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Abstract

This work addresses the design of optimal linear transmit filters for the Mul-

tiple Input-Multiple Output (MIMO) Broadcast Channel (BC) when several

spatial streams are allocated to each user. We further consider that the

Channel State Information (CSI) is perfect at the receivers but is only par-

tial at the transmitter. A statistical model for the partial CSI is assumed

and exploited for the filter design. The relationship between average rate

and average Mean Square Error (MSE) is studied to determine the optimal

way to distribute the per-user rates among the streams. Finally, the feasi-

ble average sum-MSE (sMSE) region is studied and the impact of the CSI

uncertainty over the overall system performance is evaluated.
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1. Introduction

This work focuses on power minimization in the Multiple Input-Multiple

Output (MIMO) Broadcast Channel (BC) when several streams are allocated

to each user. Considering more than a single stream per user takes advantage

of the spatial multiplexing gain of MIMO systems to increase the commu-

nication rate. Furthermore, multiple data streams fit into current scenarios

where users connect more than one device, or where different and simul-

taneous data streams are required for a certain number of applications to

simultaneously run at one device.

Our goal is to minimize the total amount of power needed to fulfill cer-

tain per-user Quality-of-Service (QoS) restrictions taking into account the

flexibility of distributing the rate constraints between the different per-user

streams. By imposing these restrictions, we ensure that all users achieve a

certain level of data rate. This is in contrast to sum-rate maximizations [1]

where users with poor channels obtain low data rates, or max-min formula-

tions [2] where these users act as overall performance bottlenecks. Note that

the Base Station (BS) usually has more degrees of freedom than the individ-

ual receivers. Therefore, precoding at the transmitter is helpful to mitigate

the interferences between users.

Regarding Channel State Information (CSI), we consider that perfect

knowledge is available at the receivers but only partial knowledge is available

at the BS. This makes a difference with respect to previous works [3, 4, 5, 6,

7, 8] where perfect knowledge of the CSI at both ends of the BC is assumed.

Moreover, we do not rely on error models as in [9, 10, 11, 1, 12] to design

robust precoders, but leverage statistical knowledge of the channel responses
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at the BS by means of a probability density function (pdf).

Similar assumptions were considered in [13, 14, 15] but for a Multiple

Input-Single Output (MISO) BC where only one stream per user is consid-

ered. The possibility of allocating more than one stream to each user has a

profound impact on the problem formulation. Indeed, we show that the Min-

imum Mean Square Error (MMSE)-based lower bound employed in previous

works, e.g. [15], is loose in the considered scenario. An accurate approach

leads to an additional complexity since the designer has to decide between

different per-stream rate targets fulfilling the per-user restrictions [16, 17].

Contrary to [16, 17], a low-complexity update is derived and the possibility

of switching on and off some of the per-user streams is also considered.

Finally, the average sum-MSE (sMSE) feasible region is shown to be

a generalization of the single stream case. Moreover, we compute a lower

bound for the average sMSE which provides insight about the performance

loss due to CSI uncertainty. The relationship between average MSE and

average rate enables us to obtain conclusions in terms of average rate from

the aforementioned lower bound.

The main contributions of this work are the following:

• The relationship between the per-user average MMSE and the per-user

average rate is studied for the multiple stream case.

• A new algorithm, which reduces the computational complexity, is pro-

posed to jointly find the filters and update the per-stream targets.

• The algorithm is adapted in such a way that users are allowed to switch

on and off some of their data streams.
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ŝK

F H
1

F H
K

Figure 1: Multiple Stream MIMO BC System Model.

• The impact of CSI uncertainty on the overall system performance is

evaluated in a realistic setup, via a sMSE lower bound.

The following notation is employed. Matrices and column vectors are

written using upper an lower boldface characters, respectively. By [X]j,k,

we denote the element in row j and column k of the matrix X; diag(xi)

represents a diagonal matrix whose ith diagonal element is xi; IN stands

for the N × N identity matrix, and ei represents the canonical vector. The

superscripts (·)∗, (·)T, and (·)H denote the complex conjugate, transpose,

and Hermitian. ℜ{·} represents the real part operator. Finally, E[·] stands
for statistical expectation, tr(·) and det(·) denote the trace and determinant

operators, and | · |, ‖ · ‖2, ‖ · ‖F stand for the absolute value, the Euclidean

norm, and the Frobenius norm, respectively.

