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Abstract
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tors are carried out. An application to real data from the Spanish Labour Force Survey
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1 Introduction

Statistical offices are interested on the estimation of socio-economic indicators, like
proportions or counts, for the whole population or for subsets called domains. Sam-
pling designs are developed for obtaining precise estimators on their target (planned)
domains. Statisticians are also asked to provide estimates for unplanned domains
(small areas), where sample sizes are too small to carry out such estimations. Small
Area Estimation (SAE) deals with this kind of problems by combining tools of survey
sampling and statistical modelling at the unit or at the area level. The monographs of
Rao (2003) and of Rao and Molina (2015) give a general description of SAE.

In Galicia (north-west of Spain), the Spanish Labour Force Survey (SLFS) provides
information about labour market indicators. The territory of Galicia is hierarchically
divided into counties and municipalities. As the sampling design of the SLFS is strat-
ified with strata defined by the size of the municipalities and most municipalities are
not represented in the sample, the direct estimates at the municipal or county level
have a low accuracy. In this context, estimating labour force indicators is thus a SAE
problem. The objective of this paper is to estimate proportions of under 16 years,
employed, unemployed and inactive people in counties of Galicia crossed by sex
under an area-level model-based approach.

Under the unit-level approach, Chambers et al. (2016), Hobza and Morales (2016)
and Hobza et al. (2018) have derived estimators of domain proportions and counts
based on M-quantile or binomial logit models for binary outcomes. Under the area-
level approach, Chambers et al. (2014), Dreassi et al. (2014), Tzavidis et al. (2015) and
Boubeta et al. (2016, 2017) applied binomial, negative binomial or Poisson regres-
sion models for estimating the domain counts or proportions. Esteban et al. (2012),
Marhuenda et al. (2013, 2014) andMorales et al. (2015) derived estimators of propor-
tions based on area-level linear mixed models. Concerning the Bayesian approach to
small area estimation of proportions, the contributions of Farrell (2000), Larsen (2003),
Chen and Lahiri (2012) and Liu and Lahiri (2017) are relevant. These approaches are
based on univariate models that do not consider the possibility of jointly estimating
the counts or proportions of more than two categories.

In labour force statistics, some indicators of interest are the totals or proportions of
the categories of a classification variable. This is to say, they are domain compositional
parameters summing up to one or to a known integer number. The seminal book of
Aitchison (1986), the more recent book edited by Pawlowsky-Glahn and Buccianti
(2011) and the papersEgozcue et al. (2003) andEgozcue andPawlowsky-Glahn (2019)
are basic references for an introduction to compositional data analysis.

The estimation of compositional parameters requires using multivariate models. At
the unit level, Scealy andWelsh (2017) have applied a directional mixed effects model
for predicting the proportions of total weekly expenditure on food and housing costs
for households in a chosen set of domains. At the area level, we can find methodolo-
gies for contingency tables where the cell counts are explained by categorical auxiliary
variables or by regression-based inference procedures allowing for continuous aux-
iliary variables. Within the first approach, Zhang and Chambers (2004) developed a
class of log-linear structural models that is suited to estimation of small area cross-
classified counts based on survey data. Berg and Fuller (2014) gave a SAE procedure
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for a two-way table of proportions with predictors based on a nonlinear mixed model.
Under the regression-based setup, Ferrante and Trivisano (2010) proposed a multi-
variate SAE approach for count data based on the multivariate Poisson-lognormal
distribution an derived hierarchical Bayes predictors. Souza and Moura (2016) and
Fabrizi et al. (2016) deal with multivariate Beta regression models in SAE. Saei and
Chambers (2003), Molina et al. (2007) and López-Vizcaíno et al. (2013, 2015) have
applied multinomial logit mixed models to category counts for estimating domain
totals of labour status categories.

This paper introduces three area-level compositional mixed models to obtain small
area estimates of labour force proportions in Galicia. The first model is an additive
logistic transformation of a multivariate Fay–Herriot (MFH) model with no restric-
tions on the covariance matrix of the vector of random effects. The second and third
models are defined similarly by using centred and isometric logratio transformations,
respectively. The new models give higher flexibility than the multinomial model for
dealing with the covariance structure of the categories. The MFH model was sug-
gested by Fay (1987) and studied by Datta et al. (1991, 1996), Ghosh et al. (1996),
González-Manteiga et al. (2008a), Benavent and Morales (2016) and Arima et al.
(2017).

We propose a trivariate Fay–Herriot (TFH) model for analyzing the SLFS data,
where the vector of random effects (model errors) has an unstructured covariance
matrix with unknown components and the vector of sampling errors has a known
covariance matrix. As far as we know, this model is studied and applied for the first
time to SAE problems. We do not implement a further parametric modelling of the
last covariance matrix as Berg and Fuller (2012) do. The estimates of the TFH model
parameters are obtained by using the residualmaximum likelihood (REML) estimation
method. The fitted model is then used to estimate the proportions of under 16 years,
employed, unemployed and inactive people in Galician counties.

The estimation of the mean squared error (MSE) of a model-based predictor is an
important issue that has no easy solution. Under nonlinear models, the problem is even
more difficult. In this paper,we follow the resampling approach appearing inGonzález-
Manteiga et al. (2007, 2008a, b) to introduce a parametric bootstrap procedure. Further
research would be needed to approximate the MSEs of predictors as it is done by Slud
and Maiti (2006) in transformed univariate Fay–Herriot models.

This paper introduces statistical methodology that is new in three main aspects:
(1) the employment of three transformations of area-level compositional survey data,
(2) the use of TFH models (as a particular case of the general multivariate case) with
unstructured covariance matrix for modelling the transformed data and capturing the
sample correlations and (3) the derivation of domain-level predictors of proportions
and counts based on the TFH model fitted to the transformed data.

The remainder of the paper is organized as follows. Section 2 gives an introduction
to the labour force data and to the SAE problem of interest. Section 3 introduces the
additive, centred and isometric logratio area-level model-based approaches for esti-
mating domain compositional parameters. Section 4 describes the considered TFH
model. Section 5 develops the proposed compositional predictors and the correspond-
ing MSE estimation procedures. Section 6 applies the proposed methodology to data
from the SLFS of the first quarter of 2017 inGalicia. Section 7 gives some conclusions.
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The paper contains four appendixes in a supplementary material file. Appendix
A presents four simulation experiments. The target of Simulation 1 is to check the
behaviour of the REML algorithm for fitting the TFH model. Simulation 2 inves-
tigates the performance of the compositional and the multinomial predictors of the
category proportions. Simulation 3 analyses the parametric bootstrap estimator of the
MSEs. Simulation 4 studies the behaviour of the predictors of proportions when the
target data are generated by amultinomial mixedmodel. Appendix B reviews the com-
petitor predictors based on multinomial mixed models. Appendix C gives the REML
Fisher scoring algorithm and derives the REML score vector and Fisher information
matrix. Appendix D describes the centred and the isometric logratio transformations
of compositions.

2 The problem of interest

The SLFS in Galicia is a quarterly survey following a stratified two-stage random
sampling design. Primary sampling units are composed by census sections, which
are geographical areas with a minimum of 500 dwellings or about 3000 people.
Secondary sampling units are composed by main family dwellings and permanent
accommodations. Subsampling is not carried out in secondary sampling units, and
data are collected on all persons who regularly live in the same dwelling. The SLFS
gets information about the labour market.

Galicia is divided into four provinces. They are Coruña, Lugo, Ourense and Pon-
tevedra, coded by the Spanish Statistical Office as 15, 27, 32 and 36, respectively.
Each province is hierarchically partitioned in comarcas (counties) and municipalities.
Our domains of interest are the counties crossed by sex. As there are 51 counties in the
SLFS of Galicia, we have 102 domains. Our goal is to estimate domain proportions
of people in the categories of the variable “labour status” by using SLFS data from
the first quarter of 2017.

