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Abstract

This paper introduces a small area estimation approach that borrows strength across do-
mains (areas) and time and is efficiently used to obtain Labour Force Estimators by economic
activity. Specifically, the data across time is used to select dfferent models for each domain; such
selection is done with an Aggregated Mixed Generalized Akaike Information Criterion statistic
which is obtained using data across all time points and then is splitted into individual compo-
nent for each domain. The approach makes a selection from different estimators, including the
direct estimator, synthetic and mixed estimators derived from different models using auxiliary
information. Results from several simulation experiments, some with original designs, show the
good performance of the approach against standard small area approaches. In addition, it is
shown the important practical advantages in the real application.

Key words and phrases: Akaike Information Criterion, Bootstrap, Fay-Herriot model,
Generalized Degree of Freedom, monotone model, small area estimation, spline regression.

1 Introduction

Government authorities dealing with the economy of a region need to know the number of em-
ployed people in each of the economic activities and their evolution over time. This is necessary
to influence economic sectors in decline or to encourage potentially emerging sectors. It is also
important to study the productivity of the different activities and thus promote employment
policies in those economically more productive sectors. ln the Regional Accounts, labour is
important for accounts compilation because employment (the number of employees or hours
worked) or compensation of employees are often used as regional indicators for the allocation
of regional gross added value to regions. From a statistical point of view, on the Regional Eco-
nomic accounts of Galicia (Spain), the estimates of employment in each of the activities are done
through a study of the different statistical sources, taking at the end the most coherent estimate
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in terms of evolution, profit ratios, etc. Eurostat (Eurostat (2013)) recommends that a social
statistical database, in which surveys and administrative data are combined and reconciled,
might provide the necessary consistency of labour data. Eurostat also says that administrative
data is potentially a very important source when combined and reconciled with other sources, for
both national and regional accounts. With this work, we go a step further on the Eurostat line
to find the most appropriate model to determine the evolution of employed people by economic
activity, combining administrative registers and survey data.

The main aim of this work is to estimate, in each quarter, the employed people by economic
activity in Galicia in the period from the third quarter of 2009 to the first quarter of 2016, us-
ing data from the Labour Force Survey (LFS). We consider as domains the economic activities
(Agriculture, Forestry, Manufacture of metals, Insurance, etc. ), defined by the Statistical clas-
sification of economic activities in the European Community (NACE Rev.2) (Eurostat (2008))
at the division level. There is a total of 84 domains for each 27 quarters from 2009 to 2016.

The problem in the LFS case is that the sampling has been designed to estimate parameters
associated with planned (big) domains and this implies very low sample sizes and inaccurate
estimators for some small domains. The goal of the Small Area Estimation (SAE) techniques
is to derive more accurate estimators for each domain (or area) in that scenario, by borrowing
strength from other domains. Some of the most relevant references in SAE are the monographs
Rao (2003) and Rao and Molina (2015), and the reviews of Ghosh and Rao (1994), Rao (1999),
Pfeffermann (2002, 2013) and Jiang and Lahiri (2006).

When the sample information is available in more than one dimension, such as space or time,
the small area estimators can also be derived by borrowing strength from one or more of these
additional dimensions. Should data be available from several time periods, graphical displays
of the domain estimators across time are very interesting outputs for practitioners. A smooth
pattern is desirable in most applications, as domain estimators are expected to change slowly
from one time point to the next. However, it may happen that the trend pattern is more abrupt
than desired for direct estimators due to the sampling variability.

This is the LFS case, where very different temporal patterns, some of them quite abrupt, are
exhibited depending on the economic activity. This is illustrated in Figure 1, where data from
log observed rates (Y ) and the log total number of people registered in the social security system
(X), in consecutive quarters, is displayed for three economic activities: Forestry, Manufacture
of metals and Employment activities. In addition, Figure 1 also shows an unequal behaviour
of employment, depending on the economic activities, regarding the sample variability and the
relationship with the auxiliary information, in addition to the temporal evolution. The simple
strategy of using standard model-based estimators does not solve the problem; again, abrupt
temporal patterns are exhibited, as can be seen in Section 4, where we study the real applica-
tion in detail. Moreover, the option to consider time series models (models that borrow strength
across time instead of across domains) may generate patterns which are too smooth and prevent
major trend changes from being detected.

In this paper we propose, for these heterogeneity contexts, a simple and useful strategy that
consists of selecting specific estimators for each domain, borrowing strength across time as well
as across domains. This strategy lacks the drawback of time series models, taking into account
the heterogeneous domains and providing less abrupt temporary patterns in many domains.
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Figure 1: Patterns across time.

The use of AIC statistics is one of the most popular approaches to model selection (Akaike
(1973)). In general terms, the value of the AIC for a model M is defined as AIC(M) =
−2log(l(M)) + 2P , where l(M) is the model likelihood and P is a penalty term. The selected
model within a set of candidates is the one with the lowest AIC. The penalty term plays an
important role in statistical modeling. Different terms have been used for different models and
authors: the number of parameters in the model, degrees of freedom, divergence, effective de-
grees of freedom, generalized degrees of freedom. Most of these terms are the same for simple
models, such as the normal linear regression model, but not for complex models, such as the
constrained, lasso or mixed models (Kato (2009), Rueda (2013), Tibshirani and Taylor (2012)).
An important contribution to the subject is contained in Ye (1998), where the Generalized De-
grees of Freedom (GDF) is defined as a measure of the sensitivity of each fitted value, m̂dt, to the
perturbation in the corresponding observed value Ydt. Since then, different versions of General-
ized Akaike Information Criteria (GAICs), with either conditional or marginal log-likelihoods
and different estimators of the GDF originally defined in Ye (1998), have been considered in
the literature. For mixed models, some references of interest are Vaida and Blanchard (2005),
Muller et al. (2013) and You et al. (2016), among others. In the particular problem of SAE, the
problem has been only tentatively studied. We highlight the review of new important develop-
ments in Pfeffermann (2013) and the contributions of Han (2013), Marhuenda et al. (2014) and
Lombard́ıa et al. (2017).

In this work, we consider the Mixed Generalized Akaike Information Criterion (xGAIC)
introduced by Lombard́ıa et al. (2017) to select the model-based estimator for each particular
domain.

