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Abstract The analysis of continuously spatially varying processes usually considers 
two sources of variation, namely, the large-scale variation collected by the trend of the 
process, and the small-scale variation. Parametric trend models on latitude and longi-
tude are easy to fit and to interpret. However, the use of parametric models for char-
acterizing spatially varying processes may lead to misspecification problems if the 
model is not appropriate. Recently, Meilán-Vila et al. (2020) proposed a goodness-
of-fit test based on an L2-distance for assessing a parametric trend model with cor-
related errors, under random design, comparing parametric and nonparametric trend 
estimates. The present work aims to provide a detailed computational analysis of the 
behavior of this approach using different bootstrap algorithms for calibration, one of 
them including a procedure that corrects the bias introduced by the direct use of the 
residuals in the variogram estimation, under a fixed design geostatistical framework. 
Asymptotic results for the test are provided and an extensive simulation study, con-
sidering complexities that usually arise in geostatistics, is carried out to illustrate the 
performance of the proposal. Specifically, we analyze the impact of the sample size,
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the spatial dependence range and the nugget effect on the empirical calibration and
power of the test.

Keywords Parametric spatial trends · Bootstrap algorithm · Nonparametric fit ·
Goodness-of-fit test · Bias correction

1 Introduction

Continuously varying spatial processes are usually described through the analysis of
their trend and their dependence structure. The trend component captures the large-
scale variability of the process, usually modeled by parametric functions on latitude
and longitude (the so-called trend-surface models), and possibly altitude (see Cressie,
1993). For a proper trend estimation, the dependence structure of the process (al-
though not being of primary interest) must be accounted for, usually employing itera-
tive least squares procedures or maximum likelihood approaches under Gaussian and
stationary assumptions (see, for instance, Diggle et al., 2010; Cressie, 1993).

However, the consideration of an inadequate parametric trend model may lead to
wrong conclusions on the process behavior. In a regression setting with independent
errors, to prevent misspecification of the regression function, different testing pro-
cedures for assessing a certain parametric regression model have been introduced.
For instance, the proposals by Härdle and Mammen (1993); Alcalá et al. (1999); Op-
somer and Francisco-Fernández (2010) and Li (2005) are based on the comparison of
a parametric and a nonparametric estimator using an L2-distance. Following this idea,
Meilán-Vila et al. (2020) introduced a testing procedure to check if the trend func-
tion of a spatial process belongs to a certain class of parametric models. The authors
considered a multiple regression model with random design and spatially correlated
errors. They used the local linear estimator as the nonparametric fit. In the present
paper, focused on a geostatistical framework with fixed design, a thorough analysis
of the behavior of a similar test considering different trend models, sample sizes and
dependence patterns, is provided. In this case, for simplicity, the Nadaraya–Watson
estimator is employed as the nonparametric fit.

The proposed test statistic shows a slow rate of convergence to its asymptotic
distribution, motivating the use of resampling methods to approximate its distribu-
tion under the parametric null hypothesis. It should be noted that, in order to mimic
the process behavior under the null hypothesis, not only the parametric form of the
trend must be considered, but also the spatial dependence of the data. This has to be
recovered from a single realization of the spatial process under certain stationarity
conditions. In the presence of spatial correlation, resampling methods may not be
accurate enough for mimicking the spatial dependence structure under the null hy-
pothesis from a single realization of the process. This is the reason why a thorough
analysis of the impact of the spatial dependence configuration in the distribution ap-
proximation of the test is required and provided in this work.

Traditional resampling procedures for test calibration designed for independent
data should not be used for spatial processes, as they do not account for the correla-
tion structure. One of the aims of this paper is to present and analyze three different
proposals for test calibration which take the dependence of the data into account:
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a parametric residual bootstrap (PB), a nonparametric residual bootstrap (NPB) and
a bias-corrected nonparametric bootstrap (CNPB). Parametric bootstrap procedures,
following the ideas introduced by Solow (1985), are a usual strategy in geostatis-
tics, since they directly involve the dependence structure (see, for example, Olea and
Pardo-Iguzquiza, 2011). In the PB approach, the residuals are obtained from a para-
metric trend fit and the spatial dependence structure is estimated parametrically. If
the assumption that the trend function belongs to the parametric family considered in
the null hypothesis holds, then the residuals obtained with this approach will be sim-
ilar to the theoretical errors, and it is expected that the PB method presents a good
performance. A possible drawback of this procedure is the misspecification of the
parametric model selected for the dependence estimation, although this issue could
be avoided by using a nonparametric dependence estimator. In the NPB method, to in-
crease the power of the test, the residuals are obtained from the nonparametric fit (see
González-Manteiga and Cao, 1993) and the dependence structure is estimated with-
out considering parametric assumptions. It is clear that the NPB resampling method
avoids the misspecification problem both for the trend and the dependence. However,
no matter the method used to remove the trend, either parametric or nonparamet-
ric, the direct use of residuals gives rise to biased variogram estimates, especially
at large lags (see Cressie, 1993, Section 3.4.3), an issue that is corrected with the
CNPB approach. This procedure is a modification of the NPB method, including
a bias-corrected algorithm for the dependence estimation (see Fernández-Casal and
Francisco-Fernández, 2014; Castillo-Páez et al., 2019).

This paper is organized as follows. In Section 2, the parametric and nonparamet-
ric trend estimation methods employed in our testing procedure are briefly described.
The L2-test statistic measuring the discrepancy between both fits, as well as its asymp-
totic distribution (under the null hypothesis and under local alternatives) are also in-
cluded in Section 2. A detailed description of the calibration algorithms considered is
given in Section 3. An exhaustive simulation study to assess the performance of the
test, when the PB, NPB and CNPB resampling approaches are used, is presented is
Section 4. Finally, Section 5 includes some discussion and further considerations.