The SLFS is designed to obtain precise direct estimates of labour indicators at the
province level. For the considered SLFS data, the minimum domain sample size is 10,
the first quartile is 43 and the median is 79. Therefore, obtaining reliable estimates
for target domains is a small area estimation problem and borrowing strength from
auxiliary data is recommended.

In mathematical terms, Galicia is a population U = ∪D
d=1Ud partitioned in D

domains Ud . Each domain is partitioned in subsets Udk , k = 1, . . . , q, defined by the
classification variable “labour force status” that classifies units into a finite number
of categories. The q = 4 categories are ≤ 15 years (k = 1), employed (k = 2),
unemployed (k = 3) and inactive (k = 4). Let N and Nd be the sizes of U and Ud ,
respectively. Consider the study variables taking the values zdk j = 1 if the unit j from
the domain Ud is in the category k and zdk j = 0 otherwise. The target parameters are
the domain means (proportions) and the domain totals (counts), i.e.

Z̄dk = Zdk

Nd
, Zdk =

∑

j∈Ud

zdk j , d = 1, . . . , D, k = 1, . . . , q. (2.1)
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As Z̄d1+· · ·+ Z̄dq = 1 and Zd1+· · ·+ Zdq = Nd , with Nd known, we are interested
in estimating domain compositions with q = 4 categories.

For any sample s ⊂ U extracted from the population, sd denotes the subsample
from Ud of size nd and wd j represents the SLFS sampling weight of the unit j from
the subsample sd . The sample proportions and counts are as:

z̄dk. = zdk.
nd

, zdk. =
∑

j∈sd
zdk j , d = 1, . . . , D, k = 1, . . . , q. (2.2)

Direct estimators of Z̄dk and Zdk are as:

ˆ̄Zdir
dk = Ẑ dir

dk

N̂ dir
d

, Ẑ dir
dk =

∑

j∈sd
wd j zdk j , N̂ dir

d =
∑

j∈sd
wd j . (2.3)

As the SLFS sampling weights wd j are derived from the inverses of the inclusion
probabilities after non-response correction and calibration at the province and at the
regional level, the direct estimators (2.3) are not design-based unbiased for estimating
the target parameters (2.1) at the domain level. As the SLFS domain sample sizes
nd are small, the estimators (2.3) have large design-based variances. Therefore, the
application of model-based approaches is advisable.

López-Vizcaíno et al. (2013) introduced a multinomial logit mixed (MLM) model
for fitting zd. = (zd1., . . . , zdq−1.), d = 1, . . . , D, and estimating domain proportions.
A related approach is fitting a MLM model to (Ẑ dir

d1 , . . . , Ẑ dir
dq−1), d = 1, . . . , D.

Appendix B describes theseMLMmodels for a response vector ξd = (ξd1, . . . , ξdq−1)

and the corresponding predictors of the multinomial category probabilities pdk . In
both cases, ξdk = zdk. or ξdk = Ẑ dir

dk , the covariances, given in (2.2) of Appendix
B, under MLM models are negative. Further, under the multinomial distribution, it
holds that covM (ξdk1, ξdk2) = 0 if and only if pdk1 = 0 or pdk2 = 0, which implies
that covM (ξdk1 , ξdk) = 0 ∀k �= k1 or covM (ξdk2 , ξdk) = 0 ∀k �= k2 . Therefore,
the multinomial correlation structure is rather rigid. More concretely, if the number
of categories is q = 4, then the six variance components (three variances and three
covariances) depend only on three category parameters through the formulas (2.2) of
Appendix B. In practice, the multinomial covariance structure does not necessarily fit
to the true covariances cov(ξdk1., ξdk2.), k1 �= k2, k1, k2 = 1, . . . , q, of sample counts
or direct estimators of totals.

For the categories k1, k2 = 1, 2, 3, 4, Table 1 presents the correlations of the set of

values {( ˆ̄Zdir
dk1

, ˆ̄Zdir
dk2

) : d = 1, . . . , D} (left) and {(z̄dk1., z̄dk2.) : d = 1, . . . , D} (right).
These correlations are calculated from the direct estimates (2.3) and the simple esti-
mates (2.2) of the category proportions along the domains. As they are calculated with
aggregated data at the domain level, we call them domain-level empirical correlations
between categories or, in short, domain-level correlations. Table 1 shows that most,
but not all, correlations are negative. Nevertheless, we find the positive correlations
0.21 (right) or 0.04 (right) and 0.07 (left) that are close to zero.
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Table 1 Domain-level correlations for ˆ̄Zdir
dk1

, ˆ̄Zdir
dk2

(left) and z̄dk1., z̄dk2. (right)

k1 = 1 k1 = 2 k1 = 3 k1 = 4 k1 = 1 k1 = 2 k1 = 3 k1 = 4

k2 = 1 1.00 0.07 − 0.15 − 0.50 1.00 0.21 0.04 − 0.64

k2 = 2 0.07 1.00 − 0.20 − 0.79 0.21 1.00 − 0.24 − 0.80

k2 = 3 − 0.15 − 0.20 1.00 − 0.18 0.04 − 0.24 1.00 − 0.20

k2 = 4 − 0.50 − 0.79 − 0.18 1.00 − 0.64 − 0.80 − 0.20 1.00
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Fig. 1 Unit-level covariances (left) and correlations (right) for ˆ̄Zdir
dk1

, ˆ̄Zdir
dk2

, k1 �= k2

Thedesign-basedwithin-domain covariance covπ ( ˆ̄Zdir
dk1

, ˆ̄Zdir
dk2

), k1, k2 = 1, . . . , q−
1, can be estimated by

ˆcovπ ( ˆ̄Zdir
dk1 ,

ˆ̄Zdir
dk2) = 1

(
N̂ dir
d

)2
∑

j∈sd
wd j (wd j − 1)(zdk1 j − ˆ̄Zdir

dk1)(zdk2 j − ˆ̄Zdir
dk2),

(2.4)

where the case k1 = k2 = k denotes estimated variance, i.e. ˆvarπ ( ˆ̄Zdir
dk ) =

ˆcovπ ( ˆ̄Zdir
dk , ˆ̄Zdir

dk ). The last formulas are obtained from Särndal et al. (1992), pp. 43,
185 and391,with the simplificationswd j = 1/πd j ,πd j,d j = πd j andπdi,d j = πdiπd j ,
i �= j in the second-order inclusion probabilities. By applying formula (2.4),

Fig. 1 (left) plots the estimated design-based covariances sk1k2 = ˆcovπ ( ˆ̄Zdir
dk1

, ˆ̄Zdir
dk2

),
k1, k2 = 1, 2, 3, 4, k1 �= k2, for the direct estimators of all the category proportions.
As these covariances are calculated from unit-level data, they are called unit-level

covariances. Figure 1 shows that ˆcovπ ( ˆ̄Zdir
d1 , ˆ̄Zdir

d3 ) ≈ 0, d = 1, . . . , D. Under the
multinomial mixed model, this fact implies (as explained above) that the domain pro-
portions of people in the categories “under 16 years” and “unemployed” should be
close to zero, which contradicts the observed sampling proportions. Figure 1 (right)
plots the corresponding unit-level correlations rk1k2 . In the application to SLFS data,
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these unit-level covariances are used to set the error covariance matrix of the fitted
TFH model.

The exploratory data analysis shows that the covariance structure of the MLM
modelsM1 andM2, described inAppendixB, cannot take into account simultaneously
both types of covariances and variances (unit level and domain level). This is to
say, the multinomial mixed model does not fit well to the domain-level correlations
appearing in Table 1 or to the within-domain covariances shown in Fig. 1. Further,
the definition of the model itself does not allow the introduction of both types of
covariances and variances as MFH models do. This is why we propose transforming
the direct estimators of domain proportions and fitting the transformed data to a more
flexible compositional mixed model.

