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Abstract

Feature selection ensemble methods are a recent approach aiming at adding di-
versity in sets of selected features, improving performance and obtaining more
robust and stable results. However, using an ensemble introduces the need for
an aggregation step to combine all the output methods that conform the ensem-
ble. Besides, when trying to improve computational efficiency, ranking methods
that order all initial features are preferred, and so an additional thresholding
step is also mandatory. In this work two different ensemble designs based on
ranking methods are described. The main difference between them is the order
in which the combination and thresholding steps are performed. In addition,
a new automatic threshold based on the combination of three data complexity
measures is proposed and compared with traditional thresholding approaches
based on retaining a fixed percentage of features. The behavior of these meth-
ods was tested, according to the SVM classification accuracy, with satisfactory
results, for three different scenarios: synthetic datasets and two types of real
datasets (where sample size is much higher than feature size, and where feature
size is much higher than sample size).
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1. Introduction

In recent years the size of the datasets used for machine learning has in-
creased considerably, with the result that feature selection (FS) has become
an essential preprocessing step for many data mining applications. Since FS
reduces storage needs and removes irrelevant and redundant information, it
improves the computational time needed for the machine learning algorithms.
Several studies have demonstrated that F'S can greatly improve the performance
of subsequent classification [1, 2, 3]. Many approaches and algorithms [4, 1, 5]
have been employed for this task, in the quest for more robust, compact and
high-quality feature subsets.

To evaluate the features of a dataset, two different general approaches may
be used: (i) individual evaluation and (ii) subset evaluation [6]. Individual eval-
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uation methods, also known as rankers, assign a level of relevance to each feature
and return an ordered ranking of all the features. Although this approach is not
capable of eliminating redundant features, it notably improves computational
performance over the subset evaluation approach. Subset evaluation generates
successive subsets of features that are iteratively evaluated, using an optimality
criterion, until the final subset of selected features is obtained. Although this
approach has the advantage of detecting feature redundancy, it is computation-
ally less efficient.

Although machine learning methods traditionally have used a single learning
model to solve a particular problem, recently it has been shown that combining
multiple different models can improve results. This approach, called ensemble
learning, is based on the supposition that combining the output of multiple ex-
perts is better than using the output of any single expert [7, 8, 9]. Analogously,
while FS is more frequently based on using a single algorithm, lately a few
works have adopted the idea of ensemble learning for this task [10, 11, 12]. An
ensemble for F'S works by combining the outputs of several F'S methods, aggre-
gating partial results to obtain more robust and stable features for subsequent
learning tasks. Two general strategies can be used to introduce the key concept
of diversity in the ensembles. In the heterogeneous approach several different
FS algorithms are used, whereas the traditional homogeneous approach uses
different partitions of the training dataset fed to the same algorithm and pro-
ducing different results that are also combined. This second strategy is the one
exploited by the well-known bagging and boosting algorithms [13, 14]. Diversity
and robustness are thus achieved through the use of multiple feature evaluation
criteria [15]. Although both approaches—in which diversity is the key concept—
are of interest, the heterogeneous strategy is of most interest when the user does
not have the technical knowledge necessary to select the most suitable algorithm
for their problem. Ensembles of filters have previously been used for different
scenarios and also for different classifiers, with outputs combined by means of
common simple voting [16, 17]. Ensembles of feature rankers have also been
used for different applications [18, 19], with the single ranked features combined
in a global ranking using different approaches. Other works propose a feature
ranking scheme for an ensemble of multilayer perceptrons (MLPs) [20], applied
with a stopping criterion based on the Out-of-Bootstrap (OOB) estimate [21].

In this study, the ensemble learning idea was applied to the FS process
and different ensemble configurations and designs were executed and compared.
An heterogeneous ensemble approach was implemented, aimed at reducing the
variability induced by using individual F'S methods and taking advantage of the
strengths and overcoming the weaknesses of the individual methods. In addition,
ranker methods were used to configure the FS ensemble, since rankers can reduce
the size of data without compromising the time and memory requirements of
machine learning algorithms.

Since we were working with rankings, at some point we needed to establish
a threshold to retain only the relevant features and to combine the rankings
obtained by the different methods configuring the ensemble. In this respect, the
main novelty of our proposal herein is the use of two different models, depending



on whether thresholding was performed before or after combination (Design TC
and Design CT). The performance of each model is analyzed and compared to
the other according to the SVM classification accuracy. Since establishing an
adequate threshold is not trivial, we also propose a methodology for establishing
automatic thresholds based on measurements of data complexity [22] for feature
rankings, both in Design T'C' and Design CT.

To sum up, the main contributions of our proposal are: (i) to free the user
from having to select a specific FS method that works well with their dataset,
given that most methods produce variable results depending on application
characteristics; and (ii) to free the user from having to select a specific threshold
and having to experiment with different percentages of retained features. The
outcome is completely automatic F'S methods that are independent of the nature
of the dataset in that they obtain a generic threshold that runs smoothly in
different scenarios and extracts the best subset of features from each dataset
without having to pre-set threshold in feature percentages.

We experimented with a large and assorted suite of datasets, including ar-
tificial datasets, classical real datasets and microarray datasets. Based on our
results, we state conclusions and propose guidelines of possible interest for future
applications of ensembles for F'S purposes.

The remainder of this paper is organized as follows. Section 2 describes the
rationale under the design of the two ensemble approaches proposed; Section 3
is an introduction to the proposed method and its different components: ranker
methods, combination (also called aggregation) methods, threshold values and
classifier method used; Section 4 describes the proposed scenarios, experimental
design and experimental results; and finally, Section 5 summarizes our conclu-
sions and recommendations and proposes new lines of future work.

2. Information Fusion design

In this study an ensemble of F'S methods was used with the aim of obtaining
more consistent, efficient and robust solutions than those yielded by individual
methods. Using an ensemble means that the performance variance of obtain-
ing a single result is reduced; in addition, the combination of multiple subsets
might help to remove less relevant features [10, 11, 12]. The approach also has
the advantage of not requiring the user to understand the technical details of
individual algorithms and their suitability for certain datasets. We tested differ-
ent ensemble methods and different numbers of ranking techniques to configure
an ensemble (described in [23, 11]), formed of six different FS methods—the
combination that produced the best results.

There are several ways to design an ensemble [24] and the first decision is to
select the FS methods. In our proposal, rankers were used since computational
efficiency was our priority. The different FS rankers were individually applied
to a particular dataset and the single final subset was obtained by combining
the obtained outputs, for which reason a combination method was chosen. The
use of rankers made it mandatory to apply a threshold to limit the number of
selected features and so ensure efficiency in the subsequent learning methods.