2 Inference for spatial trends

Important issues frequently addressed by spatial modeling are the estimation of a
surface/map describing the trend of the process and the prediction of the variable
of interest at certain unobserved locations. To deal with these problems, traditional
approaches in geostatistics consist in assuming (generally simple) parametric mod-
els for the trend and, then, reconstructing the whole trend surface using parametric
techniques and making predictions by spatial interpolation methods, such as kriging
(see Cressie, 1993, Section 3). However, in some situations, the complex interac-
tions between the possible factors affecting the variable of interest make it difficult
to write down a simple parametric model for its trend over a large geographic re-
gion. In the absence of such a model, the trend can be represented as a smooth spatial
function, establishing the relation between the process values and the location coor-
dinates (latitude, longitude and maybe altitude in a three-dimensional setting). This
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approach provides a useful first step to characterize important features of the variable
of interest, or can be helpful in the development of more complete models including
additional significant covariates.

Consider a real-valued spatial process {Z(sss), sss ∈ D⊂ Rd}, observed at fixed lo-
cations {sss1, . . . ,sssn}. From a model-based perspective (see Diggle and Ribeiro, 2007),
the spatial process can be assumed to be decomposed as:

Zi = m(sssi)+ εi, i = 1, . . . ,n, (1)

being Zi = Z(si), with i = 1, . . . ,n, a realization of the process at a collection of lo-
cations within the observation domain. The trend of the process is given by m, which
is an unknown (but smooth) function modeling the expectation of the process, and εi
denotes the error at location sssi, for i = 1, . . . ,n, so these values can be viewed as a re-
alization of a spatially varying error process. In order to estimate the trend in (1) from
a single realization of the process, stationary conditions must be assumed. Usually,
the error process is supposed to be zero-mean with covariance structure satisfying:

Cov(εi,ε j) = σ
2
ρn(sssi− sss j), i, j = 1, . . . ,n, (2)

with σ2 being the variance of the process and ρn a continuous stationary correlation
function satisfying ρn(000) = 1, ρn(sss) = ρn(−sss), and |ρn(sss)| ≤ 1, ∀sss. The subscript
n in ρn allows the correlation function to shrink as n→ ∞. In a spatial context, the
dependence structure is typically characterized through the variogram function, γn,
which satisfies that γn(sss) = σ2[1− ρn(sss)], ∀sss ∈ Rd . For simplicity, the subscript n
will be sometimes omitted. In the previous expression for the covariance of the errors
(2), it is supposed that there is no nugget effect. Otherwise, the variance of the errors
is written as the sum of two terms, Var(ε) = σ2 = c0 + ce, the nugget effect (c0)
and the partial sill (ce), and Cov(εi,ε j) = ceρn(sssi− sss j), if i 6= j. In what follows, the
covariance matrix of the errors is denoted by ΣΣΣ , being Σ(i, j) = Cov(εi,ε j) its (i, j)-
entry. For the sake of simplicity, no nugget is considered in the theoretical result
given in Section 2.2. However, its effect is analyzed in the simulation study presented
in Section 4.

In model (1), the trend function m can be characterized using parametric or non-
parametric models. Parametric models are easy to compute and allow for a direct
interpretation of the parameter values (e.g. variation of the process along latitude
and longitude). On the other hand, nonparametric models also provide a global view
of the large-scale behavior of the process. Their flexibility allows to model complex
relations beyond a parametric form. Therefore, a question of interest in spatial model-
ing is focused on characterizing the large-scale variability of the process Z, checking
if the trend function belongs to a parametric family by solving the following testing
problem:

H0 : m ∈Mβββ = {mβββ , βββ ∈B} vs. Ha : m /∈Mβββ , (3)

with B ⊂Rp a compact set, and p denoting the dimension of the parameter space B.
A test statistic to address (3) is proposed and studied in this paper. Following

similar ideas to those in Meilán-Vila et al. (2020), the proposed test consists in using a
nonparametric fit as a pilot estimator to assess if a certain parametric family is suitable
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for fitting the observed data, comparing with an L2-distance the nonparametric fit with
a parametric one.

In the following section, the parametric and the nonparametric estimators of the
spatial trend m, in model (1), used in our L2-test statistic are described. Subsequently,
the asymptotic distribution of this test is derived and its empirical performance is
analyzed in a comprehensive simulation study, under different spatial dependence
scenarios.

2.1 Spatial trend estimation

Spatial trend estimation in (1) can be performed parametrically by different methods,
being least squares and maximum likelihood approaches the most frequently used
(Diggle and Ribeiro, 2007). Next, we briefly describe the parametric least squares
trend estimator used in our test statistic. On the other hand, nonparametric methods
can also be employed for this task. Among the different alternatives, the multivari-
ate Nadaraya–Watson estimator is applied in the goodness-of-fit test proposed. This
nonparametric trend estimator is also formulated and discussed below in the context
of this paper.