2. System Model

Fig. 1 shows the block diagram of a multiple stream MIMO BC. K

users, with R antennas each, receive the information sent from a BS with
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N antennas. The data symbols are represented by the vectors sk ∈ Cdk

comprising the dk data streams transmitted to the kth user, k ∈ {1, . . . , K}.
Such data vectors are considered to be zero-mean Gaussian with a covariance

matrix E[sks
H
k ] = Idk , i.e. sk ∼ NC(0, Idk), and independent among users,

i.e. E[sks
H
l ] = 0 for l 6= k. Prior to be transmitted, the data vectors are

precoded with Pk ∈ CN×dk to produce the signal that propagates over the

MIMO channel Hk ∈ CN×R. Next, it is perturbed by zero-mean additive

Gaussian noise ηk ∼ NC(0,Cηk
). We assume a block fading-channel that

remains constant for a packet of symbols. According to such system model,

the k-th user data rate is given by

Rk = log2 det
(

IR +HH
k PkP

H
k HkX

−1
k

)

, (1)

where Xk = Cηk
+ HH

k

∑

i6=k PiP
H
i Hk represents the interference from the

other users and the noise. The total transmit power is PT =
∑K

k=1 ||Pk||2F.
In this work, we consider that the CSI at the BS, v, is partial and available

through the conditional pdfs fHk|v (Hk|v). This information is used to design

the precoders for many packets of a block-fading channel. In other words,

v contains the statistical information available at the transmitter to design

precoders for multiple channel realizations. A practical example is to model

the channel uncertainty as a statistical error and assume that the channel is

constant for one symbol transmission. Hence, a channel realization reads as

Hk = Ĥk + H̃k, (2)

with the expectation Ĥk = E[Hk| v] and H̃k ∼ NC(0,CH̃k
) being the im-

perfect CSI error. Thus, the partial CSI available at the transmitter are Ĥk

and the error covariance matrix CH̃k
= E[(Hk − Ĥk)(Hk − Ĥk)

H| v].
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On the contrary, users are assumed to perfectly know the channel. Hence,

the problem at hand consists on finding the mappings between the precoding

matrices and v according to some metric. This difficult problem will be solved

point-wise for a given v and, in accordance with the system description, the

QoS metric is given by the following kth user conditional average rate

E[Rk| v] = E
[

log2 det
(

IR +HH
k PkP

H
k HkX

−1
k

)

| v
]

, (3)

which should be larger than a given value ρk, thus leading to the formulation

min
{Pk(v)}Kk=1

PT =
K
∑

k=1

‖Pk(v)‖2F s.t. E [Rk| v] ≥ ρk ∀k, (4)

where we have remarked the dependency of Pk on v. The optimization

problem (4) is difficult to solve due to the QoS restrictions. In the ensuing

section, we propose more manageable MMSE based constraints. A similar

strategy was employed in [13, 15]. However, the multiple data streams make

it necessary a new approach.

3. MMSE-Based Problem Formulation

Let us introduce the receive filter Fk ∈ CR×dk , which is applied to the

received signal to obtain the data estimates for user k

ŝk = F H
k HH

k

∑K

i=1
Pisi + F H

k ηk. (5)

Note that linear filters consider the inter-user interference as noise. Accord-

ingly, the multiple-stream BC MSE, is MSEBC
k = E[‖sk − ŝk‖22], i.e.,

MSEBC
k = tr

(

Idk − 2ℜ
{

F H
k HH

k Pk

})

+

K
∑

i=1

∥

∥F H
k HH

k Pi

∥

∥

2

F
+ tr

(

F H
k Cηk

Fk

)

.
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Since the CSI is imperfect at the BS, the appropriate MSE metric is the

conditional average E[MSE| v] = MSE
BC

k (v). This is in accordance with the

rate in (3). Recall, however, that CSI is perfect at the receiver side and hence

the MMSE receive filters for given precoders Pk(v) can be determined as

FMMSE
k =

(

HH
k Pk(v)P

H
k (v)Hk +Xk

)−1
HH

k Pk(v), (6)

with Xk = HH
k

∑

i6=k Pi(v)P
H
i (v)Hk +Cηk

. Plugging (6) into MSEBC
k yields

the following expression for the k-th user average minimum MSE

MMSEBC
k (v) = E [tr (Σk(v)) | v] , (7)

where Σk(v) = (Idk +P H
k (v)HkX

−1
k HH

k Pk(v))
−1. Observe from (3) that the

average rate can be written as a function of Σk(v), as follows

E [Rk| v] = E
[

log2 det
(

Σ−1
k (v)

)

| v
]

. (8)

Notice that Σk(v) in (7) and (8), as well as E [Σk(v)| v], are symmetric

positive-semidefinite. We thereby introduce the eigenvalue decomposition

E[Σk(v)| v] = UkΛkU
H
k , with the unitary matrix Uk and the diagonal matrix

Λk = diag(λk,1, . . . , λk,dk), where λk,i ≥ 0, ∀k, i, are the eigenvalues.

