
Portable and efficient FFT and DCT algorithms with the
Heterogeneous Butterfly Processing Library

Sergio Vázqueza,b,∗, Margarita Amorb, Basilio B. Fraguelab

aCITIC, Universidade da Coruña, Spain
bGrupo de Arquitectura de Computadores, Universidade da Coruña, Spain

Abstract

The existence of a wide variety of computing devices with very different

properties makes essential the development of software that is not only portable

among them, but which also adapts to the properties of each platform. In

this paper, we present the Heterogeneous Butterfly Processing Library (HBPL),

which provides optimized portable kernels for problems of small sizes that allow

using orthogonal transform algorithms such as the FFT and DCT on different

accelerators and regular CPUs. Our library is implemented on the OpenCL

standard, which provides portability on a large number of platforms. Further-

more, high performance is achieved on a wide range of devices by exploiting

run-time code generation and metaprogramming guided by a parametrization

strategy. An exhaustive evaluation on different platforms shows that our pro-

posal obtains competitive or better performance than related libraries.

Keywords: Signal processing, tuned library, Open Computing Language

(OpenCL), Heterogeneous platform, GPUs.

1. Introduction

Accelerators, such as the Graphic Processing Units (GPUs) or the Intel R©Xeon

PhiTM, are powerful parallel processors that can offer a great performance and

∗Corresponding author
Email addresses: sergio.vazquez@udc.es (Sergio Vázquez), margartita.amor@udc.es

(Margarita Amor), basilio.fraguela@udc.es (Basilio B. Fraguela)

Postprint submitted to Journal of Parallel and Distributed Computing (JPDC)October 23, 2018

©2019. This manuscript version is made available under the CC-BY-NC-ND 4.0 license
http://creativecommons.org/licenses/by-nc-nd/4.0/.
This version of the article: Vázquez, S., Amor, M., Fraguela, B. B. (2019). 'Portable and efficient FFT and DCT algorithms with
the heterogeneous butterfly processing library', has been accepted for publication in Journal of Parallel and Distributed
Computing, 125, 135–146. The Version of Record is available online at https://doi.org/10.1016/j.jpdc.2018.11.011.

https://doi.org/10.1016/j.jpdc.2018.11.011

therefore are increasingly used for scientific computing and engineering. How-

ever, such performance requires a very careful and much more complex pro-5

gramming than that of standard processors, as these devices have many more

hardware control elements, such as various types of memory and more levels of

parallelism. This way, the existence of libraries that provide implementations of

important algorithms that are tunable according to the characteristics of each

device and offer a large degree of portability is critical for the exploitation of10

these systems. In this line, this paper presents the Heterogeneous Butterfly

Processing Library (HBPL), which provides portable implementations of but-

terfly algorithms [1] that can be used both on regular CPUs as well as on a

wide range of accelerators. Importantly, the portability offered by HBPL is not

only functional, but also in terms of performance, as it provides parameteriza-15

tion mechanisms that allow to adapt the underlying code to each architecture

at hand. Our work is a generalization and a natural evolution of [2], which

proposed the Butterfly Processing Library for GPUs (BPLG), a library focused

on the same algorithms, but restricted to NVidia GPUs due to being developed

on CUDA. BPLG achieves high performance for Butterfly algorithms and it20

is based on a set of tuned blocks developed using template metaprogramming

that operate on limited size problems that fit directly into the shared memory

of GPUs. These algorithms are based on a divide-and-conquer strategy, where

the problem is recursively subdivided into subproblems until a base case. This

way the calculations are simplified and the work is distributed. One example is25

the Cooley-Tukey FFT [3], which uses a data communication pattern known as

butterfly computation [1].

In [4] a tuning strategy that addresses the design of algorithms for large

problem sizes was proposed. In order to provide functional portability, our

new HBPL library relies on the ubiquitous OpenCL heterogeneous computing30

standard [5]. OpenCL provides a common programming framework that is sup-

ported by a wide range of devices and vendors, such as regular CPUs, GPUs,

FPGAs and DSPs. Unfortunately, it does not provide performance portabil-

ity, the consequence being that a given code written in OpenCL can be very

2

well suited for some architectures and thus provide very good performance on35

them, while it can provide a extremely poor performance in other systems. The

performance portability of our proposal is achieved by means of a structured

approach that develops complex algorithms as combinations of simpler indi-

vidual blocks. Each basic block performs very concrete tasks and its code is

generated under the control of a series of parameters that can be tuned for each40

architecture in order to provide the best performance. A common approach

to control code generation used in [2] is template metaprogramming [6], which

is straightforward in CUDA, since it has been available in that framework for

years. OpenCL, however, suffers from a slower evolution than CUDA, which is

not surprising as it is an standard on which many parties have to agree in order45

to approve new versions of it. This way, templates are supported in OpenCL

only after the approval of the 2.2 version of the standard in May 2017, and as

of today no implementations conform to this version of the standard [7].

Fortunately, the research community has developed many tools that enhance

the usage of OpenCL. Of particular interest from the point of view of metapro-50

gramming and thus the development of HBPL on OpenCL, is the Heterogeneous

Programming Library (HPL1) [8]. This is a C++ framework focused on the pro-

gramming of heterogeneous systems enabling portability in a simple way. While

HPL supports the usage of regular OpenCL C kernels [9], just simplifying the

host-side of the application, it also provides a language embedded in C++ that55

is translated at runtime into OpenCL C kernels. This latter possibility not only

allows the development of programs that include the host and device code in the

same source file, but it also enables key metaprogramming possibilities. Namely,

HPL allows to use templates in the embedded language kernels, their outcome

being reflected in the OpenCL code generated. Moreover, HPL allows to insert60

standard C++ statements and expressions in these kernels, which enables the

insertion of runtime computed values and the selection of the code to generate

in the underlying OpenCL kernels. Both mechanisms have proved to be very

1Available at http://hpl.des.udc.es

3

http://hpl.des.udc.es

useful for the development of performance portable codes on top of OpenCL

in the existing implementations of the standard [10]. This way our HBPL li-65

brary relies on HPL as an intermediate layer on top of OpenCL that supports

the metaprogramming mechanism required to generate the code of our kernels

under the control of tunable parameters.

The main algorithms provided by HBPL are widely used orthogonal trans-

formations such as the Fast Fourier Transform (FFT) [3] and the Discrete Cosine70

Transform (DCT) [11]. The library is designed for problems sizes that can be

stored in the local memory, as most FFTs and DCTs used in many fields are

small. The FFT is a very important operation that is used in the pro-

cessing of digital images and signals, filters, compression, equations

resolution in partial derivatives or convolutions. The DCT is an al-75

gorithm that works on real signals and is widely used in the field of

multimedia processing. In both cases, the library supports the use of

two-dimensional square transforms.

The rest of this paper is structured as follows. The related work is dis-80

cussed in the next Section, which is followed by an introduction to the

basics of the HBPL in Section 3. Then, Section 4 explains the construction

of signal transform algorithms on top of HBPL, while Section 5 explains the

parameterization of the library. This is followed by an evaluation in Section 6

and our conclusions and future work proposals in Section 7.85

2. Related work

There are many efficient proposals for the implementation of the

FFT algorithm in CPUs such as FFTW [12], Intel IPP [13] or Spi-

ral [14, 15, 16]. With respect to GPU proposals, there are an interest-

ing number of auto-tuning solutions, which achieve high performance.90

For instance, in [17] a wide range of combinations are generated

and the best solution is selected. An auto-tuning methodology for

4

OpenCL based on compiler technology is proposed in MPFFT [18].