Moreover, we take a step ahead on the subject, when data across a second dimension (time
in our application) are also provided. We propose a specific domain measure by aggregating
the individual components for the domain across time, using the property that AIC measures,
including xGAIC, can be formulated as a sum of the individual components from each of the
d domains, considering the individual log-likelihood component plus the 1/D fraction of the
penalty term.
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We show, using two simulation experiments, that the new approach for selecting a specific
domain estimator outperforms the usual practice of considering the same model for deriving
estimates for all the domains simultaneously. In addition, the approach is satisfactorily used
to derive Labour Force estimates by economic activity and quarter in Galicia. In particular,
temporal patterns neither too smooth nor too abrupt are exhibited, which provides a very
interesting solution for decision makers. In the SAE literature there are other models that
consider time and space as for example Rao and Yu (1994), which we initially considered but
discarded for not improving the results, as discussed in Section 5.1.

The original design of the simulation experiments is also an interesting contribution of this
paper. A generator model, which does not match any working model, is defined. It is shown
that the generator model manages to replicate the real data in a faithful way.

This issue is particularly relevant in our problem because the sample data illustrate a com-
plex generator process, as the data can only be replicated using different models across domains.
To deal with the bias-variance tradeoff, statisticians often consider a working model simpler than
the generator model. However, in simulations, when the questions are to select from a set of
candidate models and validate the selection approach, the data must be generated with models
that approximate to the real one as much as possible in order to achieve reliable comparisons.

We organize the remainder of the paper as follows. In Section 2, we describe the candidate
models with and without random effects and the corresponding model-based estimators. In
Section 3, we introduce a new GAIC statistics to choose the appropriate model for heterogeneous
data using information across time. Sections 4 and 5 describe numerical studies, in the former
section, Labour Force estimates by economic activity and quarter in Galicia are obtained using
the new approach; in the latter, a complete numerical study is designed, where different scenarios
are considered, including one that imitates the real case. Section 6 is devoted to the conclusions.
Finally, in the Appendix, we give the Labour Force estimates for each economic activity defined
by NACE (division level).

2 Model-based estimators

To model the LFS data, and similar applications, we assume a response vector Yt = (y1t, . . . , yDt)
′,

d = 1, ....D, t = 1, ...T ; where t is the quarter, D is the number of domains of study, T is the
number of time periods, and Yt ∼ N(mt,Vt). We also use Yd = (yd1, . . . , ydT )′ for the response
vector of domain d that is is the logarithm of the total of employed people by economic activity
and time. Here, md = (md1, . . . ,mdT )′ and mt = (m1t, . . . ,mDt)

′. We consider a vector of
covariates Xdt, d = 1, ....D; t = 1, ...T .

In this paper, we distinguish between generator and working models for m. It is assumed
that a real and unknown model exists, from which m is derived. Otherwise, working models are
those from which the estimators for m are derived. Then, a working model, M , is defined as a
mapping from RD to RD, which produces a set of fitted values m̂t = (m̂1t, . . . , m̂Dt)

′ from Yt.
To simplify the notation, the dependence of parameters estimators on M is assumed and will
be implicit. The candidate set of working models is defined by ℵ. The models in ℵ considered
in this paper are additive models that differ in the functional form relating each covariate with
the response, and in the inclusion or not of random effects. In particular, we consider a set with
six members, as functional forms we take the linear, monotone and spline function, and may be
synthetic (derived from a model without random effects) or mixed (derived from a model with
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random effects).

Below is shown the candidate models in ℵ and the corresponding estimators for mdt. To
simplify the notation the models are introduced for a single time period, however, the extension
to the various time periods is simple as the models are fitted independently at each time point.
Moreover, models use auxiliary information in terms of explanatory variables; however, as in
the LFS case, only one explanatory variable is used. We present the models for this simple case
as the extension to the case of more auxiliaries is straightforward.

As will be seen in Section 4, this family of models covers a wide enough range of functional
relationships for the application at hand. However, the list can be expanded with other candi-
dates, or even reduced, depending on the application and the researcher. In particular, when
more explanatory variables are used, the number of members in ℵ is expanded by combining the
different types of models with a relevant combination of explanatory variables.

The models can be defined as follows:

Yd = θd + ud + ed; d = 1, ..., D

where θd = f(xd); ud are independent and identically distributed as N(0, σ2u) with σ2u unknown
and possibly zero, and ed ∼ N(0, σ2d), with σ2d assumed known.

The domain estimators are also defined as m̂d = θ̂d + ûd, where θ̂d is the estimator of the
fixed effect θ and ûd the predictor of the random effect ud.

Depending on the functional form f() and whether σ2u is zero or not, the result is different
small area models from which the corresponding model-based estimators are derived.

Next, we define the estimators derived from the six models in ℵ, starting with the models
for f as the linear function, which give the following estimators:

• Synthetic linear (SL): σu = 0,

m̂d = θ̂d = xdβ̂, d = 1, . . . , D;

β̂ is the standard linear regression vector of coefficient estimators and xd is the explanatory
variable in the domain d.

• Mixed linear (ML), : σu ≥ 0,

m̂d = xdβ̂ + ûd, d = 1, . . . , D.

β̂ and û are derived using Maximum Likelihood, for details see the monograph Rao (2003) and
Rao and Molina (2015). This is one of the most famous models in SAE, due to Fay and Herriot
(1979). There is a lot of literature about it.

The next two estimators are derived from monotone models. Monotonicity is a simple and
intuitive property stating that the greater (or smaller) an auxiliary information is, the greater
the response must be. The incorporation of restrictions generates more efficient and more robust
estimators and in many cases achieve interpretable solutions. Monotone estimators have proven
efficient in a diversity of applications, including Small Areas problems, as it is shown in Rueda
et al. (2010), Lombard́ıa et al. (2017), Wagner et al. (2017) or Chetverikov et al. (2018) among
others.
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• Synthetic monotone (SM ): σu = 0,

m̂d = θ̂d = P (Y|K).

where P (Y|K) is the projection of Y onto K and K = L0 + S1 + . . . + Sp2 is a convex
region in RD defined by the restrictions imposed. L0 is the linear subspace of dimension
p1 spanned by columns in matrix (x1, . . . ,xp1) and, for j > p1, each Sj is the order cone
associated to xj , Sj = {u ∈ RD/ud ≤ ud′ ⇔ xjd ≤ xjd′}. P (Y|K) is obtained using a
cyclic pool adjacent algorithm (CPAVA) similar to the backfitting procedure built around
the PAVA (Robertson et al. (1988)).

