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A B S T R A C T

Path Planning methods for the autonomous control of Unmanned Aerial Vehicle (UAV) swarms are on the rise
due to the numerous advantages they bring. There are increasingly more scenarios where autonomous control
of multiple UAVs is required. Most of these scenarios involve a large number of obstacles, such as power lines
or trees. Despite these challenges, there are also several advantages; if all UAVs can operate autonomously,
personnel expenses can be reduced. Additionally, if their flight paths are optimized, energy consumption is
reduced, leaving more battery time for other operations. In this paper, a Reinforcement Learning-based system
is proposed to solve this problem in environments with obstacles by utilizing Q-Learning. This method allows
a model, in this case, an Artificial Neural Network, to self-adjust by learning from its mistakes and successes.
Regardless of the map’s size or the number of UAVs in the swarm, the goal of these paths is to ensure
complete coverage of an area with fixed obstacles for tasks like field prospecting. Setting goals or having
any prior information apart from the provided map is not required. During the experimentation phase, five
maps of varying sizes were used, each with different obstacles and a varying number of UAVs. To evaluate the
quality of the results, the number of actions taken by each UAV to complete the task in each experiment was
considered. The results indicate that the system achieves solutions with fewer movements as the number of
UAVs increases. An increasing number of UAVs on a map lead to solutions in fewer moves. The results have
been compared, and a statistical significance analysis has been conducted on the proposed model’s outcomes,
demonstrating its capabilities. Thus, it is shown that a two-layer Artificial Neural Network used to implement
a Q-Learning algorithm is sufficient to operate on maps with obstacles.
1. Introduction

New uses for swarms of unmanned aerial vehicles (UAVs) are being
developed to solve different industrial and emergency problems (Al-
ani, IJsselmuiden, Haken, & Trianni, 2017; Bocchino, Canham, Wat-
ney, Reder, & Levison, 2018; Corte et al., 2020; Huuskonen & Oksanen,
018; Liu, Wang, Wang, Shu, & Li, 2018; Rabinovitch, Lorenz, Slimko,
Wang, 2021). The advantages provided by UAVs, such as their low
ost, excellent mobility, safety, and convenient size for some maneu-
ers, are the main reasons for their growing popularity (Yeaman &
eaman, 1998). All these advantages are offered by the wide vari-
ty of UAVs that exist to fulfill every need. This variety allows for
he integration of different types of sensors with varying capabilities.
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Badge Initiative is available at https://www.elsevier.com/physical-sciences-and-engineering/computer-science/journals.
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The development of sensors for UAVs is on the rise, particularly in
remote sensing (Noor, Abdullah, & Hashim, 2018). The flexibility in
the characteristics of UAVs, such as their architecture or the sensors
they accommodate, makes them popular tools for diverse needs (Austin,
2011).

However, UAVs have drawbacks, with the most significant one
being power consumption, which reduces operational time. Due to their
small size, it is challenging to acquire compact power sources with
substantial capacities while also keeping the weight low. When the
weight is minimal, flight operations benefit from extended flight time
availability.

The limitations on flight time imposed by batteries can be mitigated
when groups or swarms are employed. In essence, as flight paths
vailable online 23 August 2023
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become shorter with the simultaneous operation of multiple UAVs,
numerous tasks can be completed more swiftly. This approach reduces
the likelihood of UAVs’ batteries being insufficient to sustain their flight
over the terrain. The occurrence of UAVs stopping midway through
an operation due to diminished energy availability is lessened, thereby
reducing the risk of mid-air disruptions.

Similar to any form of robotic swarm, UAV swarms can be uti-
lized in the real world for various activities, just as they would in
their individual applications. The primary advantage of the swarm
robotics technique lies in its robustness, which manifests in numerous
ways. Firstly, a swarm can self-organize or dynamically reorganize
how individual robots are deployed, as it comprises many relatively
simple agents that are not predetermined for specific roles or duties.
Additionally, and for the same reasons, the swarm technique is highly
resilient to individual agent failures. There is no singular point of
common-mode failure or vulnerability within the swarm due to the
entirely decentralized control. In contrast to the substantial technical
investment required for achieving fault tolerance in traditional robotic
systems, one might argue that the elevated level of robustness observed
in UAV swarms is inherent to the swarm robotics methodology (Sahin
& Winfield, 2008).

The number of UAV operators required for the initial flight tests
ith swarms was equivalent to the number of UAVs, significantly
ncreasing the operational costs when employed in groups. Recent
dvancements have been made in the development of algorithms (Zhao,
heng, & Liu, 2018) and communications (Campion, Ranganathan, &
aruque, 2018) that allow for the control of the entire swarm by just
ne person operating the systems. These advancements facilitate more
fficient and rapid communication among UAVs, along with improved
alculations for collision avoidance paths. This reduces the requirement
or human intervention in hazardous situations. Consequently, the lat-
st approaches are geared towards achieving autonomous control of the
ntire swarm. Flight paths need to be computed at minimal cost while
aximizing efficiency. This is known as the Path Planning Problem (Ag-
arwal & Kumar, 2020), in which the aim is to plan the sequence of
ovements of robots such as UAVs. Given the often low altitude of their
perations, UAVs must navigate around obstacles within the flight area.
onsequently, flight path calculations must account for these obstacles
nd the anticipated positions of all swarm UAVs, in order to prevent
ollisions among fleet members. The objective is to devise paths that
re optimized while circumventing obstacles and other UAVs.
To deal with the complexity of this kind of development, different

lgorithms are offered in Swarm Intelligence (SI) (Kennedy, 2006).
These algorithms aim to coordinate a substantial number of agents
concurrently. This coordination relies on a collective of individual
actors operating in a self-organized and cohesive manner, while ad-
hering to fundamental, common rules (Bonabeau & Meyer, 2001). In
essence, each UAV within the swarm acts as an individual actor. Each
actor possesses its information, and its behavior is influenced by its
information, the system’s rules, and the information shared by other
actors. This coordinated behavior is aimed at achieving an objective in
the most effective manner (Stentz, 1997).

Certain Path Planning algorithms find utility in military appli-
ations. Meanwhile, the scope of civilian applications is relatively
estricted, primarily encompassing pursuits or goal-oriented tasks, such
s mapping routes through urban areas (Puente-Castro, Rivero, Pa-
os, & Fernandez-Blanco, 2021). Despite the multitude of potential
pplications, there exists a scarcity of technologies explicitly designed
or agricultural and forestry purposes, particularly those aimed at
nhancing the efficiency of field prospecting tasks.
The objective of this research is to create a system that addresses

he Path Planning problem within 2D grid-based maps featuring static
bstacles and varying quantities of UAVs, accomplished through the
tilization of Q-Learning techniques bolstered by Artificial Neural Net-
orks (ANN). Consequently, the principal contributions of this study
2

an be outlined as follows: d
1. An innovative Q-Learning-based system that can determine the
best possible flying path for a UAV swarm to cover as much area
as possible during prospecting activities.

2. A system that can estimate the flight path of any number of UAVs
on any sized map with varied sets of obstacles with different
shapes and without additional map information such as targets
or potential fields.

3. A system capable of calculating paths without the need for a
subsequent smoothing stage.

4. A statistical analysis of the results of using a single ANN for
each UAV against a global ANN for all UAVs under the same
conditions.

5. A path optimization criterion for Q-Learning not dependent on
aircraft architecture and capabilities.

The structure of this paper is as follows: An overview of the state of
the art is provided in Section 2; a description of the inherent aspects for
solving Path Planning problems is developed in Section 3; a description
of the technical aspects required for the development of the proposed
method is presented in Section 4; a summary of the results of the
experimental process is provided in Section 5; the conclusions drawn
after evaluating the results, and the possible works and studies to derive
the problem to be addressed are provided in Section 6.