The first stage generates FFT code for arbitrary size; and, the second

stage uses dynamic programming to evaluate the tree that represents95

possible factorizations for computing FFT. In [19], an approach for

3D problems and multi-GPU is presented using auto-tuning, but this

approach does not explicitly consider some main performance factors,

such as the right balance between the high number simultaneous task

and the proper utilisation of shared resources. An alternative solution100

based on a small number of efficient parametrisable kernels that al-

lows the generation of efficiente CUDA FFT kernels using only three

parameters is presented in [20]. Approaches focused on large 1D FFT

on a single coprocessor include [21, 22, 4]. Another proposal for solv-

ing FFT in a sparse format is presented in [23]. Maybe, the most105

well-known GPU FFT implementations are NVidia’s cuFFT [24] and

clFFT [25], included in the clMathLibraries originated from AMD.

The DCT algorithm, thanks to its ability to compress power (pre-

dominantly part of the signals for its reconstruction), is very used in110

multimedia algorithms of lossless compression [26, 27, 28], such as the

JPEG image format [29], compression of audio in MP3 format [30] or

compression of video in MPEG format [31]. There are few libraries

for GPUs that support the DCT transform directly. One of them is

BPLG [2], the library in which this work relies. Also, [32] explains a115

general release for GPUs that covers problems of a wide size range,

while there are other proposals [33, 34] designed for small 2D blocks

that are used in image or video processing.

3. HBPL

This paper presents the HBPL library, composed by the orthogonal trans-120

form algorithms FFT and DCT. As BPLG, HBPL is mainly composed of a

5

series of optimized low-level blocks, which implement the basic functions, and

of a series of parameterized kernels that combine these blocks correctly for each

algorithm and platform.

The construction blocks that form the algorithms provided by our library125

can be classified into two types: computing blocks (Butterfly, Twiddle, Radix),

which perform arithmetic operations on data, and reordering blocks (Copy),

which make changes in the position of storage of the data. These optimized

blocks are implemented in our library as fuction templates that exploit metapro-

gramming. As mentioned above, these blocks are used for the creation of130

parametrizable kernels with the appropriate code to handle the distribution

of the parallel work according to the parameters presented in Section 5. The

use of template metaprogramming allows to perform optimizations at compile

time [35]. In this way, the number of temporal records required for the called

functions and the code complexity are reduced.135

This library is focused on a set of parallel prefix algorithms, denoted as But-

terfly algorithms. This is a class of algorithms that solve a problem of size N in

logr(N) steps that are applied in sequence. Each step is composed of N/r inde-

pendent and thus parallel computations, each one of such computations being

in charge of the processing of r data elements, this value r being called radix.140

As we can see, in each step N elements are processed, since N/r computations

of size r are applied in parallel. The rationale for the existence of the logr(N)

steps is to achieve that each final output of the destination depends on all of the

initial N input elements, which happens in many algorithms such as the FFT.

At a rate of r elements processed together per step, this requires a minimum145

of logr(N) steps. In addition, each stage must be connected to the next one

using a different regular pattern so that after all the stages are performed the

aforementioned all-to-all property holds. The pattern of each communication

can be algorithmically represented using a binary notation for the indices of the

elements used in each stage and connecting indices obtained by manipulating (in150

this case inverting) different subsets of bits in each stage. These algorithms may

be depicted by a directed acyclic oriented graph called prefix circuit [36]. Given

6

a radix r this graph represents the r-size computations by small circles called

Butterfly Nodes, while the r input data processed by each node are represented

by lines that converge in it, and the r results appear as lines departing from155

the node. There are many examples of algorithms of this type, such as signal

orthogonal transforms or some tridiagonal system solvers. Our FFT proposal

is based on the Stockham algorithm [37]. Figure 1 illustrates the pattern of

this algorithm with N = 16 using radix 2. Each constructed block in the figure

is associated to a part of the algorithm represented by one of the construction160

blocks quoted above and which will be discussed below for the FFT. The 16

elements of the input are divided into portions of 4 elements that are calculated

with the FFT. Then, the result is multiplied by the rotation factor. HBPL func-

tions have been designed to work at any level of the memory hierarchy. For the

realization of the computation (radix stages), we will use the private memory,165

since it offers a better efficiency. Therefore, it is important to check the target

hardware specifications, since an abuse of the registers will generate register

spilling to global memory, with the corresponding loss of performance. On the

other hand, the input data will be stored in the local memory, so that it may

be shared between the different work-items, which is the OpenCL terminology170

for parallel threads. Thus, the synchronization between the threads of a group

is performed in the local memory. The different functions of the blocks are

invoked using inline expansion, so that when compiling the code, the header is

replaced by the body of the function. This improves the kernel performance by

not having to make the extra function calls. Another optimization used in these175

functions is loop unrolling, which improves the code performance at the expense

of incrementing the code size. Finally, the use of templates using HPL allow

the application of recursion based on specializations where the statics loops are

fully unrolled, so that each call is made to a different specialization. Also, the

templates allows to reduce the code complexity by making many optimizations180

at compile-time.

7

Figure 1: FFT algorithm for radix-2 and N=16 using the Stockham pattern.

3.1. Computing blocks

This section describes the computing blocks that modify the input data.

The algorithms are composed of several layers and each block performs a small

part of the algorithm.185

Butterfly performs the computation of the Butterfly Node and has been

implemented simulating a recursion that is performed by calling different spe-

cializations. This block is in charge of the computation associated with each

radix stage, in other words, it is in charge of performing a portion of the calcula-

tion of the r size algorithm that will be combined with the rest to obtain the final190

result. The Butterfly block recursively calls each inline specialization until the

base case of radix = 2 is reached, splitting the input in two. There are two sets

of specializations defined depending on the direction (forward/backward) of the

transform.

The rotation factors are calculated in the block Twiddle. This block multi-195

plies the input data by a complex number whose magnitude is equal to one, so

that only the phase of the data is affected. Twiddle is in charge of calculating

the sine and cosine according to the given angle and the position within the

radix block. Once this value has been calculated, it multiplies this result by

8

each element performing the correspondent unrolling.200

The calculation of factors can be based on fast native sine and cosine func-

tions, which can however lead to a loss of accuracy, or by standard functions

which may be slower but have good accuracy. Our library allows to choose

which option to follow.

Radix performs the computation of each stage of the Butterfly block. It205

has N/r inputs and N/r outputs, and it calculates the FFT for a specific point.

It is responsible for both subdividing and combining the different radix size

portions that will be computed in the Butterfly block, calling the appropriate

Twiddle and Butterfly block according to the size of the radix used.

3.2. Reordering blocks210

The reordering blocks move the data so that the computing blocks can op-

erate efficiently on the data.

The only reordering block in our library is Copy, which is responsible for

copying data between different memories of the device. The data may be located

either in the global memory or the local memory and the inputs and the outputs215

do not need to be in the same memory region. Each data copy is performed

applying an unrolling factor according to the size of the radix.

4. Signal processing transforms using HBPL

This section discusses the design of butterfly algorithms using the HBPL

blocks described in Section 3. For this, the kernels that express these algorithms220

are written in terms of the HBPL basic blocks. Namely, each algorithm is

implemented by a couple of kernels parameterized by a template that specifies

the size (N), direction (DIR) of the transform (forward/backward), radix size (r)

and size of local memory to use (SHM).

Before going into detail in the implementations, we must explain some fea-225

tures of HPL used in our blocks and kernels. One of these characteristics is that

HPL allows to express invocations to functions within a code in two different

9

approaches that have different consequences. First, if a function f is invoked

using the regular syntax f(args), then its body will be inlined inside the calling

function. This has the advantage of reducing the invocation cost, although it230

will increase the code size if f is invoked from different points in the program.

Second, HPL allows the invocation of f with the syntax call(f)(args), which

gives place to a separate function and the regular call. For efficiency reasons,

our code uses the first approach.