• Mixed monotone (MM): σu ≥ 0,

m̂d =

(
1− σ2u

σ2d + σ2u

)
θ̂d +

σ2u
σ2d + σ2u

Yd, d = 1, . . . , D.

In the case where σ2u is unknown, we propose an iterative procedure to obtain θ̂ = P (Y|K)
and σ̂2u following the ideas of Rueda et al. (2010) and Lombard́ıa et al. (2017).

Finally, we present the estimators for md using P-splines. In this case, the working model is
the following

Y = θ + u + e = Xβ + Zv + u + e,

where Xβ+Zv represents the spline function. According to the base used for P-splines, X and Z
have different forms. In particular, in this work we use B-Splines. Being X = [1,x, . . . ,x(l−1))],
with l the order of the differences in the penalty matrix, and Z = BRΣ−1/2, with B, is the
matrix of the spline basis obtained from the covariate X, while R and Σ are matrices that form
part of the decomposition in singular values of the penalty matrix. Having described the base,
the connection with a mixed model is immediate. Noted that this strategy is justified only when
the true underlying is not a spline, which would be the case in most applications, see more
details in the monograph Jiang (2010). Some applications of this type of model in SAE are
Opsomer et al. (2008) and Ugarte et al. (2009), among others.
In order to fit the model, it is suitable to treat Zv as a random effect term, with v ∼ N(0,Σv =
σ2vIc−2), where c is the number of columns in the original base B. Using Maximun Likelihood
estimation we obtain the corresponding synthetic and mixed estimators:

• Synthetic Spline (SS): σu = 0,

m̂d = xdβ̂ + zdv̂, d = 1, . . . , D.

• Mixed Spline (MS): σu ≥ 0,

m̂d = xdβ̂ + zdv̂ + ûd, d = 1, . . . , D.

where xd and zd are the rows of X and Z corresponding to the ith small area, respectively. In
both cases, we fit a mixed linear model, with one or two random effects, respectively. More
details of the estimation process can be seen in Lombard́ıa et al. (2017).

As has been shown, we have a direct relationship beween the models and the proposed
estimators. In the following sections we consider various time periods, the notation is adapted
by including a time subscript as follows: m̂dt = θ̂dt for the synthetic estimators, and for the
mixed estimators m̂dt = θ̂dt + ûdt, where d = 1, . . . , D and t = 1, . . . , T .
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3 GAIC statistics

Once the models and estimators that play a role in the approach have been introduced, we can go
on to describe the methodology proposed to estimate mdt, consisting of selecting for each d, the
specific working model from ℵ, that provides the most accurate predictions. For the selection, we
introduce a simple procedure in Section 3.1 that uses the value of a new Akaike Information Cri-
terion (AIC) statistic, specific for each domain, and is derived from the information across time.

As we have commented in the introduction, the use of AIC type statistics has been one of
the most popular approaches to model selection since Akaike (1973). Different versions have
been defined depending on the penalty and loss function, but in all the cases, the selection
mechanism is similar, the value of the AIC statistic is derived for a family of models and the
model with the lowest is selected.

In this section, we introduce the xGAIC statistic derived in Lombard́ıa et al. (2017), which
combines a quasi-log-likelihood with a bootstrap GDF-estimator. In this paper, the good per-
formance of xGAIC compared with other popular AIC measures is shown, particularly in SAE
applications; moreover, it is also shown how xGAIC is flexible for handling conditional or
marginal log-likelihoods. This property is relevant for the selection problem presented in this
paper, because the family of candidate models includes synthetic and mixed models and consid-
ering these candidates simultaneously is not a usual practice, although of great interest in SAE
applications, where the objective is not the model but the domain estimators.

Besides, in Section 3.1, a new domain specific measure xGAIC, using data across time, is
defined.

A general AIC statistic for model M is defined as AIC(M) = −2log(l(M)) + 2P , where
l(M) is the model likelihood and P is a penalty term. To calculate the likelihood, two popular
approaches are used to measure the goodness of fit in mixed effects models: the marginal
likelihood and the conditional likelihood. For the marginal focus, we consider Y ∼ N(θ,Vy),
where Vy = V ar(Y). Then, the marginal log-likelihood is calculated as

log(lm(M)) = −1

2
D log(2π)− 1

2
log |Vy| −

1

2
(Y − θ)

′
V−1y (Y − θ).

On the other hand, the conditional likelihood approach assumes that Y|u ∼ N(µ,Vy|u),
with µ = E(Y|u) = θ + u and Vy|u = V ar(Y|u). Thus, the conditional log-likelihood is
calculated as

log(lc(M)) = −1

2
D log(2π)− 1

2
log |Vy|u| −

1

2
(Y − µ)

′
V−1y|u(Y − µ).

Lombard́ıa et al. (2017) introduce a quasi-likelihood which considers the focus in the random
effect and the total variability as follows:

log(lx(M)) = −1

2
D log(2π)− 1

2
log |Vy| −

1

2
(Y − µ)

′
V−1y (Y − µ).

We now combine the previous loss functions with a penalty term. The GDF have been used
by several authors in complex modeling procedures, where it is assumed that E(Y ) = m (Ye
(1998), Vaida and Blanchard (2005), Greven and Kneib (2010), You et al. (2016), among others).
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This is a measure of the sensitivity of each fitted value m̂d to perturbation in the corresponding
observed value Yd, for d = 1, . . . , D, without considering the time effect:

GDF =

D∑
d=1

∂E(m̂d)

∂md
.

Different expectations have been defined in the literature to estimate GDF . From the conditional
mean estimator and conditional expectation (Vaida and Blanchard (2005), Lombard́ıa et al.
(2017)), we get:

cGDF =

D∑
d=1

∂EY |u(µ̂d)

∂µd
.

From the marginal mean estimator and marginal expectation, we get:

mGDF =

D∑
d=1

∂EY (θ̂d)

∂θd
.

And from the conditional mean estimator and the marginal expectation (You et al. (2016) and
Lombard́ıa et al. (2017)), we get:

xGDF =

D∑
d=1

∂EY (µ̂d)

∂θd
.

Finally, we select a model M ∈ ℵ with the smallest value of GAIC:

GAIC(M) = −2 log(l(M̂)) + ĜDF ,

where l(M̂) depends on the parameters estimated under the model M . Although GDF is a
known quantity in simple models, it is unknown in complex modeling procedures. You et al.
(2016) and Lombard́ıa et al. (2017) propose estimating it by bootstrap, ĜDF .