2. Background

2.1. Path Planning problems

Path Planning problems involve determining geometric paths for
vehicles or robots to follow a set of milestones to reach a designed
goal (Gasparetto, Boscariol, Lanzutti, & Vidoni, 2015). Different authors
have focused on the development of systems to solve these prob-
lems for several years (Patle, Pandey, Parhi, Jagadeesh, et al., 2019).
All these authors have employed an extensive array of techniques,
spanning from conventional methodologies to Artificial Intelligence
approaches (Karur, Sharma, Dharmatti, & Siegel, 2021).

Kong, Nie, and Xu (2022) have put forth a Genetic Algorithm
GA) for controlling swarms within 3D environments. This algorithm
nderwent testing in a simulator, with results indicating its capability
o evade convergence to local maxima. However, it is noteworthy that
his approach may entail a relatively higher computational expense in
omparison to alternative methods. Liu (2022) have proposed another
A for 3D environments with terrain obstacles. Their method is pro-
icient in deriving smoothed paths without necessitating a subsequent
moothing phase. Additionally, GA can serve as a complementary tool
o other algorithms. In their research, they present a system wherein
he fitness function is predicated on the UAVs’ distance to the final
arget. This metric, though simplistic, may lead to sluggish approaches
f UAVs adopt a spiral trajectory, consequently incurring substantial
attery consumption during gradual approaches. In general, the flight
nvironment strongly influences the behavior of the algorithm. That
s, a 3D map implies controlling the height of the aircraft while a
D grid-map implies knowing the state of each cell. To conclude with
hese techniques, there is a branch within Evolutionary Computation
EC) known as Swarm Intelligence (SI) (Kennedy, 2006) that seeks to
imic the collective behavior of natural systems. For example, Xu, Li,
hou, Mao, and Huang (2022) have introduced the utilization of GA
o optimize a system grounded in the Wolf Pack Algorithm, a purely
I technique, for the coordination of multiple UAVs. Their research
llustrates the effectiveness and efficiency of their approach in contrast
o alternative methods. However, it is worth noting that they have
ot presented specific examples of the testing environments for these
ystems.
Among the category of pure SI techniques, a significant degree of
iversity exists. While not as extensively recognized as the methods
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mentioned earlier, SI techniques have showcased their prowess in op-
timizing a wide array of problems of diverse natures. This is attributed
to their bio-inspired collective behaviors (Minh, Sang-To, Theraulaz,
Wahab, & Cuong-Le, 2023; Sang-To, Le-Minh, Mirjalili, Wahab, &
Cuong-Le, 2022; Sang-To, Le-Minh, Wahab, & Thanh, 2023). For exam-
ple, Yang, Zhang, Zhang, and Xiangmin (2019) have harnessed Particle
Swarm Optimization (PSO) in conjunction with a voting mechanism to
manage multi-UAV control. They have devised an intricately structured
voting system tailored to the conventional PSO method, further refining
its spatial aspects. Moreover, their innovative approach incorporates
time considerations, effectively generating collision-free routes for mul-
tiple UAVs within a comparable timeframe. Similarly, Pamosoaji, Piao,
and Hong (2019) have employed this algorithm for UAV control. They
have carefully factored in the constraints associated with slower air-
craft to minimize their flight duration. In their published work, they
have demonstrated the algorithm’s proficiency in deriving flight paths.
However, it is worth noting that they have not provided a quantifi-
able assessment of the effectiveness or satisfaction of these generated
paths. Jain, Yadav, Prakash, Shukla, and Tiwari (2019) put forward
the utilization of the Multiverse Optimizer algorithm (MVO) to govern
the behavior of multiple UAVs and juxtapose it with the application
of a single UAV. This showcases the system’s ability to generalize
across scenarios. While the system boasts considerable capabilities, it
is noteworthy that significant environmental factors impacting aerial
operations are not factored into the approach. In a broader sense, one
of the predominant limitations of SI techniques is their inclination to
converge towards local optima (Yang, 2014). In addition, describing
the collective behavior of natural systems is very difficult; it may not
be realistic.

2.2. Reinforcement Learning and Q-Learning in Path Planning

Another of the most commonly used set of techniques is Reinforce-
ment Learning (RL) techniques (Puente-Castro, Rivero, et al., 2021).
An example of these Artificial Intelligence (AI) techniques can be seen
in the research of Qiu, Xu, Wang, Yang, and Liao (2022) where they
have implemented an Actor–Critic Reinforcement Learning algorithm
to achieve concurrent control of multiple UAVs. Notably, each UAV ex-
clusively possesses local information concerning the environment. This
implies that each UAV solely retains its data and does not communicate
any information with the other members of the group. Consequently,
certain environmental details might be overlooked, or alternatively,
some information could potentially be redundantly captured. Addition-
ally, Wei, Huang, et al. (2022) have employed the Actor–Critic RL
technique for collaborative data collection across expansive regions.
They have introduced a method for estimating energy consumption
solely based on time, although a limitation arises from not accounting
for the specific type of movement. Consequently, flights involving
frequent changes in direction might consume more energy compared
to linear flights. To circumvent the challenge of sparse rewards, a
common issue in such scenarios, they have implemented an incentive
mechanism. Incentives are also applied by Salimi and Pasquier (2021)
for the control of a type of UAV group called flocks instead of swarms.
In their paper, the authors mention utilizing environments featuring
up to 50 obstacles, but unfortunately, they have not provided visual
examples. Furthermore, it appears that they depend on the progression
of rewards to gauge the system’s functionality. However, this approach
does not ensure optimal objective completion, as the system might be-
come trapped in a local optimum. A more comprehensive assessment of
the system’s overall performance, including global-level results, would
be necessary to gain deeper insights into its effectiveness.

Continuing with RL techniques, Chen, Dong, Shang, Wu, and Wang
(2022) This approach offers a significant advantage, as simulated en-
vironments can incorporate intricate details and facilitate the eventual
transition to real-world applications. However, it is important to ac-
3

knowledge a limitation outlined in the paper. Specifically, their focus
on cooperative environments. Such environments presuppose that all
UAVs will collectively pursue a singular target simultaneously. While
this simplifies certain aspects, it does constrain movement flexibility
and neglects potential UAV failures or deviations from the uniform
path. The use of simulated real environments is also considered by Tu
and Juang (2023). In their paper, they utilize the widely adopted
AirSim simulator to evaluate the performance of their RL-based system.
However, they highlight a limitation in their approach: their system
exclusively relies on ultrasonic sensors for obstacle avoidance. Conse-
quently, their UAVs might not effectively detect obstacles constructed
from sound-absorbing materials.

A very popular algorithm within RL is Q-Learning (Watkins &
Dayan, 1992) and many authors have applied it. This algorithm searches
greedily for the best action in each state based on a value given to
each available action. By selecting actions with the highest assigned
values, it assembles the most optimal sequence of moves. Therefore,
it is imperative to accurately determine how to calculate the value
attributed to each action. Souto, Alfaia, Cardoso, Araújo, and Francês
(2023) have created a system based on Q-Learning, wherein they
incorporate external variables unrelated to the UAVs to minimize
energy consumption while computing UAV paths. They validate their
system’s efficacy through simulations conducted within realistic urban
environments. The high level of realism exhibited by the simulated en-
vironment renders the system readily adaptable to real-world scenarios.
Also, de Carvalho et al. (2022) focus on reducing energy consumption
by applying Q-Learning techniques. One limitation of their approach
is the absence of a defined metric for calculating this consumption.
Instead, they have implemented a reward prioritization mechanism
based on the type of turn executed by the UAV. It is worth noting
that they only account for four specific types of turns based on their
angles. Consequently, turns not encompassed within their prioritization
framework are not taken into consideration.