A second point of interest is that the barrier(LOCAL) invocations perform235

block-level barriers that ensure the consistency of the local memory. Finally, as

explained in [8], the control structures in HPL are those of C, with an ending

underscore (if_, for_, etc.) and when they are used in an HPL kernel, the

associated C keyword appears in the associated OpenCL kernel. Nevertheless,

as mentioned in Section 1 and in [8], regular C control structures can also appear240

in HPL kernels. In this case they are evaluated at runtime controlling the

generation of the OpenCL code. For example in our kernels, for is extensively

used in order to generate unrolled versions of loops, since the for loop will

be executed at runtime, giving place to a different copy of its body in the

generated OpenCL code for each one of its iterations. Similarly, if statements245

allow to choose at runtime between different pieces of code at any point in an

heterogeneous function.

We now describe in turn the FFT and DCT signal transforms expressed

using our HBPL library.

4.1. FFT250

This kernel, whose pseudocode is shown in Listing 1, receives as input the

data to process and it is in charge of carrying out the horizontal transform. Its

structure is as follows:

1) The first part is the initialization of the kernel parameters. Line 2 initial-

izes the indices. Then, line 3 initializes the displacements that will be used to255

access the data. Finally, lines 4 and 5 reserve the memory for the records and

local memory.

10

1 template<N,DIR , r ,SHM> f f t (s r c := input complex data array) {

2 // i n i t i a l i z a t i o n o f the i d e n t i f i e r s

3 // i n i t i a l i z a t i o n o f the o f f s e t s

4 reg := i n i t i a l i z a t i o n o f r r e g i s t e r s

5 shm := i n i t i a l i z a t i o n o f l o c a l memory o f s i z e SHM

6

7 copy<r>(src , reg) // copy r e lements from source to reg

8

9 mixrad := obta in the mixed rad ix

10 radix<mixrad ,DIR>(reg) // f i r s t mixrad step

11

12 from i=mixrad to N with i∗= r {

13 // o f f s e t s r e c a l c u l a t i o n

14

15 // l o c a l memory synchron i za t i on

16 copy<r>(reg , shm) // copy r e lements from reg to

shm

17 // l o c a l memory synchron i za t i on

18 copy<r>(shm , reg) // copy r e lements from shm to

reg

19

20 ang := angle r o t a t i on based on i

21 radix<r ,DIR>(reg , ang) // apply r o t a t i on

22 }

23 copy<r>(reg , s r c) // copy r e lements from reg to s r c

24 }

Listing 1: HBPL FFT kernel

2) Line 7 belongs to the preprocessing stage, in which a copy of the data to

process is made to the previously reserved records.

3) The processing for mixed radix [37] is performed in lines 9 to 10. It is260

responsible for calling the butterfly function.

4) Lines 12 to 22 carry out in a cyclical way the radix stages, that is, in each

iteration of this loop a butterfly stage, such as the ones depicted in Figure 1,

is performed. Each stage first updates the positions of the readings and dis-

placements, as line 13 shows. After this a reorganization stage using the local265

11

memory is performed (lines 15 to 18). Finally, function Radix performs the

actual computations, which requires as input the angle with which the rotation

will be performed, as we can see in lines 20 and 21. The radix function is in

charge of calling the butterfly and twiddle functions.

5) Finally, the results are copied to the global memory in line 23.270

4.2. DCT

This algorithm has a structure very similar to that of the FFT, as it is

based on it. One of the main differences between both algorithms is that DCT

operates on real data while the FFT works on complex data. Because of this, in

the DCT it is necessary to perform a preprocessing and a post-processing stage,275

which basically do the data conversion. Listing 2 shows the pseudocode of the

kernel in charge of the horizontal transform, which works in the following way:

1) The first part is the initialization of the kernel parameters. Concretely,

lines 2 initializes the indices, line 3 initializes the displacements that will be used

to access the data, and finally, lines 4 and 5 reserve memory for the records and280

local memory.

2) Once the parameters have been initialized, a pre-processing stage is per-

formed in lines 7-13. Here the real input data are copied to the registers, which

hold complex data. This transformation is made because the blocks of our li-

brary are encoded to work with complex data. This decision was taken because285

this increases the generality of the implementation, just requiring a pre/post-

processing stage in the kernels to convert from real to complex when the data

to process are not complex values.

3) A first processing step is executed for mixed radix [37] in lines 15 and 16.

4) The remaining radix stages are done in lines 18 to 28. These computations290

are carried out in a loop, whose body begins with the update of the positions

of reading and displacement at line 19. Once the indexes are updated, a reor-

ganization stage takes place using the local memory in lines 21 to 24. Finally,

function Radix performs a computation stage, as shown in lines 26 and 27.

12

1 template<N,DIR , r ,SHM> dct (Array<f l o a t ,1> s r c) {

2 // i n i t i a l i z a t i o n o f the i d e n t i f i e r s

3 // i n i t i a l i z a t i o n o f the o f f s e t s

4 reg := i n i t i a l i z a t i o n o f r r e g i s t e r s

5 shm := i n i t i a l i z a t i o n o f l o c a l memory o f s i z e SHM

6

7 i f (DIR > 0) { // forward convert double to complex

8 copyDCT<r>(src , shm) ; // convert double to complex

9 // l o c a l memory synchron i za t i on

10 packDCT<N, r ,DIR ,SHM>(shm , reg) ; }

11 i f (DIR < 0) { // backward

12 copyDCT<r>(src , reg) ; // convert double to complex

13 radixDCT<N, r ,DIR ,SHM>(reg) ; }

14

15 mixrad := obta in the mixed rad ix

16 radix<mixrad>// f i r s t mixrad step

17

18 from i=mixrad to N with i∗= r {

19 // o f f s e t s r e c a l c u l a t i o n

20

21 // l o c a l memory synchron i za t i on

22 copy<r>(reg , shm) ; // copy r e lements from reg to shm

23 // l o c a l memory synchron i za t i on

24 copy<r>(shm , reg) ; // copy r e lements from shm to reg

25

26 ang := angle r o t a t i on based on i

27 radix<r>(reg , ang) // apply r o t a t i on

28 }

29

30 // l o c a l memory synchron i za t i on

31 i f (DIR > 0) { // forward

32 radixDCT<N, r ,DIR ,SHM>(reg) ;

33 copy<r>(reg , shm) ; }

34 i f (DIR < 0) { // backward

35 packDCT<N, r ,DIR ,SHM>(reg , shm) ; }

36

37 // l o c a l memory synchron i za t i on

38 copyDCT<r>(shm , s r c) ; // convert complex to double

39 }

Listing 2: HBPL DCT kernel

13

5) In the post-processing stage, which takes place in lines 30 to 35, the data295

in the local memory is rearranged in order to write them to the global memory.

6) Finally, the results are copied from the local memory to the global memory

in lines 37 and 38.

5. Tuned strategy for Butterfly algorithms

One of the main requirements for high performance on accelerators is to300

obtain sufficient parallelism. This parallelism can be exploited by running the

maximum possible number of simultaneous OpenCL work-groups, which we

denote as block parallelism, as well as the largest possible number of OpenCL

work-items per work-group, which we call thread parallelism.

In order to find the optimal configuration, the factor limiting the perfor-305

mance must be computed and this depends of the device architecture.

Table 1 displays some values that describe the architectures used in our eval-

uation in terms of resources that affect their performance. We now describe in

turn these parameters. In this table, Rmax
CU represents the total registers per

Computation Unit, Smax
CU represents the maximum local memory size per Com-310

pute Unit, w represents the wavefront/warp in AMD(64)/NVidia(32), Lmax
CU

stands for the maximum number of w-size threads that can be run concurrently

in the Compute Unit, Bmax
CU is the maximum number of blocks that can be

processed simultaneously per Computation Unit due to inherent hardware lim-

itations and Rmax
thread represents the maximum number of register that can be315

used by each thread. We have not been able to locate all the values required for

the Intel Xeon in any manual, white paper or website, so it is not possible to

apply to it the calculations discussed in this section. As we will see in Section 6,

this does not preclude the applicability of our library to this system.