Parametric estimation

As pointed out previously, the goodness-of-fit test proposed in this paper makes use
of a parametric estimator of the trend function. As it will be remarked in the next
section, the test statistic can be applied considering any parametric estimator of m
satisfying a

√
n-consistency property. Specifically, if mβββ 0

denotes the “true” regres-
sion function under the null hypothesis, and m

β̂ββ
the corresponding parametric esti-

mator, it is required that the difference m
β̂ββ
(sss)−mβββ 0

(sss) = Op(n−1/2) uniformly in sss.
A suitable parametric estimator satisfying this property is, for example, the one in-
troduced by Crujeiras and Van Keilegon (2010) for nonlinear trends. The steps of the
parametric estimation method employed for the practical application of the test are
the following:

1. Obtain an initial estimator of βββ by least squares regression:

β̃ββ = argmin
βββ

(ZZZ−mmmβββ )
>(ZZZ−mmmβββ ), (4)

where ZZZ = (Z1, . . . ,Zn)
> and mmmβββ = [mβββ (sss1), . . . ,mβββ (sssn)]

>.
2. Using the residuals obtained with the estimation in (4), ε̃i = Zi −m

β̃ββ
(sssi), i =

1, . . . ,n, estimate the covariance matrix of the errors, Σ̃ΣΣ .
3. Update the regression parameter estimates, introducing the estimated covariance

matrix Σ̃ΣΣ in the least squares minimization problem:

β̂ββ = argmin
βββ

(ZZZ−mmmβββ )
>

Σ̃ΣΣ
−1
(ZZZ−mmmβββ ). (5)

Finally, take m
β̂ββ

as the parametric estimator for the regression function.
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Covariance matrix estimation in Step 2 could be carried out using different meth-
ods. Firstly, using a parametric methodology and assuming that the variogram be-
longs to a valid parametric family {2γθθθ , θθθ ∈ΘΘΘ ⊂ Rq}, a parameter estimate θ̂θθ of
θθθ can be obtained. Following a classical approach, θθθ could be estimated by fitting
the parametric model considered for the variogram to a set of empirical semivari-
ogram estimates, computed using the residuals ε̃i, applying the weighted least squares
method (Cressie, 1985). With this parametric approximation, the variance-covariance
matrix of the errors can be denoted by ΣΣΣ θθθ , and replacing θθθ by θ̂θθ , a parametric esti-
mation of ΣΣΣ θθθ (denoted by ΣΣΣ

θ̂θθ
) can be obtained.

On the other hand, instead of using a parametric approach, flexible nonparamet-
ric estimators can be employed to approximate the dependence structure, avoiding
misspecification problems. For instance, an estimate of the variogram of the resid-
uals could be obtained as follows. First, compute a nonparametric pilot variogram
estimator (Hall and Patil, 1994). A first attempt could be to use the empirical semi-
variogram estimator. Nevertheless, in practice, empirical variogram estimates could
be deficient. For instance, the assumption of isotropy (or geometric anisotropy) could
be not appropriate (Fernández-Casal et al., 2003a). Therefore, it would be desirable to
have models with enough flexibility. Nonparametric kernel semivariogram estimators
could be used instead, producing significantly better results than those obtained with
the empirical estimator (Fernández-Casal et al., 2003b). However, these estimators
do not necessarily satisfy the conditionally negative definiteness property of a valid
semivariogram. For that reason, a valid model should be fitted to the nonparametric
pilot estimates. For example, a flexible Shapiro–Botha variogram approach (Shapiro
and Botha, 1991) could be employed at this step. The combination of the Shapiro–
Botha method with nonparametric kernel semivariogram pilot estimation provides
an efficient variogram estimator which can be used to estimate the corresponding
covariance matrix.

Nonparametric estimation

Kernel methods can also be used to estimate the trend function m in model (1), pro-
viding more flexible approaches than the parametric fits. In this work, a multivariate
Nadaraya–Watson estimator (Härdle and Müller, 2012; Liu, 2001) is considered. For
a certain location sss ∈ D, this estimator is given by:

m̂NW
HHH (sss) =

∑
n
i=1 KHHH(sssi− sss)Zi

∑
n
i=1 KHHH(sssi− sss)

, (6)

where KHHH(sss) = |HHH|−1K(HHH−1sss) is the rescaled version of a multivariate kernel func-
tion K and HHH is a d×d symmetric positive definite matrix. The kernel function K can
be obtained as the product of univariate kernels (see, for example, Wand and Jones,
1994; Fan and Gijbels, 1996). The bandwidth matrix HHH controls the shape and the size
of the local neighborhood used to estimate m at a location sss, and its selection plays
an important role in the estimation process. In the presence of spatially correlated
errors, traditional data-driven bandwidth selection methods, such as cross-validation
and generalized cross-validation, fail to provide good bandwidth values (Opsomer
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et al., 2001). Asymptotic results for (6) as well as the proposal of different bandwidth
selection methods under the assumption of spatially correlated errors can be found
in Liu (2001), extending the results for independent data given in Härdle and Müller
(2012).

The estimator given in (6) can be seen as a particular case of a wider class of non-
parametric estimators, the so-called local polynomial estimators, assuming that the
polynomial degree is equal to zero (local constant). Since this work aims to provide a
deeper analysis of the practical performance of a version of the test studied in Meilán-
Vila et al. (2020), the local constant fit was chosen given its reduced computational
cost compared with other nonparametric approaches.