2.3. Artificial Neural Networks in Path Planning

Still within AI, a widely used model is the Artificial Neural Net-
work (ANN) (Rosenblatt, 1958). These models are based on Artificial
Neurons and have demonstrated their ability to generalize knowl-
edge (McCulloch & Pitts, 1943). Typically, these models are employed
to enhance the computation of various essential factors required for
path planning, as they can encapsulate a greater depth of knowledge
compared to pre-defined formulas. An example of this is the paper
by Shiri, Park, and Bennis (2020) where they use ANN to approximate
the Hamilton–Jacobi–Bellman equation. Accordingly, the developed
ANNs or algorithms reduce biases and can overcome the limitations
imposed by the equation. Furthermore, this approach has facilitated
the incorporation of wind dynamics into the system, enhancing its reli-
ability and applicability in real-world environments. Another approach
is that of Sanna, Godio, and Guglieri (2021), where they use ANN
to obtain the best actions to be performed by UAVs. In this manner,
they illustrate the system’s capacity to acquire additional knowledge
by contrasting it with both a non-parametric model and a conventional
search model. A similar approach is that of Liu, Zheng, Qin, Zhang,
and Yao (2022). Interestingly, they also juxtapose their approach with
a classical search algorithm. In contrast to the earlier mentioned paper,
the primary objective here is not to cover an entire map. Instead, the
focus centers on computing a path between a source point and a des-
tination point. It would indeed be intriguing to comprehend how their
system performs in the absence of any indicators, such as those source
and destination points. This versatility of not needing points to control
the path is also regarded by de Castro et al. (2023). Furthermore, they
put forth an alternative approach involving ANN, where it is trained
to approximate a conventional search algorithm. This training process
involves utilizing the output of the aforementioned algorithm. This
innovative strategy allows them to combine the efficiency of a classical
search algorithm with the real-time adaptive capabilities inherent in an

ANN.
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2.4. Artificial Neural Networks applied to Q-Learning in Path Planning

Although the techniques and models described above have demon-
strated their capabilities in Path Planning problems, their strength
is when used in combination. This is known as Deep Reinforcement
Learning (DRL) and consists of training ANNs using RL techniques for
Path Planning problems, which is a great advantage because it allows
faster abstraction of knowledge in complex environments (Li, 2023).

The Deep Q-Learning or Deep Q-Network (DQN) (Mnih et al., 2015)
is one of the most important DRL techniques (Clifton & Laber, 2020).
In this case, ANNs are used to enhance the capabilities offered by Q-
Learning for Path Planning. For example, Puente-Castro, Rivero, Pazos,
and Fernandez-Blanco (2022) propose a dense two-layer ANN applying
Q-Learning. The model they introduce is exclusively tested on obstacle-
free maps, potentially presenting significant constraints when applied
to maps with obstacles. The demonstrated operation is solely time-
based, which means its performance would be contingent upon the
hardware capabilities of the requisite equipment. Consequently, equip-
ment with superior capabilities would yield improved times, but this
would correspondingly entail higher costs. Dhuheir, Baccour, Erbad,
Al-Obaidi, and Hamdi (2022) also propose an ANN for their system
where they segment a map for each UAV to collect information taking
into account latency constraints. While it is important to control such
latencies, the test computer is a Rapsberry Pi which a very specific and
limited model that, at the date of publication of the article, already has
more recent and powerful versions. This is a major limitation because
they employ convolutional ANNs, which are known for their high
computational cost (Li, Liu, Yang, Peng, & Zhou, 2021). In the paper
of Khalil and Rahman (2022) they try to go one step further by making
a Federated Learning scheme with an Aggregator (Rieke, Hancox, Li,
Milletari, Roth, Albarqouni, Bakas, Galtier, Landman, Maier-Hein, &
et al., 2020) applied to a global ANN to converge earlier than those
cases where the ANN is trained in the traditional way. Thus, the
network acquires more variety of data in less time. The Aggregator
module brings together the experience of the ANNs of each UAV that is
retrieve individually by each UAV. Therefore, they can train UAVs that
escape from hostile systems in the military domain. Within the topic
of UAVs in hostile environments, Zhang, Zong, Zhang, Dou, and Tian
(2022) propose a similar system but not based on Federated Learning.
An added advantage over the previous work is that they test their
system in a simulation depicting a complex urban environment, so
that the capability of their system can be better seen. There are also
publications that make use of DQN but with static targets. An example
is the paper by Zhou, Liu, Li, Xu, and Shen (2021), where they address
the planning of UAVs swarms with targets. This facilitates the path
calculation, but increases the probability that the paths become too
dependent on the targets. Similar is the case of Kong, Wang, Gao, and
Yu (2023) where they have to establish an allowance threshold error in
order to overcome these limitations. Therefore, they have used an ANN
that is not only able to calculate the Q-values, but also the distribution
of the movements taken by UAVs. Another example of ANN applied to
Q-Learning is the work of Raja, Anbalagan, Narayanan, Jayaram, and
Ganapathisubramaniyan (2019). Despite not presenting the findings,
their paper claims that their technology is scalable to 100 UAVs. In
addition to this, a generic system with significant commercial potential
can be created by having a system that is scalable to any number of
UAVs.

2.5. Summary and contributions

In summary, several papers in the state-of-the-art present a subse-
quent path-smoothing stage, such as Liu (2022), Susanto et al. (2021)
or Correl (2016). By establishing this later step, sharp turns in the
paths are modified to make them softer and more gradual. In this
way, paths with softer curves are obtained, which lengthens the battery
4

time. However, this process entails increased computational demands,
and if the original path contained errors, they could potentially be
propagated. Notably, the proposed system omits the path smoothing
stage to minimize computation time and preserve the integrity of
subsequent data collection, ensuring comprehensive coverage of the
terrain during flight.

The authors in the state-of-the-art test their systems on different
maps with obstacles but mostly with the same number of UAVs for that
given map, like in the work of Kong et al. (2022). In contrast to their
suggested model, the proposed system undergoes testing with varying
numbers of UAVs to assess its adaptability across different group sizes.
Furthermore, maps featuring obstacles of diverse shapes are introduced
to ascertain that the system does not merely memorize the obstacle
topologies.

Several models in the state-of-the-art require guide points, which
can take the form of targets, potential fields, or other indicators. The
utilization of these points necessitates the extraction or addition of
information to the maps. The dynamic alteration of maps by incorporat-
ing new information carries the risk of introducing errors, which could
consequently impact the generated paths. Therefore, it is necessary for
the map representations chosen to be as complete as possible without
the need to add information to them. In the proposed model, maps are
tested where only the location of obstacles is indicated and no other
information is added.

The main optimization criterion in every work is energy saving.
Despite being a common purpose, there are different ways to determine
consumption. They are all based on a criterion where an estimation
of how much each vehicle can consume according to each type of
movement is carried out but these are not equally expensive in different
types of UAVs. This highlights the need for a versatile and compre-
hensive metric, such as the count of movements executed by each
UAV. Consequently, a path is considered superior if it entails fewer
movements. Moreover, while precise quantitative energy expenditure
may remain elusive, it can be inferred that fewer movements inherently
translate to reduced energy consumption.

