, f; represents the frequency
of percentile j and c is the measure of the size of the percentile interval. In our
case, c¢ is equal to 1. Finally, a post-processing stage is applied to eliminate
small detected elements that do not belong to the retinal vessel tree. To do
that, all isolated structures that are smaller than a predetermined number of
pixels are deleted. A couple of representative examples of the results of this
stage are presented in Figure 3 for a better visualization where we can observe
the input image, the vessel tree segmentation and the overlap between the
result of the segmentation and the input image, respectively.
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2.2 Vessel Centerline Identification

Next, we proceed to identify the centerline of each vessel using the previous
segmentation of the vessel tree. To achieve this, we based our method in the
strategy proposed by Caderno et al. [9], originally proposed in a vessel track-
ing context. Multilocal Level Set Extrinsic Curvature based on the Structure
Tensor (MLSEC-ST) is used to identify creases, a type of ridge/valley struc-
tures over the intensity profiles [29], which in our case represent the skeletons
of the retinal vessels by a set continuous points. Given a function L : R — R,
the level set for a constant ! consists of the set of points {z|L(z) = l}. For 2D
images (d = 2), L can be considered as a topographic relief or landscape and
the level sets as its level curves. The positive maxima of the level curvature
k forms ridge curves and the negative minima forms valley curves. The level
curvature k is defined, according to:

d

k= —div(w) = — Z( B ),d =2; (3)

=1

where w' is the it component of w, the gradient vector field orthogonal
to the level curves of L : R — R. The gradient vector, w, is defined by:

w N
W:{”wplf [[w]| >0

O, if lul =0 “)

where w is the gradient vector field and Oy4 the d-dimensional zero vector.
The identification of the centerline produces the results of the skeletonization
process, defining each existing vessel by two end points and a list of consecutive
pixels. Figure 4 presents a couple of examples with results of the centerline
identification and, therefore, the skeletonization process.

2.3 Intersection Points Correction

The crease identification using the MLSEC-TS method presents an important
limitation since it is not able to correctly identify the points of intersection of
the vascular structures. These characteristic points are crucial as they serve
as a source of information for posterior stages of the methodology identifying
adequately the continuation of each vessel. We analyse the previous skele-
tonization and correct all the erroneous intersections.

The aimed intersections are mainly crossovers (points where two different
vessels overlap) or bifurcations (points where a vessel is divided in two). To
achieve this, we based our proposal in the work of Sanchez et al. [41] where
all the endpoints of the identified vessel centerline segments are analysed to
detect any existing intersection. We have:

— Crossovers: we consider the existence of crossovers where two endpoints
are significantly close to a crossing segment.
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Fig. 4 Vessel centerline identification. (a) Input image. (b) Skeletonized segments. (c¢) Over-
lap between the result of the vessel centerline and the input image.

— Bifurcations: when one endpoint of a segment is significantly close to any
point of other segments, we consider the existence of a bifurcation.

Finally, these identified intersections are corrected using an interpolation B-
Splines S(u) strategy [5], defined according to:

S(u) = ZBi,m(u)Pz‘ 2<m<n+1, (5)
=0

where u is the knot vectors and P; is the i*" control point of the (n + 1)t"
control point of the curve and B; ,, are the B-spline blending functions, which
are basically polynomials of degree m—1. The basis function B; ,, (u) is defined,
in this work, by the recursion relation of Cox-de Boor [7] using an order value
m = 2. Using this interpolation we correct the intersections of the vasculature
identification. Figure 5 presents representative examples of bifurcations and
crossovers that were identified and corrected in this phase of the methodology.

2.4 Optic Disc Location

The optic disc, also knows as the optic nerve head, is a round-like area in the
back of the eye, bright and composed mainly of the optic nerve fibres [25]. This
anatomical structure is commonly identified by the location of the area with
the highest variation of intensities of adjacent pixels in the retinal images. Such
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(a)

Fig. 5 Correction of the intersection points: (15 row, bifurcation) and (2"¢ row, crossing).
(a) Input image. (b) Identified characteristic points: red points represent the ends of the
segments and green points are points of intersection. (¢) Corrected vascular segments.

variation is a consequence of the appearance of structures that are present in
the fundus of the human eye, bright in the optic nerve fibres and dark in the
retinal vessels [45]. This scenario can alter the characteristics of the visual-
ization of the vessel structures and cause misclassifications in the posterior
phase of identification of the retinal vessels as arteries or veins. Based on that,
we locate the region of the optic disc with the aim of the elimination of its
containing vessel detections and avoid possible misclassifications. To identify
the optic disc, we implemented an algorithm based on the work proposed by
Blanco et al. [6], given its simplicity and adequate results for this issue. The
process is divided into two steps: delimitation of the region of interest and
optic disc extraction.