In mixed models, an AIC based on the marginal likelihood and mGDF is typically used,
but some authors, such as Vaida and Blanchard (2005), consider the purely conditional measure,
using lc and cGDF . Others, such as You et al. (2016), combine conditional or marginal log-
likelihood with the same expectation to estimate the GDF , depending on the objective. In
this paper, we consider a mixed measure, xGAIC, introduced by Lombard́ıa et al. (2017) and
defined as follows:

xGAIC(M) = −2 log(lx(M̂)) + xĜDF .

All the GAIC measures cited above were studied and compared in Lombard́ıa et al. (2017)
and the authors showed that xGAIC has a rather smaller classification error rate than the
others. They also proved its usefulness for the selection of variables, as they were better in the
comparison. Moreover, xGAIC can be used to choose between synthetic and mixed models,
because both terms, the log-likelihood and the penalty term in xGAIC, are well defined for
both types of model, giving different but comparable results. The other GAIC measures are
not so flexible, as they use the conditional or marginal measure.
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3.1 GAIC using data across time

When data across time are available, several selection model approaches can be considered.
First, we define the simple approach, which consists in selecting a unique model for each time
point as follows and through all domains. For each t, select the model M•t ∈ ℵ with the smallest
value of GAIC. In particular, for the xGAIC:

xGAICt(M) = −2log(ltx(M̂)) + xĜDF
t
,

and
M•t = arg min

M∈ℵ
xGAICt(M). (1)

Remember that ℵ is the candidate set of working models as in Section 2.

Alternatively, let us define the specific-domain xGAIC measure across time as:

xGAICd(M) =

T∑
t=1

(
−2log(ltx(M̂, d)) +

1

D
xĜDF

t
)
,

where log(ltx(M̂, d) is the d-th component of the log-likelihood for time t. This measure can be
interpreted as goodness of fit for model M for the domain d across time. In this case, we take

Md• = arg min
M∈ℵ

xGAICd(M) (2)

After an estimator is selected by xGAICt(M) or xGAICd(M), the MSE can be estimated
using bootstrap, following the ideas of González-Manteiga et al. (2008), Hall and Maiti (2006)
and Lombard́ıa et al. (2017) among others. The good behaviour of these measures for selecting
the best estimator will be shown in the next sections for the real case and simulations. We
anticipate here that the model-based domain estimators, using Md•, outperforms, in terms of
the MSE, the estimators based on M•t and the estimators based on any of the models in ℵ.
However, we must keep in mind that this model selector approach is not suitable when there is
a strong spatial or temporal dependence, it is not reasonable to apply different models for each
one of them.

4 Application to real data

Returning to the real problem at hand, our objective is to estimate the employed people by
economic activity in Galicia. This is a region in the north-west of Spain with an important
amount of people working in the retail trade, construction and food and beverage service activ-
ities, among others. Remember that in the Regional Accounts, the labour force is often used as
a regional indicator for the allocation of regional gross value added, so it is important to have a
good measure of employment by economic activity. We use data from the LFS of Galicia in the
period from the third quarter of 2009 to the first quarter of 2016. We have D domains, where
each one is an economic activity. Pdt is the population in each of the economic activities, i.e.,
the people employed in this activity d and time t and the unemployed who, in their last job,
were employed in that activity. Our goal is to estimate the total number of employed people by
economic activity:

Zdt =
∑
j∈Pdt

zjt,
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where zjt = 1 means the j-th person in the domain d and time t is employed, and zjt = 0 in
another case.

The LFS does not produce official estimates at the domain level, but the analogous direct
estimates of the total Zdt, the mean Z̄dt = Zdt/Ndt and the size Ndt are:

Ẑdirdt =
∑
j∈Sdt

wjt zjt,
ˆ̄Zdirdt = Ẑdirdt /N̂

dir
dt , N̂

dir
dt =

∑
j∈Sdt

wjt

where Sdt is the sample in domain d and time t and wjt is the official calibrated sampling weight.
Considering that the sample weights wjt correspond to the inverse of the probability of selecting
the individual j, πj , then if πj 6= 0, the variance estimator of the direct estimator would be:

V̂π(Ẑdirdt ) u
1

N̂2
dt

∑
j∈Sdt

wjt(wjt − 1)
(
zjt − ˆ̄Zdirdt

)2
The last formula is obtained with the simplifications: wjt = 1

πj
, πjj = πj and πij = πiπj for i 6= j

in the second order inclusion probabilities. In this work, we use the variance of the logarithm
of the direct estimator of the total; this can be approximated by a Taylor linearization with the
following formula

V̂π(log(Ẑdirdt )) =
1

(Ẑdirdt )2
V̂π(Ẑdirdt ).

LFS is designed to obtain precise estimates in the activity sector: Agriculture, Industry,
Construction and Services. The problem is when the domains are below the planned level (for
example: Forestry, Manufacture of metals, Insurance, ...). Then, the LFS has very low sample
sizes in these domains and, therefore, very high sampling errors in the direct estimator of each
domain. For the first quarter of 2016, the minimum sample size in the domain is 4, the first
quartile is 22 and the median 44; so, for some domains with the direct estimator, a reliable
estimate of our objective cannot be obtained. To obtain reliable estimates in these domains, it
is necessary to propose models that use auxiliary information that allows us to provide more
information to improve the estimation process.

In this study, we use domain level models, such as those defined in Section 2, and their
corresponding model-based estimators. These models have the advantage that they only need
aggregate auxiliary information, which can usually be found in administrative registers. There-
fore, as explanatory variables for the estimation of the target variable, we have considered the
total number of people registered in the Social Security System (S3) by economic activity. This
information is available for each quarter and for all variables of interest, from the third quarter
of 2009 to the first quarter of 2016. We take 77 domains, after discarding seven domains for
lack of information. We construct the data set with the following information:

• Zdt: denotes, for simplicity of notation, the direct estimator of the total number of em-
ployed people in each economic activity d and quarter t, obtained from the LFS.

• σ2LFS,dt: is the variance of the direct estimator of log(Z) in each economic activity d and
quarter t.

• NACE: is the variable that indicates the economic activity (agriculture, forestry, manu-
facture of metals, Insurance, . . . ).
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• S3dt: is the auxiliary information, the people registered in the social security system in
each economic activity and quarter.