3. Problem formulation

The main aim of this research is to develop a system capable of
solving the Path Planning Problem for UAV swarms in maps with
obstacles. In scenarios involving multiple vehicles like UAVs, successful
Path Planning necessitates the consideration of various variables to
ensure optimal efficiency, effectiveness, control, collaboration, and
safety. Therefore, it becomes imperative to tackle the challenges posed
by these variables, as they form integral components of the overarching
goal.

This way of looking at a Path Planning problem as the union of
different inherent problems is common in the literature (He, Qi, & Liu,
2021; Puente-Castro et al., 2022). Accordingly, the experimentation
process is more precise and organized. The formulation of the Path
Planning problem presented is divided into the following areas:

Flight Environments Set
UAV movements
Proposed Model Design
Model Optimization
Model Evaluation Metric

The main point to keep in mind is that solving some aspects of Path
Planning problems involves employing simplifications of environment,
movement, and other variables simplifications (Giesbrecht, 2004). In
the real world, UAVs fly in complex continuous environments. These
environments consist of an infinite number of points, and determining
the optimal flight path involves exploring infinite combinations. To
manage this complexity, the utilization of cell-based maps is a prevalent
approach within the field. By dividing the map into finite cells, the

exploration process involves fewer combinations, simplifying the task.
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However, there is the limitation that the representation of the terrain
is greatly simplified, so details that may be crucial for the paths to be
calculated may be lost. Even setting up maps divided into cells can
complicate the calculation of optimization criteria such as path length
because it oversimplifies the representation of the real environment.

It is also necessary to take into account the movements of UAVs.
Currently, these aircraft have great flight stability, but their movements
are complex and result from the combination of other simpler move-
ments (Susanto et al., 2021). Indeed, to address the challenges related
o field coverage and to expedite path calculations, UAV movements are
ften simplified by being treated as atomic actions without accounting
or curves or changes in altitude. Consequently, it is easier to determine
hether or not a movement implies that a UAV flies over a cell. On the
ther hand, the major limitation is to involve abrupt changes in the
ath, so it may be the case that smooth curves are a better path.
A final limitation to take into account is the tendency of the pro-

osed method in this paper to converge to local maxima by its na-
ure (Jaakkola, Singh, & Jordan, 1994). Therefore, a situation may arise
here a good solution is found but a better one is not found. Taking
his into account, it is necessary to apply alternatives to reduce this
isk.

. Proposed method

.1. Reinforcement learning

The solution for the Path Planning Problem for UAVs has been
eveloped by applying Reinforcement Learning (RL) (Sutton & Barto,
018). Similar to other computational techniques, this method elimi-
ates the necessity of explicitly defining the desired behavior within the
ystem. Instead, a specific component of the algorithm, referred to as
n agent, acquires the intended behavior through a process of trial and
rror. This learning process unfolds within an interactive and dynamic
nvironment, where the agent conducts various tests to adapt and
nternalize the optimal behavior (Kaelbling, Littman, & Moore, 1996;
iering & Van Otterlo, 2012). The agent must exploit what it already
nows in order to profit from rewards, but it must also explore in order
o choose its future actions more wisely. The problem is that pursuing
ither exploration or exploitation solely would result in failure. The
gent must test several different options and gradually favor the ones
hat seem to work the best. For each action on a stochastic task to
ain a valid estimate of the expected reward, several trials must be
ade. In essence, achieving the ideal behavior requires a dynamic
nterplay between learning from past experiences and venturing into
ncharted territories. All while considering the potential repercussions
f the agent’s actions on its surroundings.
The explicit consideration of the entire issue of a goal-directed agent

nteracting with an unpredictable environment is another important
spect of RL. Contrary to many techniques, RL does not take into
ccount sub-problems without considering how they might relate to a
igger one. In other words, it addresses the problem ‘‘as a whole’’.
The learning method differs only slightly in most RL algorithms (Sut-

on & Barto, 2018). These strategies come in a variety of forms that
et the systems handle a wide range of problems. It has been decided
o employ a technique known as Q-Learning for this more appropriate
o use this study (Watkins & Dayan, 1992). The biggest factor is
hat, in contrast to other variants, it does not require a model of the
nvironment (model-free approach).

.1.1. Q-Learning
The agents have to find and follow strategies that allow them to

olve problems. These strategies are known as policies. The agents
an use their experience to learn the values of all the policies in
arallel even when they can only follow one policy at a time thanks
o the traditional Q-Learning algorithms (Watkins & Dayan, 1992).
5

The agent learns to follow a policy only through trial and error in
this model-free approach (Gläscher, Daw, Dayan, & O’Doherty, 2010).
The remarkable convergence property of Q-Learning, known as ‘‘greedy
convergence’’, leads to the attainment of an optimal solution regardless
of the decision-making policy. This characteristic classifies Q-Learning
as an off-policy algorithm. In other words, it only bases its decisions on
the agent’s interactions with the environment around it. This design en-
sures the system’s adaptability across diverse environments, eliminating
the requirement to identify the best policy for each specific scenario.
The ‘‘Q’’ in Q-learning stands for ‘‘quality’’ and endeavors to quantify
the usefulness of a given action in procuring future rewards.

The most well-known benefit of Q-Learning over other RL tech-
niques is that it allows for the comparison of predicted utility across
different actions without the need for an environment model. That
means the key factor that led to its selection for this study is how easily
it learns and infers situations without requiring their modeling. These
algorithms stand out from other RL approaches due to their fundamen-
tal distinction: they make decisions based on values stored within a
table. These values are known as Q-values, and the table is referred to
as a Q-table. The Q-values essentially represent the anticipated reward
of an action within the specific context of the environment. From these
values, the action with the highest value for each state is chosen.
Typically, Bellman’s equation (Eq. (1)) is combined with the system’s
prior predictions to train it. The equation has different elements: 𝑄(𝑠, 𝑎)
is the function that calculates the Q-value for the current state (𝑠), of
the set of states 𝑆, and for the given action (𝑎), of the set of actions 𝐴, 𝑟
is the reward of the action taken in that state and it is computed by the
reward function 𝑅(𝑠, 𝑎), 𝛾 is the discount factor and argmax𝑎′ (𝑄(𝑠′, 𝑎′))
is the maximum computed Q-value of the pair (𝑠′, 𝑎′) represented as
𝑄(𝑠′, 𝑎′). The pair (𝑠′, 𝑎′) is a potential next state–action pair. (𝑠′ is the
next state and it is given by the transition function 𝑇 (𝑠, 𝑎) which returns
the state resulting from the execution of the selected action. The 𝑎′ is
ach one of the available actions.

(𝑠, 𝑎) ← 𝑟 + 𝛾 × max
𝑎′

(𝑄(𝑠′, 𝑎′)) (1)

With probability 𝜖, a portion of the actions in a Q-Learning problem
are made at random, and with probability 1 − 𝜖, the action with the
greatest Q-value for that state is adopted. An episode is the series
of actions that an agent performs for a certain 𝜖 until it achieves an
end condition (task completion, end of time, etc.) (Shang & Li, 2022).
The operation is started over at the beginning of each episode. During
testing, episodes reduce the value of 𝜖 by a factor of reduction. In
this approach, the decision of what to do is influenced more by the
computed Q-values and less by chance. By considering the minimal
value of 𝜖, it is kept from becoming too close to zero and to avoid
overfitting (Zhang, Vinyals, Munos, & Bengio, 2018).