Different designs were obtained depending on the order of the combination and
thresholding operations. Finally, of other possibilities for the ensemble [24,
11], we opted for an ensemble of n different ranker methods applied to the
same training data, with two different designs: (i) rankings combined before
thresholding; and (ii) a threshold cutoff applied before combining rankings.

2.1. Design CT: combination followed by thresholding

The generic design of an ensemble of feature rankers is based on obtaining the
result of each ranker method —an ordered ranking— using an aggregator to fuse
the rankings into a single final ranking and subsequently applying a threshold
cutoff to obtain a final practical subset of features [7]. The pseudo-code for this
approach is given in Algorithm 1.

Algorithm 1: Pseudo-code for Design CT: combination followed by
thresholding

Data: N — number of ranker methods
Data: T'— number of features to be selected

Result: P — classification prediction

for each n from 1 to N do
| Obtain ranking R, using ranker method 7y,

end

R = Obtain the final ranking by joining all R,, rankings using the Min
combination method.

T = Select a threshold value cutoff ¢ from those available and apply.

S = Select the T top attributes from R.

Build the classifier with the selected attributes S.

Obtain prediction P.

AW N =

o N o o

2.2. Design TC: thresholding followed by combination

We redesigned the generic ensemble (i.e. Design T'C') by reversing the order
of the combination and thresholding steps. Therefore, the result of each ranker
method was obtained as a first step, as in the generic design. A threshold
cutoff was selected and applied to each single output to obtain individual partial
subsets of features. Finally, these subsets were joined to achieve a single final
subset of features. The pseudo-code for this approach is given in Algorithm 2.

3. Proposed methodology

As with most learning algorithms, each FS method has its strengths and
weaknesses and performance depends on the characteristics of the datasets to
which the method is applied. To optimize performance, some knowledge of ex-
isting algorithms is required to be able to select an appropriate method for a



Algorithm 2: Pseudo-code for Design TC: thresholding followed by com-
bination

Data: N — number of ranker methods
Data: T, — number of features to be selected

Result: P — classification prediction

for each n from 1 to N do
Obtain ranking R, using ranker method 7,
T,, = Select a threshold cutoff ¢ from those available and apply to each R,,.
S, = Select the T, top attributes from each R,.

end

C' = Select a combination method.

S = Obtain the final subset by combining all S,, subsets using C'.

Build the classifier with the selected attributes S.

Obtain prediction P.
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particular dataset. One possible solution to this problem is to use an ensem-
ble of FS methods that performs acceptably well, regardless of the nature of
the problem. Several FS methods can be used, with their partial results com-
bined as a single result. Several decisions need to be made, however, regarding
the specific FS and combination methods to be used. Below we first describe
rankers, combination methods, thresholds and classification methods and then
we describe the ensemble designs derived from the two different combination
and thresholding sequences.

3.1. Feature selection methods

Of the many F'S methods described in the literature, four filter methods and
two embedded methods were chosen. This set of ranker methods was selected
because (i) they are amply used by researchers for FS purposes; and (ii) the fact
that they are based on different metrics ensures diversity in the final ensemble:

e Chi-Square [25] (filter). This univariate filter, based on the x? statistic,
independently evaluates each feature with respect to the classes. The
higher the chi square value, the more relevant the feature with respect to
the class.

e Information Gain (InfoGain) [26] (filter). One of the most common uni-
variate methods for attribute evaluation, this filter assesses features ac-
cording to their information gain considering a single feature at a time.

o Minimum Redundancy Mazimum Relevance (mRMR) [27] (filter). This
filter uses mutual information to select the most relevant features for the
target class that are also minimally redundant, i.e., it selects features that
are maximally dissimilar.

o ReliefF [28] (filter). The original Relief filter [29] works by randomly sam-
pling an instance from the dataset and then locating its nearest neighbor



from the same and opposite class. The values of the nearest neighbor at-
tributes are compared to the sampled instance so as to update relevance
scores for each attribute. The rationale is that a useful attribute should
differentiate between instances from different classes and should have the
same value for instances from the same class. ReliefF' has the added ability
of dealing with multiclass problems and is also more robust in dealing with
incomplete and noisy data. This method can be applied in all situations,
has low bias, includes interaction between features, and may capture local
dependencies that other methods miss.

e Recursive Feature Elimination for Support Vector Machines (SVM-RFE)
[30] (embedded). This embedded method trains an SVM classifier itera-
tively with the current set of features. The least important features are
then removed by an RFFE process using weight as the ranking criterion.

e Feature Selection-Perceptron (FS-P) [31] (embedded). This embedded
method is based on a perceptron, a type of artificial neural network that
can be viewed as a linear classifier, i.e., as the simplest kind of feedforward
neural network. It consists of training a perceptron in a supervised learn-
ing context. Interconnection weights are used as indicators of the most
relevant features for ranking.

In a previous publication [11, 12], a preliminary diversity study was carried
out on two classical datasets called SpamBase and Isolet (described in Section
4.1 below). This study, aimed at checking whether the rankings obtained by
the different methods were substantially different, consisted of comparing the
rankings obtained by the FS methods forming the ensemble using Spearman’s
rank correlation coefficient [32].

The results obtained (with Spearman p values far from 1 reflecting equality in
the rankings) pointed to a considerable difference between the partial rankings,
indicating that the FS rankers chosen for the ensemble would be sufficiently
diverse in their behavior.

3.2. Threshold values

As previously mentioned, the F'S methods used in this study are all rankers
(they sort all features) and so it was necessary to establish a threshold cutoff
to obtain a practical subset of features. Most studies in the literature use
thresholds that retain different percentages of features [33, 1]. Since threshold
values are dependent on the particular dataset being studied, several attempts
have been made to develop a general automatic threshold [34, 35, 12]. The
idea of establishing an automatic threshold [23, 12] is based on using dataset
complexity measures to obtain an optimal number of features to be used for
subsequent classification purposes. That idea is taken up and expanded in
this study for new scenarios and new designs. Note that the time required to
calculate automatic thresholds is almost negligible, especially for datasets with
few classes (see Section 4.2).



We carried out an exhaustive study that compared traditional fixed thresholds—

taken as our baseline—with our proposed automatic approaches, both for Design
CT and Design TC. The automatic approach for the thresholding step (which
was already described for Design CT elsewhere [23]) can be applied similarly
on Design TC. The approach individually calculates the complexity measure for
each feature of the dataset and, finally, it establishes the final subset of features
according to the following formula:

e=axCM+(1—a)xp (1)

where « is a parameter with a value in the interval [0,1] that balances the
importance of both the error obtained and the number of features retained,
(o = 0.75 empirically for this work), CM is one of the complexity measures
described below (F'1, F2, F3 or CF') and p is the percentage of features retained
with a value in the interval [0,1]. In this work, the feature percentages were
calculated for batches of loga(n) features. That is, we calculated e using only the
first batch of loga(n) features, and then calculated e for the batch of 2 X loga(n),
selecting the best result for both. A smaller complexity value e represents an
easier problem.