To better fit the normality error assumptions, the response variable for the model is the
logarithm of employed people in each economic activity and quarter, Ydt = log(Zdt), and the
explanatory variable is log(S3dt). The correlation between Ydt and log(S3dt) is 0.92. Figure 2
shows the relationship between both variables, which seems to be close to linearity.

6 7 8 9 10 11

6
8

10
12

log(S3)

Y

Figure 2: Scatter plot between the target variable Ydt and the explanatory variable log(S3dt).

In Figure 3, we show the evolution along the 27 quarters of Ydt and log(S3dt) in six domains.
These figures show that there are different patterns, some of them quite abrupt. The behaviour
of each economic activity is quite different, indicating that it may be convenient to consider
different small area estimation approaches for different activities.

In order to see how the different estimation approaches fit the data, we consider the models
presented in Section 2 for each of the quarters of our data (t = 1, . . . , 27) and the corresponding
estimators are derived. Those for the same six economic activities as in Figure 3 are plotted in
Figure 4. This figure shows the similar behaviour of mixed estimators across domains; in fact,
the lines that remain hidden correspond to mixed estimators that behave in a very similar way.
Besides, the figure also shows how close the mixed estimators are to the direct estimators and
that both exhibit an abrupt pattern in most cases.

On the other hand, the synthetic estimators are smoother, close to the explanatory variable
and with a heterogeneous behaviour across activities.

It is relevant to remember at this point in the discussion that stability is a property highly
valued by the Statistical Offices when publishing survey results. However, it is also worth
remembering that overly smoothed patterns can prevent major trend changes being detected.
Keeping these comments in mind, and in view of the graphical displays, a sensible approach
could be to select different estimators for each domain.
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Figure 3: Evolution of Ydt and log(S3dt) along the quarters in six domains.
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In Table 1, we show the results for eight activities, as an illustration, but the complete results
are shown in the Appendix for the 77 activities of the NACE and the last quarter. For each
activity, we give the explanatory variable (S3), the value of the direct estimator (Z), of the
usual estimator calculated in SAE (ML) and of the model-based estimator under the model (2)
(for simplicity we denote the estimator as the model, Md•), and also the corresponding selected
estimator by xGAIC (labeled as “Est.”). For NACE= 2 in Table 1 (Forestry activity), the
selected estimator is the MM , which is a good choice because the distance between the direct
estimator and the synthetic estimator is high in this domain (see Figure 4). The Figure 4 shows
the synthetic estimator has a systematic and significative bias, pointing out the right choice for
each domain. For NACE = 24, 27 and 30 (i.e. Manufacture of metals, Electrical equipment and
Ships and boats), Md• correspond to the synthetic estimators: SM , SS and SL, respectively.
Again the choice is a good one, as the behaviour of the mixed and the direct estimators are very
abrupt and, in addition, the synthetic is not far from the direct. In these domains, the smoother
pattern exhibited by the chosen estimators facilitates the interpretation in the real world. The
domains NACE = 65 and 78 have a similar behaviour to Forestry, i.e. important difference are
shown between the direct and the explanatory values, so the choice of a mixed estimator, in this
case MM , is a good one. Besides, it is also interesting to note, in the Forestry and Employment
activities, that the estimators maintain seasonality.

We have also included in Table 1 the results for NACE = 55 and 85, from which we know
what its relationship with the auxiliary information is like. It is well known that the explanatory
variable underestimates employment for NACE = 85 (Education), but is a very good estimate
for NACE = 55 (Accommodation). Then, we can see that the xGAIC selects the most appro-
priate model to build the model-based estimator, a mixed estimator for the NACE = 85, close
to the direct estimator, and a synthetic estimator for the NACE = 55, simply a function of the
explanatory variable. These are only two examples of how the methodology works using the
auxiliary information in a correct way.

Indeed, Figure 5 plots for the last quarter the direct estimates of Yd against Md•, the model-
based estimates under the model (2). We observe that there are some differences between both
estimates, some quite important, especially in the activities with few employees. For example,
NACE = 24, 36, 38, 72, 80, among others. The differences can be seen in detail in Tables 5 and
6 in the Appendix.

Moreover, in order to study the stability, we consider different number of time periods. Re-
sults using data from T = 12, 20, 27 periods of time has been compared. In these three scenarios,
and for all the activities, either the same model is selected or a model that behaves in a similar
way is selected. In fact, for a particular activity, the type of model selected turned out to be
always synthetic or always mixed, independently of the number of time periods used.

Finally, in order to validate the goodness of the estimators selected, a simulation experiment,
included in the next section, has been designed to imitate the real case. The results there show
that Md• is the best choice in terms of MSE for most of the domains as well as globally. In
practice, the MSE can be estimated using bootstrap, following the ideas of González-Manteiga
et al. (2008), Hall and Maiti (2006), Lombard́ıa et al. (2017) among others. Once the model is
selected, we apply the resampling method to calculate the MSE under this model. In addition,
Lombard́ıa et al. (2018) proved that xGAIC select estimators with the lowest MSE. Another
alternative to estimate the MSE is the unified Monte-Carlo jackknife method for small area
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estimation introduced in Jiang et al. (2018), which will be the subject of future research.
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Figure 4: Evolution of Ydt, log(S3dt) and the estimators of Ydt along the quarters and in six
domains.

5 Simulation studies

5.1 Simulation 1

The objective of this simulation is to study how the xGAICd, using data across time, selects
the best estimator for each domain d and across time, designing a scenario very close to the
real case. We use mixed and synthetic estimators obtained from linear, monotone and P-spline
models.
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NACE Activity S3 Z ML Md• Est.

2 Forestry 3334 5150 5108 5351 MM
24 Manufacture of metals 4438 2705 2792 5023 SM
27 Electrical equipment 703 1430 1386 1235 SS
30 Ships and boats 6017 6902 6905 7363 SL
55 Accommodation 7458 12048 11988 8801 SL
65 Insurance 1786 6230 6187 6469 MM
78 Employment activities 9854 930 1503 1456 MM
85 Education 41982 74103 74070 77347 MM

Table 1: For eight selected activities, the people registered in the Social Security System (S3),
the estimations of the employed people Z, ML and Md•, and the type of estimator selected by
the xGAIC (Est.) are shown.
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Figure 5: Scatter-plot of the direct vs the Md• estimates in logarithm scale.