The key to convergence in Q-Learning is that it is a variant of a
Markov Decision Process (MDP). This process is artificially controlled
and is known as the action-replay process (ARP) (Watkins & Dayan,
1992). It should be noted that this description assumes a representation
of a look-up table, indicating that Q-Learning might not converge
correctly for other representations. The requirement that an unlim-
ited number of episodes for each beginning state and action must be
included is the most significant implicit condition in the convergence.

Recently, a variant known as Deep Q-learning (DQN) (Mnih et al.,
2015) has emerged as an alternative. This approach varies from tra-
ditional Q-Learning in that it aims to enhance the calculation of the
Q table using Machine Learning (Michie, Spiegelhalter, Taylor, et al.,
1994) or Deep Learning (LeCun, Bengio, & Hinton, 2015). The model
may deduce the values of the Q table by abstracting sufficient knowl-
edge. In some cases, Bellman’s Equation bias concerns can be resolved
in this way (Fan, Wang, Xie, & Yang, 2020).
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Fig. 1. Flowchart showing the steps that are followed within each episode of the proposed model. It shows how the ANN interacts with Q-Learning. That is, the ANN learns from
the experience gained from performing actions on one or more UAVs.
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4.1.2. Artificial Neural Network
One of the key points of this paper is the use of ANNs to enhance Q-

learning by approximating the Bellman’s equation (Krogh, 2008). The
authors of this work choose a two-layer fully connected ANN. Unlike
convolutional deep ANNs (Albawi, Mohammed, & Al-Zawi, 2017) that
other authors have suggested in their studies, it is not assumed that the
neighborhood of a cell provides additional information. Hence, it does
justify the need to use dense layers (Huang, Liu, Van Der Maaten, &
Weinberger, 2017). The only input is the combination of the original
nvironment map, the map with the position of each UAV, and the map
ith the visited cells and the output are the Q-values for all possible
ovements. As a result, each Q-Learning experiment follows:

1. Build the ANN model(s) using the selected configuration.
2. Determine the Q-table values and the optimum course of action
for each UAV in the swarm using ANN model(s).

3. Train the model(s) based on each chosen action’s outcomes.
4. Select the cases where the number of movements required to
explore the entire map is lower.

The information available to each agent or UAV in the swarm is very
mportant. If the information is only local (the one perceived by the
AV itself), it implies the loss of information from other UAVs, which
an be very useful. Local information may lead to the loss of valu-
ble insights from other UAVs, while global information necessitates
fficient communication mechanisms to maintain accurate knowledge
pdates. Therefore, errors in path planning are reduced. According to
revious studies on the state of the art, the system might be employed
n two different ways without clear benefits for any of them. The first
6

tep is to create a single ANN that will be used to control all of the
AVs moving, determining the movement of each one at each time
nd verifying the reward received (Fig. 1). Consequently, if a global
NN approach is chosen, all UAVs will share the same design and
eights, with their behavior determined solely by their present state.
onversely, adopting a local ANN strategy grants each UAV a distinct
NN, resulting in responses influenced by individual design, weights,
nd state. That is, the main objective of the experiments is to determine
hich ANN configuration is better as a controller with respect to the
AVs: one ANN for all UAVs (global ANN), or one ANN for each UAV
local ANN). In both cases, the input data is the same, the information
btained from all UAVs.

.1.3. Rewards
The Reward Function serves as a guiding mechanism within RL

roblems, providing agents with a framework of rewards and penalties
o discern favorable and unfavorable actions. Agents seek to maximize
verall gains, i.e. the summation of all rewards in the episode, even at
he expense of current actions.
The largest reward must be given in order for the UAV to move

o previously unexplored locations. It is also crucial that it grows as
ewer cells remain undiscovered (Eq. (2)). In other words, it follows
Hill-Climbing scheme (Kimura, Yamamura, & Kobayashi, 1995). For
reviously visited cells, another reward is needed. The UAV has a
eward in the event that flying over a cell that has previously been
isited in order to reach an unvisited one is preferable to flying around
t (for example, when there are spurious cells left unvisited). They are
iven the lowest incentive to prevent UAVs from flying into cells that
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they are unable to visit. In these situations, the incentive is the lowest
and the goal is to maximize rewards. Consequently, UAVs learn that it
is best to avoid these situations and opt for the ones that offer higher
rewards, which will allow them to maximize the total reward outcome.

new cell reward = new cell base reward×(1+ 𝑚𝑎𝑥(rows, columns)
non visited cells ) (2)

4.1.4. Memory Replay
The Memory Replay technique is a prevalent method employed in

much of the current research to enhance agents’ learning from their
interactions with the environment. In this approach, the model under-
goes training using a stored set of past observations. These observations
encompass a range of information, encompassing the actions taken by
the agent as well as the corresponding rewards received. This technique
leverages past experiences to enrich the learning process, aiding agents
in better understanding and adapting to their environment. Regularly
reusing experiences increases sample efficiency and helps in stabiliz-
ing the model’s training process (Foerster et al., 2017). The memory
is designed to retain a substantial number of recent observations,
although its capacity is constrained to make optimal use of compu-
tational resources. To manage this limitation, the memory employs
a First-In-First-Out (FIFO) approach, discarding older observations to
accommodate new ones. The memory is capped at a maximum capacity
of 60 elements, ensuring a balance between retaining valuable recent
experiences and efficiently managing available resources.

In some works in the state-of-the-art, each UAV in the group has
a separate memory when using the Memory Replay approach, such
as in the paper of Omoniwa, Galkin, and Dusparic (2022). It records
observations together with the operations the UAV itself has taken in its
memory. The actions of other UAVs are never recorded. This keeps the
information from becoming cluttered. Given that multiple UAVs may
be located at different locations on the map, the fact that an action is
erroneous for one UAV does not always mean that it is improper for
others. Moreover, by combining the observations of all UAVs, one UAV
may discover actions or combinations of actions that can serve other
UAVs later on. The end results might be significantly impacted by the
memory’s size and structure (Liu & Zou, 2018).

4.1.5. Optimization metric
To estimate the goodness of the proposed method, it has been

decided to count the number of actions (also known as movements)
performed by all UAVs in the system (Eq. (4)). The number of actions
performed by a single UAV is the same as the length of its flight path
(Eq. (3)). For a flight path, having too many actions implies higher
energy consumption and errors. For instance, it is worse than another
path with fewer actions and that flies over the same cells.

Some authors in the state-of-the-art opt for smoothing the paths
to make them simpler and better according to an optimization crite-
rion (Correl, 2016). A grid-map will produce paths with several abrupt
turns, but a sampling-based technique will produce paths that are
randomly zigzagged. Implementing an additional algorithm to smooth
the path and reduce some of the sharp turns can notably improve
outcomes. However, it is worth noting that path smoothing may in-
troduce inaccuracies in data retrieval since not all cells covered during
flight may be completely surveyed, potentially affecting precision. This
trade-off between path smoothness and data accuracy underscores the
complexity of optimizing UAV trajectories.

drone𝑖 taken actions = length(drone𝑖 path) (3)

Total actions =
𝑛
∑

𝑖=1
drone𝑖 taken actions (4)

As the desire is to lower the energy consumption for each opera-
ion in order to shorten the load time between processes, UAVs are
onsidered to stop once the task is completed and are not considered
o automatically return to the starting point. Therefore, the energy
7

onsumption of flying back is reduced. e
4.1.6. Completeness criterion
As in any Path Planning problem, it is necessary to know if the

results are correct. In other words, if they meet a completeness crite-
rion (Giesbrecht, 2004). With this criterion, it is possible to quantify
whether each solution obtained is better than the others.