2.4.1 Delimitation of the Region of Interest

We based our strategy on the concept that the optic disc has higher intensity
values than the retinal background or other retinal structures. Basically, the
main idea of the method is to find the largest cluster of pixels with the highest
gray levels. To do that, the method selects the 5% of the pixels in the image
that have the highest intensity values. Initially, each pixel represents a centroid
and if the Euclidean distance between two centroids is less than a certain value
these centroids, and their corresponding clusters, are combined into a single
one. The new centroid C,.,; is calculated as:
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n n

T n

C’r‘oi = (Z #a Z ’I’:) (6)
=0 =0

where (x;,y;) is the spatial coordinates of each cluster point and n is the

number of points of the cluster. The region of interest of the optic disc is
delimited by a rectangle whose center is defined by the centroid of the cluster.

2.4.2 Extraction of the Optic Disc

Once the region of interest that contains the optic disc is calculated, we proceed
to identify its exact position in the image. The method searches for circular
edges within the region of interest that represents the structural morphology
of the optic disc, as indicated, given its approximately circular shape. In this
work, these edges are calculated using the Canny edge detector [11]. Then,
we search for circular borders using the Fuzzy Circular Hough transform [35].
The purpose of this technique is to group the points belonging to edges into
candidates for circular shapes by performing a voting procedure on a set of
parameters of the equation of the circle C, defined by:

C=(r;—a)+ (yi — b)? =12 (7)

where (a,b) are the coordinates of the center of the circle, (x;,y;) identify
the coordinates of each point in the region of interest and r represents the
radius of the circle. A Hough accumulator array §(a, b, r) is introduced to store
all the entries corresponding to the parameter space. A voting process is done
where each pixel (x;,y;) votes for the set of centers (a, b) and the corresponding
radio r that are contained in the region of interest. The position of the local
maxima in the Hough accumulator array, é(a, b, r), represents the center (a, b)
and radius r of the aimed optic disc. Figure 6(a) shows an example of the
extraction of the optic disc.

In many cases, the OCT images may include significant bright intensities
in the contiguous region to the optic disc that can interfere directly in the
process of classification of the vascular structure. To avoid this situation, we
used the optic disc identification to remove a larger region and avoid this
complex situation. In particular, we remove a circular zone centered on the
optic disc with a radius of 1.5 X r, where r is the identified radius of the optic
disc, as shown in the example of Figure 6(b).

2.5 Artery/Vein Vessel Classification

Finally, we perform the automatic classification of the identified retinal ves-
sels separating arteries and veins. To achieve this goal, we divided this phase
of the methodology into three steps: firstly, we obtain the vessel profiles and
calculate the features of the identified vascular segments that are used in the
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Fig. 6 Example of the optic disc location. (a) Optic disc detection, where r represents the
radius of the optic disc. (b) Circular region around of the optic disc with radius of 1.5 X r,
to remove the brightness contiguous zone in the image.

classification process. Then, we perform the differentiation of the vessels be-
tween arteries and veins by the use of machine learning techniques. And finally,
the anatomical information provided by the vessels is used to propagate and
correct any existing misclassification.

2.5.1 Vessel Profile Extraction

For this purpose, we use the vascular information of the vessel centerlines and
the segmentation, both obtained in previous stages, represented by Figures
7(a) and 7(b). To achieved that, we based our method in the work of Barreira
et al. [3]. Initially, we obtain the vascular edges to restrict the search space.
The method employs an approach based snakes, an active contour model, to
obtain a polygonal surface that evolves within the vessel region [27], as shown
in Figure 7(c). A snake v(s) is a contour defined within an image, as:

v(s) = [z(s), y(s)] s €[0,1] (8)

where z(s), y(s) are the (z,y) coordinates of the image and s is a parameter
of the domain. Its values are stabilized when it minimizes its energy function:

/0 1 Esnane(v(s))ds = /0 1 Eint(v(s))ds + /0 1 Begt(v(s))ds 9)

where F;,; represents the internal elastic energy term, which controls the
flexibility and elasticity of the snake, and FE.,; is the external edge-based en-
ergy term which moves the snake towards the edges of the vessels. In particular,
FEipnt is defined according to:
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0vs(s)
0s

0?v4(s)

Bun(v(6)) = (o) | 252+ 516y | 25

(10)

where v;(s) = [2(s), y(s)] defines each point of the snake in the node co-
ordinates (z(s), y(s)). The parameter «(s) penalizes changes in the distances
between points of the contour, while the parameter 5(s) penalizes oscillations
in the contour. Both control the snake shape in the vascular structure. On the
other hand, E..; is defined according to:

Eewt(v(s)) = ’YEedge + 5Ecres + UEdir + aEmark + WEdif (11)

where Eqge corresponds to the energy calculated by assigning to each
point its Euclidean distance to the nearest edge, F...s represents the creases
distance energy that is obtained from the crease image, Fy;, is the strongest
expansion force of the snake model, F,, .t corresponds to the energy that
ensures that a self overlapping never happens and FEy; is the energy of control
over the snake expansion. The parameters 7, d, v, 0 and w are the weights
of the corresponding indicated energies [27]. The final result of this method is
directly affected by the initialization of the snake nodes in the image. In our
case, we used the information of the coordinates of the centerline to perform
an initial distribution of the seeds within the vascular segment. Two parallel
chains of seeds are placed on both sides of the centerline and they are guided
toward the edges by the energy terms of the model.

This way, we calculate the vascular profile for all the points belonging
to the centerline. Vessel profiles are obtained using the information of a set
of perpendicular lines that are limited by both vessel edges. These profiles
are posteriorly used in the extraction of features in the posterior vascular
classification between arteries and veins. Figure 7(c) illustrates an example
of this approach, where the yellow lines that are perpendicular to the vessel
centerline identify the vessel profile information calculated for each vascular
node. The feature vector is created for all the points, P;, that belong to the
centerline. We use seven vessel profiles, as shown in Figure 7(d), where the red
line describes the vessel profile of the point P; and the yellow lines indicate
the set of consecutive vessel profiles (P;_s3, P2, P;_1, Pi+1, Pit2, P;y3), that
are employed in the process of vessel feature extraction.

2.5.2 A/V Classification

Arteries and veins are two different types of vessels whose main objective is
the transportation of blood from the heart to the organs and vice versa [21].
To identify them, in this work, we used a machine learning approach to dis-
criminate the retinal vessels between these two types. Typically, veins present
darker profiles than arteries in the OCT images. These differences in the in-
tensity characteristics can be easily observed in the near-infrared reflectance
retinography images. For that reason, we extract six Global Intensity-Based
Features (GIBS) from the previously extracted vessel profiles. These features
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(d)

Fig. 7 Example of the vessel profile extraction. (a) Vessel centerline and vessel segmenta-
tion, red and black lines, respectively. (b) Vessel edges represented by white lines. (c) Yellow
lines perpendicular to the vessel centerline identify the vessel profile information in each
point. (d) Seven vessel profiles are used to extract the features of each vessel point.

are used to measure the variations of the intensities between these two types
of vessels. In particular, we handle the following features: mean, median, stan-
dard deviation, variance, maximum and minimum.

These feature sets are used by a classifier to discriminate arteries from
veins. In this approach, we choose the k-means clustering algorithm [30] given
its simplicity and computational performance. The main idea of this classifier is
to define centroids, for each one of the two analysed clusters, in our case arteries
and veins. These centroids are initialized to the minimum and maximum values
of the feature vector. This is necessary to place the centers of the clusters as
far as possible from each other in the first iteration of the algorithm. As a
result, all the points of the vessel centerlines will be assigned to an unique
cluster based on its characteristics. In Figure 8, we can see a representative
example of classification of the retinal vessels into arteries and veins where the
red points represent arteries and blue points are veins.
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(c) (d)

Fig. 8 Example of the automatic classification of the retinal vessels into arteries and veins.
(a) Vessel centerline image. (b) Results of the classification process for each individual vessel
point, where the red points represent arteries and blue points are veins. (c) Results of the
classification process with propagation applied to all the vascular segments. (d) Results of
the classification process with propagation on the points of intersection (bifurcations and
crossovers) applied to all the vascular segments.