The columns of Uk form a basis that enables to introduce the spatial

decorrelation precoders P ′
k(v) = Pk(v)Uk. Such precoders remove the off-

diagonal elements of E[Σk(v)| v], for all k, without changing the total trans-

mit power
∑K

k=1 ‖P ′
k(v)‖2F =

∑K
k=1 ‖Pk(v)‖2F, nor the expressions of the av-

erage rate (3) and the average MMSE (7). We henceforth consider that the

spatial decorrelation precoders P ′
k are employed from now on. Thus, the

per-user average MMSE in the BC is

MMSEBC
k (v) = tr (E [Σk(v)|v]) =

dk
∑

i=1

λk,i. (9)
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Notice that λk,i can be interpreted as the k-th user i-th stream average

MMSE, i.e. λk,i = MMSE
BC

k,i (v), and the average MMSE in (9) corresponds

to the sum of all of them, i.e., MMSE
BC

k (v) =
∑dk

i=1 MMSE
BC

k,i (v).

We now study the relationship between the per-user average rate and the

per-user average MMSE. The average rate from (8) yields

E[Rk| v]
(a)

≥ − log2 det (E [Σk(v)| v])
(b)
= −

dk
∑

i=1

log2(λk,i)

= − log2

(

dk
∏

i=1

λk,i

)

(c)

≥ −dk log2

(

MMSEk

dk

)

, (10)

where (a) comes from Jensen’s inequality since f(A) = − log(det(A)), with

A being positive semidefinite, is convex [18]. However, contrary to the single

stream scenario [15], a lower bound based on the per-user average MMSE

is not tight in general. Equality (b) holds because we are using the afore-

mentioned spatial decorrelation precoders, i.e., the streams can be separately

encoded without loss of optimality [cf. (9), [19]]. Finally, (c) results from

the inequality between arithmetic and geometric means, and equality holds

for dk = 1 or when λk,1 = λk,2 = . . . = λk,dk . For such cases, the origi-

nal constraints are ensured if MMSEk ≤ dk2
−ρk/dk . Since equal per-stream

MMSEs do not lead to the smallest transmit power in general, we propose to

introduce per-stream MMSE targets by imposing per-stream rate constraints

̺k,i to obtain an accurate bound for the average rate. Indeed, the per-user

average rate requirements are satisfied when

MMSEBC
k,i (v) = λk,i ≤ 2−̺k,i, (11)

where
∑dk

i=1 ̺k,i = ρk ∀k or, equivalently,
∏dk

i=1 λk,i ≤ 2−ρk ∀k.
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Figure 2: (a) Per-User Rate for per-User MMSE Target of 0.5; (b) MMSE Targets satis-

fying per-User Rate Requirement.

The lack of precision of the per-user MMSE targets as lower bounds of

the per-user rate targets for the multiple stream scenario is illustrated by the

perfect CSI example in Fig. 2a. Such figure shows the rates achieved for user

k, which allocates two streams, for given per-user MMSE target of
√
2. We

vary the per-stream MMSE targets 2−̺k,1 and 2−̺k,2 between 0 and
√
2, such

that 2−̺k,1 + 2−̺k,2 =
√
2. Observe that Rk = ρk = 1 for 2−̺k,1 = 2−̺k,2.

Fig. 2b depicts the curve corresponding to the pairs of per-stream MMSE

targets (2−̺k,1 , 2−̺k,2) ensuring the per-user rate ρk = 1. The per-user rate

target ̺k,1 goes from 0 to 1 while ̺k,2 = 1− ̺k,1.

We next find the targets leading to the smallest transmit power. Towards

this aim we resort to a nested optimization procedure to solve (4). The outer

procedure finds the optimum way to split the target rate ρk into the dk per-

stream target rates ̺k,i, i.e.

min
{̺k}Kk=1

PT (̺) s.t. 1
T̺k = ρk, and ̺k ≥ 0 ∀k, (12)
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with ̺ = [̺T
1 , . . . ,̺

T
K ]

T, and ̺k = [̺k,1, . . . , ̺k,dk ]
T. The inner optimization

determines the minimum transmit power for given per-stream average rate

targets ̺, that is, PT (̺) is the solution to the following variational problem

min
{Pk(v),Fk}Kk=1

K
∑

k=1

‖Pk(v)‖2F s.t. MSEBC
k,i (v) ≤ 2−̺k,i ∀k, i. (13)

This strategy is similar to the so-called “margin adaptive” rate allocation,

proposed for multiuser DSL scenarios in [20]. Note that this new formulation

allows us to treat each user’s streams as virtual users [see (9)]. Thus, we solve

(13) point-wise for each v as done in [15]. Notice, however, that this per-

stream constrained optimization is more stringent than the original one.

4. Projected generalized gradient

Similarly to [21], the optimization problem (12) is solved in the dual MAC.