This is a project that seeks to maximize the coverage of a field.
That is why the best way to determine completeness is to measure
how long it takes the UAVs in a swarm to cover an entire map. This
methodology aligns with that of other researchers in the field, who
similarly evaluate various parameters with the overarching aim of
ascertaining whether all regions of a given map have been successfully
surveyed. By employing this comprehensive approach, the project aims
to effectively measure the effectiveness of the UAV swarm in achieving
optimal coverage across the designated area (Albani, Manoni, Arik,
Nardi, & Trianni, 2019; Albani, Nardi, & Trianni, 2017; Qu et al., 2022).

Having a completeness measure that works at the same time as an
ptimization criterion will allow the proposed method to obtain the
est possible path. That is, being able to determine the number of
oves the UAVs make to complete the task enables to quantify how
ood a solution is. Moreover, if a solution fails to cover a map because
t converges too early, it will be discarded.

.2. Experimentation system

As the proposed model for the experiments, a system based on Q-
earning techniques that relies on ANN for better results has been
hosen. The best ANN architecture and the best parameters for all
recise aspects have been sought through a random hyperparameter
earch (Bergstra & Bengio, 2012). Thus, the best possible combination
f parameters to train the ANNs are obtained in order to have the best
ossible results.
An ANN made up of two dense layers (Heaton, 2008; Huang et al.,

017), one with 1013 neurons and a ReLU activation function (Agarap,
018), and the other with 4 neurons and a softmax output func-
ion (Gao & Pavel, 2017), has been chosen through empirical experi-
entation (Fig. 2). The Stochastic Gradient Descend (SGD) (Sutskever,
artens, Dahl, & Hinton, 2013) optimizer was selected as the ANN’s
ptimizer. Two hidden layers have been chosen because architectures
rom one to three hidden layers have been proven to be universal
olutions equivalent to a Turing Machine (Wei, Chen, & Ma, 2022).
hese kinds of networks can approximate any mapping regardless of
he required accuracy, which means it might not be necessary to use
path smoothing stage (Heaton, 2008). The network’s input includes
he initial environment map, the map with visited cells, and the map
ndicating UAV positions. This means the ANN uses existing environ-
ent data without needing extra information. The ANN’s outputs are
-values for actions in a state, adjusted using the softmax function.
here are four distinct Q-values for each movement direction: North,
ast, South, and West.
To meet all the requirements of the Q-Learning issues explained in

ection 4.1.1, an epsilon value (𝜖) of 0.49 has been selected through
preliminary testing process as the probability of making actions at
andom. The factor of reduction for 𝜖 equals 0.93, in order not to
ecrease the value too much and the model continues to learn from
he exploration. The minimal value for 𝜖 is 0.05. The value chosen for
he discount factor (𝛾) is 0.83. All values are selected after previous
xploratory research.
The reward values for the agents are in Table 1. The approach

mploys a dual reinforcement scheme, combining positive and negative
einforcement. New cell discovery is rewarded while revisiting a cell
s penalized. This encourages agents to explore new areas rather than
evisiting known ones. In addition, passing through an already visited
ell is penalized less than passing through a forbidden area. The main
eason behind this behavior is that it may be necessary to have paths
hat cross each other and that is not a mistake. If the rewards were

qual, there is a risk that agents would retrace their steps as it is a
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Fig. 2. Diagram with the proposed ANN model. The three inputs are combined into one and the model calculates the Q-values corresponding to each action for the current state
ike the one proposed in Puente-Castro, Cebrián, Sierra, and Fernandez-Blanco (2021).
Fig. 3. Diagram illustrating the differences in the UAV experience memory system: Fig. 3(a) shows how UAVs write their experiences (one for each step they take) in their own
memories, which will be used to train their own ANNs, so each memory only has experiences from one UAV. Fig. 3(b) illustrates how the UAVs record their experiences in order
in a single memory, which will then be used to train a neural network, mixing the experiences of all UAVs together.
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Table 1
Assigned rewards to the various cell types that each UAV
visits. The initial rewards values were determined from a prior
random exploration (Bergstra & Bengio, 2012) in which the
most advantageous reward combinations were chosen.

Reward

New cell base reward 29.40
Visited cell reward −31.66
Non-visitable cell −45.44

reward maximization problem. Therefore, this situation is penalized in
case it is not avoidable for the cases in which it is essential to cross
paths.

A memory size of 60 actions with their corresponding rewards was
selected for this investigation. This choice is driven by the common
occurrence of UAV mistakes during the initial phases of the process. A
larger memory size is essential to store numerous experiences, consid-
ering the total map cells, enabling effective learning from errors. This
approach facilitates the avoidance of repeated mistakes and contributes
to refining the solution by retraining the model based on the majority
8

of errors. Despite the memory’s limitation to 60 elements, it remains
vital to assess its behavior in relation to the ANN and its impact on
the overall learning process (Fig. 3). Therefore, if it is an ANN per
UAV, each ANN will have its memory with the unique experience of
a single UAV (Fig. 3(a)). Contrarily, when dealing with a single ANN
for all UAVs, it has been decided to use a single collective memory
(Fig. 3(b)). Thus, the network learns the cases faced by all UAVs, and, in
addition, the data are arbitrarily arranged, similar to having a random
buffer in classical Memory Replay (Liu & Zou, 2018). By having the
lements arranged randomly, the model is prevented from memorizing
ovement patterns and learning to generalize flight behavior. In this
ase, the elements are random but there are elements that represent the
xperience of each UAV, not just the shuffled experiences of a single
AV.
In addition to the above, the situation in which the system does

ot find solutions for the given circumstances has been taken into
ccount. Therefore, as a limiting condition for shutdown, the maximum
light time has been set at 30 min. This decision is informed by the
ypical flight autonomy of commercial UAVs, which often operate for
pproximately 30 min. Thus, this duration is deemed the upper limit for
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Fig. 4. Maps used in the flight environments. Obstacles are shown in black. In white are the cells that can be flown over. UAVs must visit as many white cells as possible.
he UAV swarm’s airborne capability, ensuring that the system operates
ithin practical constraints.
To conduct the tests and analyze the results, a set of combinations of
ap sizes with obstacles and UAV count have been defined. The num-
er of actions carried out by each UAV was taken into consideration
hen analyzing the results.

.3. Experiment design

Twenty-five experiments have been created to evaluate the system’s
apabilities, as presented in this paper. The number of UAVs, the
umber of ANNs, and the size of the map vary between each one of
hem.
9

Since these are ANNs with random initialization, different seeds are
tested to have a higher generalization power (Zhang, Ballas, & Pineau,
2018). In addition, for better statistical measurement, the experiments
are repeated 5 times with different seeds to have their mean and
standard deviation.

Most of the studies in Section 2 employ maps with fixed dimensions
(5 × 5, 10 × 10, or 20 × 20 cells), but some also use continuous maps
without cell division. Continuous maps segmented into uniform cells
were chosen over other options for this study. The rationale behind
this decision is the paper’s focus on complete map coverage for data
collection. By employing equally-sized cells, each with identical visita-
tion costs, the objective is to systematically divide the total area into
manageable sections. This approach facilitates efficient data collection
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by ensuring uniform coverage and organized exploration of the entire
map.