We consider generating the data the following model:

ydt = mdt + edt = αd + xdtβt + vdt + edt, d = 1, ..., D, t = 1, ..., T ;

where D = 77 domains, T = 27 periods of time, xdt the explanatory variable in the real example,
vdt ∼ N(0, σ2vd) and edt ∼ N(0, σ2dt). We take σ2dt = σ2LFS,dt, the values in the real case, and we

also consider, for comparative proposes, σ2dt = σ2LFS,dt ∗ 10. For βt, we take the estimated values
for the linear model for each quarter in the real application. Finally, we use the following values
for αd and σ2vd

αd =
1

T

∑
t

(ydt − xdtβt) d = 1, . . . , D;

σ2vd = σ2rd −
1

T

∑
t

(σ2dt) d = 1, . . . , D

where σ2rd is the variance of the T residuals corresponding to the domain d and ydt is the response
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variable in the LFS data set.

We generate and analyze the data as follows:

• Repeat I = 100 times (i = 1, . . . , 100)

– Generate samples {(ydt, xdt)}, d = 1, . . . , D; t = 1, . . . , T .

– For each d = 1, . . . , D and t = 1, . . . , T , fit the linear model, the monotone model
and the P-spline model, and calculate for each: m̂dt and xGAICdt. We denote the
estimators as in Section 2: SL (synthetic linear), ML (mixed linear), SM (synthetic
monotone), MM (mixed monotone), SS (synthetic spline) and MS (mixed spline).

– For each domain d and previous estimators, calculate the error:

Ed = (m̂d −md)
′
(m̂d −md),

with m̂d = (m̂d1, . . . , m̂dT ) the vector of model-based estimations of md = (md1, . . . ,mdT ).

– For each time t, record the estimator M t, which is the model-based estimator under
the model (1), see details in Section 3.1. For simplicity we denote the estimator the
same as the model. We also calculate its error as before.

– For each domain d, record the estimator Md, which is the model-based estimator
under the model (2). See details in Section 3.1. We also calculate its error as before.

• Derive global statistics:

– Calculate the empirical MSE:

MSEd =
1

I

I∑
i=1

E
(i)
d , d = 1, . . . , D;

MSE =
1

D

D∑
d=1

MSEd.

First, using Figure 6 and Figure 7, we illustrate how the simulated data from the generating
model used in the simulation, imitate the real data. In Figure 6, we present the scatter-plot for
the response variable against the explicative variable corresponding to the real data in the left
hand graph, and the same scatter-plot for the data generated in the first and second iteration,
in the middle and right hand graphs, respectively.

On the other hand, in Figure 7, we show the evolution of the response variable along the 27
quarters for the activities selected in Section 4. In the first row, we present the results of the real
data and the second and third rows present the results for the data generated in the first and
second iteration. From these figures, we conclude that the generating approach can replicate
the real data quite well. We note that several simpler models have been tested as generators,
but they have failed to replicate the real data as well as the selected one does.

Next, we present the results of the simulation in Figure 8 and Table 2. Figure 8 plots the
MSEd for a list of estimators defined in this paper: SL,ML, SM,MM,SS,MS,M•t,Md• and
we add the direct estimator (Direct). The results are shown for the scenario where σ2dt = σ2LFS,dt,
as similar conclusions are derived in the other case.
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Figure 6: Scatter-plot of the response variable vs the explicative variable, for the real data and
for the first and second iteration.

In Figure 8, we see that the variability of synthetic estimators is greater than that of both
the mixed estimators and the Direct; also that the mixed estimators and the Direct have very
similar MSE distributions. In fact, we have found that these estimators are very similar to each
other. This last fact is shown in Table 2, where specific values for eight domains are presented
(those analyzed in Section 4). The table is divided in to two parts, on the top, the MSEd
values for the different estimators are given. Md• gives the lowest MSEd values in domains
NACE = 2, 24, 27, 30, 55, 65, 78, 85. Moreover, when all the domains are considered (the last
column), the MSE of Md• is reduced by a minimum of 20%.

On the bottom of the table, the results of the iterations are synthesized. For the estima-
tors more often chosen, the table gives the percentage of times the estimator is chosen in the
penultimate row and the same percentage, but attending only to the type (synthetic or mixed),
in the last row. The numbers show that the same type, synthetic or mixed, is selected in most
iterations and that only in one domain, NACE = 2, does the type change from one iteration to
the next; however, even in this case, a mixed estimator is selected 82% of the times.

Comparing this table with Table 1, it is clear that the same estimators selected with the real
data are also chosen with the generated data, except for domain 27, where the real data gives
SS and the simulations give SL 76% of the times. In any case, the MSEd of both estimators
are quite similar (0.020 and 0.027) and the values for both estimators, across time, are quite
close (see Figure 4).
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Figure 7: Values of Y across the 27 quarters. In the first row we have the real data, in the
second and third rows we have the first and second iterations of Simulation 1, respectively.
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Figure 8: MSEd for the estimators.

Domain 2 24 27 30 55 65 78 85 Total

MSE

Direct 0.041 0.053 0.137 0.028 0.019 0.011 0.063 0.009 0.053
SL 0.187 0.113 0.027 0.015 0.014 0.719 4.280 0.621 0.179
ML 0.038 0.051 0.120 0.027 0.018 0.011 0.132 0.009 0.048
SM 0.145 0.036 0.058 0.103 0.046 0.270 2.843 0.019 0.127
MM 0.038 0.051 0.123 0.027 0.018 0.011 0.112 0.009 0.050
SS 0.188 0.113 0.139 0.015 0.018 0.719 4.273 0.619 0.177
MS 0.038 0.051 0.020 0.027 0.014 0.011 0.135 0.009 0.047
M•t 0.038 0.051 0.122 0.027 0.018 0.011 0.120 0.009 0.049
Md• 0.063 0.036 0.046 0.015 0.014 0.011 0.112 0.009 0.040

Selection

Md• MM SM SL SL SL MM MM MM
% (79%) (100%) (76%) (100%) (99%) (99%) (99%) (100%)
Type M S S S S M M M
% (82%) (100%) (100%) (100%) (100%) (100%) (100%) (100%)

Table 2: MSEd (d = 2, 24, 27, 30, 55, 65, 78, 85) and MSE at the top. It shows the estimator
selected by xGAICd (Md•) and the type (synthetic or mixed) with the percentage of times
selected, at the bottom.
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5.2 Simulation 2

The objective of this simulation is to study how the xGAICd selects the best estimator for
each domain d using data across time in different scenarios. We consider the combination of
the parameter values from real data with different values of random effects, with the aim of
including the different cases that can be found in practice. In this case, the generated model is

ydt = mdt + edt = αd + f(xdt) + vdt + udt + edt d = 1, ..., D; t = 1, ..., T ;

where D = 77, T = 27 and the explanatory variable xdt are those of the real example. For the
random part of the model, we take udt ∼ N(0, σ2u) with σ2u = 0.2, vdt ∼ N(0, σ2vd) with σ2vd the
same as in Simulation 1, and edt ∼ N(0, σ2dt) with σ2dt as follows. We consider different options:

• With regard to f(), three different functional forms are considered :

– F1: f(xdt) = β0t + βtxdt

– F2:

f(xdt) =


β1t if xdt ≤ b1t;
β2t if b1t < xdt ≤ b2t;
β3t if b2t < xdt ≤ b3t;
β4t if b3t < xdt ≤ b4t;
β5t if b4t < xdt.