To this end, we introduce tk,i, HkC
−H/2
ηk

, gk,i and n ∼ NC(0, IN) to represent

the precoders, the channel, the equalizer and the noise, respectively. We

now define the average transmit power for the k-th user i-th stream ξk,i =

E[‖tk,i‖22| v], the normalized precoders τ k,i = ξ−1
k,i tk,i, and the expectations

µk,i = E[HkC
−H/2
ηk

τ k,i| v] and Θk,i = E[HkC
−H/2
ηk

τ k,iτ
H
k,iC

−1/2
ηk

HH
k | v]. Let

us introduce the scalar equalizers rk,i with gk,i = rk,ig̃k,i. Note that the

precoders in the dual MAC are functions of the channel whereas the receivers

depend on the imperfect CSI v. Hence the average MSE reads as

MSE
MAC

k,i (v) = 1− 2ℜ
{

r∗k,ig̃
H
k,iµk,i

√

ξk,i

}

(14)

+ |rk,i|2
(

g̃H
k,i

∑K

l=1

∑dl

j=1
ξl,jΘl,jg̃k,i + ‖g̃k,i‖22

)

,
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and the minimum average MSE is

MMSEsMAC
k,i (v) = 1− ξk,i

∣

∣g̃H
k,iµk,i

∣

∣

2
y−1
k,i , (15)

with the scalar yk,i = g̃H
k,i

∑K
l=1

∑dl
j=1 ξl,jΘl,j g̃k,i + ‖g̃k,i‖22.

Consequently, we rewrite the optimization problem (13) as

PT (̺) = min
{τk,i,g̃k,i,ξk,i}K,dk

k,i

K
∑

m=1

dm
∑

n=1

ξm,n s.t. MMSEsMAC
k,i (v) ≤ 2−̺k,i ∀k, ∀i.

(16)

Remember that this latter optimization problem can be solved in a way

similar to the case of a single stream per user (see [15]).

In order to solve (12), we propose a generalized gradient-projection algo-

rithm. In such algorithm, the direction of the generalized gradient is followed

but it is projected onto the set of values fulfilling the original per-user re-

strictions. Observe that the objective function of (12) is the solution of (16)

and the derivative might not exist. The generalized gradient, however, ex-

tends the gradient definition to the scenario where the function is possibly

non differentiable but locally Lipschitz [22]. This is appropriate because the

latter condition is satisfied for any feasible targets. Furthermore, the gen-

eralized gradient is a subgradient and, if the function is differentiable at a

certain point, it is equivalent to the actual gradient. Indeed, we update the

per-stream average rate targets as

̺′(ℓ+1)
k,i = ̺

(ℓ)
k,i − s(ℓ)

∂PT (̺
(ℓ))

∂̺
(ℓ)
k,i

, (17)

with the diminishing step size s(ℓ) → 0 for the ℓ-th iteration, such that
∑∞

ℓ=1 s
(ℓ) = ∞. Note that the conventional notation for the partial derivative
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is used for the generalized gradient. In the ensuing sections we propose two

approximations to determine the generalized gradient in (17).

4.1. Jacobian matrix approach

To compute the generalized gradient in (17), we start deriving (15) with

respect to the power allocation elements ξm,n. For the cases: m = k, n = i,

and m 6= k or n 6= i, we get

∂MMSEsMAC
k,i (v)

∂ξk,i
= −

∣

∣g̃H
k,iµk,i

∣

∣

2

y2k,i

(

yk,i − ξk,ig̃
H
k,iΘk,ig̃k,i

)

, and (18)

∂MMSEsMAC
k,i (v)

∂ξm,n

=
ξk,i
∣

∣g̃H
k,iµk,i

∣

∣

2
g̃H
m,nΘm,ng̃m,n

y2k,i
,

respectively. Taking into account the dependency of the transmit power

PT (̺) with respect to the per-stream targets and that the equality MMSEsMAC
k,i =

2−̺k,i holds in the solution of (16), we get that the generalized gradient

∂MMSEsMAC
k,i (v)

∂̺l,j
=

K
∑

m=1

dm
∑

n=1

∂MMSEsMAC
k,i (v)

∂ξm,n

∂ξm,n

∂̺l,j
, (19)

is equal to − ln(2)2−̺k,i for k, i = l, j, and 0 for k, i 6= l, j. The Jacobian

matrix of f (ξ) = [MMSEsMAC
1,1 (v), . . . ,MMSEsMAC

K,dK
(v)]T reads as

[Jf (ξ)]a,b =
∂MMSEMAC

k,i (v)

∂ξl,j
, (20)

where a =
∑k−1

m=1 dm + i, and b =
∑l−1

m=1 dm + j. Similarly, we define the

matrix Jξ(̺) =
∂ξ
∂̺T . Hence, we rewrite (19) as

∂MMSEMAC
k,i

∂̺l,j
= [Jf (ξ)Jξ (̺)]a,b = − ln(2) [W ]a,b , (21)
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with W = diag(2̺1,1 , . . . , 2̺1,d1 , . . . , 2̺K,dK ). Hence, Jξ(̺), which contains

the entries necessary to compute the update in (17), is obtained by left

multiplying (21) times the inverse of Jf (ξ), that is

Jξ(̺) = − ln(2)Jf(ξ)
−1W . (22)