The selected flight maps have fewer cells compared to the men-
tioned previous works. This choice is motivated by the consideration
of the cost associated with flying over expansive maps. Given that each
cell necessitates a stop for surface capture, larger maps would require
multiple stops, leading to substantial battery drainage for the UAVs. By
employing fewer cells in map division, the frequency of stops and starts
for each UAV is reduced, resulting in decreased energy consumption.
This strategy aims to optimize energy efficiency during data collection
operations. For this purpose, 5 maps have been defined, ranging in
size from 5 × 5 cells to 9 × 9 cells (Fig. 4). In the design of the
bstacles, the paths were configured in such a way that many changes
n direction were compelled and even backward travel was required.
his is because they force the UAV to take non-linear paths, which are
he ones that have higher energy requirements. In order to establish a
ommon starting point for all maps, the upper right corner has been set.
y doing so, it is intended to replicate the fact that operators always
egin their operations from a corner.
In the case of the 5 × 5 cell map (Fig. 4(a)), it is intended to simulate

he case of tree crops such as olive trees, which are regularly arranged.
o complicate that task, the 6 × 6 cell map has been designed (Fig. 4(b))
o display situations that involve turning the UAVs around. In this way,
he UAVs are forced to move backward.
Both the 5 × 5 and 6 × 6 cell maps are horizontally and vertically

ymmetrical. To test how the UAVs behave outside these conditions, the
× 7 cell map has been designed (Fig. 4(c)). Furthermore, following
his premise, the 8 × 8 cells map has been designed (Fig. 4(d)), which
lso tests the behavior of the system if the obstacles are arranged
iagonally.
The last map to be tested is the 9 × 9 cells map (Fig. 4(e)). In

the previous maps, UAVs could pass through the gaps between the
obstacles. This map tests the behavior of the system if a single large
obstacle has to be circled. In addition, corners have been added to make
it more difficult for UAVs to retrace their steps at some points.

Finally, despite varying the obstacles, the number of cells in the
maps is also varied to test that the system works for any size. Therefore,
the system is tested to prove that it is effective in different situations.

Each chosen map type was evaluated with an increasing number
of UAVs because it is crucial for the system to function with any
quantity of UAVs. Separate tests with 1, 2, and 3 UAVs have been
carried out. Thus, it is demonstrated that the system can adapt to a
variety of UAV numbers. It is also worth highlighting the equivalence
of employing a global or local approach when a single UAV is used.
So, those executions have been referred to as baseline. As a result, it
is assumed that the experiment will begin by controlling a single UAV,
which is the simplest situation.

In this study, the chosen flight environment has fewer cells com-
pared to the mentioned studies. This decision was influenced by the
cost of covering extensive maps, as each cell requires a stop for image
capture, leading to high energy consumption. Dividing the map into
fewer cells reduces stops and conserves energy, although each cell
covers a larger area. Larger captured images offer more contextual
information and are better suited for processing, despite having lower
detail. Adjusting the cell count to the map size is crucial to prevent loss
of information, where a single large cell might miss small obstacles and
be treated as an obstacle itself.

The decision to use atomic movements (North, South, East, and
West) for the UAVs was made to streamline processing. UAVs can ex-
ecute these well-defined actions without the need for additional turns.
This approach also minimizes energy demands, especially in scenarios
with numerous curves that tend to increase energy consumption.

The range of possible movements or actions (𝑎) that UAVs can
take was encoded using integer values from 0 to 3, representing the
directions: North, East, South, and West. This discrete coding simplifies
the representation of movements in the technique and assigns distinct
values to each direction.
10

All these variables are summarized in Table 2. s
Table 2
Summary table with the values chosen for experimentation. All the values have been
obtained through a preliminary testing process.
Variable Value

Neurons First Dense Layer 1013 neurons
Activation Function First Dense Layer ReLU
Neurons Second Dense Layer 4 neurons
Activation Function Second Dense Layer Linear
ANN Output Function Softmax
Epsilon (𝜖) 0.49
Epsilon decay 0.93
Minimum Epsilon (𝜖) 0.05
Discount Factor (𝛾) 0.83
Memory Size 60 actions
Maximum Flight Time 30 min
Maximum Number of Episodes 30 episodes
Possible actions North, East, South, West

5. Results

Table 3 shows the results obtained from the experimentation. For
ach map size, the mean and standard deviation of actions taken for
ach ANN configuration when faced with different numbers of UAVs
re compared. To better show the capabilities of the proposed model
known as Proposed in Table 3) it is compared with the model pro-
osed by Puente-Castro et al. (2022), known as Control, which already
emonstrated its capabilities on obstacle-free maps. It can be seen that
he means of the results of the proposed model are lower than those of
he model with which they are contrasted. This can be interpreted as an
ndication that the paths take fewer actions to complete the operation.
herefore, they are better and more efficient.
With regard to the number of UAVs, it is evident that as the number

f UAVs increases, the required number of actions decreases. This
upports the notion that coordinated movements among cooperative
AV groups enhance operational speed and efficiency. However, this
eduction is not strictly proportional to the number of UAVs, as it is
nfluenced by factors such as map size and obstacles, which vary across
ifferent scenarios. For example, the difference in actions required for
he 8 × 8 map is greater in all cases than for the 7 × 7 map despite
eing a map with only 15 more cells.
In the 5 × 5 cell map (Fig. 4(a)) both models present a similar

ehavior, but the proposed model finds the solution with fewer actions.
he local ANNs exhibit higher speed and lower variance compared to
lobal ANNs. The lower variance implies more consistent and optimized
aths, showcasing the model’s robust behavior. This same pattern is
rue in the 6 × 6 cell map (Fig. 4(b)). Moreover, in this second map,
he obstacles are not islands to go around but form corners that force
he UAVs to retrace their steps. Having to retrace their steps is what
auses such a large increase in the average movement despite having
nly 11 more cells, of which 4 are new obstacles.
There is a trend change in the 7 × 7 cell map (Fig. 4(c)), not only

ecause there are more obstacles and the map is larger, but also because
he obstacles do not present horizontal or vertical symmetry. In both
odels, the scenarios involving 2 UAVs exhibit a sudden increase in
ovement, suggesting potential disruption of paths due to interaction
etween the UAVs. Interestingly, the proposed global model yielded the
owest mean movement compared to the local model. However, these
lobal paths display higher variance, indicating reduced robustness
ompared to the local ANN solution.
For the 8 × 8 cell map (Fig. 4(d)) there is no longer such an abrupt

rowth in the means of the actions of the paths. In this specific scenario,
he proposed model does not achieve the lowest mean movement for 2
AVs. However, it stands out for having the lowest variance, indicating
reater accuracy in its computations.
Finally, in the 9 × 9 cell map (Fig. 4(e)) both models behave
imilarly. It should be noted that the results are similar to those of the
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Fig. 5. Plot of the universal confidence interval resulting from Tukey’s test. The results for the distributions with statistically significant results are displayed. In the 𝑦 axis,
istributions are listed. In the 𝑥 axis, the average actions taken for the flight paths of each distribution are displayed.
Table 3
Table with the mean and standard deviation of total actions taken by the swarm of UAVs for each map and for each ANN configuration.
Generally, the more UAVs in the swarm, the fewer actions the swarm takes to fly over the entire map.
Map size Number of UAVs ANN configuration

Local control Global control Local proposed Global proposed

5 × 5
Baseline 283.20 ± 97.79 189.00 ± 91.06
2 UAVs 147.60 ± 38.68 153.80 ± 56.42 79.40 ± 7.82 86.60 ± 34.62
3 UAVs 76.60 ± 53.26 100.60 ± 51.76 56.20 ± 21.32 61.60 ± 47.26

6 × 6
Baseline 503.60 ± 195.34 212.60 ± 49.42
2 UAVs 145.40 ± 24.93 232.60 ± 189.49 123.00 ± 12.98 230.00 ± 156.62
3 UAVs 122.00 ± 55.29 139.60 ± 51.71 127.20 ± 69.83 135.60 ± 51.08