2.2 Trend model assessment

Following the ideas by Härdle and Mammen (1993) and Alcalá et al. (1999), in
Meilán-Vila et al. (2020), the testing problem (3) is addressed by constructing a
weighted L2-test statistic, comparing a smoothed version of a parametric and a non-
parametric regression estimates. These authors considered a model like (1), but as-
suming a random design. As the parametric fit, they used the least squares estimator
described in Section 2.1, estimating the covariance matrix of the errors in Step 2 of
that algorithm using a parametric approach. As the nonparametric fit, they employed
the local linear estimator. In the present paper, we assume a geostatistical fixed design
and consider the same type of testing approach. As the parametric fit, we also employ
the method described in Section 2.1, but the Nadaraya–Watson estimator introduced
in (6) is used as the nonparametric fit. Specifically, the test statistic considered is
given by:

Tn = n|HHH|1/2
∫

D

[
m̂NW

HHH (sss)− m̂NW
HHH,β̂ββ

(sss)
]2

w(sss)dsss, (7)

where w is a weight function that helps in mitigating possible boundary effects and
m̂NW

HHH,β̂ββ
is a smoothed version of m

β̂ββ
, which is defined by:

m̂NW
HHH,β̂ββ

(sss) =
∑

n
i=1 KHHH (sssi− sss)m

β̂ββ
(sssi)

∑
n
i=1 KHHH (sssi− sss)

. (8)

If the null hypothesis holds, then the parametric and nonparametric estimators
in (7) will tend to be similar and the value of Tn will be small. Conversely, if the
null hypothesis does not hold, major differences between both fits are expected and,
therefore, the value of Tn will be large. So, H0 will be rejected if the distance between
both fits exceeds a critical value. For example, as a visual illustration of the perfor-
mance of the test, suppose that a sample of size n = 400 is generated on a regular
grid in the unit square D = [0,1]× [0,1], following model (1), with trend function
(9) and c = 0. The random errors εi are normally distributed with zero mean and co-
variance function (11), with values σ2 = 0.16, c0 = 0.04 and ae = 0.6. If we want
to test if m(sss) ∈ {β0 + β1(s1− 0.5)3,β0,β1 ∈ R}, being sss = (s1,s2), using the test
statistic given in (7), both m̂NW

HHH and m̂NW
HHH,β̂ββ

fits must be computed. Figure 1 shows the
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theoretical spatial trend (top left panel), the simulated observations of the spatial pro-
cess (top right panel), the Nadaraya–Watson trend estimation (bottom left panel) and
the smoothed version of the parametric fit (bottom right panel). A multiplicative tri-
weight kernel and the optimal bandwidth obtained by minimizing the mean average
squared error (MASE) of the Nadaraya–Watson estimator (see Francisco-Fernandez
and Opsomer, 2005, p. 288) are considered for m̂NW

HHH and m̂NW
HHH,β̂ββ

. In this case, from a
visual comparison, one may argue that given that both estimates at bottom left and
right panels are very similar, the value of the test statistic Tn would presumably be
small, and consequently, there may be no evidences against the assumption of para-
metric trend mβββ (sss) = β0 +β1(s1− 0.5)3. However, apart from getting some insight
to what might occur when using exploratory methods, in order to formally test the
model using Tn, given in (7), it is essential to approximate the distribution of the test
statistic under the null hypothesis.

A result providing the asymptotic distribution of the test statistic Tn under the null
hypothesis and also under local alternatives is provided below. Specifically, we con-
sider alternatives of the form m(sss) = mβββ 0

(sss)+ cng(sss), where cn is a sequence, such
that cn→ 0 and g is a deterministic function collecting the deviation direction from
the null model. Additionally, it is assumed that the function g is bounded (uniformly
in sss and n) and cn = n−1/2|HHH|−1/4. In particular, this contains the null hypothesis
when g(sss) = 0. The following assumptions are required:

(A1) The regression function m is twice continuously differentiable.
(A2) The weight function w is continuously differentiable.
(A3) For the correlation function ρn, there exist two constants ρM and ρc, such that,

n
∫
|ρn(sss)|dsss < ρM and limn→∞ n

∫
ρn(sss)dsss = ρc. Moreover, for any sequence

εn > 0 satisfying n1/dεn→ ∞,

n
∫
‖sss‖≥εn

|ρn(sss)|dsss→ 0 as n→ ∞.

(A4) For any i, j, k, l,

Cov(εiε j,εkεl) = Cov(εi,εk)Cov(ε j,εl)+Cov(εi,εl)Cov(ε j,εk).

(A5) The errors are a geometrically strong mixing sequence with mean zero and
E|ε(sss)|r < ∞ for all r > 4.

(A6) The kernel K is a spherically symmetric density function, twice continuously
differentiable and with compact support (for simplicity with a nonzero value
only if ‖uuu‖ ≤ 1). Moreover,

∫
uuuuuu>K(uuu)duuu = µ2(K)IIId , where µ2(K) is a con-

stant real value different from zero and IIId is the d×d identity matrix.
(A7) K is Lipschitz continuous. That is, there exists L> 0, such that

|K(sss1)−K(sss2)| ≤ L‖sss1− sss2‖, ∀sss1,sss2 ∈ D.

(A8) The bandwidth matrix HHH is symmetric and positive definite, with HHH → 0 and
n|HHH|λ 2

min(HHH)→∞, when n→∞. The ratio λmax(HHH)/λmin(HHH) is bounded above,
where λmax(HHH) and λmin(HHH) are the maximum and minimum eigenvalues of HHH,
respectively.
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Fig. 1 Spatial trend (top left), spatial process (top right), Nadaraya–Watson trend estimator (bottom left)
and smoothed version of the parametric fit (bottom right). Sample of size n = 400 generated on a regular
grid in the unit square D= [0,1]× [0,1], following model (1), with trend function m(sss)= 2.5+4(s1−0.5)3,
sss = (s1,s2), and exponential covariance structure with σ2 = 0.16, c0 = 0.04 and ae = 0.6

Assumption (A3) implies that the correlation function depends on n, and the in-
tegral