Therefore, the update for the k-th user i-th stream reads as

∂PT (̺)

∂̺k,i
= − ln(2)1TJf (ξ)

−1We∑k−1
m=1 dm+i. (23)

We now prove that −Jf (ξ) is a Z-matrix, i.e., the diagonal elements

are positive and the off-diagonal ones are negative. Indeed, let us define

the diagonal matrix D = diag(ξ). Observe that the following inequality
∑

b6=a |[−Jf (ξ)D]a,b| < [−Jf (ξ)D]a,a holds for every row a =
∑k−1

j=1 dj +

i, corresponding to the k-th user i-th stream. Hence, Jf (ξ)D is strictly

diagonally dominant and −Jf (ξ) is a non-singular M-matrix with positive

inverse [23]. This result aligns with the intuition that a lower target rate ̺l,j

also leads to a lower transmit power PT (̺).

4.2. Lagrangian multiplier approach

Observe that the update step given by (23) requires to compute the in-

verse of the Jacobian matrix. The dimensions of such matrix depend on

the number of users and streams allocated by the BS. For example, a BS

serving to K = 10 users allocating 4 streams each, leads to a 40 × 40 ma-

trix. We thereby provide an alternative to avoid this computationally costly

calculation.

Let us define the Lagrangian function corresponding to the i-th stream

of user k of the inner optimization problem (16) as

L(ξ, βk,i) = ψ(ξ) + βk,iνk,i(ξ), (24)
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with the objective function ψ(ξ) =
∑K

k=1

∑dk
i=1 ξk,i, the constraint νk,i(ξ) =

MMSEsMAC
k,i (v) − 2−̺k,i, and βk,i ≥ 0. The Karush-Kuhn-Tucker (KKT)

necessary conditions for a local optimum [24, Theorem 4.2.13] state that

∂L(ξopt, βopt
k,i )

∂ξk,i
=

∂ψ(ξopt)

∂ξk,i
+ βopt

k,i

∂νk,i(ξ
opt)

∂ξk,i
= 0. (25)

Equating the two terms in (25) we readily obtain

∂ψ(ξopt)

∂ξk,i
= −βopt

k,i

∂MMSEsMAC
k,i (v)

∂ξk,i
. (26)

Thus, taking into account that MMSEsMAC
k,i (v) = 2−̺k,i in the optimum,

making explicit the dependency on the targets ξk,i(̺), and using the chain

rule we arrive at

∂ψ(ξopt(̺))

∂̺k,i

∂̺k,i
∂ξk,i

= βopt
k,i ln(2)2

−̺k,i
∂̺k,i
∂ξk,i

. (27)

This interpretation is similar to that in [18, Sec. 5.6] for convex problems.

Finally, in order to calculate the Lagrangian multiplier, we compute the

derivative in (25) using (18), leading to

βk,i = −
(

∂MMSEsMAC
k,i (v)

∂ξk,i

)−1

=
y2k,i

∣

∣g̃H
k,iµk,i

∣

∣

2 (
yk,i − ξk,ig̃

H
k,iΘk,ig̃k,i

)

. (28)

Note that (27) is positive. Hence, the gradient step (17) reduces the targets.

4.3. Projection

It is important to note that after the target update (17), the per-stream

targets do not fulfill the original constraints
∑dk

i=1 ̺
′
k,i = ρk. Therefore, we

propose to perform a projection onto the set of feasible target rates of the

k-th user by minimizing the following Euclidean distance

min
̺k,i≥0

dk
∑

i=1

(̺k,i − ̺′k,i)
2 s.t.

dk
∑

i=1

̺k,i = ρk. (29)
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The KKT conditions of (29) lead to the following projection

̺k,i = max
{

̺′k,i − µk, 0
}

, µk =
1

dk

(

dk
∑

i=1

̺′k,i − ρk

)

. (30)

Note that some of the k-th user per-stream targets could be switched off (i.e.

̺k,i = 0) after the projection. In such a case, the power assigned to that

user is ξk,i = 0, and the corresponding generalized gradient is also zero. This

way the stream will not be switched on again. Such behavior, observed in

[17], is avoided by using “dummy” filters. That is, the updates of τ k,i, g̃k,i

in (16) are performed with ξk,i = 1 (cf. [15], see also step 9 of Algorithm 1).

Consequently, “dummy” filters do not affect the entries of Jf (ξ) for active

streams while the entries of the inactive streams are forced to be non-zero.

4.4. Proposed Algorithm

Algorithm 1 implements the solution previously described. After the

initialization in line 1, the power minimization (13) is solved via the methods

proposed in [15] (see line 2). Next, the generalized gradient is computed in

line 5, and the step size is set to the initial value s0. Line 7 updates the

per-stream target rates ̺k,i according to (17), while the projection in (30) is

implemented in line 8. Next, the power minimization is updated (see line 9).