5.1. Block (work-group) parallelism320

The block parallelism phase of our tuning strategy is focused in obtaining

the maximum number of work-groups or blocks of threads per Compute Unit

14

Device Rmax
CU Smax

CU w Lmax
CU Bmax

CU Rmax
thread

NVidia GTX 750Ti (Maxwell [38]) 64KB 96KB 32 64 32 255

NVidia K20m (Kepler [39]) 64KB 48KB 32 64 16 255

AMD FirePro S9150
64KB 64KB 64 256 16 112

(Hawaii [40], [41])

Intel Xeon E5-2660 128KB 32KB 128? 8192 480? ?

Table 1: Device architecture information.

that can be processed in parallel (BCU). The model must take into account

that the number of active blocks per Compute Unit is limited by resources such

as the registers and the local memory available as well as by intrinsic hardware

limitations of the device. This fact, already observed in BPLG, is summarized

in the next equation:

BCU = min(BR
CU , Bs

CU , Bmax
CU) (1)

where each term has the following meaning and value:

• BR
CU represents the maximum number of blocks that can be simultaneously

active according to the number of registers of the Compute Unit:

BR
CU = Rmax

CU /RB = Rmax
CU /(Rt × L) (2)

where Rmax
CU represents the total registers per Computation Unit and RB

is the number of registers per block, which is obtained multiplying the

number of registers per thread Rt by the number of threads per block L.

• Bs
CU represents the number of blocks that can be executed simultaneously

as a function of the local memory available:

Bs
CU = Smax

CU /SB = Smax
CU /(sizeof(Dt)× r × L) (3)

where Smax
CU represents the local memory size and SB the local memory325

by block. Each block stores the data of the L threads, where each thread

operates on r elements of type Dt

15

• Bmax
CU is the maximum number of blocks that can be processed simultane-

ously per Computation Unit due to inherent hardware limitations.

The purpose of our block parallelism tuning strategy is to calculate tuned330

parameters that allow to maximize Eq. (1) considering the values that describe

the architecture. This requires calculating the amount of private registers P ,

local memory S and threads per block L required for the execution of a code.

We consider values that are powers of two P = 2p, S = 2s and L = 2l, so that

in what follows we refer to the exponents p, s and l, respectively. It must be335

noted that the local memory required is equal to the private registers per block,

and thus s = p+ l.

Table 2 shows the values of the tuner parameters (s, p, l) computed in order

to exploit the block parallelism in the Nvidia GPUs that will be used in our

experiments in Section 6. In this Table, wB represents the wavefronts/warps340

per block and the size of the radix is r = P = 2p since one register per element

is used.

Below is an example for the calculation of the Table 2 values for the NVidia

GTX 750Ti.

SB = Smax
CU /Bmax

CU = 96KB/32 = 3072B

S = SB/sizeof(Dt) = 3072B/8B = 384 < 29 → s = 8

radix-2→ P = 2→ p = 1→ l = s− p = 8− 1 = 7→ L = 128

radix-4→ P = 4→ p = 2→ l = s− p = 8− 2 = 6→ L = 64

radix-8→ P = 8→ p = 3→ l = s− p = 8− 3 = 5→ L = 32

(4)

These values maximize the block parallelism available in the accelerator.345

5.2. Thread (work-item) parallelism

The aim of the thread level parallelism is to increase the number of threads

per block that are executed (L). For this, we must take into account that

each thread is in charge of performing the computation associated to a radix-r

16

Device wB p s l

NVidia GTX 750Ti

1 3 8 5

2 2 8 6

3 1 8 7

4 1 8 7

NVidia K20m

1 3 8 5

2 2 8 6

3 1 8 7

AMD FirePro S9150

1 3 10 7

2 2 10 8

3 1 9 8

4 1 9 8

Table 2: FFT optimal parameters.

butterfly. Therefore, given a problem of size N , a total of L1 = N/r are used350

to process it. When L1 is small, we resort to batch execution, which consists

in processing simultaneously L2 different problems of the same size, so that the

total number of threads in use is L = L1 × L2.

The thread parallelism is maximized by considering the values that imply

the largest wB , which are those associated to the smallest radix (p) as Table 2355

shows. It must be taken into account that as the problem size N = 2n grows,

keeping a small radix implies increasing the number of operations. Thus, when

n � p the radix is increased. For large problems (n > s) using a s larger than

the optimum one is considered in order to simplify the memory access patterns.

Table 3 shows the best theoretical configuration obtained considering this. For360

the AMD GPU the model has been adapted in order to maximize the use of

the local memory, so that the optimal parameters are as follows: for n = 2, 3, 4

→ p = 1, s = 9, l = 8, for n = 5, 6 → p = 2, s = 10, l = 8, for n = 7, 8, 9 →

p = 3, s = 10, l = 8 and for n = 10, 11, 12 → p = 4, s = n, l = n− p.

17

Device N r Rt L1 L2 BCU

NVidia GTX 750Ti

4 2 15 2 32 32

8 2 20 4 16 32

16 2 21 8 8 32

32 2 20 16 4 32

64 4 29 16 4 32

128 4 29 32 2 32

256 4 29 64 1 32

512 4 29 128 1 32

1024 8 40 128 1 24

2048 8 40 256 1 24

4096 8 40 512 1 24

NVidia K20m

4 2 15 2 64 16

8 2 20 4 32 16

16 2 21 8 16 16

32 2 20 16 8 16

64 4 29 16 8 12

128 4 29 32 4 12

256 4 29 64 2 12

512 4 29 128 1 12

1024 4 29 256 1 12

2048 8 40 256 1 12

4096 8 40 512 1 12

AMD FirePro S9150

4 2 11 2 128 8

8 2 19 4 64 8

16 2 19 8 32 8

32 4 20 8 32 4

64 4 25 16 16 4

128 8 48 16 8 4

256 8 48 32 4 4

512 8 48 64 2 4

1024 16 105 64 1 4

2048 16 113 128 1 2

4096 16 117 256 1 1

Table 3: FFT best theoretical parameters.
18

6. Results365

This section evaluates the performance of HBPL comparing it with the orig-

inal BPLG [2] on CUDA, as well as the libraries cuFFT [24] on CUDA and

clFFT [25] on OpenCL. The experiments also consider a regular CPU in which

HBPL is also compared with a well-known CPU library such as FFTW [12]. All

the tests have been performed using from 4 to 4096 single-precision elements

and with the data already loaded in the memory of the device at the begin-

ning of each experiment. It is important to comment that the clFFT library

performs the calculation of the rotation factors on the CPU when the kernel is

created, the factors then being included as constants in the string of the kernel

to compile. Thus in this case, this computation is not included in the execution

of the kernel, which provides a slight artificial improvement in performance in

the repeated execution of the kernel for its measurement. The performance of

the different libraries is measured in GFlops:

5Nlog2(N)iterations10−9/t (5)

where iterations is the number of signals processed (applying the direct and the

inverse transform) and t the time in seconds, using all the experiments t = 10

seconds.

Table 4 describes the platforms and associated software used for the tests.

On platforms with NVidia GPUs, the CUDA-based measurement relied on the370

6.5 CUDA SDK. Tests performed using the more recent 8.0 CUDA

SDK supported by the drivers of the Platform 2 yielded very similar

results, the maximum cuFFT performance difference between both

versions being below 3%. The CUDA performance shown is thus also

representative for newer software platforms. Our library uses the native375

functions native_ for the calculation of the sine and cosine functions in the

GPUs, because in these platforms they provide important improvements in per-

formance without incurring in accuracy penalties.