7 × 7
Baseline 523.60 ± 127.93 491.20 ± 15.61
2 UAVs 384.80 ± 112.3 537.40 ± 425.41 348.80 ± 151.46 278.40 ± 143.34
3 UAVs 199.40 ± 66.09 292.20 ± 181.60 166.60 ± 56.00 151.20 ± 72.70

8 × 8
Baseline 1011.00 ± 258.16 1367.80 ± 543.17
2 UAVs 700.00 ± 221.08 611.80 ± 484.85 757.60 ± 127.29 654.80 ± 285.69
3 UAVs 681.80 ± 192.50 582.00 ± 268.86 533.60 ± 369.07 675.8 ± 387.96

9 × 9
Baseline 1332.00 ± 804.16 2264.60 ± 1148.34
2 UAVs 980.40 ± 522.45 1107.60 ± 157.47 1232.00 ± 573.74 1087.20 ± 549.05
3 UAVs 645.00 ± 203.67 690.60 ± 308.33 564.40 ± 210.77 761.00 ± 297.29
b
p

8 × 8 map despite being larger, so it can be understood that the layout
of the obstacles is more influential to the size of the map.

Statistical tests are performed at a significance level of 𝛼 = 0.1.
First, a Shapiro–Wilk (Razali, Wah, et al., 2011) test of normality
was performed to find out which statistical significance test can be
applied. Not all distributions appear not to follow a normal disposition
(Table 4). This phenomenon is more noticeable in scenarios involving
ultiple UAVs as opposed to a single UAV. The reason behind this could
e the interference caused by one UAV’s path on the trajectories of
thers, whether it is due to prior passage through a cell or simultaneous
ccupancy of the same cell. Essentially, the movement of one UAV has
n impact on the paths of both itself and the other UAVs, creating a
omplex interplay of interactions.
Since not all the distributions obtained do not follow a normal

istribution, a Kruskal–Wallis significance test (McKight & Najab, 2010)
as used to determine whether they follow significantly different dis-
ributions. For this test, a significance level (𝑎𝑙𝑝ℎ𝑎) equal to that used
or the normality tests was used.
According to the Kruskal–Wallis test, there are distributions that are

ignificantly different. It is necessary to determine which are signifi-
antly different from each other, so a series of Tukey’s tests (Tukey,
949) was performed to find out which are significantly different from
11

ach other. The same level of significance was also used for the tests. C
Table 4
Table with the p-values of the non-normal distributions resulting from performing the
Shapiro–Wilk test (Razali et al., 2011).
Model Configuration Number of UAVs Map size p-value

Control
Global

2 UAVs 6 × 6 0.095

3 UAVs
5 × 5 0.019
7 × 7 0.026
8 × 8 0.017

Local 3 UAVs 6 × 6 0.079
7 × 7 0.075

Proposed

Global 2 UAVs 7 × 7 0.066
8 × 8 0.094

3 UAVs 5 × 5 0.011

Local 2 UAVs 5 × 5 0.049
8 × 8 0.053

3 UAVs 6 × 6 0.057

The cases in which there has been statistical significance are those
resulting from experimenting with 2 UAVs and maps of 5 × 5. As can
e seen in Fig. 5, the indicated distributions show differences if the
roposed model is compared with the one used for the contrast (Puente-
astro et al., 2022). These show around half of the average number
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Fig. 6. Sensitivity analysis of the evolution of the models tested under equal conditions. In it, it can be seen that some models have a more stable behavior before smaller maps
ut that they grow a lot in larger maps. In addition, other models have a less pronounced growth as the size of the maps and the number of obstacles increase.
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f actions (𝑥 axis) in the proposed model than with the one used to
ontrast the results. It may be indicative of the models having non-
ignificantly different behavior in all scenarios except for the indicated
ases of 2 UAVs on 5 × 5 cells maps. Hence, opting for the proposed
odel is advantageous due to its tendency to offer shorter or at least
qually sized paths. Even though there is no significant difference,
hese marginal enhancements can prove valuable in practical scenar-
os. Shorter paths, no matter how minor the difference, contribute
o energy savings during flight, making them beneficial in real-world
pplications.
Both the proposed model and the one involved in the contrast

how no significant differences when comparing their global and local
ariants for the same model. This suggests that the choice between
he two approaches might not yield substantial variations in results.
onsequently, opting for local models for all UAVs appears favorable,
s it typically involves fewer steps and offers comparable outcomes.
The behavior of the contrasted models can be seen in an alter-

ative way by showing a sensitivity analysis between them, as other
uthors do in the field of RL in economics (Pröllochs, Feuerriegel,
Neumann, 2016). The tested models exhibit structural similarities,
et their diverse parameters and configurations lead to substantial
ehavioral differences. These variations, while not easily discernible
rom tabulated data, become evident through sensitivity analysis. By
bserving how results evolve under different circumstances, we gain
nsights into the models’ behavior. For this purpose, it was decided to
ook at the evolution of the average number of steps required for 3
AVs as the complexity of the maps increased (Fig. 6).

. Conclusions and future work

This study proposes a new system that employs Q-Learning and
NNs with two dense layers to control UAV swarms in maps with
bstacles. By optimizing flight paths and reducing actions as the UAV
warm grows, the system offers adaptability across different devices.
his shift towards an autonomous UAV swarm provides cost savings,
ime efficiency, and improved fault tolerance compared to single UAVs
r manual management.
Since it is not necessary to know the spatial relationship of the

bstacles with the rest of the environment, it can be understood that
he sequence of movements and the position of the UAVs in the swarm
12
s more important. Thus, the actions of a single UAV affect the paths
f the others, since it modifies the reward values perceived by the
thers. Additionally, unlike other published work in this field, it is not
ecessary to include targets or other metrics to guide the computation
f paths.
The system has certain limitations. Firstly, the UAV movements are

reated atomically, which might not be ideal for tasks needing smoother
aths and efficient data capture. The system also does not consider
arying UAV heights, potentially affecting path calculations and the
ccuracy of rewards based on data quality. However, UAVs generally
aintain altitudes that accommodate disturbances and adjusting height
or obstacles like birds would involve only minor changes. Despite these
imitations, the system achieves satisfactory results across different
light heights.
This work provides a basis for further investigation on UAV swarms

or Path Planning, particularly concerning experiments with compact
ully-connected ANNs in obstacle-ridden maps. Further investigations
ould encompass more intricate environments like 3D maps, allowing
AVs to execute diverse motions including pitch and roll. Enhance-
ents might involve implementing actions like stopping to mitigate
ollision risks in intersecting paths.
Enhancing movement precision can entail increased system com-

lexity. For instance, integrating ANNs for distinct functions could be
xplored. The combination of multiple ANNs offers the potential to
ncorporate additional flight capabilities, like altitude adjustments or
ilting. Employing multiple ANNs to coordinate composite movements,
uch as simultaneous ascent and turns, may lead to improved accuracy
nd quicker outcomes.
The most important improvement is to achieve a system that allows
greater variety of movements. For example, these actions can be
ombinations in different degrees of the above. The ‘‘stop’’ command
ould even be used as an action. Having more actions and some
ombined ones makes it more difficult to count the paths, but it can
mprove the precision of the movements. In this way, the data capture
s optimized and the risk of maneuvers is reduced.

ode availability

Source code and a Docker container are available at:
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https://github.com/TheMVS/UAV_SWARMS_RL_FIXED_OBSTACLES
MAPS

https://hub.docker.com/repository/docker/themvs/uav_swarms_rl_
fixed_obstacles_maps/
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