Tested to delimit data dimensionality were seven different threshold values,
four of which are automatic thresholds based on complexity measures:

o Fized thresholds. 50%, 25% and 10% fixed thresholds were used to se-
lect the top 50%, 25% and 10% of the features of the ordered ranking
respectively.

e Mazimum Fisher’s discriminant ratio (F1). This measure is defined for a
multidimensional problem as:

22:173‘:1,1‘75]' pip; (i — .uj)z
> i1 pio} ’
where p;, 02, and p; are the mean, variance and proportion of the ith class

¢, respectively. In this work the inverse of the Fisher ratio (1/F1) has been
used, such that a small complexity value represents an easy problem.

F1=

(2)

e Volume of overlap region (F2). Let the maximum and minimum values
of each feature f; in class ¢; be maz(f;,c;) and min(f;, c;). The overlap
measure F2 is thus defined as:

F2_Hmax(0,MINMAXZ-—MAXMINZ-) (3)
N MAXMAX; — MINMIN; ’

where i = 1,...,d for a d-dimensional problem, and

MINMAX; = MIN(maz(fi,c1), maz(fi,c2))
MAXMIN; = MAX (min(f;,c1), min(f;,c2))
MAXMAX; = MAX (max(f;,c1), maz(fi,c2))
MINMIN; = MIN(min(f;,c1), min(fi,c2))



For multiclass problems, F2 is computed for each pair of classes, the
absolute value is obtained for all of the classes and, finally, the product
of all these values is returned as output. A low value for this measure
means that the features can discriminate between the instances of different
classes.

o Mazimum (individual) feature efficiency (F3). In a procedure that re-
moves unambiguous points falling outside the overlapping region in each
dimension, the efficiency of each feature is defined as the fraction of all re-
maining points separable by that feature. The maximum feature efficiency
F3 is defined for a d-dimensional problem as:

_ (Ui fzji € [MINMAX;, MAXMIN;) : ¢; € D}|

S

F3 (4)

where z; is each of the examples in the training set D, x;; the value of
example x; for feature 7, and s the total number of examples in the training
set D.

For multiclass problems, F8 is computed for each pair of classes, the
absolute value for each is obtained and, finally, the maximum of all these
values is returned. In this work the inverse of this measure (1/F3) has been
used, such that a smaller complexity value represents an easier problem.

e Complezity fusion (CF). This automatic threshold selects an optimal num-
ber of features according to a combination of 1/F1, F2 and 1/F3 com-
plexity measures, using an average of the three as the complexity value:

1 1
it F2+ 73

F=
¢ 3

(5)
According to definition of complexity measures used in this calculation, a
small complexity CF value represents an easy problem. In addition, due
to F'1 measure can achieve any positive real value and F2 and F'3 take
values in the range [0, 1], CF measure can obtain any real positive value,
where FI measure value may dominate over the other two measures in
the final result.

3.3. Combination methods

The different ranker methods had to be combined in order to produce a
single final output. Therefore, according to when the union occurs—before or
after thresholding—two different kind of combination stages were implemented:

o Aggregation or ranking combination: This approach was used on the De-
sign C'T ensemble, i.e. when the FS method outputs are combined before
applying thresholding. This kind of combination method performs a fusion
of several rankings using some reduction function. A single final ranking is
thus the output of the union method that combines all the input rankings.



For this study, we used the Minimum union method (Min) to combine the
different input rankings. This method, based on simple arithmetic opera-
tions, selects the minimum of the relevance values yielded by each ranking
in the F'S ensemble [36]. Despite its simplicity, this approach achieved the
best results for DNA microarray datasets in a previous work [37].

The behavior of this method can be illustrated with a simple example.
Imagine that we apply an ensemble of four different ranker methods to
a dataset with five features {a,b,c,d,e}. As can be seen in Table 1, we
obtain four different rankings of features {R;, R, R3, R4}, one for each
ranker method in the ensemble. The last column in the table shows the
calculations made by the Min method, which computes the best value
achieved by each ranking along the different rankings (where best means
the highest position). Note that using this method can result in ties
between features, so elements that are tied are returned to their original
position. Thus, in this example, the Min method returns the ranking
{a,b,e,c,d}.

Element | Ry Rz Rs Ra | Rumin
a 1 3 1 1 1
b 2 1 2 5 1
c 3 5 3 4 3
d 4 4 5 3 3
e 5 2 4 2 2

Table 1: Example of how the Min ‘aggregator’ works with multiple rankings.

Subset combination: This was used for the Design TC ensemble, i.e. when
FS method outputs are thresholded before combination. In this case, sub-
sets are fused and the ranking order is therefore not taken into account.
Seven different combination methods were used, grouped into two cate-
gories: (i) methods that fuse all subsets (U1-U6); and (ii) methods that
fuse the least complex subsets (L&). These methods are described as
follows:

1. Fusion of siz subsets (U1-U6). The fusion of six subsets (a subset
for each FS method) merges the features of as many subsets as the
number of fusion methods (1 to 6). The fusion method Ul obtains a
final subset by fusing all the subsets, while U6 obtains a final subset
through the intersection of six subsets. Fusion methods U2, U3, U4
and U select the features that appear simultaneously in at least 2, 3,
4 and 5 subsets, respectively. So, U; C U;,Vi > j where ¢,5 =1...6
and U; # {0},i = 1...6 provided that the subset was selected at
least by ReliefF. The rationale for this decision to use the ReliefF’
method as a base for the ensemble is that its use is recommended
when the nature of the dataset is unknown [1].



The behavior of this method is illustrated with a simple example.
Imagine that we apply an ensemble of six different ranker methods
and an automatic threshold to a dataset with five features {a, b, ¢, d, e}.
As can be seen in Table 2, we obtain six different subsets of features
{51,852, 53,54,55,5}, one for each method in the ensemble. No-
tice that Sy corresponds to results obtained by ReliefF’ method and
therefore they will be used as a base in the final results with the aim
of avoiding empty subsets and improving the final results. The six
columns in the right of the table illustrate the calculations made by
the different UI-U6 methods.

Si1 S2 S3 Si Ss Se || Ul U2 U3 U4 U5 U6

a a a a a a a a a a a a
c c b d d d b c d d d
e d d e c d e e

e e e

Table 2: Example of how Fusion of subsets (U1-U6) works with multiple subsets.