19

Platform 1 Platform 2 Platform 3 Platform 4

CPU i7-4790 E5-2660 E5-2650v2 E5-2660

Memory 32 GB 64 GB 64 GB 64 GB

OS Ubuntu 14.04 CentOS 6.7 CentOS 6.7 CentOS 6.7

Device

NVidia GTX NVidia K20m AMD FirePro Intel R©Xeon E5-2660

750Ti 2047 MB 5119 MB S9150 16192 MB 2.20 GHz/ 3.2 GHz

[GM107-400-A2] [GK110] [Hawaii XT GL] Sandy Bridge-EP

v346.72 v367.48

GNU C++ 4.8.4 GNU C++ 4.8.2 GNU C++ 4.8.2 GNU C++ 4.8.2

CUDA OpenCL 1.2 CUDA OpenCL 1.2 OpenCL 2.0 Intel OpenCL 1.2 b. 8

Table 4: Platforms used in the experiments.

Our library has two installation modes, which we call analytical and empir-380

ical parametrization, respectively. The analytical installation is applicable only

on those devices where all the parameters in Table 1 are available, because it re-

lies on the model described in Section 4, whose results are displayed in Table 3,

to parametrize the blocks of the library algorithms. As a result this installa-

tion requires a totally negligible time. The empirical parametrization, which is385

applicable in all the devices, performs an exhaustive search for the best param-

eters within the subset of parameters combinations allowed by our model by

timing each combination. This guarantees optimal results at the cost of a more

time-consuming installation. For example, the maximum runtime observed in

our experiments for this empirical parametrization and execution in each device390

of among all the different combinations of radix, L and input size, which was

reached on the NVidia platforms with a total of 160 runs, was 34 minutes.

6.1. FFT

First, for each platform except the Intel Xeon, a table is shown with the

results of the best theoretical configurations reflected in Table 3 and the best395

result obtained using a wide range of combinations for the radix size and the

number of threads per block. In addition, dedicated NVidia and AMD GPU

profilings are discussed below.

20

N Model Empirical parametrization Difference (%)

4 45.17 45.17 0

8 67.95 67.95 0

16 90.1 90.1 0

32 105.81 112.79 6.19

64 135.94 135.94 0

128 158.29 158.29 0

256 181 181 0

512 201.74 204.17 1.19

1024 224.89 226.82 0.85

2048 248.8 248.8 0

4096 205.65 205.65 0

Table 5: Comparison between the maximum FFT performance (in GFlops) obtained using

the model and the empirical parametrization in the NVidia 750Ti.

Table 5 shows the difference between the performance obtained by our tuning

strategy and the best performance obtained using a wide range of combinations400

for the different parameters on the NVidia 750Ti. The result is quite good, as in

most cases the analytical model matches the best possible result, with a maxi-

mum performance difference of 6.2%. The profiling results for this platform are

shown in Table 6. They include the number of registers Rt, the local memory

used S, the occupancy (percentage) % and the GFlops depending on the input405

size, the radix and the number of threads per block. As can be observed, the

occupancy is reduced from n > 10, and thus these case must be studied with

other strategy.

Table 7 shows the difference between the performance obtained by our tuning410

strategy and the best performance obtained using a wide range of combinations

for the different parameters on the Nvidia K20m. In this case, the parameteri-

zable model obtains nearly perfect results, with only a very small deviation for

n = 8.

415

21

n L r Rt S Ocu(%) Gflops

2
128 2 15 2056 100 45.17

256 2 15 4104 100 44.86

3
128 2 20 2056 100 67.95

256 2 20 4104 100 67.49

4
128 2 21 2056 100 90.02

256 2 21 4104 100 89.54

5
128 2 20 2056 100 105.81

64 4 29 2056 100 112.79

6
64 4 29 2056 100 135.94

128 4 29 4104 100 135.06

7
64 4 29 2056 100 158.29

128 4 29 4104 100 157.33

8
64 4 29 2056 100 181

128 4 29 414 100 179.96

9
128 4 29 4104 100 201.74

512 4 29 16392 100 204.17

10
512 4 29 16392 100 226.82

128 8 40 8200 75 224.89

11
512 4 31 16392 38 209.02

256 8 40 16392 75 248.8

12
1024 4 31 32776 50 165.57

512 8 40 32776 50 205.65

Table 6: NVidia 750Ti FFT profiling.

Table 8 shows the difference between the performance obtained by our tuning

strategy and the best performance obtained using a wide range of combinations

for the different parameters on the AMD FirePro S9150. The analytical model

employed also achieves very good performance, in fact the result obtained is

very close to the best possible result, with a maximum deviation of just 1.6%.420

Table 9 shows the profiling results for the AMD FirePro, which include the

number of registers Rt, the local memory used S, the occupancy (percentage)

% and the GFlops depending on the input size, radix and the threads per block.

Notice that the maximum number of registers for n < 11 is 112 and there is

no local memory spilling. For n ≥ 11, the configuration violates the optimal425

22

N Model Empirical parametrization Difference (%)

4 103.22 103.22 0

8 151.76 152.36 0.39

16 180.2 180.2 0

32 236.42 236.42 0

64 313.78 313.78 0

128 365.36 365.36 0

256 419.84 419.84 0

512 407.8 407.8 0

1024 414.45 414.45 0

2048 290.06 290.06 0

4096 243.04 243.04 0

Table 7: Comparison between the maximum FFT performance (in GFlops) obtained using

the model and the empirical parametrization in the NVidia K20m.

resource factors, but the optimal implementation must be studied with other

strategy. Finally, it should be observed that the occupancy is high for small size

problems while for big size problems the occupancy decreases as the problem

size increases.

430

Table 10 shows the results obtained in the Intel Xeon by the FFT.

In this case, since there is no theoretical model, it shows the data

obtained by the empirical parametrization, depending on the radix

and L.

435

Next we compare the performance achieved by the BPLG, cuFFT, clFFT

and HBPL FFT algorithms as a function of the input size. Figure 2 shows

the performance achieved by the four libraries for different problem sizes of

FFT in the NVidia 750Ti (Maxwell) GPU. We can see that the HBPL library

developed in this work offers a performance very similar to that of BPLG and440

cuFFT, with increasing performance as the input size grows with the exception

of N = 4096 for HBPL. Comparing HBPL with the clFFT library, both libraries

23

N Model Empirical parametrization Difference (%)

4 149.51 151.38 1.25

8 232.83 232.83 0

16 313.63 313.63 0

32 382.08 385.37 0.86

64 468.8 469.59 0.17

128 544.56 544.56 0

256 621.91 631.96 1.62

512 706.43 706.43 0

1024 750.41 750.41 0

2048 792.19 792.19 0

4096 796.37 796.37 0

Table 8: Comparison between the maximum FFT performance (in GFlops) obtained using

the model and the empirical parametrization in the AMD FirePro.

have a similar behaviour up to the problem size N = 128, from which the clFFT

performance begins to drop considerably; to the point that HBPL is 4.13 times

faster than clFTT for the largest problem size tested, 4096. This is surely due445

to the fact that clFFT is an evolution of clAMDFFT [42], which is optimized for

AMD architectures and thus cannot exploit all the performance of the NVidia

hardware as the problem size increases.

Figure 3 shows the performance of the libraries considered when running

FFT for different input sizes on the NVidia K20m (Kepler) GPU. In this case,450

HBPL performs worse than BPLG and cuFFT for problems larger than 256. A

very similar behaviour can be also seen in the BPLG library, which also suffers

a degradation of performance with larger input sizes. This is not surprising

given its particular focus on small problems sizes. Regarding the other portable

solution, clFFT clearly provides a worse performance, always lagging with re-455

spect to the other libraries. In this accelerator our proposal is up to 4.64 faster

than the clFFT. In addition, just like in the NVidia 750Ti GPU, the clFFT

library performance drops further from N = 256, showing the bad adaptation

to NVidia platforms commented in the previous experiments.