∫
|ρn(sss)|dsss should vanish as n→ ∞. The vanishing speed should not be slower

than O(n−1). This assumption also implies that the integral of |ρn(sss)| is dominated
by the values of ρn(sss) near to the origin 000. Hence, the correlation is short-range and
decreases as n→ ∞. This can be considered as a case of increasing-domain spatial
asymptotics (see Cressie, 1993), since this setup can be transformed to one in which
the correlation function ρn is fixed with respect to the sample size, but the support
D for sss expands. The current setup with fixed domain D and shrinking ρn is more
natural to consider when the primary purpose of the estimation is a fixed regression
function m defined over a spatial domain, not the correlation function itself. Two
examples of commonly used correlation functions that satisfy the conditions of as-
sumption (A3) are the exponential and rational quadratic models (see Cressie, 1993).
Assumption (A4) is satisfied, for example, for Gaussian errors. Assumption (A5) is
needed to apply the central limit theorem for reduced U-statistics under dependence
given by Kim et al. (2013). In assumption (A8), HHH→ 0 means that every entry of HHH
goes to 0. Moreover, since HHH is symmetric and positive definite, HHH→ 0 is equivalent
to λmax(HHH)→ 0. It can also be deduced that |HHH| is a quantity of order O[λ d

max(HHH)]
given that |HHH| is equal to the product of all eigenvalues of HHH.
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Regarding the parametric estimator, the assumption of being a
√

n-consistent es-
timator is required. This is guaranteed if the least squares estimator m

β̂ββ
described in

Section 2.1 is used in the statistic (7). A different parametric estimator of the trend
function could be used as long as the

√
n-consistency property is fulfilled.

The following theorem provides the asymptotic distribution of the proposed test
statistic Tn given in (7). The proof of the result can be found in the final Appendix.

Theorem 1 Under Assumptions (A1)–(A8), and if 0 <V < ∞, it can be proved that

V−1/2(Tn−b0HHH −b1HHH)→L N(0,1) as n→ ∞

where→L denotes convergence in distribution, with

b0HHH = |HHH|−1/2
σ

2K(2)(000)
[∫

w(sss)dsss+ρc

∫
w(sss)dsss

]
,

b1HHH =
∫

[KHHH ∗g(sss)]2 w(sss)dsss,

and

V = σ
4K(4)(0)

∫
w2(sss)dsss

(
1+ρc +2ρ

2
c
)
,

where K( j) denotes the j-times convolution product of K with itself.

3 Testing proposal in practice

Notice that the asymptotic distribution of the test obtained in Theorem 1, as in other
nonparametric testing procedures (see, for example, Härdle and Mammen, 1993),
may not be sufficiently precise to approximate the test statistic distribution under the
null hypothesis in practice, for small or moderate sample sizes. A brief simulation
experiment (not shown here for reasons of space) was conducted to analyze the per-
formance of the asymptotic distribution of the test under the null hypothesis. In this
example, we observed that the sample size n needed to get a reliable approximation
of the sampling distribution by the Gaussian limit distribution has to be consider-
ably large. In addition, this size depends on other process characteristics, such as
the strength of the dependence structure. For this particular example, we noticed that
values of n rather larger than 2500 are needed to obtain accurate approximations.
Therefore, it could be deduced that to get sufficiently precise approximations in a
general framework, it would be necessary to have a very large sample size, which
is not always the case for geostatistical data. Moreover, the limit distribution of the
test statistic depends on unknown quantities that must be estimated. This is a com-
mon problem in smoothing-based tests, as already noted by González-Manteiga and
Crujeiras (2013). This issue is usually overcome using resampling methods for ap-
proximating the distribution of the test statistics, specifically, employing bootstrap
algorithms that try to mimic the data structure under the null hypothesis.



Nonparametric assessment of spatial trends 11

In what follows, a detailed description of the different bootstrap proposals de-
signed to perform the calibration of the test (namely PB, NPB and CNPB) is pre-
sented. The main difference between the proposals is how the resampling residuals
(required for mimicking the dependence structure) are computed. In PB, the residuals
are obtained from the parametric trend estimator. Alternately, in NPB, the residuals
are drawn from the nonparametric trend estimator (see González-Manteiga and Cao,
1993). In this way, the error variability could be reproduced consistently both un-
der the null and the alternative hypotheses, increasing the power of the test. Finally,
the CNPB procedure is a modification of the NPB, where the residuals are also ob-
tained from the nonparametric trend estimator, but, additionally, the variability is
estimated with an iterative algorithm to correct the bias due to the use of the residuals
(Fernández-Casal and Francisco-Fernández, 2014).

In order to describe the PB and NPB resampling approaches, a common boot-
strap algorithm is firstly introduced. The specific algorithm for the CNPB method is
subsequently described. In what follows, no matter the method used, either paramet-
ric or nonparametric, m̂ and Σ̂ΣΣ denote the trend and the covariance matrix estimates,
respectively.

Algorithm 1
1. Compute a parametric or a nonparametric trend estimator (described in Section
2.1), namely m̂(sssi), i = 1, . . . ,n, depending if a parametric (PB) or a nonparametric
(NPB) bootstrap procedure is employed.
2. Obtain an estimated variance-covariance matrix Σ̂ΣΣ of the residuals ε̂εε =
(ε̂1, . . . , ε̂n)

>, where ε̂i = Zi− m̂(sssi), i = 1, . . . ,n.
3. Find the matrix LLL, such that Σ̂ΣΣ = LLLLLL>, using Cholesky decomposition.
4. Compute the independent variables, eee = (e1, . . . ,en)

>, given by eee = LLL−1
ε̂εε .

5. The previous independent variables are centered and an independent bootstrap
sample of size n, denoted by eee∗ = (e∗1, . . . ,e

∗
n)
>, is obtained.