2.5.8 Propagation

In the previous process, we classified each single point of the vessels individu-
ally as artery or vein. This individual classification may carry the classification
of points of the same vessel to different classes (Figure 8(b)). These inconsis-
tencies can be caused by possible changes in brightness, speckle noise or the
presence of small capillaries in the retina. To reduce the impact of these er-
rors, we designed a final correction stage that is based on a voting process in
each segment in which the winning class has the highest number of votes and,
therefore, it is assigned to all the points of the vascular segment (Figure 8(c)).

Additionally, thanks to the correction of intersections points (bifurcations
and crossovers) we can coherently propagate the correct class over the entire
identified retinal vasculature (Figure 8(d)), improving once again the classifi-
cation performance of the proposed method.
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3 Results and Discussion

The proposed method was tested using 46 OCT scans of different patients
including their corresponding near-infrared reflectance retinography images.
These images were acquired with a confocal scanning laser ophthalmoscope,
a Spectralis OCT from Heidelberg Engineering. OCT images are all centered
on the macula, with a resolution of 496 x 496 pixels and were taken from both
left and right eyes. The local ethics committee approved the study and the
tenets of the Declaration of Helsinki were followed.

The initial dataset was manually labelled by an expert clinician, identifying
the retinal blood vessels in the near-infrared reflectance retinography images.
The methodology was validated by means of a testing dataset composed by
97,294 vessel points of 2,392 vascular segments, all categorized between arter-
ies and veins. We randomly divided the initial dataset into a training and a
testing dataset, both with the same size, for the training and testing stages,
respectively.

Regarding the parameters, they were empirically established with a prelim-
inary test, using those values that offered satisfactory results. Table 1 presents
the set of parameters that were used with the proposed method in this study.

Table 1 Parameter setting that was empirically established in this study.

Parameter Value

Wtop—hat X Wtop—hat 15 x 15 piXBlS
Winedian X Wmedian 5x5 piXGlS
A1 1.0

3.0
0.25
0.01
0.025
0.003
0.062
0.010
0.900

€9 ¢ 2w Y

Regarding the vascular tree detection, we analyzed the performance of the
used approach using the True Positive rates and the False Positive rates. In
particular, the True Positive rates measure the percentage of real vessel points
that are detected (ideally 100%) while the False Positive rates measure the
percentage of detected points that do not correspond to real vessel points
(ideally 0%). As show in Table 2, the proposed strategy provided satisfactory
results, reaching a True Positive rate of 83.85% as well as a False Positive rate
of 3.51%, using all the images of the analyzed dataset. Generally, the proposed
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system is able to identify the retinal vascular tree with reasonable detection
rates.

Table 2 Results for the vascular tree detection stage.

True Positive rate False Positive rate

83.85% 3.51%

Regarding the A/V classification, the performance of the proposed system
was validated using the following metrics: sensitivity, specificity and accuracy,
considering true positives as correctly identified arteries whereas true negatives
as correctly identified veins. Mathematically, these metrics are formulated as
indicated in Equations 12, 13 and 14, where (T'P), (T'N), (FP) and (FN)
indicate True Positive, True Negative, False Positive and False Negative, re-
spectively.

L TP
sensitivity = TPLFN (12)
TN
ficity = ———— 1
speci ficity TN+ P (13)
B TP +TN 19
e = TP Y FP+ FN+ TN

Firstly, the methodology was evaluated at all the points of the retinal
vessel tree. This initial evaluation was made before the phase of propagation
of the winning class in the vascular classification stage. Table 3(a) presents
the results obtained in terms of sensitivity, specificity and accuracy for all the
vessel coordinates. Generally, the initial evaluation of the method, before the
propagation stages, provided an accuracy of 86.84% in the A/V classification
process, which we consider satisfactory.

Next, as indicated, we proceed with the propagation stage of the classifi-
cation to assign a common class (artery or vein) to all the points belonging to
the same vascular segment. Table 3(b), shows the results obtained including
this improvement. As we can see, the propagation produces a more coherent
artery/vein identification of the entire vessel segments. Despite some misclas-
sifications can be introduced, the vast majority of the pixels of most of the
vessels are correctly classified. This way, we correct some of these introduced
errors and, consequently, the accuracy was improved.