24

n L r Rt S Ocu(%) Gflops n L r Rt S Ocu(%) Gflops

2

64 2 11 1024 100 151.38

8

64
4 25 2048 80 546.97

128 2 11 2048 80 147.82 8 48 4096 40 631.96

256 2 11 4096 100 149.51
128

4 25 4096 80 547.26

3

64 2 19 1024 100 227.83 8 48 8192 40 621.91

128 2 19 2048 80 232.55
256

4 25 8192 80 553.93

256 2 19 4096 100 232.83 8 48 16384 40 620.85

4

64 2 19 1024 100 308.42

9

64 8 48 4096 40 696.92

128 2 19 2048 80 311.6 128 8 48 8192 40 706.43

256 2 19 4096 100 313.63 256 8 48 16384 40 685.17

5

64
2 19 1024 100 278.35

10

64 16 105 8192 20 750.41

4 25 2048 80 381.89
128

8 56 8192 40 702.3

128
2 19 2048 80 274.16 16 105 16384 20 736.58

4 25 4096 80 385.37
256

8 56 16384 40 701.94

256
2 19 4096 100 280.2 16 105 32768 20 683.71

4 25 8192 80 382.08

11

128 16 113 16384 20 792.19

6

64 4 25 2048 80 469.59 256 8 60 16384 40 757.76

128 4 25 4096 80 452.72 16 113 32768 20 744.25

256 4 25 8192 80 468.8 12 256 16 117 32768 20 796.37

7

64
4 25 2048 80 474.26

8 48 4096 40 537.1

128
4 25 4096 80 478.44

8 48 8192 40 544.56

256
4 25 8192 80 482.76

8 48 16384 40 521.38

Table 9: AMD FirePro FFT profiling.

460

Figure 4 compares the performance of the FFT algorithm of the HBPL

and clFFT libraries on the AMD FirePro GPU. Notice that the CUDA-based

libraries cannot be executed in this architecture, further motivating the develop-

ment of portable approaches as HBPL. As it can be seen, HBPL provides better

performance than clFFT, reaching a maximum speedup with respect to clFFT465

of 1.39, and being only slightly surpassed by that library in the N = 8 case. It

also deserves to be mentioned that clFFT suffers a great loss of performance

25

N
Radix-2 Radix-4 Radix-8 Radix-16

L64 L128 L256 L512 L1024 L64 L128 L256 L512 L1024 L32 L64 L128 L256 L512 L16 L32 L64 L128 L256

4 9.83 9.89 9.54 9.79 9.76 21.36 23.58 23.3 22.86 23.5

8 7.76 7.68 7.59 7.59 7.49 11 10.92 10.9 10.89 10.55 34.39 34.96 34.97 35.31 35.2

16 16.64 16.63 16.15 16.4 15.19 14.6 14.52 14.45 14.41 14.36 12.41 12.37 12.46 12.14 12 43.98 45.89 45.39 46.05 45.44

32 16.69 16.4 16.24 15.97 14.68 24.9 25.46 25.5 14.66 23.19 15.19 15.25 15.16 14.9 14.81 13.7 13.71 13.63 13.63 13.54

64 16.08 16.24 15.34 15.53 14.07 29.74 29.37 30.13 29.3 27.67 47.7 47.27 47.43 47.82 46.65 16 15.42 16.03 15.98 15.83

128 16.54 16.05 15.54 15.04 13.44 26.01 25.56 25.42 23.99 22.27 31.79 31.56 31.32 29.96 28.79 43.94 45.85 46.52 45.28 45.54

256 15.72 15.22 14.66 12.96 29.45 28.8 28.49 26.29 25.47 35.79 35.43 34.56 33.6 32.36 46.96 49.64 50.14 52.41 50.91

512 15.22 14.54 12.91 24.77 24.31 22.53 21.99 38.8 38.62 36.85 35.86 31.71 31.66 31.46 30.94

1024 14.3 12.69 28.09 26.14 24.65 30.32 30.47 28.63 35.2 35.3 33.88

2048 14.1 23.67 22.14 33.23 31.42 39.24 37.88

4096 24.24 34.51 41.13

Table 10: Xeon FFT performance (GFlops).

for the largest input size, 4096.

Figure 5 shows the performance achieved by the FFT implementations of470

the HBPL, the clFFT and the FFTW for different input sizes in the Intel Xeon

CPU E5-2660, which again, does not support the CUDA-based alternatives.

HBPL exceeds the performance of the FFTW library for almost every value

except for n = 32, where the performance drops by half. The clFFT library

surpasses the HBPL library in more than the half of the cases, however clFFT475

is not applicable for sizes below 256 due to a problem with the vectorizer of the

Intel OpenCL platform.

Figure 6 shows the speedup that our HBPL library achieves for

different problem sizes of the FFT with respect to clFFT, the only

other portable alternative. This allows the figure to consider all the480

platforms tested. It can be seen that on NVidia platforms, HBPL

achieves a higher speedup relative to clFFT for the larger sizes. In the

FirePro GPU, however, the performance difference between HBPL

and clFFT is very uniform, with the exception of a speedup bump for

HBPL for n = 4096. The Intel Xeon is the only platform where clFFT485

is usually faster than HBPL, the problem being that clFFT does not

work for most of the problem sizes tested, as shown in Figure 5.

In general, the kernels developed for the FFT transform in HBPL offer a

proper performance when compared with BPLG under CUDA, having both

26

 0

 50

 100

 150

 200

 250

 300

 4 8 16 32 64 128 256 512 1024 2048 4096

G
F

L
o

p
s

N

NVidia 750Ti − FFT

 cuFFT

 BPLG

 clFFT

 HBPL

Figure 2: FFT on the NVidia 750Ti (Maxwell) GPU.

libraries similar problems for large problem sizes. Regarding the non-NVidia490

platforms, the comparison of HBPL with clFFT in them is very satisfactory.

As mentioned in the introduction, our library also supports two-

dimensional square transforms. We illustrate their performance in

Table 11, which shows the performance for the FFT algorithm with

2 dimensions in the AMD platform. It can be seen how from sizes of495

64×64, with 4096 total elements, the performance starts to drop.

6.2. DCT

Our evaluation of the performance achieved for the DCT algorithm only

relies on the HBPL and BPLG libraries because cuFFT and clFFT do not

provide a version of this algorithm, which further motivates the development of500

our library for non-NVidia platforms. Table 12 compares the performance of

BPLG and HBPL for different problem sizes when running the DCT algorithm

in the four systems considered in this manuscript. We can see that in the NVidia

27

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 550

 600

 4 8 16 32 64 128 256 512 1024 2048 4096

G
F

L
o

p
s

N

NVidia K20m − FFT

 cuFFT

 BPLG

 clFFT

 HBPL

Figure 3: FFT on the NVidia K20m (Kepler) GPU.

N
Radix-2 Radix-4 Radix-8 Radix-16

L16 L32 L64 L16 L32 L64 L8 L16 L32 L64 L4 L8 L16 L32 L64

4×4 157.31 157.26 157.78 145.20 149.02 150.80

8×8 239.17 240.32 242.53 208.57 219.90 215.72 208.83 178.05 188.06 192.49

16×16 305.12 304.12 306.66 309.42 314.69 313.32 300.90 280.18 283.68 285.86 296.05 285.30 215.95 222.55 220.42

32×32 246.94 251.44 259.76 318.47 321.57 334.98 310.57 333.62 347.40 348.96 259.77 336.70 291.29 289.67 278.13

64×64 245.36 257.09 281.62 290.61 324.02 326.95 359.91 374.33 395.03 299.66 386.42 358.07 360.38 341.57

128×128 266.80 309.42 366.08 291.11 311.11 329.12 343.31 354.57 364.54 377.78

256×256 345.18 324.45 348.16 314.61 352.47 352.70

512×512 336.42 336.32

1024×1024 332.24

Table 11: AMD 2D FFT performance (GFlops).