6. The bootstrap errors εεε∗ = (ε∗1 , . . . ,ε
∗
n )
> are computed as εεε∗ = LLLeee∗, and the boot-

strap samples are Z∗i = m
β̂ββ
(sssi)+ ε∗i , being m

β̂ββ
(sssi) the parametric trend estimator.

7. Using the bootstrap sample {(sssi,Z∗i )}
n
i=1, the bootstrap test statistic T ∗n is com-

puted as in (7).
8. Repeat Steps 5-7 a large number of times B.

The empirical distribution of the B bootstrap test statistics can be employed to ap-
proximate the finite sample distribution of the test statistic Tn under the null hypoth-
esis. Thus, denoting by {T ∗n,1, . . . ,T ∗n,B} the sample of the B bootstrap test statistics,
and defining t∗α as its (1−α)-quantile, the null hypothesis in (3) is rejected if Tn > t∗α .
Additionally, the p-value of the test statistic can be approximated by:

p-value =
1
B

B

∑
b=1

I{T ∗n,b>Tn}.

Some specific steps of the previous algorithm are discussed below for the PB and
NPB methods. The main differences between the procedures are highlighted.
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3.1 Parametric residual bootstrap (PB)

The PB method extends to the case of spatial trends the parametric residual bootstrap
discussed in Vilar-Fernández and González-Manteiga (1996). In Step 1 of the pre-
vious algorithm, the trend is estimated parametrically, employing the iterative least
squares estimator described in Section 2.1. In Step 2, the covariance matrix is com-
puted from the parametric residuals also using a parametric approach (see Section
2.1 for further details). Notice that if the trend and the semivariogram belong to the
assumed parametric families, then this procedure should provide good results. How-
ever, a drawback of this method is the possible misspecification of the trend function
and/or the variogram. In addition, as it was pointed out in the Introduction, the direct
use of the parametric residuals introduces a bias in the estimation of the variability of
the process in Step 2.

3.2 Nonparametric residual bootstrap (NPB)

The NPB approach tries to avoid the misspecification problems by using more flex-
ible trend and dependence estimation methods than those employed in PB. In Step
1 of Algorithm 1, to increase the power of the test, following González-Manteiga
and Cao (1993), the Nadaraya–Watson estimator given in (6) is employed. In addi-
tion, in Step 2, a flexible procedure is considered to estimate the covariance matrix.
The Shapiro–Botha variogram approach (Shapiro and Botha, 1991), combined with
a nonparametric kernel semivariogram pilot estimation provides efficient variogram
estimates, which are used to approximate the corresponding covariance matrix. For
more details see Section 2.1.

Regardless the methodology used to remove the trend in Step 2 of Algorithm 1,
either parametric or nonparametric, the direct use of residuals in variogram estima-
tion introduces a bias in the approximation of the process variability (see Cressie,
1993, Section 3.4.3, for the case of parametric linear trends). The CNPB method is
a modification of the NPB approach, including a bias-corrected algorithm for the de-
pendence estimation. The specific bias correction will be briefly described in the next
section.

3.3 Corrected nonparametric residual bootstrap (CNPB)

As pointed out before, the CNPB method considers a procedure to correct the re-
sulting bias in the nonparametric estimator of the variogram. In the geostatistical
framework, more accurate results have been obtained using this technique (Castillo-
Páez et al., 2019). The following adjustments are performed in the bootstrap Algo-
rithm 1 for the CNPB method. In Step 1, the trend is estimated using the Nadaraya–
Watson estimator given in (6), whereas in Step 2, a (nonparametric) bias-corrected pi-
lot variogram estimator is obtained using an iterative algorithm (Fernández-Casal and
Francisco-Fernández, 2014). In this estimator, the squared differences of the residu-
als (ε̂i− ε̂ j)

2, for 1 ≤ i < j ≤ n, are replaced by (ε̂i− ε̂ j)
2− b̂ii− b̂ j j− 2b̂i j, where



Nonparametric assessment of spatial trends 13

b̂i j is the (i, j)-entry of B̂BB, being B̂BB an approximation of BBB = SSSΣΣΣSSS>>>−−−ΣΣΣSSS>>>−−− SSSΣΣΣ (a
square matrix representing the bias obtained due to the use of the residuals in the
nonparametric variogram estimator), and SSS the smoothing matrix of the Nadaraya-
Watson estimator (6), whose (i, j)-entry is SSS(i, j) = KHHH(sssi− sss j)/[∑

n
i=1 KHHH(sssi− sss j)].

Therefore, in Algorithm 1, additional computations are included in Step 2 and 3. In
addition, Step 6 needs to be modified. The complete algorithm for the CNPB method
is presented below.

Algorithm 2
1. Compute a nonparametric trend estimator (described in Section 2.1), denoted by
m̂(sssi), i = 1, . . . ,n.
2a. Obtain an estimated variance-covariance matrix Σ̂ΣΣ of the residuals ε̂εε =
(ε̂1, . . . , ε̂n)

>, where ε̂i = Zi− m̂(sssi), i = 1, . . . ,n.
2b. Obtain a bias-corrected estimate of the variogram, as explained before, us-
ing the residuals from the nonparametric fit, and calculate the corresponding (esti-
mated) covariance matrix Σ̃ΣΣ of the errors.
3a. Find the matrix LLL, such that Σ̂ΣΣ = LLLLLL>, using Cholesky decomposition.
3b. Find the matrix L̃LL, such that Σ̃ΣΣ = L̃LLL̃LL>, using Cholesky decomposition.
4. Compute the independent variables, eee = (e1, . . . ,en)

>, given by eee = LLL−1
ε̂εε .