3 Transformations of compositions

This section considers three transformation of q-compositions onto Rq−1. In what

follows,weuse the simpler notation zdk � ˆ̄Zdir
dk , k = 1, . . . , q, zd = (zd1, . . . , zdq−1)

′
and

σz,k1k2 � covπ (zdk1 , zdk2), varπ (zd) = (
σz,k1k2

)
k1,k2=1,...,q−1. (3.1)

We assume that zdk > 0, d = 1, . . . , D, k = 1, . . . , q, and we note that zd1 + . . . +
zdq = 1. For d = 1, . . . , D, let yd = (yd1, . . . , ydq−1)

′ ∈ Rq−1 be the additive
logratio transformation (alr) of zd , i.e. yd = h(zd) = (h1(zd), . . . , hq−1(zd))′ with

ydk = hk(zd) = log(zdk/zdq) = log zdk − log
(
1 − zd1 − . . . − zdq−1

)
,

k = 1, . . . , q − 1,

and with inverse the additive logistic (alogist) transformation

zdk = exp{ydk}
1 + exp{yd1} + · · · + exp{ydq−1} , k = 1, . . . , q − 1,

zdq = 1 − zd1 − · · · − zdq−1 = 1

1 + exp{yd1} + · · · + exp{ydq−1} .

For i, j = 1, . . . , q − 1, the first partial derivatives of the alogist transformation are
as:

∂zi
∂ yi

= zi (1 − zi ) > 0,
∂zi
∂ y j

= −zi z j < 0, i �= j . (3.2)

This to say, under the alogist transformation zi is an increasing function of yi and a
decreasing transformation of y j , i, j = 1, . . . , q − 1, j �= i . Alternatively, we may
consider the centred or the isometric logratio (clr or ilr) transformations described in
AppendixD. For ease of exposition, this paper dealsmainlywith the alr transformation.
Themathematical developments for the clr or ilr transformations can be done similarly.
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In applications to real data, we can have domain compositions (zd1, . . . , zdq) with
some zero components zdk = 0. Since the logarithm of zero is −∞, we cannot
apply alr, clr and ilr logratio transformations for analyzing compositional data. In our
application to real data, we have no zeros. However, in other domain-level data we
might find a low number of zeros. This can occur if a domain sample size is very
small and none of the sampled units belong to a given category k. A practical solution
for this problem is replacing zeros by a small numerical value ε > 0 and making a
rounding-off adjustment process. For example, if (zd1, . . . , zdq) has m zeros, we can
apply the recommendation appearing in Section 11.5 of Aitchison (1986). This is to
say, we can substitute the zeros by ε = (m + 1)(q − m)δq−2 and we can subtract
m(m + 1)δq−2 to each positive component, where δ is the maximum rounding-off
error of the positive zdk’s. We can take

(
v̂arπ (zdk)

)1/2 as rounding-off error of zdk .
In any case, applied statisticians should do a sensitivity analysis of the results to the
particular method employed to deal with zeros and a model diagnostic study.

The presence of structural zeros or a non-negligible amount of sample zeros is a
severe issue when using alr, clr and ilr logratio transformations. We are not in favour
of using the three introduced transformations in those cases. Other transformations
and models for dealing with compositional data could be alternatively applied. For
example, the directional mixed effects models applied by Scealy and Welsh (2017)
overcome this problem.

The first derivatives of the alr transformation hk are as:

Hkk(zd) = ∂hk(zd)

∂zdk
= 1

zdk
+ 1

zdq
, Hk1k2(zd) = ∂hk1(zd)

∂zdk2
= 1

zdq
if k1 �= k2.

Let 1a and 0a be the a × 1 vectors with all the components equal to one and
to zero, respectively. In matrix form, we have H(zd) = (

Hi j (zd)
)
i, j=1,...,q−1 =

diag1≤k≤q−1(z
−1
dk ) + z−1

dq 1q−11′
q−1.

A Taylor series expansion of h(zd) around a given z0 yields to

yd = h(zd) ≈ h(z0) + H(z0)(zd − z0). (3.3)

If we take z0 = q−11q−1, then h(z0) = 0q−1, H0 = H(z0) = q
(
Iq−1 + 1q−11′

q−1

)
,

where Ia is the a × a identity matrix. Alternatively, we can take z0 = 1
D

∑D
d=1 zd

or we can select z0 depending on d and close to zd for a better Taylor expansion
approximation. For the clr and ilr transformations, Appendix D shows that h(z0) =
0q−1 and gives H(z0). From (3.3), we get the approximated covariance matrix:

varπ (yd) ≈ H0varπ (zd)H
′
0. (3.4)

A general area-level model for estimating Z̄dk , d = 1, . . . , D, k = 1, . . . , q, is

yd
ind∼ Nq−1(μd , Vd), where μd is a mean vector depending on unknown regression

parameters and auxiliary variables and Vd is a covariance depending of some unknown
parameters. The next section gives a flexiblemultivariate area-level linearmixedmodel
for yd , d = 1, . . . , D, which allows positive and negative covariances. Depending on
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the employed transformation, the resulting models for zd , d = 1, . . . , D, are called
alr, clr and ilr compositional mixed models. These models arise as alternative to the
MLM models, for zd. or zd , described in Appendix B. For ease of exposition, we
present the case q = 4 appearing in the application to real data.

4 Trivariate Fay–Herriot models

Let zd = (zd1, zd2, zd3)′ be the vector of direct estimators (2.3) of proportions Z̄d =
(Z̄d1, Z̄d2, Z̄d3)

′ of some classification variable with q = 4 categories. Let v̂arπ (zd)
be the matrix of design-based covariance estimators (2.4), which can contain positive
and negative covariances. Let yd = (yd1, yd2, yd3)′ be the alr transformation of zd .
Let μd = Eπ (yd) = (μd1, μd2, μd3)

′ be the vector of design-based expectations of
yd . The TFH model is defined in two stages. The sampling model is

yd = μd + ed , d = 1, . . . , D, (4.1)

where the vectors ed
ind∼ N3 (0, Ved) are independent and the 3×3 covariancematrices

Ved = (
σdi j

)
i, j=1,2,3 are known. In practice, we take Ved = H0v̂arπ (zd)H ′

0, where
v̂arπ (zd) is the covariancematrix given in (3.1) and H0 is defined in (3.4).Alternatively,
yd can be defined as the clr or ilr transformation of zd . In that case, the matrix H0 is
taken from Appendix D.

Moreover, it is assumed that the μdk’s are linearly related to rk explanatory
variables associated with the k-th category in the domain d. For k = 1, 2, 3, let
xdk = (xdk1, . . . , xdkrk ) be a row vector containing the rk explanatory variables for
μdk and let Xd = diag (xd1, xd2, xd3)3×r with r = r1+r2+r3. Letβk be a columnvec-
tor of size rk containing the regression parameters forμdk and let β = (

β ′
1, β

′
2, β

′
3

)′
r×1.

This section introduces a TFH model by assuming (4.1) and the linking model:

μd = Xdβ + ud , ud
ind∼ N3(0, Vud), d = 1, . . . , D, (4.2)

where the vectors ud ’s are independent and independent of the vectors ed ’s. Unlike the
MFH models studied by Benavent and Morales (2016), the 3× 3 covariance matrices
Vud are unstructured and depend on six unknown parameters, θ1 = σ 2

u1, θ2 = σ 2
u2,

θ3 = σ 2
u3, θ4 = ρ12, θ5 = ρ13 and θ6 = ρ23, i.e.

Vud =
⎛

⎝
σ 2
u1 ρ12σu1σu2 ρ13σu1σu3

ρ12σu1σu2 σ 2
u2 ρ23σu2σu3

ρ13σu1σu3 ρ23σu2σu3 σ 2
u3

⎞

⎠ .