2. Fusion of the three least complex subsets (L3). This combination

method is based on selecting the three least complex subsets—according
to CF complexity measure (see Section 3.2)—and joining them to se-
lect all their features.
A simple example explains this method. Imagine that we apply an
ensemble of six different ranker methods and a automatic threshold
to a dataset with five features {a,b, ¢, d,e}. Each feature has a com-
plexity value assigned according to CF complexity measure, and this
value is used to calculate subset complexity. For this example the
following values were set: a = 0.5, b = 0.3, ¢ = 0.7, d = 0.2 and
e = 0.9. Final subset complexity is obtained by adding the indi-
vidual complexity value for each feature in the subset and dividing
this value by the number of features in the subset (last row in Ta-
ble 3). As can be seen in Table 3, we obtain six different subsets of
features {S1, 52,53, 54, S5, 56} with six different subset complexity
values, one for each method in the ensemble. Finally, the subsets
with the three lowest complexity values (the shaded columns in the
table) are joined to obtain a unique single subset, as illustrated in
the last column of Table 3.

3.4. Final ensemble configuration

As indicated in Section 2, we developed two different ensemble designs, de-
pending on the order of the combination and thresholding steps. Design CT,
indicating the specific ranker methods, “aggregators” or combination methods
and threshold values used in this study is depicted in Figure 1, while Design
TC is depicted in Figure 2.
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Table 3: Example of how Fusion of the three least complex subsets (L8) works with multiple
subsets.

3.5. Classification method

To compare the accuracy results obtained by our proposed methods, we used
a Support Vector Machine (SVM) [4] algorithm. The SVM classifier is based on
the idea of Structural Risk Minimization (SRM) [38], which has received much
attention in recent years [39, 40], given that, in a large number of applications,
it performs better than traditional learning techniques such as neural networks
[39]. In a comparison of the performance of different classifiers for ensemble
results [12], SVM showed the best outcomes, which is why it was used in this
study. Note that the goal of this study was not to test the influence of the clas-
sifier, but to determine a suitable automatic threshold for rankings of features
obtained by the ensemble.

3.6. Statistical tests

Statistical tests were conducted with the aim of comparing the results ob-
tained by the different methods. We first generated the fitness measure F' [41]
that combines both classification test error (e) percentages and proportions of
selected features (p). The fitness of an individual method m, F,, is given by:

Fn=a(l—¢+(1-a)x(1-p), (6)

where a (0 < o < 1) is a parameter that balances the influence of both the above
factors. In this study o was set to a« = 5/6, so as to give greater importance to
classification error results than to the number of features.

The fitness measure F' was used to obtain average ranking tables (Table
13 and Table 14) for the FS methods [42], based on statistical results from
Friedman [43, 44], Bonferroni-Dunn [45], Holm [46], Hochberg [47] and Hommel
[48].

We also used graphical representations of the Nemenyi test for post-hoc test-
ing (critical difference diagrams [49]) so as to obtain a visual representation of
the results (Figure 8 and Figure 16). In these diagrams, the top line repre-
sents the axis on which the average rankings of methods are drawn, with those
appearing on the right hand side (lowest rankings) performing better. On com-
paring all the FS methods, the groups of methods that were not significantly
different were connected. We also show the critical difference (CD) above the
graph.
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4. Experimental study

An exhaustive experimental study was carried out to test the threshold ap-
proaches in different scenarios.

4.1. Scenarios

Three different types of datasets were tested (synthetic, classical and mi-
croarray), so as to cover different scenarios in terms of, for instance, the pres-
ence of noise, correlation between features and ratios between sample and feature
sizes. All these datasets have numerical attributes:

1. Synthetic datasets (Type 1), for which feature relevance was known
in advance. The correct output was used as a reference baseline and
all samples were used as training data. Three different feature relevance
categories were considered:

o Relevant: A feature is relevant if its value varies systematically with
category membership [50].

e Redundant: A feature is redundant if it is highly correlated with one
or more of the other features [51].

e Irrelevant: A feature is irrelevant if it is not correlated with or pre-
dictive of the class; otherwise it is useful [51].

There are several reasons for initially testing new F'S methods on synthetic
datasets [52]:

e Controlled studies can be developed by systematically varying chosen
experimental conditions, e.g. adding more redundant features in the
input, as this tests the strengths and weaknesses of the algorithms.

e Previous knowledge of optimal dataset features allows full control
of the experimental conditions, meaning that the closeness to any
solution can be assessed automatically and with confidence.

In this study, eleven different synthetic datasets were analyzed, covering
a large suite of problems (data nonlinearity, noise in the inputs and in
the target, increasing number of irrelevant and redundant features, etc).
Additionally, the fact that some of the datasets had a significantly higher
number of features than samples implied an added difficulty for the FS
methods. Parts of these datasets have been used previously [1, 53] to test
methods and algorithms, which has the added advantage that evaluation
can be performed regardless of the classifier used. Table 4 shows the dif-
ferent problems covered by each dataset, as well as the number of features
and samples and the relevant attributes which should be selected by the
FS methods (for further details see [1]). These datasets were used first in
our experimental study to identify similar performances between methods
and so reduce the number of subsequent experiments with real datasets.
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Table 4: Synthetic datasets used in the experimental study.

Dataset Samples Features Relevant Microarray
features

Corral-100 500 100 1-4

Led-100* 500 100 1-7

Monk1 500 100 1,2,5

Monk2 500 100 1-6

Monk3 500 100 2,4,5

XOR-100 500 100 1,2

Parity3+3 500 100 1-3

SD1? 300 4000 G1,Gs v
SD2? 300 4000 | Gy — Gy v
SD3? 300 4000 | G1 — Gs v

1 Led-100 was used without noise in the inputs (N = 0) and
with 15% noise (N = 15).
2 G; means that the FS method must select only one

feature within the i-th group of features.

2. Classical datasets (Type 2), for which the number of samples is higher
than the number of features. Five popular datasets were chosen (Table
5). The numbers of samples and features range from 1484 to 67557 and
from 8 to 617, respectively, and the datasets represent both binary and
multiclass problems. These datasets also reflect issues that may arise
in real problems, such as missing values or nonlinearity (as happens in
Spambase and in Madelon, respectively). Ten-fold cross validation was
applied to these datasets and the average error across all ten trials was
computed.

Table 5: Classical datasets used in the experimental study.