5. The previous independent variables are centered and an independent bootstrap
sample of size n, denoted by eee∗ = (e∗1, . . . ,e

∗
n)
>, is obtained.

6. The bootstrap errors εεε∗ = (ε∗1 , . . . ,ε
∗
n )
> are εεε∗ = L̃LLeee∗, and the bootstrap samples

are Z∗i = m
β̂ββ
(sssi)+ ε∗i , where m

β̂ββ
(sssi) is computed using the procedure described in

Section 2.1.
7. Using the bootstrap sample {(sssi,Z∗i )}

n
i=1, the bootstrap test statistic T ∗n is com-

puted as in (7).
8. Repeat Steps 5-7 a large number of times B.

4 Simulation study

In this section, the practical performance of the proposed test statistic is analyzed
through a simulation study comparing the different bootstrap procedures described in
Section 3.

Although different regression models were considered in this study, for reasons
of space, only the results obtained for two of them are presented here. First, the para-
metric trend family M1,βββ = {β0 +β1(s1−0.5)3,β0,β1 ∈ R} is assumed for the null
hypothesis. In this case, the theoretical trend functions are given by:

m1(sss) = 2.5+4(s1−0.5)3 + csin(2πs2), sss = (s1,s2). (9)

The second parametric trend family considered for the null hypothesis is M2,βββ =
{β0 +β1 cos(πs1),β0,β1 ∈ R}, and the trend functions are:

m2(sss) = 1+2cos(πs1)+ csin(2πs2), sss = (s1,s2). (10)
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In both cases, the parameter c controls whether the null (c = 0) or the alternative
(c 6= 0) hypotheses hold. For different values of this parameter, 500 samples of sizes n
(n = 100,225 and 400) are generated on a regular grid in the unit square D = [0,1]×
[0,1], following model (1), with regression functions (9) or (10). The random errors
εi are normally distributed with zero mean and isotropic exponential covariogram:

Cov(εi,ε j) = ce [exp(−‖sssi− sss j‖/ae)] , ‖sssi− sss j‖ 6= 0, (11)

where ce is the partial sill and ae the practical range, whereas the variance of the errors
(also called the sill) is σ2 = c0 + ce, being c0 the nugget effect. Different degrees of
spatial dependence are studied, considering values of ae = 0.3,0.6 and 0.9, σ2 =
0.16,0.32 and 0.32, and nugget values of 0%,25% and 50% of σ2.

The behavior of the test statistic given in (7) is analyzed in the different scenarios.
The parametric fit used to construct Tn is computed using the iterative least squares
procedure described in Section 2.1. The nonparametric fit is obtained using the multi-
variate Nadaraya–Watson estimator, given in (6), with a multiplicative triweight ker-
nel. The bandwidth selection problem is addressed by employing the same proce-
dure as that used in Härdle and Mammen (1993), Alcalá et al. (1999), Opsomer and
Francisco-Fernández (2010), or Meilán-Vila et al. (2020), among others, analyzing
the performance of the test statistic Tn in (7) for a range of bandwidths. This allows to
check how sensitive the results are to variations in HHH. Initially, to simplify the calcula-
tions, the bandwidth matrix is restricted to a diagonal matrix with both equal elements
(scalar matrix), HHH = diag(h,h), and different values of h in the interval [0.25,1.50]
are chosen. The weight function employed in (7) to avoid the possible boundary ef-
fect (González-Manteiga and Cao, 1993) is w(s) = I{s∈[1/√n,1−1/

√
n]×[1/

√
n,1−1/

√
n]},

where I{·} denotes the indicator function.
The bootstrap procedures described in Section 3 are applied using B = 500 repli-

cates. In the nonparametric residual bootstrap procedures, NPB and CNPB, the mul-
tivariate Nadaraya–Watson estimator is computed in Step 1 using the optimal band-
width that minimizes the MASE. Similar results were obtained when the corrected
generalized cross-validation (CGCV) bandwidth (Francisco-Fernandez and Opsomer,
2005) is employed. However, the use of the MASE bandwidth matrix reduces the
computing time and avoids the effect of the bandwidth selection for the trend estima-
tion on the results. Regarding the variogram, the (uncorrected) variogram estimates
and the bias-corrected version are computed on a regular grid up to the 55% of the
largest sample distance between observations. In this case, the bandwidths are se-
lected applying the cross-validation relative squared error criterion.

Proportions of rejections (under the null hypothesis, c = 0) using PB (solid black
line), NPB (dashed red line) and CNPB (dotted blue line) bootstrap procedures, for
several values of h are plotted in Fig. 2 (models (9) and 10 in left and right panels,
respectively). In this study, a significance level α = 0.05, and values of c0 = 0.04,
σ2 = 0.16, ae = 0.6 and n = 400 are considered. Under the null hypothesis, the trend
function belongs to the parametric family and, as expected, the resampling procedure
with a better performance is the parametric one (PB). On the other hand, although
resampling methods following the rationale of the NPB approach have provided good
results in similar testing problems in other frameworks, for example, for independent
and univariate data (González-Manteiga and Cao, 1993), this is not the case in our
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Fig. 2 Proportions of rejections under the null hypothesis (c= 0) using PB (solid black line), NPB (dashed
red line) and CNPB (dotted blue line) bootstrap procedures, considering trend functions (9) (left panel) and
(10) (right panel), for different values of h. Model parameters: c0 = 0.04, σ2 = 0.16, ae = 0.6 and n = 400.
Horizontal dashed black line represents the significance level α = 0.05

geostatistical context. Using the NPB method, the proportions of rejections of the
null hypothesis are increased by the fact that the variability is underestimated (as
noted by Fernández-Casal and Francisco-Fernández, 2014), advising against the use
of this procedure. Finally, the benefits of correcting the bias can be observed, being
the results for the CNPB procedure much better than those obtained with the NPB
approach.