The matrix Vud explains the covariance structure of the alr transformations of the
direct estimators yd that is not taken into account by the sampling errors ed or by the
auxiliary variables Xd . Let In be the n × n identity matrix and δ�d be the Kronecker
delta, and define
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y= col
1≤d≤D

(yd), u= col
1≤d≤D

(ud), e= col
1≤d≤D

(ed), ud = col
1≤k≤3

(udk), ed = col
1≤k≤3

(edk),

X = col
1≤d≤D

(Xd), Zd = col
1≤�≤D

(δ�d I3), Z = col′
1≤d≤D

(Zd) = I3D, Vu = diag
1≤d≤D

(Vud),

where col and col′ are matrix operators stacking by columns and rows, respectively.
In matrix form, the TFH model (4.1)+(4.2) is

y = Xβ + Zu + e = Xβ + Z1u1 + · · · + ZDuD + e, (4.3)

where e, u1, . . . , uD are independent with distributions

e ∼ N (0, Ve) , u ∼ N (0, Vu) and ud ∼ N (0, Vud), d = 1, . . . , D.

Under model (4.3), it holds that

E (y) = Xβ and V = var(y) = Z ′Vu Z + Ve = Vu + Ve = diag
1≤d≤D

(Vd),

where Vd = Vud + Ved , d = 1, . . . , D. Further, the best linear unbiased estimator
(BLUE) of β and the best linear unbiased predictors (BLUP) of u and μ are as:

β̂B = (X ′V−1X)−1X ′V−1y, û B = Vu Z
′V−1(y − X β̂B), μ̂B = X β̂B + ZûB .

(4.4)

The residual maximum likelihood (REML) method maximizes the joint probability
density function of a vector of 3D − r independent contrasts ω = W ′y, where W is a
3D×(3D−r)matrix with linearly independent columns and such thatW ′W = I3D−r

andW ′X = 0. It holds that ω is independent of the BLUE β̂B given in (4.4). The joint
probability density function of ω is the REML likelihood. The REML log-likelihood
of model (4.3) is

lreml(θ) = −3D − r

2
log 2π + 1

2
log |X ′X | − 1

2
log |V |

−1

2
log |X ′V−1X | − 1

2
y′Py, (4.5)

where θ = (θ1, . . . , θ6), P = V−1 − V−1X(X ′V−1X)−1X ′V−1, PV P = P and
PX = 0. Appendix C gives the calculation of the score vector S(θ) = (S1, . . . , S6)′
and the Fisher information matrix F(θ) = (

Fa,b
)
a,b=1,...,6, where

Sa = ∂lreml

∂θa
, Fab = −E

[ ∂l2reml

∂θa∂θb

]
, a, b = 1, . . . , 6.

Appendix C also gives the REML Fisher scoring algorithm for fitting the TFH model
(4.3). To initiate this algorithm, a possible set of starting values is θ̂4,0 = θ̂5,0 = θ̂6,0 =
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0, θ̂k,0 = σ̂ 2
uk,0, k = 1, 2, 3, where σ̂ 2

uk,0 is the REML or the ML or the Prasad and

Rao (1990) moment-based estimator of σ 2
uk in the k-th marginal Fay–Herriot model.

They can be calculated with the R library sae. Another possibility is to take V (0)
ud as

the domain-level variance matrix of the alr transformations of the direct estimators
of the category proportions. This is the approach described and implemented around
Table 2 in the application to real data.

The output of REML Fisher scoring algorithm, θ̂ , is the REML estimator of θ . By
plugging θ̂ in Vu , we get V̂u = Vu(θ̂) and V̂ = V̂u + Ve. By substituting V̂u in (4.4),
we obtain the EBLUP of μ = Xβ + Zu, i.e.

β̂C = (X ′V̂−1X)−1X ′V̂−1y, ûC = V̂u Z
′V̂−1(y − X β̂C ), μ̂C = X β̂C + ZûC ,

(4.6)

with components

μ̂Cd = (μ̂Cd1, μ̂Cd2, μ̂Cd3)
′ = Xd β̂C + ûCd ,

ûCd = V̂ud V̂
−1
d

(
yd − Xd β̂

)
, d = 1, . . . , D.

The asymptotic distributions of the REML estimators θ̂ and β̂,

θ̂ ∼ N6(θ, F−1(θ)), β̂ ∼ Nr (β, (X ′V−1X)−1),

can be used to construct (1− α)-level asymptotic confidence intervals for the compo-
nents θ� of θ and βi of β, i.e.

θ̂� ± zα/2 ν
1/2
�� , � = 1, . . . , 6, β̂i ± zα/2 q

1/2
i i , i = 1, . . . , r , (4.7)

where F−1(θ̂) = (νab)a,b=1,...,6, (X ′V−1(θ̂)X)−1 = (qi j )i, j=1,...,r and zα is the α-
quantile of the N (0, 1) distribution. For β̂i = β0, the asymptotic p value for testing
the hypothesis H0 : βi = 0 is

p-value = 2PH0(β̂i > |β0|) = 2P(N (0, 1) > |β0|/√qii ). (4.8)

We remark that we have changed the notation in (4.7) and (4.8), where βi denotes the
i-th component of the vector β and not the vector of regression parameters of the i-th
category.

5 Compositional predictors of proportions and counts

This section denotes the expectations under the distributions of the sampling design,
the Fay–Herriot model and the compositional mixed model by Eπ , EFH and EC,
respectively. Statistical offices are interested in estimating population parameters, like
the domain mean Z̄dk defined in (2.1). However, the domain-level approach to SAE
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gives predictors of functions of fixed and random model effects (in short, functions of
model effects—FME). For example, a Fay–Herriot (FH) model for predicting Z̄dk ,

zdk = xdkβ + uFH,dk + eFH,dk, d = 1, . . . , D,

with the standard assumptions on uFH,dk’s and eFH,dk’s, hasμFH,dk =EFH[zdk |uFH,dk]
= xdkβ + uFH,dk as the FME of interest. To connect μFH,dk with Z̄dk , it is assumed
that: (1) the design-based expectation of zdk is Z̄dk , i.e. Eπ [zdk] = Z̄dk , and (2) the
design-based expectation is the realization of the model conditional expectation; in
short, EFH[zdk |uFH,dk] = Eπ [zdk]. Note that EFH[zdk |uFH,dk] is a function of uFH,dk .
Similar assumptions are done for the MLM model described in Appendix B, i.e. (1)
Eπ [z̄dk.] = Z̄dk , (2) EM [z̄dk.|uM,dk] = Eπ [z̄dk.].

In practice, assumption (1) rarely holds. The direct estimator zdk is not calculated
with the inverse of the inclusion probabilities, but with sampling weights (expansion
factors) that are not calibrated to domain totals. Therefore, zdk is, in general, biased
with respect to the sampling design distribution. Similarly, z̄dk. is also biased for
estimating Z̄dk , as it is calculated with weights equal to one. Therefore, predictors
based on both models, FH and MLM, have problems to fulfil assumption (1) when
dealing with real data.

Assumption (2) might be accepted if the area-level model has a “good” fit to data,
which may happen if the set of auxiliary variables is highly correlated with the depen-
dent variable. Further, by analogy to the GREG estimator, the auxiliary variables
produce a calibration effect to their domain totals and a reduction of the design-based
bias. In many cases, the assumptions (1) and (2) “approximately” hold and the empir-
ical best predictor (EBP) will have some small bias, as the direct estimator has, but
lower variance. So it is worthwhile to calculate EBPs based on area-level models, as
they will tend to have lower design-based MSEs than direct estimators.

This paper introduces a compositionalmodel for zd that is introduced by assuming a
TFH model on the alr transformed vector yd . In terms of yd , the compositional model
does not fulfil assumption (1), because the direct estimator yd is not design-based
unbiased for the alr transformation of Z̄dk , i.e. Eπ [ydk] �= log(Z̄dk/Z̄d4), k = 1, 2, 3.
For fulfilling the assumption (2), the FMEs to be predicted under the TFM model
should be

EC [zdk |ud ] =
∫

R3

exp{ydk}
1 + exp{yd1} + exp{yd2} + exp{yd3} fN3(Xdβ+ud ,Ved )(yd) dyd ,

k = 1, 2, 3,

and EC [zd4|ud ] = 1−EC [zd1|ud ]−EC [zd2|ud ]−EC [zd3|ud ], d = 1, . . . , D, which
are nonlinear functions of ud based on integrals that cannot be solved analytically.
Further, the EBPs of EC [zdk |ud ] are non-analytically tractable integrals of EC [zdk |ud ]
with respect to the density of ud conditioned to yd . This is why we propose predicting
the alogist transformations of μCdk = EC [ydk |ud ] under the TFH model, i.e.
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pCdk = exp{μCdk}
1 + exp{μCd1} + exp{μCd2} + exp{μCd3} ,
pCd4 = 1 − pCd1 − pCd2 − pCd3, k = 1, 2, 3.