Then, if the BC total power is smaller than that achieved in the previous

iteration, the per-stream target rates and the corresponding transmit and

receive filters are updated. If not, the step size s is reduced in line 13.

If the initial QoS constraints are feasible, this simple line search guarantees

convergence to a local minimum since the generalized gradient leads to either

a projected gradient or a projected subgradient (see [25, Prop. 2.2.1] and [25,
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Algorithm 1 Power Minimization Algorithm

1: ℓ ← 0, initialization: Pk and ̺
(0)
k,i , Pk ← P ′

k, ∀k
2: Solve (13), i.e. t

(0)
k,i , g

(0)
k,i , and ξ

(0)
k,i ∀k, i.

3: repeat

4: ℓ ← ℓ+ 1

5: δ
(ℓ)
k,i ← ∂PT (̺(ℓ−1))

∂̺
(ℓ−1)
k,i

, ∀k, i, bexit ← 0, s(ℓ) ← s0

6: repeat

7: ̺′(ℓ)k,i ← ̺
(ℓ−1)
k,i − s(ℓ)δ

(ℓ)
k,i , ∀k, i. Gradient step (17)

8: ̺
(ℓ)
k,i ← max{̺′(ℓ)k,i − µ

(ℓ)
k , 0} ∀k, i. Projection

9: Solve (13), i.e. t
(ℓ)
k,i, g

(ℓ)
k,i , and ξ

(ℓ)
k,i , ∀k, i

10: if P
(ℓ−1)
T − P

(ℓ)
T > 0 then

11: bexit ← 1

12: else

13: s(ℓ) ← s(ℓ)

2
. Step size update

14: end if

15: until bexit

16: until
∑K

k=1

∑dk
i=1 ξ

(ℓ−1)
k,i −∑K

k=1

∑dk
i=1 ξ

(ℓ)
k,i ≤ γ

Section 6.3.1]). Finally, we set the threshold γ in line 16 to check the accuracy

of the solution.

5. Problem Feasibility and sMSE Lower Bound

For feasibility testing, we generalize the single-stream vector channel pro-

cedure employed in [26] to the multiple-stream MIMO channel. We thereby
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obtain the matrix

E = Id − E
[

Υ H|v
] (

E
[

ΥΥ H|v
]

+ σ2IN
)−1

E [Υ |v] , (31)

using Tl = [tl,1, . . . , tl,dl], Υl = HlTl ∈ CN×dl and Υ = [Υ1, . . . ,ΥK ] ∈ CN×d,

with the total number of data streams d =
∑K

k=1 dk. Note that tr(E) is the

average sum-MMSE, and E contains the average MMSEs for the k-th user

i-th stream, MMSEk,i, in the entry [E]a,a, with a =
∑k−1

l=1 dl+ i. Accordingly,

the k-th user average MMSE, MMSEk, corresponds to tr([E]b:c,b:c), with b =
∑k−1

l=1 dl + 1 and c =
∑k

l=1 dl. When setting σ2 = 0, tr(E) gives the sum-

MMSE lower bound for the set of precoders {Tk}Kk=1, i.e., feasible MMSE

targets have to fulfill

K
∑

k=1

dk
∑

i=1

2−̺k,i ≥ d− tr(E
[

Υ H|v
] (

E
[

ΥΥ H|v
])−1

E [Υ |v]). (32)

Note that if ̺ is feasible, any distribution among the streams ̺′ such that
∑K

k=1

∑dk
i=1 2

−̺′
k,i =

∑K
k=1

∑dk
i=1 2

−̺k,i satisfies the inequality (32).

5.1. Sum-MSE Lower Bound

This section studies the bound in (32) to provide more insight about the

impact of imperfect CSI in the overall BC performance. Unlike for the power

minimization problem, the distribution of the per-user average MSE among

the streams is irrelevant for the sum-MSE lower bound. Accordingly, we can

assume MMSEk = dkλk, ∀k in (10) to obtain a tight bound of the per-user

average rate. Moreover, since (31) turns out to be a direct extension of the

single-stream MIMO case, we will focus on the latter for simplicity.

First, we consider perfect CSI at the BS. Hence, the expectations in (32)

can be removed and the lower bound is 0 forN ≥ d (cf. [27]). However, under

17



imperfect CSI assumption, the lower bound in (32) depends on the MAC

precoders {Tk}Kk=1. Therefore, we need to provide transmit and receive filters

minimizing the average sum-MSE lower bound to investigate the performance

loss caused by the uncertainty of the statistical CSI available at the BS.