Dataset Samples Features Classes Download

Spambase 4601 57 2 | UCI repository [54]
Madelon 2400 500 2 | UCI repository [54]
Connect4 67557 42 3 | UCI repository [54]
Isolet 7797 617 26 | UCI repository [54]
USPS 9298 256 10 FS repository [55]

3. Microarray datasets (Type 3), for which the number of features is
much higher than the number of samples. Seven different DNA microar-
ray datasets (Table 6) were tested. This kind of dataset is based on clas-
sifications of healthy and unhealthy patients when different tumor types
are annotated as the output class. They represent a particular challenge
for FS researchers due to the small sample size and the large number of
gene expressions.
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The datasets are available at http://datam.i2r.a-star.edu.sg/datasets/
krbd/. K-fold was not performed on this dataset type due to the small
number of samples. Datasets in the repository that were originally divided
into training and test sets were maintained as such, while datasets with
just a single training set were randomly divided for comparative purposes
(using the common rule of thumb of 2/3 training and 1/3 testing data)
and holdout validation was applied. Both binary and multiclass DNA mi-
croarray datasets were selected. Table 6 shows the number of features,
samples and classes.

Table 6: DNA binary microarray datasets used in the experimental study.

Dataset Samples Features Classes
Train Test
Colon 42 20 2000 2
DLBCL 32 15 4026 2
Leukemia 38 34 7129 2
Lung 32 149 12533 2
Ovarian 169 84 15154 2
11 Tumors 116 58 12533 11
Leukemia 2 48 24 11225 3

4.2. Experimental procedure

The experimental procedure was divided into two main steps according to the
ensemble design employed (Design CT or Design TC'). In both designs default
parameters (C' = 1 and gamma = 0.01) were used for the SVM classifier with
a radial basis function kernel (RBFK), given that the goal was not to obtain
the lowest possible error, but to determine the combinations that behaved best
for each dataset type and to compare different ensemble approaches. Using
automatic thresholds (for which computation time is negligible) both frees the
user from the highly time-consuming operations of selecting and calculating
percentages for different fixed thresholds (see Table 7 for an example) and also
eliminates classifier dependency.

4.2.1. Design CT
The experimental procedure in this case was as follows:

1. Individually implement the six F'S methods (see Section 3.1).

2. Apply the six FS methods to obtain the six different rankings.

3. Merge the rankings using the Min combination method (see Section 3.3)
to obtain a final practical ranking.

4. Obtain a final ranking of the practical features subset according to a
threshold cutoff (see Section 3.2).

5. Use the SVM classifier (see Section 3.5) and estimate the test error to
check the suitability of the approach.
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Table 7: Example computation times for automatic thresholds. Times are displayed in seconds
(s.). Ty indicates the time required to calculate the corresponding F measure, Ty, represents
the time required to calculate the threshold cutoff and T;o¢ shows the total time required (sum
of the two previous times).

Dataset Method Ty (s.) Tin (s.) Tiot (s.)
F1 0.077 0.023 0.100

Connect4 F2 0.061 0.018 0.079
F3 0.067 0.015 0.082
F1 8.116 0.023 8.139

Isolet F2 2.216 0.018 2.234
F3 3.238 0.015 3.253

6. Perform statistical tests to better understand the classification results.

For the analysis of the synthetic (Type 1) datasets, only steps 1 — 4 of
the experimental procedure were implemented, with the aim of comparing the
different ordered rankings of features. The procedure was fully implemented for
Type 2 (classical) and Type 3 (microarray) datasets, using the corresponding
validation scheme (i.e., ten-fold for Type 2 and train/test for Type 3).

Table 8 summarizes the ranking methods, combination methods and thresh-
old cutoffs used in this study for each step of the Design C'T ensemble.

Table 8: Summary of F'S methods for Design CT

FS methods Combination methods Threshold cutoffs
Chi-Square Min 50 %
InfoGain 25 %
mRMR 10 %
ReliefF F1
SVM-RFE F2

FS-P F3

CF

4.2.2. Design TC
The experimental procedure used was as follows:

1. Individually implement the six FS methods (see Section 3.1).

2. Apply the six FS methods to obtain the six different rankings.

3. Obtain a practical subset of features for each ranking according to a
threshold cutoff (see Section 3.2).

4. Merge the subsets using the different combination methods (see Section
3.3) to obtain a final practical subset.
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5. Apply the SVM classifier (see Section 3.5) and estimate the test error to
check the suitability of the approach.
6. Perform statistical tests to better understand the classification results.

As in Subsection 4.2.1, the procedure was applied to Type 2 and 3 datasets
using the corresponding validation scheme (i.e., ten-fold for Type 2 and train/test
for Type 3). To analyze Type 1 datasets, only steps 1 — 4 of the experimental
procedure were implemented, with the aim of comparing the different subsets
of features.

Table 9 summarizes the methods used in this study for each step of the
Design TC ensemble.

Table 9: Summary of the F'S methods available for Design T'C

FS methods | Threshold cutoffs Combination methods
Chi-Square F1 Ul
InfoGain F2 U2
mRMR F3 U3
ReliefF CF U4
SVM-RFE U5
FS-P U6
L3

4.8. Synthetic dataset results

The results obtained for synthetic datasets are shown in Tables 10 and 11.
The columns under each dataset show the number of relevant features (R) and
irrelevant features (I) selected. Also included for each method as an evaluator
of FS effectiveness is an index of success ( [1]), labeled Suc:

1
% _ ozIJ % 100, (7)
where R, is the number of relevant features selected, R; is the total number
of relevant features, I is the number of irrelevant features selected and I; is
the total number of irrelevant features. The term «, introduced to weight the
choice of an irrelevant feature over the exclusion of a relevant feature, is defined
as a = avg{%, %} The index of success (maximum 100, with higher values
indicating better methods) attempts to reward the selection of relevant features
and to penalize the selection of irrelevant ones, penalizing two situations in
particular:

suc. = |:

e An incomplete solution: relevant features are excluded.

e An erroneous solution: irrelevant features are included.
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The results in each table are divided into rows according to the thresholds
and combination methods used. It can be observed that the Fi, F2 and F3
blocks contain the same seven methods, with the first method corresponding to
Design C'T and the last six methods corresponding to Design T'C. Finally, the
last block, called CFL3, is the new approach applied to Design TC, based on
combining the least complex subsets.

One of the first conclusions that can be drawn is that F2 and F3 results are
the same for all the synthetic datasets studied, indicating that both complexity
measures yield the same type of information. This simplifies subsequent anal-
ysis of Type 2 and Type 3 datasets, for which only the results for one of the
complexity measures, F'2 or F'3, will be shown.

Regarding the combination methods, it can be observed that the Min method
applied to Design CT obtained the best results for different automatic thresh-
olds. Also, when the more restrictive thresholds (U4, U5 or U6) were applied
to Design TC, better results were obtained for the synthetic datasets. When
a threshold such as Ul was used, it included all the irrelevant features that
the different methods selected (usually not the same features), resulting in a
relatively large number of irrelevant features. However, when more restrictive
thresholds were used, features common to all the methods were usually selected
as relevant, while irrelevant features were not selected. This would suggest the
advisability of using a threshold such as U8 or UJ to avoid extreme cases.