For the clr and ilr transformations, the alternative vectors are pclrCd = clr−1(μCd) and
pilrCd = ilr−1(μCd), respectively, where μCd = (μCd1, μCd2, μCd3).

By predicting pCdk instead of EC [zdk |ud ], we gain computational efficiency, butwe
have problems with assumption (2), as Z̄dk might not be considered as the realization
of pCdk ; in short, pCdk �= Eπ [z̄dk.] ≈ Z̄dk . However, the disadvantage of not fulfilling
the assumptions (1) and (2) can be compensated, as in practice happenswith the FHand
MLM models, by the use of auxiliary variables correlated with the objective variable
and with the modelling of the covariance structure of the categories. So that what is
lost on the one hand is recovered on the other.

In this section, two predictors of pCdk are proposed. The compositional plug-
in predictors, p̂Cd = ( p̂Cd1, p̂Cd2, p̂Cd3)

′ and p̂Cd4, of the proportions pCd =
(pCd1, pCd2, pCd3)

′ and pCd4 are jointly obtained by applying the alogist transfor-
mation to μ̂Cd = (μ̂Cd1, μ̂Cd2, μ̂Cd3)

′, i.e. p̂Cd = alogist(μ̂Cd) or equivalently

p̂Cdk = exp{μ̂Cdk}
1 + exp{μ̂Cd1} + exp{μ̂Cd2} + exp{μ̂Cd3} ,

p̂Cd4 = 1 − p̂Cd1 − p̂Cd2 − p̂Cd3, k = 1, 2, 3.

Similarly, we may consider the plug-in predictors p̂clrCd = clr−1(μ̂Cd) or p̂ilrCd =
ilr−1(μ̂Cd). The compositional plug-in predictors of the domain proportions Z̄dk areˆ̄ZCdk = p̂Cdk , and the compositional plug-in predictors of the counts Zdk = Nd Z̄dk

are ẐCdk = Nd
ˆ̄ZCdk , k = 1, 2, 3, 4.

On the other hand, the compositional best predictors of the proportions pCdk are
p̂Bdk = p̂Bdk(β, θ) = Eβ,θ [pCdk | yd ], k = 1, 2, 3, and p̂Bd4 = 1 − p̂Bd1 − p̂Bd2 −
p̂Bd3. It holds that

p̂Bdk =
∫
R3

exp{μCdk }
1+exp{μCd1}+exp{μCd2}+exp{μCd3} f (yd |ud) f (ud) dud∫

R3 f (yd |ud) f (ud) dud = Adk(yd , β, θ)

Bd(yd , β, θ)
,

where μCdk = xdkβk + udk , yd |ud ∼ N3(Xdβ + ud , Ved), ud ∼ N3(0, Vud(θ)) and

Adk(yd , β, θ) =
∫

R3

exp{μCdk} exp
{ − 1

2 (yd − Xdβ − ud)′V−1
ed (yd − Xdβ − ud)

}

1 + exp{μCd1} + exp{μCd2} + exp{μCd3}
fθ (ud) dud ,

Bd(yd , β, θ) =
∫

R3
exp

{
−1

2
(yd − Xdβ−ud)

′V−1
ed (yd−Xdβ − ud)

}
fθ (ud) dud .

The compositional EBP of pCdk is p̂Edk = p̂Bdk(β̂, θ̂ ), k = 1, 2, 3, 4, and can be
approximated by the following Monte Carlo algorithm:
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1. Calculate the TFH model parameters β̂ and θ̂ .
2. For � = 1, . . . , L , d = 1, . . . , D, generate u(�)

d i.i.d. N3(0, Vud(θ̂)) and do

u(L+�)
d = −u(�)

d .

3. Calculate p̂Edk = p̂Bdk(β̂, θ̂ ) = Âdk/B̂d , where

Âdk = 1

2L

2L∑

�=1

exp{μ̂(�)
Cdk} exp

{
− 1

2 (yd − Xd β̂ − u(�)
d )′V−1

ed (yd − Xd β̂ − u(�)
d )

}

1+exp{μ̂(�)
Cd1}+exp{μ̂(�)

Cd2}+exp{μ̂(�)
Cd3}

,

B̂d = 1

2L

2L∑

�=1

exp

{
−1

2
(yd − Xd β̂ − u(�)

d )′V−1
ed (yd − Xd β̂ − u(�)

d )

}
,

where μ̂
(�)
Cdk = xdk β̂k + u(�)

dk , d = 1, . . . , D, k = 1, 2, 3, � = 1, . . . , 2L .
4. Calculate p̂Ed4 = 1 − p̂Ed1 − p̂Ed2 − p̂Ed3, d = 1, . . . , D.

The compositional EBPs of the domain proportions Z̄dk are ˆ̄ZEdk = p̂Edk , k =
1, 2, 3, 4. The compositional EBPs of the counts Zdk = Ndk Z̄dk are Ẑ Edk =
Ndk

ˆ̄ZEdk , k = 1, 2, 3, 4.
For the clr and ilr transformations, the EBP of pCdk is obtained by substituting the

k-th component of the alogist transformation:

alogistk(μCd) = exp{μCdk}
1 + exp{μCd1} + exp{μCd2} + exp{μCd3} ,

by the corresponding k-th component of clr−1 and ilr−1 transformations, respectively.
The estimation of compositions, like domain proportions of categories of a classi-

fication variable, requires the selection of the last (q-th) category. The last category
is not a control or reference category as it happens in some ANOVA-type statistical
analyses. The introduced methodology is not invariant with respect to the selection
of the category q, but provides together the predictors of the proportions of the q
categories. In practice, the selection of the first q − 1 categories should be based on
the available explanatory variables. A good approach is to select as target categories
(k = 1, . . . , q − 1) those ones that can be better explained by the auxiliary variables.

For every domain d , the predictors based on multinomial or compositional models
fulfil the two conditions: (1) 0 ≤ pdk ≤ 1, k = 1, . . . , q, and (2)

∑q
k=1 pdk = 1.

Estimating pdk with predictors based on univariate area-level mixedmodels, like Fay–
Herriot or binomial logit, is not a good option because the conditions (1) and (2) might
not be fulfilled.

Concerning the estimation of the MSEs of the compositional plug-in predictors
or EBPs, we follow the parametric bootstrap approach of González-Manteiga et al.
(2008a). The steps of the bootstrap resampling algorithm are as follows:

1. Fit the TFH model (4.3) to the data (yd , Xd), d = 1, . . . , D, and calculate β̂ and
θ̂ .

2. Generate u∗(b)
d ∼ N3

(
0, Vud(θ̂)

)
, e∗(b)

d ∼ N3(0, Ved), μ
∗(b)
d = Xd β̂ + u∗(b)

d ,

y∗(b)
d = μ

∗(b)
d + e∗(b)

d , p∗(b)
d = alogist(μ∗(b)

d ), d = 1, . . . , D.
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3. Calculate p̂∗(b)
d ∈ { p̂∗(b)

Cd , p̂∗(b)
Ed } based on the data (y∗(b)

d , Xd), d = 1, . . . , D.
4. Repeat B times, b = 1, . . . , B, the steps 2–3 and calculate the bootstrap MSE

estimator

mse∗
dk = 1

B

B∑

b=1

(
p̂∗(b)
dk − p∗(b)

dk

)2
, d = 1, . . . , D, k = 1, 2, 3.