– F3: f(xdt) = β0t + 5 + 10βt sin(π xdt−minxdt
maxxdt−minxdt

)

The parameters β0t and βt being the fitted values for the mixed linear model in the real
application for each time. We take βit (i = 1, 2, 3, 4, 5) as the minimum value, the quantile
20, quantile 40, quantile 60 and quantile 80 of (y1t, ..., yDt), which are the values of Y
in the real case. Furthermore, we take bit (i = 1, 2, 3, 4) as the quantile 20, quantile 40,
quantile 60 and quantile 80 of (x1t, ..., xDt), which is calculated from the variable S in the
real case.

• With regard to the number of domains where the random term σ2u 6= 0, three options are
considered:

– U1 : 77 domains with σ2u 6= 0;

– U2 : 55 domains with σ2u 6= 0;

– U3 : 13 domains with σ2u 6= 0.

• With regard to the number of domains out of the model (with αd 6= 0 or/and σ2vd 6= 0),
four options are considered:

– O1 : 0 domains with αd 6= 0 σ2vd 6= 0;

– O2 : 5 domains with αd 6= 0 and σ2vd 6= 0;

– O3 : 10 domains with αd 6= 0 and σ2vd 6= 0;

– O4 : 20 domains with αd 6= 0 and σ2vd 6= 0.

• With regard to σ2dt, three options are considered:

– V1: σ2LFS,dt;
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– V2: σ2LFS,dt ∗ 10;

– V3: σ2dt that decreases with xdt.

A total of 108 scenarios are designed by combining each of the options above; 3 options for
f(), 3 for σ2u, 4 for αd and σ2vd , and 3 for σ2dt. We repeat the procedure 100 times.

Tables 3 and 4 and Figures 9, 10 and 11 show the main results. Tables 3 and 4 give the
average MSE values for different estimators defined in the paper (rows) and for the combination
of scenarios (columns). Md• gives the smallest MSE in all the columns (the MSE reduction
being at least 18%) except for the case of scenarios O1, where SS gives a smaller MSE. Figure
9 compares SS with Md• in the 108 simulated scenarios. Points above the diagonal represent
scenarios where Md• outperforms SS and points below are scenarios where the opposite happens.
In a similar way, Figure 10 compares Md• to M•t, the estimator selected using the quarter
information, while Figure 11 compares Md• to ML, the estimator commonly used in SAE. In
both plots, almost all the points are above the diagonal, which implies that Md• outperforms
M•t and ML in most scenarios, the differences being more important when the funtional form
f() moves away from lineality.

Scenarios
F1 F2 F3 O1 O2 O3 O4

Direct 0.214 0.209 0.202 0.245 0.200 0.177 0.211
SL 0.106 0.358 4.985 1.845 1.785 1.818 1.816
ML 0.130 0.145 0.211 0.180 0.152 0.149 0.166
SM 0.106 0.115 3.237 1.145 1.134 1.168 1.164
MM 0.142 0.128 0.189 0.171 0.145 0.141 0.156
SS 0.105 0.289 0.100 0.067 0.197 0.229 0.167
MS 0.131 0.145 0.112 0.133 0.127 0.122 0.136
M•t 0.136 0.128 0.113 0.129 0.124 0.122 0.127
Md• 0.084 0.105 0.090 0.109 0.087 0.087 0.089

Table 3: MSE by rows, taking different functional forms on the left hand side of the table,
and for the different values out of model on the right hand side.

Scenarios
V1 V2 V3 U1 U2 U3

Direct 0.124 0.196 0.304 0.202 0.144 0.278
SL 1.732 1.731 1.985 1.826 1.798 1.825
ML 0.121 0.168 0.196 0.158 0.105 0.223
SM 1.083 1.101 1.274 1.159 1.133 1.166
MM 0.121 0.155 0.185 0.149 0.096 0.215
SS 0.163 0.168 0.164 0.169 0.154 0.171
MS 0.118 0.134 0.136 0.121 0.083 0.184
M•t 0.115 0.136 0.126 0.119 0.079 0.179
Md• 0.074 0.098 0.106 0.098 0.063 0.118

Table 4: MSE by rows, taking different values of the error variance on the left hand side of
the table, and for the different scenarios of σ2u on the right hand side.
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Figure 9: MSEd(Md•) vs MSEd(SS), depending on the number of domains out of the model.
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Figure 10: MSEd(Md•) vs MSEd(M•t), depending on the functional form.
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Figure 11: MSEd(Md•) vs MSEd(ML), depending on the functional form.

6 Conclusions

The first contribution of this paper, and the most important from the practical point of view,
is the derivation of accurate labour Force estimators across domains and time points. The esti-
mators are model-based and have been derived using different models. A wide range of models,
exhibiting a different functional relationship between response and explicative, and which may
include random terms or not, are considered as a candidate for each domain. The different
behaviour of the estimators in the LFS data justifies the consideration of this variety of models.
As a final output, we have proposed for each economic activity the most appropriate model
to determinate the evolution of the employed people and the models combining administrative
registers and survey data, following the recommendations of Eurostat (Eurostat (2013)).

The question of selecting different models arises from the observation of different temporal
patterns of observed rates across time for the domains, which gives an insight to the different
generating models in the domains. In fact, we have been able to reproduce different patterns
between domains across time in simulations by using a complex generator model. Furthermore,
from these simulations, when using the same model to obtain the estimates for the different
domains, the fact that the errors might be not negligible in some domains has been verified.
The design of simulations using complex generator models is a second interesting contribution
of this paper.