28

 0

 100

 200

 300

 400

 500

 600

 700

 800

 4 8 16 32 64 128 256 512 1024 2048 4096

G
F

L
o

p
s

N

AMD FirePro − FFT

 clFFT

 HBPL

Figure 4: FFT on the AMD FirePro GPU.

GPUs both libraries have a similar behaviour, BPLG offering somewhat better

performance. As for the FirePro GPU, the performance is far superior to any505

other platform tested, reaching its maximum for the 64× 64 problem size, from

which it slightly drops in performance. Also, as expected, the regular Xeon CPU

provides way less computing power than any of the GPUs considered, as they

have many more computational units. This justifies the predominant interest

in accelerators.510

7. Conclusions

We have presented the design and implementation of a series of portable and

parameterizable kernels that allow the calculation of the orthogonal signal trans-

forms FFT and DCT. These transforms are widely used in many fields, such as

image, digital signal and multimedia processing. Our portable implementations515

follow a parameterizable strategy, which provides Butterfly algorithms designed

taking into account that they have a divide-and-conquer structure.

29

 0

 15

 30

 45

 60

 4 8 16 32 64 128 256 512 1024 2048 4096

G
F

L
o

p
s

N

Intel Xeon − FFT

FFTW

clFFT

HBPL

Figure 5: FFT on the Intel Xeon E5-2660.

The predecessor of this library, BPLG, provides a very good performance,

but it can only be used in NVidia GPUs, thus providing very little portability.

Our proposal, called HBPL for Hetereogeneous Butterfly Processing Library,520

relies however on OpenCL, the standard for heterogeneous computing, which

allows to execute these codes on a wide range of devices. Since basic OpenCL

lacked some of the features required for our purpose, our implementation was

performed on top of HPL, a framework that extends OpenCL with several ca-

pabilities that allow to exploit templates and runtime coe generation on the525

existing implementations of the standard. Our implementation heavily relies on

these features in order to allow the adaptation of the code to the underlying

architecture and the properties of the problem to solve so as to attain good

portable performance.

The algorithms provided by HBPL offer a performance similar to the BPLG530

library, with the difference that ours are portable, which allows to use them

beyond NVidia devices. Comparing HBPL with the clFFT library, the other

30

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 4 8 16 32 64 128 256 512 1024 2048 4096

S
p
e
e
d
U
P

N

 750Ti

 k20m

 FirePro

 Intel Xeon

Figure 6: Speedup of HBPL with respect to clFFT for different problem sizes of the FFT.

Platform Library 4×4 8×8 16×16 32×32 64×64 128×128 256×256 512×512 1024×1024

NVidia 750Ti
HBPL 37.89 38.23 49.65 55.93 79.43 71.55 81.42 87.11 53.78

BPLG 40.73 44.71 53.76 65.27 94.58 87.82 100.95 88.13 74.35

NVidia K20m
HBPL 68.67 86.99 99.05 75.2 97.72 99.08 109.81 97.4 79.96

BPLG 81.7 93.37 111.83 79.28 109.24 107.93 120.91 126.41 86.55

AMD FirePro HBPL 157.78 242.53 314.69 348.96 395.03 377.78 352.7 336.42 332.24

Intel Xeon HBPL 2.48 3.66 4.44 3.88 5.97 6.17 6.8 5.98 5.78

Table 12: Xeon FFT performance (GFlops).

portable alternative for this kind of algorithms, two advantages can be seen:

first, HBPL achieves better performance than clFFT on all the GPUs analyzed,

and second, unlike clFFT our version can be used for any problem size on Intel535

platforms such as a regular Xeon CPU.

8. Acknowledgments

This research has received financial support from the Ministry of Economy

and Competitiveness of Spain and FEDER funds (80%) of the EU (TIN2016-

75845-P), by the Government of Galicia (Xunta de Galicia) co-founded by ERDF540

31

funds under the Consolidation Programme of Competitive Reference Groups

(Ref. ED431C 2017/04) and the Consolidation Programme of Competitive Re-

search Units (Ref. R2014/049 and Ref. R2016/037) as well as by the Xunta

de Galicia (Centro Singular de Investigación de Galicia accreditation 2016-2019)

and the European Union (European Regional Development Fund, ERDF) under545

Grant Ref. ED431G/01.

References

[1] C. J. Weinstein, Quantization effects in digital filters (1969) 96.

[2] J. Lobeiras, M. Amor, R. Doallo, BPLG: A tuned Butterfly Processing

Library for GPU architectures, Int. J. Parallel Program. 43 (6) (2015) 1078–550

1102.

[3] J. W. Cooley, J. W. Tukey, An Algorithm for the Machine Calculation

of Complex Fourier Series, Mathematics of Computation 19 (90) (1965)

297–301.

[4] A. P. Diéguez, M. Amor, J. Lobeiras, R. Doallo, Solving large problem sizes555

of index-digit algorithms on GPU: FFT and Tridiagonal System Solvers,

IEEE Transactions on Computers. 67 (1) (2018) 86–101.

[5] OpenCL 2.2 Specification, https://www.khronos.org/registry/cl/

specs/opencl-2.2.pdf (2017).

[6] D. Vandevoorde, M. M. Josuttis, C++ Templates: The Complete Guide,560

1st Edition, Addison-Wesley Professional, 2002.

[7] Khronos Group: Conformant Products - OpenCL, https://www.khronos.

org/conformance/adopters/conformant-products/opencl, [Last visit:

July 25, 2018] (2017).

[8] M. Viñas, Z. Bozkus, B. B. Fraguela, Exploiting heterogeneous parallelism565

with the Heterogeneous Programming Library, J. Parallel and Distributed

Computing 73 (12) (2013) 1627–1638.

32

https://www.khronos.org/registry/cl/specs/opencl-2.2.pdf
https://www.khronos.org/registry/cl/specs/opencl-2.2.pdf
https://www.khronos.org/registry/cl/specs/opencl-2.2.pdf
https://www.khronos.org/conformance/adopters/conformant-products/opencl
https://www.khronos.org/conformance/adopters/conformant-products/opencl
https://www.khronos.org/conformance/adopters/conformant-products/opencl

[9] M. Viñas, B. B. Fraguela, Z. Bozkus, D. Andrade, Improving OpenCL pro-

grammability with the Heterogeneous Programming Library, International

Conference on Computational Science (ICCS 2015) 51 (2015) 110–119.570

[10] J. F. Fabeiro, D. Andrade, B. B. Fraguela, Writing a performance-portable

matrix multiplication, Parallel Computing 52 (2016) 65–77.

[11] N. Ahmed, T. Natarajan, K. R. Rao, Discrete Cosine Transfom, IEEE

Trans. Comput. 23 (1) (1974) 90–93.

[12] M. Frigo, S. Johnson, The design and implementation of fftw3 93 (2005)575

216 – 231.

[13] Intel Integrated Performance Primitives, https://software.intel.com/

en-us/intel-ipp (2018).

[14] M. Püschel, J. M. F. Moura, J. R. Johnson, D. Padua, M. M. Veloso,

B. W. Singer, J. Xiong, F. Franchetti, A. Gacic, Y. Voronenko, K. Chen,580

R. W. Johnson, N. Rizzolo, Spiral: Code generation for dsp transforms,

Proceedings of the IEEE 93 (2) (2005) 232–275.

[15] B. B. Fraguela, Y. Voronenko, M. Püschel, Automatic tuning of discrete

fourier transforms driven by analytical modeling, in: 2009 18th Interna-

tional Conference on Parallel Architectures and Compilation Techniques585

(PACT), 2009, pp. 271–280.

[16] T. Popovici, T.-M. Low, F. Franchetti, Large bandwidth-efficient FFTs on

multicore and multi-socket systems, in: To appeari in IEEE International

Parallel and Distributed Processing Symposium (IPDPS), IEEE, 2018.