Consider the sMSE expression in the MAC for zero-power noise, i.e.,

sMSEMAC = K − 2ℜ
{

K
∑

k=1

gH
k Hktk

}

+

K
∑

k=1

K
∑

i=1

gH
k Hitit

H
i H

H
i gk. (33)

Recall that we have considered perfect CSI at the receivers in the BC. There-

fore, the filters tk minimizing the sum-MSE are readily obtained as the

MMSE MAC precoders tk = (HH
k

∑K
i=1 gig

H
i Hk)

−1HH
k gk, to get

sMSEMAC = K −
∑K

k=1
gH
k Hk

(

HH
k

∑K

i=1
gig

H
i Hk

)−1
HH

k gk. (34)

Thus, using G = [g1, . . . , gK ] and our imperfect CSI assumption we get

sMSE
MAC

(v) = K −
K
∑

k=1

eT
k E

[

GHHk

(

HH
k GGHHk

)−1
HH

k G| v
]

ek. (35)

To find an analytical solution of the receive filters G is difficult due to

the non-convexity of (35) and the unknown closed-form expression of the

expectation. Hence, we propose to use a steepest descent algorithm. Let us

start defining the gradient for user k as

δk =
∂sMSE

MAC
(v)

∂G∗ ek = −E

[

Hk

(

HH
k GGHHk

)−1
HH

k G| v
]

ek

+
K
∑

m=1

E

[

Hm

(

HH
mGGHHm

)−1
Am

(

HH
mGGHHm

)−1
HH

mG| v
]

ek, (36)

with Am = HH
mGeme

T
mG

HHm (see Appendix A). The receive filters at

iteration ℓ are updated as

G(ℓ)ek = G(ℓ−1)ek + sδ
(ℓ)
k , (37)
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with the step size s. Note that sMSE
MAC

(v) is reduced at every iteration.

This fact, together with the lower bound sMSE
MAC

(v) ≥ 0, guarantees con-

vergence of the proposed method to a local optimum.

6. Results and Discussion

The performance of Algorithm 1 is illustrated here by considering a

MIMO BC with K = 2 users, R = 6 receive antennas per user and N = 8

transmit antennas. Notice that dk sets an upper bound for the number of

streams that might be allocated to user k since Algorithm 1 can switch some

streams off but not include additional ones. Taking into account that there is

no prior information regarding users’ channel qualities, we start with the fair

criterion of d1 = d2 = 4. The AWGN is zero-mean with Cη = IR, and the

per-user target rates are set to ρ1 = 8.5 and ρ2 = 7.5 bits per channel use.

The error model in (2) is assumed, and we consider first and second order

moments [E[Hk|v]]1:N,r = uk,r, for each r ∈ {1, . . . , R} with uk,r,n = ej(n−1)ϕk

and ϕk ∼ U(0, 2π), and CH̃k
= RIN , ∀k. Recall that no closed-form expres-

sions for the expectations in (15) have been found. Therefore, we employ

Monte Carlo numerical integration with M = 1 000 channel realizations.

This way, we calculate

µk,i =
1

M

M
∑

m=1

H
(m)
k Cηk

τ
(m)
k,i

Θk,i =
1

M

M
∑

m=1

H
(m)
k C−H/2

ηk
τ
(m)
k,i τ

(m),H
k,i C

− 1
2

ηk
H

(m),H
k

where τ
(m)
k,i is the normalized MAC precoder for the m-th channel realization.

In our first experiment, we perform a comparison between the two approaches
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Figure 3: Performance of Algorithm 1 using two approaches: (a) Targets using Matrix

Inversion in (23); (b) Targets using Lagrangian Multipliers in (27)

proposed in Section 4. Since both of them converge to a local optimum, it

is not possible to know a priori which one performs better in a particular

scenario. In this example we start with equal per-stream targets, which is

a good initial candidate in terms of power consumption since none of the

MMSE targets is too small. Fig. 3 depicts the target updates for both

approaches. Similar values are reached for targets ̺1,1, ̺2,2, ̺2,3 and ̺2,4,

whereas larger differences can be noticed for the rest of them. Recall that,

at each iteration, the sum of the k-th user per-stream targets is equal to ρk.

Fig. 4 shows the gradual reduction of the transmit powers. After conver-

gence, similar results are achieved for both update steps. However, this is not

true in general due to the local optimality of the solutions. The performance

of the two steps highly depends on the initial targets, the particular channel

realizations, and the starting precoding matrices.

For the second setup, we generate 1 000 channel realizations according to

(2) and initial random per-stream targets. The evolution of such targets can
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Figure 4: Performance of Algorithm 1 using two approaches. (a) Power using Matrix

Inversion in (23). (b) Power using Lagrangian Multipliers in (27).

be observed in Fig. 5. Observe that stream 1 of user 1 is deactivated and

afterwards activated (see iterations 3 and 4). The total transmit power is

shown in Fig. 6. Observe that both the per-stream targets and the total

transmit power converge at about 15 iterations and, after iteration 9, the

power reduction is negligible.