The situation with the SD datasets is rather special. With the least complex
dataset, SD1, the trend was the same as with the remaining synthetic datasets,
so a good threshold option might be U3 or U/, as these would reduce the num-
ber of irrelevant features without excluding relevant features. However, as the
complexity of the classification problem increases (as happened with SD2 and
SD3), using a restrictive threshold would seem to lead to some relevant features
being excluded. In these cases, it would seem advisable to use a threshold such
as Ul to avoid excluding any relevant features.

As can be seen, the issue of selecting an appropriate threshold for all the
datasets is far from trivial. Focusing on Design CT, the Min combination
method worked reasonably well for the different thresholds (it always got the
best result), but for Design TC, it was necessary to develop new subset com-
bination methods further. The new CFL3 measure was investigated in terms
of finding a threshold independent of any particular dataset, so as to improve
the stability and robustness of the other combination approaches. This mea-
sure used the three complexity measures (F1, F2 and F3) to implement the
threshold cutoff and then combined the three least complex subsets to achieve
a final practical subset. As can be seen in Table 10, the CFL& method obtained
a slightly poorer index of success (Suc) than the best methods (U4, U5 and
U6). For complex datasets, such as SD1, SD2 and SD3 (see Table 11), the
CFL3 method achieved better results than U4, U5 and U6. The CFLS& method
was studied for real datasets since it obtained stable results for the different
synthetic datasets, independently of their nature.
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4.8.1. Redundant features

We also studied how redundant features were handled by the ensemble ap-
proach compared to the individual ranking methods. The behavior of each
approach was illustrated using a small synthetic dataset with a total of 100
samples and 10 features: relevant, features 1-3; redundant in relation to the
previous features, features 4-6; and irrelevant, features 7-10. Applied to this
dataset, with the aim of obtaining a final ranking or a final subset of features,
was each ranking method (Section 3.1) and each ensemble design (Section 2).

Table 12 shows the results achieved by each method, with redundant features
highlighted in boldface. Note that, since feature 1 was redundant with feature
4, 2 with 5 and 3 with 6, it was irrelevant which of the two features was selected.
Redundancy only exists if two related features are selected. For example, the
F1U2 method selected features 2, 3, 4, 5, 6, 9 and 10. In this case feature
4 was relevant (since the method did not select feature 1) while 5 and 6 were
redundant with features 2 and 3. All the features were ordered according to their
relevance in ranking-type methods, while the final set of selected features were
indicated in subset-type methods. As can be seen in Table 12, although some
individual ranking methods can deal with redundancy (mRMR and SVM-RFE),
this capacity is lost once these methods are combined to configure the final
ensemble. Thus, ensemble approaches are better suited to capturing relevance
rather than redundancy.

4.4. Classical dataset results

For experiments with classical datasets (datasets where sample size is larger
than feature size), average test error percentages and the number of selected
features were compared for Design CT and Design TC. Results are shown in
Figures 3, 4, 5, 6 and 7. Since the number of experimental results is very high,
we only report graphical results (see http://www.lidiagroup.org/index.php/
en/materials-en.html for detailed tables).

Each figure shows the results achieved for a specific dataset; shown on the left
side is the average test error percentage obtained by the SVM classifier and on
the right side, the number of features selected by each ensemble configuration.
Two different textures are reflected in each figure: striped bars to represent
Design CT methods and solid bars to represent Design T'C methods. Note that
the loga(n) scale is used on the right side to improve visualization of the figures.
As F2 and F3 threshold cutoffs obtained the same results as for synthetic
datasets (see Section 4.3), for the sake of brevity only the results achieved by
F2 are shown in this section. The best results are highlighted in orange in each
figure.

Figure 3 shows the results obtained for the Spambase dataset. The best
result was achieved by the Design TC ensemble with the F1 threshold cutoff,
whereas the poorest results were achieved by F2U5 and F2U6. This dataset
did not show any substantial classification improvement when FS was applied,
although the dimensionality was reduced for slightly better accuracy. Finally, for
the CFL3 cutoff method, the relationship between the number of features and
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Table 12: Results for dealing with redundancy in a small synthetic dataset. Features 1-3 are
relevant, 4-6 are redundant and 7-10 are irrelevant. Features are ordered according to their
relevance in ranking-type methods and the subset of final selected features is indicated for
subset-type methods. Redundant features are highlighted in boldface.

Method Type H#1 | H#2 | #3 | #4 | #5 | #6 | #T | #8 | #9 | #10
Chi-Square | Ranking 10 3 2 9 4 6 7 8 1
InfoGain Ranking 10 3 2 9 4 6 7 8 1
mRMR Ranking 2 8 7 1 9 10 3 5 4 6
ReliefF Ranking 5 2 6 3 4 1 8 7 9 10
SVM-RFE Ranking 5 6 4 2 3 1 7 9 8 10
FS-P Ranking 2 5 1 4 3 6 7 8 9 10
MINF1 Ranking 2 5 10 3 6 8 1

F1U1 Subset 1 2 3 4 5 6 7 8 9 10
F1U2 Subset 2 3 4 5 6 9 10

F1U3 Subset 2 4 5 6

F1U4 Subset 2 5 6

F1U5 Subset 2 5 6

F1U6 Subset 2 5 6

MINF2 Ranking 2 5 10

F2U1 Subset 1 2 3 5 6 7 8 10

F2U2 Subset 2 3 5 10

F2U3 Subset 2 5 6

F2U4 Subset 2 5 6

F2U5 Subset 2 5 6

F2U6 Subset 2 5 6

MINCF ranking 2 5 10

CFL3 Subset 2 3 5 8 10

percentage test error obtained was better than when compared to not using F'S;
however, when compared to the FI threshold, and even though fewer features
were used, the error increased slightly.

Figure 4 shows the results obtained for the Madelon dataset, where the best
result was achieved, again, by the Design TC ensemble, whereas the poorest
result was achieved by the 100% threshold, i.e. when there was no previous FS.
In contrast, both the F1 and F2 threshold cutoffs produced similar results, with
the U2, U3 and Uj combination methods obtaining the best results. Finally,
the CFL3 method obtained the best test error results too, although with slightly
higher dimensionality.

Figure 5 shows the results obtained for the Connect/ dataset. Accuracy
results improved as dimensionality was reduced, and Design T'C improved on the
dimension-error relationship with respect to Design CT. The best results were
obtained by the U2 combination method, for both the F1 and F2 thresholds.
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Figure 3: Results for the Spambase dataset. Left side: average test error percentage obtained
by the SVM classifier. Right side: number of features selected by each ensemble configuration.
Striped bars represent Design C'T methods and solid bars represent Design T'C' methods. The
best results on each side are highlighted in orange.