The third and most important contribution, from the theoretical point of view, is the design
of an approach to determine which model-based estimator is suitable for each domain. The
approach is based on the definition of the xGAIC measure, specific for each domain, which
is obtained using the bootstrap. The good performance of the procedures is evidenced by the
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results of two simulation experiments. The new proposal of using different estimators across
domains translates into a considerable decrease in the MSE, which is particularly relevant when
the underlying model is not linear or the sampling variability is high.

The proposed approach can be considered as one that model the data over space and time
jointly. Among the approaches in this line, considered in the literature, one of the most popular
is the model of Rao and Yu (1994) which has been considered during the research for compara-
tive purposes. However, this model has not been finally included, as we have checked that is not
a good data generator and provide small area estimators that are quite similar to those given
using any of the mixed models considered in the paper.

Finally, we would like to do some recommendations, first, when it is suspected that there are
correlations between domains, the approach is not recommended as it is not reasonable to apply
different models for each domain. Conglomerates of domains with different behaviour would then
be taken. However, the approach is recommended when the correlations are between temporary
moments. Second, regarding the number of periods recommended for this methodology, we note
that it depends on the type of data. In this real case analysed here, the data are quarterly and
our experience suggests using at least 12 quarters.

To the best of our knowledge, this is the first time this proposal of selecting different models
for each domain has been considered in the literature of SAE.

7 Appendix

Tables 5 and 6 give the estimation for the employed people in the first quarter of 2016 (the
last quarter of LFS data) in each economic activity (domain). So, for each domain, we give
its NACE number, the explanatory variable (S3), the direct estimator (Z), the usual estimator
calculated in SAE (ML), the estimator calculated under Md• (Md•) and the corresponding
selected estimator (labeled as “Est.”).
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Rueda, C., Menéndez, J., and Gómez, F. (2010). Small area estimators based on restricted
mixed models. TEST, 19:558–568.

Tibshirani, R. T. and Taylor, J. (2012). Degrees of freedom in lasso problems. The Annals of
Statistics, 40(2):1198–1232.

Ugarte, M., Goicoa, T., Militino, A., and Durbán, M. (2009). Spline smoothing in small area
trend estimation and forecasting. Computational Statistics and Data Analysis, 53:3616–3629.

Vaida, F. and Blanchard, S. (2005). Conditional akaike information for mixed-effects models.
Biometrika, 92:351–370.

Wagner, J., Munnich, R., Hill, J., Stoffels, J., and Udelhoven, T. (2017). Nonparametric small
area models using shape-constrained penalized b-splines. Journal of the Royal Statistical
Society: Series A (Statistics in Society), 180:1089–1109.

Ye, J. (1998). On measuring and correcting the effects of data mining and model selection. J.
Amer. Statist. Assoc., 93:120–131.

You, C., Muller, S., and Ormerod, J. (2016). On generalized degrees of freedom with application
in linear mixed models selection. Statistics and Computing, 26:199–210.

26



Activity (NACE) S3 Z ML Md• Est.

1 38690 40973 40965 42778 SM
2 3334 5150 5108 5351 MM
3 18759 20584 20577 18952 SL
8 1939 3559 3526 3206 SM
10 28290 30588 30571 33486 SM
11 2670 2426 2564 3747 SS
13 1586 3577 3571 3728 MS
14 9316 8341 8360 10590 SL
16 8221 8984 8986 9544 SL
17 1256 1858 1859 2001 SS
18 3084 3603 3615 4224 SL
19 705 815 815 1237 SL
20 2690 2911 2942 3770 SS
21 898 2966 2966 2144 SM
22 3086 1723 1723 1799 MM
23 6904 5999 6002 8254 SL
24 4438 2705 2792 5023 SM
25 14673 16262 16260 15450 SL
26 709 1291 1282 1243 SS
27 703 1430 1386 1235 SS
28 4351 5137 5144 5023 SM
29 13453 18882 18860 18294 SM
30 6017 6902 6905 7363 SL
31 3353 7056 7025 7340 MM
32 1283 1975 1975 2062 MM
33 6320 7555 7551 7670 SL
35 2195 5353 5318 3206 SM
36 1432 1135 1135 2144 SM
38 4110 3656 3656 4829 SM
41 22079 26309 26274 21701 SL
42 4111 10884 10826 11298 MM
43 44847 36173 36178 39119 SL
45 21210 20631 20630 20989 SL
46 46179 39612 39610 40081 SL

Table 5: Estimated employed people.
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Activity (NACE) S3 Z ML Md• Est.

47 105069 105142 105110 109774 SM
49 30931 32024 32014 28722 SL
50 747 1677 1621 1751 SM
51 264 718 718 750 SM
52 10260 8962 8993 11474 SL
53 3376 6212 6188 4554 SL
55 7458 12048 11988 8801 SL
56 61469 54262 54244 50842 SL
58 2399 3358 3357 3428 SS
59 1192 1892 1885 1916 SS
60 1414 2604 2586 2209 SS
61 3578 3985 3991 4779 SL
62 7857 10097 10097 9191 SL
64 9781 9293 9300 11027 SL
65 1786 6230 6187 6469 MM
66 6376 2710 2794 2886 MM
68 3624 3052 3111 4830 SL
69 13430 16751 16747 14354 SL
70 3550 4467 4468 4748 SL
71 10893 9417 9440 12061 SL
72 2769 2327 2327 3206 SM
73 3005 3435 3455 3571 MM
74 6915 6438 6472 7385 SM
75 1594 1557 1586 1657 MM
77 3233 1395 1480 1519 MM
78 9854 930 1503 1456 MM
79 1506 2434 2429 2327 SS
80 5113 4960 4976 6430 SL
81 25091 23398 23396 24135 SL
82 11796 5568 5762 10152 SM
84 52769 70450 70404 64716 SM
85 41982 74103 74070 77347 MM
86 56514 62285 62275 47410 SL
87 10165 16072 16051 11386 SL
88 11682 11257 11266 12782 SL
90 1977 3458 3431 3595 MM
91 351 1774 1662 1810 MM
92 1406 2540 2529 2198 SL
93 8642 10544 10531 9949 SL
94 6914 7755 7756 8265 SL
95 4319 3480 3480 3633 MM
96 17986 17876 17874 18300 SL
97 28108 33682 33651 33486 SM

Table 6: Estimated employed people (continuation).
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