6.1. Sum-MSE Lower Bound

In this section we empirically evaluate the performance degradation, in

terms of sMSE, which results from the CSI uncertainty. The setup consists

of one BS with N = 4 antennas and K = 4 users with R = 2 antennas.

We define the vector hk[q] containing the stacked columns of the k-th user

Gaussian channel, Hk[q], where q is the time slot, and Chk
= INR is the

slow-variation channel covariance.

In this example we consider that the users receive a training sequence.

Afterwards, the received signal is processed to reduce the number of bits fed

back to the BS. Indeed, a rank reduction is performed by truncating the
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Figure 5: Per-Stream Targets vs. Number of Iterations.

Karhunen-Loève transform. Next, the coefficients are quantized using scalar

quantization. The CSI at the users, ĥk[q] ∈ Cn, reads as [28]

ĥk[q] = V H
k Shk[q] + V H

k n+ nQ,k, (38)

where Vk ∈ CNR×n collects n < NR eigenvectors of Chk
, S ∈ CNR×NR such

that SHS = INR is the training sequence, n ∼ NC(0NR,Cn) is the noise

during the training stage, and nQ,k ∼ NC(0n,
γ2

6
In) is the quantization error,

with γ = 2
√
2

2b
and 2b being the number of quantization levels. For simplicity,

the channel, the noise, and the quantization error are assumed to be mutually

independent and Gaussian.
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Each user selects an entry from its 2bn codebook entries and sends the bn

bits to the BS. We consider a feedback delay of D time slots for acquiring

the CSI, and temporal correlations of the channel according to Jakes model

(see [28] and references therein). Then, the statistical CSI at the BS is given

by the first and second order moments of hk[q]|ĥk[q −D] as follows [28, 29]

E[hk[q]|ĥk[q −D]] = CH
ĥkhk

C−1

ĥk

ĥk[q −D], (39)

E[hk[q]h
H
k [q]|ĥk[q −D]] = Chk

−CH
ĥkhk

C−1

ĥk

Cĥkhk
, (40)

where Cĥk ,hk
= E[ĥk[q − D]hH

k [q]] = V H
k SChk

J0(αkD), Cĥk
= E[ĥkĥ

H
k ] =

V H
k (SChk

SH+Cn)Vk+
γ2

6
In, with J0(·) being the zero-order Bessel function
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Figure 7: Average sMSE Lower Bound under CSI Uncertainties.

of the first kind, and αk = 2πfD/fs.

In order to compute the average sMSE in (35), we generate 2 000 channel

realizations according to the statistics in (39) and (40), using the locally

optimum MAC receive filters G, obtained after convergence of the iteration

in (37). In particular, we show the bounds considering the following CSI

uncertainties: (N) channel noise, with Cn = σ2INR and SNR ∈ [0, 40] dB;

(D) D = 2 time slots delay, fD = 18.5185 Hz, and fs = 1500 Hz; (Q)

quantization with 2 bits per channel coefficient (12 per user); and (T) rank

reduction with n = 6 eigenvectors.

Figure 7 depicts the severe system performance degradation due to CSI

24



uncertainty. Theoretical studies can be found in the literature, e.g. [30],

but assuming Zero-Forcing precoders. This example exhibits the trade-off

between minimum average MMSE (or maximum average rate) and the CSI

accuracy at the BS. Note that the feedback rate is constant for all the SNR

values, and the impact on performance dramatically increases for high SNRs.

More sophisticated quantizer designs could be used but these are out of the

scope of this work.

7. Conclusions

This work addresses the power minimization of the multiple-streamMIMO

BC subject to per-user average rate restrictions. Moreover, the practical as-

sumption of imperfect CSI at the transmitter is considered, leading to a

complicated problem formulation. To tackle with this difficulty, we have

investigated the relationship with the average MMSE and proposed to re-

formulate the problem by introducing average MMSE-based per-stream re-

strictions. Accordingly, a strategy to distribute rates among the streams via

a projected gradient method is performed. The flexibility of the proposed

algorithm is improved by allowing the streams to switch on and off for con-

venience. Additionally, we study the feasible region and the average sMSE

lower bound considering different CSI errors.
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Appendix A.

In order to obtain the gradient in (36), we compute the derivative of

sMSE
MAC

(v) in (35) with respect to G entry-wise as

δi,j =
∂

∂[G∗]i,j

K
∑

k=1

tr
(

E

[

GHHk

(

HH
k GGHHk

)−1
HH

k G| v
]

eke
T
k

)

(A.1)

= eT
i E
[

HjB
−1
j HH

j G| v
]

ej − eT
i

K
∑

k=1

E
[

HkB
−1
k AkB

−1
k HH

k G| v
]

ej

where we used the matrices Ak = HH
k Geke

T
kG

HHk and Bk = HH
k GGHHk.

Stacking the N elements corresponding to the user j, δj = [δ1,j, . . . , δN,j]
T,

we arrive at the gradient (36).
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