The U3 and Uj combination methods and the CFL3 ensemble achieved very
similar percentage test errors while slightly reducing dimensionality. It can
be observed, at this point, that real datasets with a small number of classes
appear to take advantage of the automatic threshold for all designs, as they not
only improve accuracy but also significantly reduce the dimensionality of the
problem.

Finally, two datasets with a large number of classes were included in the
study: Isolet and USPS. For Isolet (Figure 6), with 26 different classes, only
Design CT using a fixed 50% threshold obtained better results than if the
complete dataset (without FS) were used.

Finally, the results for the USPS dataset, with 10 different classes, are shown
in Figure 7. Clearly, FS worsens the results of the classification for all the
combinations tested. As in the preceding dataset, automatic thresholds results
were poorer than fixed threshold results in most cases. This would suggest that,
for datasets with a large number of classes, the use of automatic thresholds based
on complexity measures is not recommended.

To better understand the aforementioned results, the fitness measure F' (ex-
plained in Section 3.6) was calculated for different F'S methods and datasets.
This measure was used for two different post-hoc tests:

e Table 13 shows a ranking of the FS methods, where a higher rank reflects
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Figure 4: Results for the Madelon dataset. Left side: average test error percentage obtained
by the SVM classifier. Right side: number of features selected by each ensemble configuration.
Striped bars represent Design C'T methods and solid bars represent Design T'C' methods. The
best results on each side are highlighted in orange.

a better method.

e Figure 8, constructed with the aim of obtaining a visual representation of
the results, shows the CD between F'S methods (see explanation in Section
3.6).

Table 13 and Figure 8 illustrate the performance of different FS methods
and ensemble configurations for a classical dataset context. If we focus only on
Design CT methods, 25% and 10% thresholds obtain higher ranking positions
and better CD values than the automatic thresholds, but always worse than
Design TC performance. This is due to the good error results obtained by the
fixed thresholds for the Isolet and USPS datasets, which have a large number of
classes (26 and 10, respectively). It should be noted that CFL3 method achieves
the best ranking value according to Table 13.

We draw a number of general conclusions as follows:

1. Design TC appears to be a better ensemble option than Design CT, since
the results obtained not only reduce the test error but also result in a
smaller number of features.

2. Automatic thresholds are a good option when the number of different
classes in the dataset is small. In this study, the automatic approach
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Figure 5: Results for the Connect dataset. Left side: average test error percentage obtained
by the SVM classifier. Right side: number of features selected by each ensemble configuration.
Striped bars represent Design C'T methods and solid bars represent Design T'C' methods. The
best results on each side are highlighted in orange.

worked well for datasets with 2 or 3 classes, with performance deteriorating
as the number of classes increased.

3. The experiments would suggest the use of U2 or U8 as combination meth-
ods when applying the Design T'C ensemble.

4. Although the CFL3 threshold method obtained a poor result for the USPS
dataset, for the other four cases performance was good, robust and stable
and always improved on or matched several configurations of the Design
TC ensemble with a remarkable dimensionality reduction. As a result,
CFL3 reaches the best fitness measure F value and it ranks first in Table
13.

4.5. Microarray dataset results

The main characteristic of this type of dataset is that feature size is greater
than sample size. The different datasets selected range from binary (Colon and
Ovarian) to multiclass (Leukemia 2). As in the previous section, we compared
average test error percentages and the number of selected features for the dif-
ferent ensemble configurations and designs (some of the results for Design CT
ensemble have previously been published in [23]). Since the number of experi-
mental results is very high, we only report graphical results (see http://www.
lidiagroup.org/index.php/en/materials-en.html for detailed tables).
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Figure 6: Results for the Isolet dataset. Left side: average test error percentage obtained by
the SVM classifier. Right side: number of features selected by each ensemble configuration.
Striped bars represent Design C'T methods and solid bars represent Design T'C' methods. The
best results on each side are highlighted in orange.

Figure 9 shows the results obtained for the Colon dataset. The best results
(both in terms of accuracy and dimensionality reduction and using only 11
features out of the original 2000) were achieved by the Design TC ensemble with
the F'1 and F2 threshold cutoffs and the U/, U5 and U6 combination methods.
The poorest results were achieved when we only used the classifier (no FS) and
the fixed thresholding approaches. MINCF and CFL8 methods obtained better
results than the latter two approaches, but it was clearly outperformed by some
automatic thresholds for Design TC.

Figure 10 shows the results obtained for the DLBCL dataset. Automatic
thresholding with the Design C'T ensemble obtained lower errors and a greater
reduction in dimensionality than other thresholds. All Design T'C' ensemble
methods achieved same test error results, poorest than Design CT, even though
F1 and F2 automatic thresholds with U4, U5 and U6 combination methods
perform a great dimensionality reduction, like Design CT methods.

Figures 11, 12 and 13, for the Leukemia, Lung and Owvarian datasets, re-
spectively, confirm the trend evident in the two previously analyzed datasets.

Regarding the nature of the threshold cutoff, automatic thresholding pro-
vided better results than fixed thresholding for those three datasets. Of the
automatic thresholds, the Design TC' ensemble improved or equaled the Design
CT ensemble for the three datasets. If only a single Design TC' configuration
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Figure 7: Results for the USPS dataset. Left side: average test error percentage obtained by
the SVM classifier. Right side: number of features selected by each ensemble configuration.
Striped bars represent Design CT' methods and solid bars represent Design T'C' methods. The
best results on each side are highlighted in orange.

that worked well on these datasets was to be highlighted, CFL3 would be our
choice, as it achieved the lowest percentage test error for the Leukemia dataset,
and a percentage test error very close to the best for the Lung and Owarian
datasets. In terms of dimensionality reduction it should be noted that auto-
matic thresholds with Design C'T and Design TC with U5 and U6 combination
methods achieve the best results in the five aforementioned datasets. Overall,
automatic thresholds proved the best choice for binary microarray datasets since
they not only improved the percentage error but also significantly reduced the
dimensionality of the problem.