6 Application to Labour Force Survey data

This section gives an application of the alr compositional mixed model to the SLFS
data described in Sect. 2. The TFH model is fitted to the target data and to a set of
significant auxiliary aggregated variables taken from the administrative registers: PMH
containing the official demographic data at municipal level, SSoc containing data from
the Social Security System and SPEG containing data of employment claimants.

The considered domain-level auxiliary variables are as:

• SS: proportion of population registered in SSoc.
• REG: proportion of population registered as unemployed in SPEG.
• to15, 16to24, 25to54, 55to: proportion of population aged ≤ 15, 16–24, 25–54
and ≥ 55 registered in PMH.

The target parameters are the proportions of the four categories of the variable labour
status, i.e. ≤ 15 years, employed, unemployed and inactive people per sex in coun-
ties of Galicia. We are interested in estimating domain compositions with q = 4
categories. As the explanatory variables, to15, SS and REG, are highly correlated
with ≤ 15 years, employed and unemployed, respectively, for fitting compositional or
multinomial mixed models to the SLFS data, we number the labour status categories
from 1 to 4, so that inactive is the fourth one (q-th category).

We denote the alr transformations of the direct estimators of the category propor-
tions by ydk = log(zdk/zdq), k = 1, 2, 3. For the sake of brevity, we do not present the
data analyses with the clr or ilr transformations. Keeping these assumptions in mind,
below we present the results of the application to SLFS data.

Table 2 presents the domain-level correlations calculated for the sets {(ydk1 , ydk2) :
d = 1, . . . , D}, k1, k2 = 1, 2. Because of the alr transformation, the domain-level
correlation patterns of the y-variables are different from the corresponding ones of
the z-variables given in Table 1. The correlations in Table 2 are used as seeds for the
matrices Vud in the Fisher scoring algorithm that calculates the REML estimators of
the selected TFH model.

Table 2 Domain-level
correlations for ydk1 , ydk2

k1 = 1 k1 = 2 k1 = 3

k2 = 1 1.00 0.58 0.17

k2 = 2 0.58 1.00 0.31

k2 = 3 0.17 0.31 1.00
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Table 3 Domain-level
correlations for ydk , xdki

Variable SS REG to15 16to24 25to54 55to

y1 0.38 0.05 0.45 0.18 0.39 −0.76

y2 0.59 0.00 0.46 0.12 0.76 −0.75

y3 0.15 0.29 0.30 0.20 0.44 −0.40

Table 4 TFH model parameter estimates

yd1 yd2 yd3

Variable c1 to15 c2 SS 16to24 25to54 c3 REG 16to24 25to54

Estimate − 3.09 15.11 − 3.02 4.35 0.80 3.32 − 4.15 9.08 3.11 3.50

SD 0.25 2.27 0.14 0.42 0.71 0.28 0.33 3.96 2.01 0.72

p value 0.00 0.00 0.00 0.00 0.11 0.00 0.00 0.02 0.12 0.00

Table 3 presents domain-level correlations for the response variables ydk of the TFH
model and the auxiliary variables xdki . For the k-th category and the i-th auxiliary vari-
able, the correlations are calculated for the set of values {(ydk, xdki ) : d = 1, . . . , D}.
Reading this table by rows, it is observed that to15 is the most positively correlated
variable for y1 and 25to54 and SS are the most positively correlated variables for y2.
Concerning y3, the first five auxiliary variables have a similar positive correlation. As
expected, 55to is negatively correlated with y1, y2 and y3.

A set of appropriate auxiliary variables is selected, and the corresponding TFH
model is fitted to the data (ydk, xdki ), d = 1, . . . , D, k = 1, 2, 3, i = 1, . . . , rk . For
the alr transformation, Table 4 presents the estimates of the regression parameters for
the TFH model and their estimated standard deviations. It also presents the p-values,
defined in (4.8), for testing the hypothesis H0 : βki = 0, k = 1, 2, 3, i = 1, . . . , ri .
Intercept parameters for y1, y2, y3 are denoted by c1, c2, c3, respectively. Appendix
D presents the corresponding tables for the transformations clr and ilr. Based on those
tables and on further model diagnostics, we select the alr transformation.

As all the auxiliary variables are proportions, the sign and the magnitude of the
regression parameters give interesting interpretations. The alr transformation of the
direct estimator of the SLFS proportion of people under 16 years, yd1, is solely
explained with positive sign by the corresponding PMH proportion to15. For the
proportion of employed people, yd2 tends to be greater in those domains with larger
proportion of people registered in SSoc and greater proportion of working age people.
The proportions of people SS and 25to54 are more relevant than 16to24 for predicting
yd2. For the proportion of unemployed people, yd3 tends to be greater in those domains
with larger proportion of people registered as unemployed in SPEG and greater pro-
portion of working age people. As expected, REG is more important for predicting
yd3 than 16to24 and 25to54. We have further fitted a second TFH model with 55to in
the place of 16to24 and 25to54. The second model gives similar predictions because
the auxiliary variables to15, 16to24, 25to54 and 55to sum up to one, and therefore,
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Table 5 CIs of variance
components

θ1 θ2 θ3 θ4 θ5 θ6

θ̂ 0.41 0.02 0.26 0.76 0.06 − 0.30

CI inf 0.28 0.01 0.17 0.59 − 0.18 − 0.61

CI sup 0.55 0.04 0.36 0.92 0.31 0.01

6

Fig. 2 Dispersion graphs of yd1, yd2 and yd3 versus to15, SS and REG, respectively

Fig. 3 Marginal residuals of the fitted TFH model

55to and {16to24, 25to54} give basically the same information for predicting yd2 and
yd3.

Table 5 gives the 95% confidence intervals (CIs) of the variance components,
defined in (4.7), for θ1, . . . , θ6. We observe that the variances σ 2

u1, σ 2
u2, σ 2

u3 and the
correlation ρ12 are significantly greater than zero.

Figure 2 plots the dispersion graphs of the target variables yd1 (left), yd2 (centre)
and yd3 versus their auxiliary variables with larger regression parameter, i.e. to15,
SS and REG, respectively. Accordingly with Table 3, we observe the linear patterns
related to positive high linear correlations.

Figures 3 and 4 plot the marginal residuals and standardized marginal residuals
of the fitted TFH model. The residuals are rather symmetric around zero and do not
present any relevant pattern. Further, there are few standardized residuals (7 among
306) outside the interval (−3, 3).

Figure 5 plots the compositional versus the direct estimates of the proportions of
people under 16 years (left), employed (centre) and unemployed (right). We observe
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Fig. 4 Standardized marginal
residuals of the fitted TFH
model
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Fig. 5 Compositional versus direct estimated proportions of people under 16 years (left), employed (centre)
and unemployed (right)

that model-based estimators take values rather symmetrically around the direct esti-
mates. As the direct estimators of proportions are basically design-based unbiased,
Fig. 5 suggests that compositional estimators partially share this property.

In addition to the compositional plug-in predictors based on the selected compo-
sitional mixed model, we also calculate the direct estimators and the multinomial
predictors. Taking into account the recommendations of López-Vizcaíno et al. (2013)
and the last comment of Appendix B, theMLMmodel is fitted to the vectors of sample
counts zd. = (zd1., zd2., zd3.) with sample sizes nd , d = 1, . . . , D. For the sake of
comparability, we use the same auxiliary variables as the fitted compositional model.
This is to say, the auxiliary variables are listed in Table 4. Figure 6 plots the direct,
multinomial and compositional plug-in estimated proportions of people under 16 years
(left), employed (centre) and unemployed (right) for domains sorted by sample size.
For the three categories, the compositional plug-in predictors present the smoothest
behaviour across domains.