Finally, we evaluate the entire proposed method including the propagation
stage using the intersection points (bifurcations and crossovers). Following the
same reasoning of the previous propagation, the method was able to correct
different misclassified vessel segments, mainly small retinal vessels that were
corrected by others through intersections. The obtained results are presented
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Table 3 Sensitivity, specificity and accuracy of the A/V classification process. (a) Initial
A/V classification process. (b) A/V classification process with propagation. (c) A/V classi-
fication process with propagation using the intersection points.

() (b) (c)

sensitivity 88.79% 91.44% 93.94%
specificity 84.99% 89.47% 92.79%
accuracy  86.84% 90.42% 93.35%

in Table 3(c). Once again, thanks to those corrections, the accuracy was im-
proved, reaching a value of 93.35%.

Complementary, Figure 9 presents three different and representative fre-
quency histograms using all the 46 near-infrared reflectance retinography im-
ages. These histograms present a graphical representation of the distribution
in terms of sensitivity, specificity and accuracy for each image, allowing a more
complete and detailed analysis of the obtained performance results. To do that,
we analyze the performance of the A/V classification process with propagation
using the intersection points. In general, all the frequency histograms showed
a satisfactory performance with the considered dataset for all the analyzed
metrics. In particular, as we can see in Figure 9(c), satisfactory results were
also achieved for each image, reaching a mode of 94.23% as well as values of
85.45% and 98.03% as minimum and maximum, respectively.

Despite the non-existence of a public dataset to evaluate the stages of our
methodology and the non existence of any other proposal for the same image
modality, we compared the results of our approach with the performance of
some representative works of the literature for classical retinographies, given
their proximity, to obtain an approximate idea about the suitability of our
proposal. These methods where previously introduced and described in Section
1. Figure 10 represents the best accuracy results of the methods of the state of
the art and our proposal. As we can observe, our method offers a competitive
performance, outperforming the rest of the approaches.

Figure 11 exposes some representative examples illustrating the final re-
sults of the proposed method. As we can observe, the method offers accurate
results, providing valuable information that can be easily analysed by the ex-
pert clinicians. Despite this, the method presents some intrinsic limitations
due to the complex characteristics that may be present in the near-infrared
reflectance retinography images. Some cases of misclassified vessel segments
are originated by a poor contrast, specially in cases of tiny vessels. Other
times, the characteristics of the vessels are similar in both classes, once again
specially in the cases of small retinal vessels or the poor contrast that can be
present in other eye structures of some pathological scenarios.
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Fig. 9 Frequency histograms of the obtained results in the A/V classification process with
propagation using the intersection points. (a) Frequency histogram of sensitivity. (b) Fre-
quency histogram of specificity. (¢) Frequency histogram of accuracy.
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Fig. 10 Vessel classification performance comparative between techniques of the state of
the art and the proposed methodology.
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Fig. 11 Examples of final results of the proposed methodology. The red points describe
arteries and blue points are veins.
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4 Conclusions

This work presents a new methodology for the automatic identification of the
retinal vessel tree and its classification into arteries and veins using the near-
infrared reflectance retinographies of the OCT scans. A robust and precise
identification and classification of the retinal vasculature is fundamental for
the development of CAD systems that help the specialists to prevent, diagnose
and treat relevant pathologies that affect the retinal microcirculation.

The proposed system achieved satisfactory results, reaching a best accu-
racy of 93.35% of classification of arteries and veins using all the stages of
the proposed method. Although, to date, no other work has been proposed
using this imaging modality, we compared the performance of the proposed
system with representative approaches of the state of the art, despite they
were proposed in the analysis of classical retinographies given their proxim-
ity, concluding that the proposal offers a correct behaviour, outperforming the
results of the rest of the approaches.

Despite that the method offered a robust and coherent behaviour, some
aspects could also be improved. Future work would involve the analysis of the
different stages of the methodology to obtain a better performance. Addition-
ally, the method could combine the output of this proposal with the analysis
of the vascular depth information provided by the histological sections of the
OCT scans. This information, in combination with the 2D artery and vein
identification, could be used to perform a 3D reconstruction of the vascular
tree. In addition, clinical studies could be designed to evaluate the robust-
ness of this method in a large variety of retinal vascular disorders or possible
systemic vascular complications, providing a further complementary analysis
about the performance of the proposed system.
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