As in the previous classical scenario, an analysis of two multiclass microar-
ray datasets was included in order to complete the study. Figure 14 and Figure
15 show results for the 11 Tumors and Leukemia 2 datasets, respectively. In
both cases, one or more of the automatic thresholds outperformed the fixed
thresholds. For Leukemia 2, there was a remarkable improvement in both ac-
curacy and dimensionality reduction, especially for the Design T'C ensemble in
Leukemia 2 dataset, which returned an error of only 4% (contrasting with the
54% error returned by the classifier without FS) and also considerably reduced
the number of features used (only 13, versus the original 11225). The prob-
lem was thus greatly simplified, was easier to interpret and visualize and was
computationally far less burdensome.
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FS method | Ranking value
CFL3 14.6
F2U2 14.0
25% 13.0
F1U2 12.2
F2U3 12.1
F1U3 11.9
F2U1 11.9
10% 11.6
MINF1 11.0
F2U4 10.9
F1U4 10.7
F1U1 9.7
F1U5 9.4
F1U6 9.4
50% 9.0
F2U5 8.4
F2U6 8.4
MINF2 7.7
MINCF 7.7
100% 6.4

Table 13: Average rankings for FS methods applied to classical datasets. A higher rank
reflects a better method.

To summarize the aforementioned results, the fitness measure F (explained
in Section 3.6) was calculated for different FS methods and datasets. This
measure was used for two post-hoc tests:

e Table 14 shows a ranking of the FS methods, where a higher rank repre-
sents a better method.

e Figure 16, elaborated with the aim of obtaining a visual representation of
the results, shows the CD between FS methods (see Section 3.6).

Referring to Table 14 and Figure 16, it would appear that MINF1 is the
best FS method for dealing with microarray datasets. According to Table 14,
F1U4 and F2Uj are the best Design TC methods, but according to Figure
16, F1U8 and F2U3 seem to work slightly better than the previous ones. In
any case, the most notable conclusion is that the fixed thresholds substantially
underperformed the automatic thresholds.

We draw a number of general conclusions as follows:

1. Automatic thresholds would appear to be the best option for dealing with
microarray datasets, where feature size is much greater than sample size.
Compared to fixed thresholds, automatic thresholds are not only more
accurate but are also capable of reducing dimensionality.
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Figure 8: Critical differences between different FS methods applied to classical datasets. A
lower value reflects a better method.

2. The Design CT ensemble would seem to be a better option than the
Design TC ensemble, in view of its higher ranked results.

3. There are no significant differences in the results for the different Design
TC methods.
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Figure 9: Results for the Colon dataset. Left side: average test error percentage obtained by
the SVM classifier. Right side: number of features selected by each ensemble configuration.
Striped bars represent Design C'T methods and solid bars represent Design T'C' methods. The
best results on each side are highlighted in orange.

5. Conclusions and future work

5.1. Lessons learned

In this study of ranker ensemble methods, two steps were needed to obtain a
final result, namely, to combine partial results and to establish a threshold that
retained only relevant features. Regarding the order of operations, we tested two
designs: combination followed by thresholding (Design CT), and thresholding
followed by combination (Design TC). Using different real datasets, we also
tested fixed thresholds (established percentages of retained features) and a novel
automatic threshold based on data complexity measures. Table 15 summarizes
our recommendations regarding designs and methods suitable for different types
of datasets, discussed as follows:

e On the basis of the study of a synthetic dataset (Section 4.3.1), even
though an individual FS method might detect redundancy, the final ag-
gregation step in the ensemble approach was not capable of reflecting this,
indicating that ensemble approaches are better suited for capturing rele-
vance than redundancy.

e Focusing on synthetic datasets, Design CT and the Min combination
method achieved the best performance, both in the index of success (suc.)
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Figure 10: Results for the DLBCL dataset. Left side: average test error percentage obtained
by the SVM classifier. Right side: number of features selected by each ensemble configuration.
Striped bars represent Design C'T methods and solid bars represent Design T'C' methods. The
best results on each side are highlighted in orange.

measure and in the number of selected features. Moreover, results were
the same using the F1, F2 and F3 automatic thresholds.

Regarding real datasets, the best option would appear to be the novel
Design TC ensemble, which first establishes the thresholds and then com-
bines subsets of features. In general, this design obtained the lowest error
rates and even used fewer features.

The experimental results demonstrate that, in general, automatic thresh-
olds perform better than fixed thresholds. Automatic thresholds also have
the advantage of freeing the user from having to pre-select and test fixed
percentages for a given classifier. In the case of datasets with a sample
size greater than feature size (classical), this conclusion only seems to hold
for a small number of classes (2-3), as performance seems to deteriorate as
the number of classes increases. This may be due to the fact that the com-
plexity measures used to establish automatic thresholds were developed
specifically for binary and not multiclass problems. Therefore, for clas-
sical datasets with a large number of classes we would recommend using
fixed thresholds. Finally, CFL& method is, generally speaking, robust and
stable and does not perform significantly worse than the other methods.
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Figure 11: Results for the Leukemia dataset. Left side: average test error percentage obtained
by the SVM classifier. Right side: number of features selected by each ensemble configuration.
Striped bars represent Design C'T methods and solid bars represent Design T'C' methods. The
best results on each side are highlighted in orange.

5.2. Concluding remarks and future work

FS ensembles emerged with the aim of freeing the user from having to de-
cide the best method for each particular problem, while also adding diversity,
robustness and stability to the process. Several studies in the literature have
already demonstrated the adequacy of using an FS ensemble instead of a single
FS method [16, 56, 17, 37, 11]. In this study we propose an ensemble de-
signed on ranker F'S methods that requires combination and thresholding to be
performed in one or the other order. We therefore tested two designs: combi-
nation before and after thresholding. As for decisions regarding the threshold,
this is a problem that still has not been resolved by the research community.
The typical approach is to choose a fixed threshold percentage (e.g. selecting
the top 10% of ranked features), but the right percentage is very dependent
on the nature of data. A possible solution is to use classification accuracy to
evaluate the quality of subsets of features obtained after experimenting with
different thresholds; however, this approach implies a significant computational
burden, besides being highly dependent on the learning algorithm used. We
used automatic thresholds (these can be adapted to the nature of the dataset
without compromising the computational cost) and complexity measures (in-
stead of classification accuracy) to evaluate the quality of the possible subsets
of features resulting from establishing the threshold. We tested our approach
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Figure 12: Results for the Lung dataset. Left side: average test error percentage obtained by
the SVM classifier. Right side: number of features selected by each ensemble configuration.
Striped bars represent Design CT methods and solid bars represent Design T'C' methods. The
best results on each side are highlighted in orange.

on both classical datasets and microarray datasets, after first performing an ex-
haustive analysis of synthetic datasets to identify similar performances between
methods and so reduce the number of subsequent experiments.

As future work, we plan to develop new methods for application to the
combination phase of ensembles and also plan to apply more informed criteria
to solving the ties between some combiners. Another potentially interesting new
line of research would be to develop ensemble methods that could ensure the
elimination of redundancy achieved by individual FS methods.
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