Figure 7 plots the design-based estimates of the root mean squared errors (RMSE)
of the direct estimators (D) and the parametric bootstrap estimates of the RMSEs of
the multinomial and the compositional plug-in predictors. For the sake of compara-
bility, the RMSEs of the multinomial (MC) and the compositional (CC) predictors are
calculated under the assumption that the distribution of the fitted TFH Fay–Herriot
model is the true one. Therefore, we run the bootstrap procedure by generating data
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Fig. 6 Direct, multinomial and compositional estimated proportions of people under 16 years (left),
employed (centre) and unemployed (right) for domains sorted by sample size
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Fig. 7 Estimated RMSEs of direct and model-based estimators of proportions of under 16 years, employed
and unemployed people

from the fitted TFH model. The RMSEs of the corresponding direct estimates are
estimated by applying formula (2.4). Nevertheless, we know that in real life there are
no true models, but useful models. Therefore, we also calculate parametric bootstrap
estimates of the RMSEs of the multinomial predictors assuming that the multinomial
model is valid. The new estimated RMSEs (MM) can be interpreted as a measure
of the goodness of fit of the multinomial model to the data. Figure 7 shows that the
compositional plug-in predictors have the best results in terms of RMSE.

Figures 8 and 9map the compositional plug-in estimated county proportions ofmen
(left) and women (right) under 16 years old and inactive, respectively. The colours are
darker in areas with higher proportions.We observe that the counties with the youngest
people are in the west coast, in the provinces of Coruña and Pontevedra where it is
the Atlantic motorway (from Vigo to Coruña). On the contrary, it can be observed that
the counties that are in the east of Galicia (in the provinces of Lugo and Ourense), in
general terms, have a lot of inactive population, more than the 50% of their population.
The Costa da Morte counties (in the west) are also in this situation.

Figures 10 and 11 plot the compositional plug-in estimated county proportions
of men (left) and women (right) that are employed and unemployed, respectively.
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Proportion of people under 16 years. Men

<=0.08 (14)
>0.08 <= 0.12 (13)
>0.12 <= 0.15 (13)
>0.15 (13)

Proportion of people under 16 years. Women

<=0.09 (14)
>0.09 <= 0.11 (13)
>0.11 <= 0.13 (13)
>0.13 (13)

Fig. 8 Estimated county proportions of men (left) and women (right) under 16 years old

Proportion of inactive people. Men

<=0.36 (14)
>0.36 <= 0.42 (13)
>0.42 <= 0.5 (14)
>0.5 (12)

Proportion of inactive people. Women

<=0.43 (14)
>0.43 <= 0.49 (13)
>0.49 <= 0.5 (0)
>0.5 (26)

Fig. 9 Estimated county proportions of inactive men (left) and women (right)

Proportion of employed people. Men

<=0.34 (14)
>0.34 <= 0.38 (13)
>0.38 <= 0.44 (13)
>0.44 (13)

Proportion of employed people. Women

<=0.26 (14)
>0.26 <= 0.32 (13)
>0.32 <= 0.36 (13)
>0.36 (13)

Fig. 10 Estimated county proportions of employed men (left) and women (right)
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Proportion of unemployed people. Men

<=0.05 (14)
>0.05 <= 0.07 (13)
>0.07 <= 0.09 (13)
>0.09 (13)

Proportion of unemployed people. Women

<=0.04 (14)
>0.04 <= 0.07 (13)
>0.07 <= 0.08 (13)
>0.08 (13)

Fig. 11 Estimated county proportions of unemployed men (left) and women (right)

Table 6 Estimated men proportions and their estimated RMSEs

prov n Under 16 years Employed people Unemployment people

Estimate RMSE Estimate RMSE Estimate RMSE

dir mod dir mod dir mod dir mod dir mod dir mod

15 24 0.12 0.11 0.65 0.36 0.34 0.36 0.29 0.08 0.09 0.07 0.93 0.41

15 44 0.06 0.06 0.68 0.22 0.25 0.32 0.27 0.06 0.05 0.06 0.69 0.30

15 51 0.18 0.16 0.32 0.28 0.34 0.38 0.20 0.07 0.11 0.09 0.48 0.30

15 72 0.12 0.12 0.35 0.24 0.33 0.25 0.17 0.07 0.12 0.08 0.33 0.26

15 114 0.21 0.19 0.19 0.20 0.47 0.49 0.10 0.03 0.02 0.03 0.57 0.17

15 305 0.14 0.14 0.15 0.12 0.33 0.33 0.09 0.05 0.10 0.10 0.18 0.14

27 33 0.23 0.17 0.41 0.32 0.32 0.36 0.26 0.06 0.05 0.05 0.69 0.31

27 61 0.10 0.10 0.49 0.26 0.35 0.37 0.18 0.06 0.06 0.06 0.49 0.29

27 137 0.12 0.12 0.25 0.19 0.39 0.37 0.11 0.06 0.09 0.09 0.32 0.21

27 581 0.11 0.11 0.12 0.09 0.47 0.46 0.05 0.03 0.08 0.07 0.16 0.10

32 12 0.01 0.08 0.03 0.31 0.67 0.40 0.20 0.08 0.11 0.15 0.94 0.32

32 57 0.06 0.06 0.95 0.28 0.34 0.36 0.19 0.05 0.03 0.04 0.70 0.24

32 89 0.18 0.17 0.34 0.21 0.26 0.26 0.20 0.06 0.04 0.04 0.51 0.23

32 643 0.12 0.12 0.10 0.08 0.42 0.42 0.05 0.03 0.10 0.10 0.14 0.09

36 91 0.14 0.14 0.30 0.22 0.38 0.43 0.14 0.05 0.07 0.08 0.40 0.22

36 174 0.12 0.12 0.21 0.15 0.37 0.38 0.10 0.05 0.10 0.09 0.24 0.16

36 607 0.15 0.15 0.10 0.09 0.40 0.40 0.05 0.04 0.12 0.11 0.13 0.10

36 1411 0.16 0.16 0.06 0.06 0.42 0.41 0.03 0.03 0.10 0.10 0.09 0.07

Concerning employment, we observe that the touristic counties around the Santiago
trail have the largest proportions. On the contrary, the industrial areas around Vigo
(south-west) and the agricultural areas of Ourense (south-east) present the largest
proportions of unemployed people.

Figure 9 shows that the quantiles of the distribution of the proportion of inactive
women are displaced to the right with respect to that ofmen. Therefore, the proportions
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Table 7 Estimated women proportions and their estimated RMSEs

prov n Under 16 years Employed people Unemployment people

Estimate RMSE Estimate RMSE Estimate RMSE

dir mod dir mod dir mod dir mod dir mod dir mod

15 32 0.20 0.16 0.39 0.31 0.17 0.26 0.38 0.08 0.22 0.12 0.37 0.36

15 41 0.14 0.13 0.45 0.25 0.22 0.21 0.30 0.07 0.02 0.03 0.99 0.30

15 47 0.08 0.09 0.56 0.29 0.35 0.29 0.23 0.07 0.08 0.06 0.49 0.29

15 80 0.18 0.17 0.26 0.24 0.27 0.30 0.19 0.06 0.04 0.06 0.57 0.24

15 121 0.14 0.14 0.24 0.19 0.40 0.41 0.12 0.04 0.03 0.03 0.59 0.18

15 369 0.10 0.11 0.17 0.10 0.31 0.30 0.08 0.04 0.08 0.08 0.18 0.13

27 37 0.16 0.13 0.50 0.31 0.30 0.28 0.25 0.07 0.02 0.03 0.99 0.28

27 58 0.05 0.05 0.56 0.20 0.25 0.30 0.24 0.06 0.04 0.05 0.70 0.24

27 135 0.10 0.10 0.35 0.18 0.31 0.33 0.13 0.05 0.07 0.07 0.34 0.21

27 614 0.08 0.08 0.12 0.09 0.41 0.42 0.05 0.03 0.07 0.07 0.17 0.10

32 16 0.29 0.11 0.41 0.46 0.40 0.37 0.31 0.08 0.12 0.08 0.68 0.34

32 72 0.10 0.09 0.32 0.23 0.26 0.31 0.22 0.07 0.09 0.10 0.44 0.25

32 115 0.11 0.10 0.35 0.22 0.29 0.23 0.17 0.07 0.07 0.05 0.35 0.22

32 741 0.09 0.09 0.11 0.09 0.40 0.40 0.05 0.03 0.08 0.08 0.14 0.09

36 94 0.17 0.16 0.27 0.23 0.37 0.34 0.14 0.06 0.08 0.07 0.37 0.20

36 208 0.15 0.15 0.18 0.13 0.25 0.27 0.12 0.06 0.11 0.11 0.22 0.17

36 617 0.14 0.14 0.11 0.09 0.36 0.37 0.06 0.04 0.08 0.08 0.16 0.10

36 1584 0.13 0.13 0.07 0.05 0.36 0.36 0.04 0.02 0.09 0.09 0.09 0.06

of inactive women tend to be greater than those of men in the regions of Galicia.
Figures 10 and 11 give the opposite conclusion for employed and unemployed people,
respectively.