[17] Y. Dotsenko, S. S. Baghsorkhi, B. Lloyd, N. K. Govindaraju, Auto-tuning590

of Fast Fourier Transform on Graphics Processors, in: Proceedings of the

16th ACM Symposium on Principles and Practice of Parallel Programming,

PPoPP ’11, 2011, pp. 257–266.

33

https://software.intel.com/en-us/intel-ipp
https://software.intel.com/en-us/intel-ipp
https://software.intel.com/en-us/intel-ipp

[18] Y. Li, Y.-Q. Zhang, Y.-Q. Liu, G.-P. Long, H.-P. Jia, Mpfft: An auto-tuning

fft library for opencl gpus, Journal of Computer Science and Technology595

28 (1) (2013) 90–105.

[19] A. Nukada, S. Matsuoka, Auto-tuning 3-D FFT Library for CUDA GPUs,

in: Proceedings of the Conference on High Performance Computing Net-

working, Storage and Analysis, SC ’09, 2009, pp. 1–10.

[20] J. Lobeiras, M. Amor, R. Doallo, Designing efficient index-digit algorithms600

for CUDA GPU architectures, IEEE Trans. Parallel Distrib. Syst. 27 (5)

(2016) 1331–1343.

[21] J. Park, G. Bikshandi, K. Vaidyanathan, P. T. P. Tang, P. Dubey, D. Kim,

Tera-scale 1D FFT with low-communication algorithm and Intel Xeon Phi

coprocessors, in: Proceedings of the International Conference on High Per-605

formance Computing, Networking, Storage and Analysis, SC ’13, 2013, pp.

1–12.

[22] D. Takahashi, Implementation of Parallel 1-D FFT on GPU Clusters, in:

Proceedings of the 2013 IEEE 16th International Conference on Computa-

tional Science and Engineering, 2013, pp. 174–180.610

[23] C. Wang, S. Chandrasekaran, B. Chapman, cusfft: A high-performance

sparse fast fourier transform algorithm on gpus, in: 2016 IEEE Interna-

tional Parallel and Distributed Processing Symposium (IPDPS), 2016, pp.

963–972.

[24] NVidia CUDA Fast Fourier Transform library (cuFFT 9.2), https://615

developer.nvidia.com/cufft (2018).

[25] clFFT: a software library containing FFT functions written in OpenCL,

https://github.com/clMathLibraries/clFFT (2016).

[26] A. Watson, Image Compression Using the Discrete Cosine Transform,

Mathematica Journal 4 (1) (1994) 81–88.620

34

https://developer.nvidia.com/cufft
https://developer.nvidia.com/cufft
https://developer.nvidia.com/cufft
https://github.com/clMathLibraries/clFFT

[27] M. P. V. Chauhan, P.K. Nathaney, K. Rai, A Novel Approach to Video

Compression Technique using Variable Block Sizes in Motion Estimation

Process, International Journal of Electronics and Computer Science Engi-

neering (IJECSE) (2012) 1.

[28] Y. Wang, M. Vilermo, Modified Discrete Cosine Transform: Its Implica-625

tions for Audio Coding and Error Concealment, J. Audio Eng. Soc 51 (1/2)

(2003) 52–61.

[29] M. Guptda, A. Garg, Analysis of Image Compression Algorithm using

DCT, International Journal of Engineering Research and Applications

(IJERA) 2 (1) (2012) 512–521.630

[30] M. Mathew, V. Bhat, S. M. Thomas, C. Yim, Modified mp3 encoder using

complex modified cosine transform, in: Proceedings of the Internacional

Conference on Multimedia and Expo, Vol. 2, 2003, pp. II–709–12 vol.2.

[31] J. R. Ohm, G. J. Sullivan, H. Schwarz, T. K. Tan, T. Wiegand, Comparison

of the Coding Efficiency of Video Coding Standards - Including High Effi-635

ciency Video Coding (HEVC), IEEE Transactions on Circuits and Systems

for Video Technology 22 (12) (2012) 1669–1684.

[32] C. G. Kim, Y. S. Choi, A High Performance Parallel DCT with OpenCL

on Heterogeneous Computing Environment, Multimedia Tools Applications

64 (2) (2013) 475–489.640

[33] B. Wang, M. Alvarez-Mesa, C. C. Chi, B. Juurlink, An Optimized Parallel

IDCT on Graphics Processing Units, in: Proceedings of the 18th Inter-

national Conference on Parallel Processing Workshops, Euro-Par’12, 2013,

pp. 155–164.

[34] M. Guptda, A. Garg, Analysis of Image Compression Algorithm using645

DCT, Journal of Engineering Research and Applications 2 (1) (2012) 512–

512.

35

[35] T. Veldhuizen, C++ Templates as Partial Evaluation, in: Proc. ACM SIG-

PLAN Workshop on Partial Evaluation and Semantics-Based Program Ma-

nipulation (PEPM’99), 1999, pp. 13–18.650

[36] R. E. Ladner, M. J. Fischer, Parallel prefix computation, J. ACM 27 (4)

(1980) 831–838.

[37] T. G. Stockham, Jr., High-speed Convolution and Correlation, in: Proceed-

ings of the April 26-28, 1966, Spring Joint Computer Conference, AFIPS

’66 (Spring), 1966, pp. 229–233.655

[38] Maxwell Tunning Guide, http://docs.nvidia.com/cuda/

maxwell-tuning-guide/ (2017).

[39] Kepler Tunning Guide, http://docs.nvidia.com/cuda/

kepler-tuning-guide/index.html (2017).

[40] GCN whitepaper, https://www.amd.com/Documents/GCN_660

Architecture_whitepaper.pdf (2012).

[41] AMD OpenCL opitimization guide, http://amd-dev.wpengine.

netdna-cdn.com/wordpress/media/2013/12/AMD_OpenCL_

Programming_Optimization_Guide.pdf (2014).

[42] The initial open source release of clFFT, https://github.com/665

clMathLibraries/clFFT/releases/tag/v2.0 (2013).

36

http://docs.nvidia.com/cuda/maxwell-tuning-guide/
http://docs.nvidia.com/cuda/maxwell-tuning-guide/
http://docs.nvidia.com/cuda/maxwell-tuning-guide/
http://docs.nvidia.com/cuda/kepler-tuning-guide/index.html
http://docs.nvidia.com/cuda/kepler-tuning-guide/index.html
http://docs.nvidia.com/cuda/kepler-tuning-guide/index.html
https://www.amd.com/Documents/GCN_Architecture_whitepaper.pdf
https://www.amd.com/Documents/GCN_Architecture_whitepaper.pdf
https://www.amd.com/Documents/GCN_Architecture_whitepaper.pdf
http://amd-dev.wpengine.netdna-cdn.com/wordpress/media/2013/12/AMD_OpenCL_Programming_Optimization_Guide.pdf
http://amd-dev.wpengine.netdna-cdn.com/wordpress/media/2013/12/AMD_OpenCL_Programming_Optimization_Guide.pdf
http://amd-dev.wpengine.netdna-cdn.com/wordpress/media/2013/12/AMD_OpenCL_Programming_Optimization_Guide.pdf
http://amd-dev.wpengine.netdna-cdn.com/wordpress/media/2013/12/AMD_OpenCL_Programming_Optimization_Guide.pdf
http://amd-dev.wpengine.netdna-cdn.com/wordpress/media/2013/12/AMD_OpenCL_Programming_Optimization_Guide.pdf
https://github.com/clMathLibraries/clFFT/releases/tag/v2.0
https://github.com/clMathLibraries/clFFT/releases/tag/v2.0
https://github.com/clMathLibraries/clFFT/releases/tag/v2.0

	Introduction
	Related work
	HBPL
	Computing blocks
	Reordering blocks

	Signal processing transforms using HBPL
	FFT
	DCT

	Tuned strategy for Butterfly algorithms
	Block (work-group) parallelism
	Thread (work-item) parallelism

	Results
	FFT
	DCT

	Conclusions
	Acknowledgments