Tables 6, 7 and 8 present some condensed numerical results for men and women,
respectively. The tables have been constructed in two steps. The domains are sorted by
province. Within each province, the domains are sorted by sample size, starting by the
domainwith the smallest sample size. A selection of 18 domains out of 51 is done from
the positions 1, 4, 7, . . . , 49 and 51. The tables give the direct and the compositional
plug-in estimates (labelled by “dir” and “mod”, respectively) and the corresponding
RMSE estimates. The provinces are labelled by “prov”, with codes given in Sect. 2,
and the sample sizes are denoted by n.

Tables 6 and 7 are partitioned in three vertical sections dealing with the estimation
of proportion of people under 16 years, employed and unemployed people. Table 8
contains the estimated proportions of inactive men and women and the correspond-
ing RMSE estimates. By observing the columns of RMSEs, we conclude that the
compositional plug-in predictors are preferred to the direct estimators.

We recall that the compositional predictors of the four categories are derived from
the fitted TFH model by applying the alogist transformation, so they are jointly cal-
culated. The last category (inactive) is not a reference category. Their results appear
in Table 8 because of the lack of space when constructing Tables 6 and 7.
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Table 8 Estimated inactive
proportions and RMSEs

prov Inactive—men Inactive—women

Estimate RMSE Estimate RMSE

dir mod dir mod dir mod dir mod

15 0.45 0.47 0.23 0.08 0.41 0.46 0.21 0.06

15 0.65 0.55 0.11 0.07 0.62 0.62 0.13 0.06

15 0.38 0.37 0.18 0.08 0.50 0.56 0.16 0.07

15 0.44 0.55 0.13 0.06 0.51 0.48 0.11 0.06

15 0.29 0.29 0.14 0.07 0.44 0.42 0.11 0.06

15 0.43 0.42 0.07 0.05 0.50 0.51 0.05 0.04

27 0.41 0.42 0.21 0.08 0.51 0.57 0.17 0.06

27 0.49 0.47 0.13 0.07 0.66 0.59 0.10 0.05

27 0.40 0.42 0.11 0.05 0.52 0.51 0.09 0.05

27 0.34 0.35 0.06 0.04 0.44 0.43 0.05 0.03

32 0.21 0.37 0.53 0.04 0.19 0.43 0.47 0.09

32 0.57 0.54 0.12 0.06 0.55 0.50 0.11 0.06

32 0.52 0.53 0.11 0.06 0.53 0.61 0.10 0.05

32 0.36 0.36 0.05 0.04 0.43 0.43 0.04 0.03

36 0.41 0.35 0.13 0.08 0.39 0.43 0.13 0.07

36 0.41 0.41 0.09 0.06 0.48 0.47 0.07 0.05

36 0.33 0.34 0.06 0.04 0.42 0.41 0.05 0.04

36 0.32 0.33 0.04 0.03 0.43 0.43 0.03 0.02

7 Conclusions

This paper introduces predictors of category proportions based on an area-level com-
positional mixed model. A TFH model is introduced for modelling the additive
logratio transformations of the direct estimators of the category proportions. The addi-
tive logistic transformations of the EBLUPs under the TFH model are the proposed
compositional plug-in predictors. Similarly, the centred or the isometric logratio trans-
formation (see Appendix D) can be employed.

In addition, the compositional empirical best predictors are also introduced and
empirically investigated. The first predictor is easy to calculate, but the second one
requires the approximation of integrals in R3. This numerical problem demands rather
high computational time to achieve an acceptable precision. Because of this issue
and the results of Simulation 2, the use of the compositional plug-in predictor is
recommended.

Unlike themultinomial approach ofLópez-Vizcaíno et al. (2013), the compositional
predictors take into account the sampling design. The sampling weights are employed
bymeans of the direct estimators of the category proportions and through the estimators
of their design-based variances and covariances.

As discussed in Section 4, both models (MLM and compositional) have problems
to predict the population parameter Z̄dk . However, these problems are compensated
by the use of auxiliary variables correlated with the objective variable and with the
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modelling of the covariance structure of the categories. It is at this point where the
compositional mixed model presents its greatest advantages compared to the MLM
model. The compositional approach is more flexible and can be adapted to different
correlation structures, while multinomial correlation structure is rather rigid (correla-
tions negative) and does not fit well to both types of covariances and variances (unit
level and domain level). The results of four simulation experiments and the analysis
of real data confirm this assertion.

The new small area estimation methodology is applied to Labour Force Survey
data from Galicia, a region in north-west of Spain, in the period January–April 2017.
The selected compositional mixed model has had a better fit to the data than the
corresponding multinomial mixed model, and therefore, the labour status proportions
per county and sex are finally estimated by using the compositional plug-in predictors
with its mean squares errors calculated by parametric bootstrap.

As for the labour market results in Galicia, we can conclude that the west coast, in
general terms, is the most dynamic part with a higher proportion of employed people
and people under 16 years old. There is a big problem in the south-east because there
are several counties with a proportion of inactive people over the 50%. This area is
essentially rural. Fixing the population in rural areas, with a decent living and income
levels, is one basic requirement to ensure territorial balance and environmental sus-
tainability. Galicia is ageing andmore accentuated in rural areas, due to the emigration
of young people and the fall in the birth rate. This reality, with obvious economic and
sociological consequences, demands answers from social and employment policies.

Although the introducedmethodology is applied to the variable “labour status”with
q = 4 categories, it can be extended to categorical variables with any number q ≥ 2
of categories. However, we only recommend their use for the cases q = 2, 3, 4, 5.
This paper presents the mathematical developments for the case q = 4 leading to a
TFH model with six variances or covariance parameters. The cases q = 2 and q = 3
are more simpler as they require fitting univariate and bivariate Fay–Herriot models
with one and three variance components, respectively. The case q = 5 yields to a
MFH model with ten variance components, where the fitting algorithm might have
convergence problems when the number of domains D is not big enough.

The application to real data can be carried out in the subpopulation of people aged
16 or more, where the number of categories is q = 3 (employed, unemployed and
inactive). This simpler scenario requires fitting a bivariate Fay–Herriot model to the
transformed survey data and obtaining the predictions of the domain proportions of
the three considered categories in a similar way as it is done in the case of q = 4
categories. We have decided to follow the more complex TFH approach because of
the strength of the available auxiliary variables and to guarantee the coherence of the
estimates of the four category proportions. For the categories ≤ 15, employed and
unemployed, we have the highly correlated variables to15, SS and REG. This last fact
also motivated the selection of inactive as the fourth (reference) class.

Compositional data play an important role in public statistics. In this case, we
applied the introduced methodology to the SLFS, but it is useful in other topics of
the official statistics, like the classification of the population by the educational level,
the income level or the type of household expenditure. In all these situations, it is
necessary to take into account the simplex constraints.
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This work may be extended to incorporate spatial correlations between domains. In
practice, it is often reasonable to assume that the effects associated with neighbouring
areas are proportionally correlated with a measure of distance. Also, it is important
to know the evolution of the labour market, along the quarters for the counties, in an
accurate and stable form, suitable for being used in statistical offices. Therefore, exten-
sions of the introduced methodology to models incorporating temporal correlations
are also a future research task.
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