The effect of the sample size as well as the impact of the spatial dependence on
the behavior of the test, under the null and under some alternative hypotheses, are
analyzed below. In the different scenarios considered, a comparison of the proposed
bootstrap procedures (PB, NPB and CNPB) is presented. For the sake of brevity, only
some representative results employing the parametric family M1,βββ are shown here.
Similar conclusions were obtained when the parametric family M2,βββ was considered.

4.1 Sample size effect

In this section, the performance of the bootstrap procedures is analyzed for different
sample sizes (n = 100,225 and 400). Proportions of rejections of the null hypothesis,
for a significance level α = 0.05, considering the parameters c0 = 0.04, σ2 = 0.16,
ae = 0.6 in model (11), and different sample sizes, are displayed in Table 1. Under the
null hypothesis (i.e., when c = 0), it can be observed that the test has a reasonable be-
havior when using the PB and CNPB resampling methods. With both procedures,the
test seems to preserve the nominal significance level of 5%, given that, under the null
hypothesis, it lies within the corresponding 95% confidence interval for the propor-
tion. It should be noted that the proportions of rejections are slightly affected by the
value of h. In fact, for the CNPB method, the proportions of rejections are smaller
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Table 1 Proportions of rejections of the null hypothesis for the parametric family M1,βββ with different
sample sizes. Model parameters: c0 = 0.04, σ2 = 0.16, ae = 0.6. Significance level: α = 0.05

c n Method h = 0.25 h = 0.50 h = 0.75 h = 1.00 h = 1.25 h = 1.50
0 100 PB 0.056 0.042 0.054 0.066 0.070 0.068

NPB 0.340 0.216 0.170 0.142 0.102 0.088
CNPB 0.064 0.050 0.040 0.028 0.018 0.018

225 PB 0.070 0.068 0.060 0.070 0.082 0.082
NPB 0.268 0.192 0.176 0.144 0.116 0.108
CNPB 0.078 0.058 0.046 0.042 0.030 0.028

400 PB 0.038 0.036 0.046 0.046 0.052 0.056
NPB 0.270 0.182 0.152 0.134 0.114 0.098
CNPB 0.048 0.048 0.048 0.034 0.034 0.032

0.5 100 PB 0.000 0.002 0.006 0.022 0.026 0.036
NPB 1.000 0.996 0.978 0.960 0.898 0.818
CNPB 0.740 0.574 0.380 0.198 0.076 0.050

225 PB 0.018 0.012 0.020 0.046 0.066 0.074
NPB 1.000 0.994 0.976 0.938 0.846 0.734
CNPB 0.692 0.550 0.398 0.218 0.102 0.056

400 PB 0.004 0.004 0.016 0.036 0.058 0.070
NPB 1.000 1.000 0.984 0.940 0.852 0.716
CNPB 0.384 0.316 0.208 0.076 0.034 0.028

1 100 PB 0.056 0.010 0.018 0.038 0.074 0.110
NPB 1.000 1.000 1.000 1.000 0.994 0.982
CNPB 0.996 0.972 0.894 0.584 0.294 0.146

225 PB 0.002 0.002 0.010 0.030 0.078 0.098
NPB 1.000 1.000 1.000 1.000 0.994 0.962
CNPB 0.990 0.938 0.848 0.564 0.296 0.126

400 PB 0.000 0.000 0.000 0.024 0.064 0.098
NPB 1.000 1.000 1.000 1.000 1.000 0.968
CNPB 0.990 0.944 0.824 0.578 0.304 0.170

when the bandwidth value is larger. The opposite effect is observed when the PB
approach is employed. For alternative assumptions (c = 0.5 and c = 1), the perfor-
mance of the PB method is unsatisfactory. A much better behavior is observed for the
CNPB approach. A decreasing power is obtained when the value of h increases. As
expected, the power of the test becomes larger when the value of c gets bigger. Note
that although it may seem that the NPB procedure presents a better behavior in terms
of power, this is due to the underestimation of the variability, which induced really
poor results under the null hypothesis.

4.2 Range of dependence effect

In this section, the performance of the bootstrap procedures is analyzed for different
spatial dependence degrees (ae = 0.3, ae = 0.6 and ae = 0.9). Values of n = 400,
σ2 = 0.16 and c0 = 0.04 are considered. Fig. 3 shows exponential variogram models
with σ2 = 0.16 and c0 = 0.04, for ae = 0.3 (solid black line), ae = 0.6 (dashed red
line) and ae = 0.9 (dotted blue line). Table 2 contains the proportions of rejections of
the null hypothesis for α = 0.05. Notice that results for ae = 0.6 have already been
shown in Table 1, but for the sake of comparison they are also included in Table 2.
Again, it can be observed that the CNPB method provides good results for the null
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a n d t h e alt er n ati v e h y p ot h es es. As e x p e ct e d, f or l ar g er v al u es of t h e pr a cti c al r a n g e
a e , t h e b a n d wi dt h v al u es pr o vi di n g a n eff e cti v e c ali br ati o n of t h e t est s h o ul d als o
b e l ar g er. R e g ar di n g t h e P B a p pr o a c h, t his r es a m pli n g m et h o d w or ks pr o p erl y u n d er
t h e n ull h y p ot h esis (f or a p pr o pri at e v al u es of t h e b a n d wi dt h p ar a m et ers h ), b ut its
p erf or m a n c e u n d er t h e alt er n ati v es is v er y p o or. O n t h e ot h er h a n d, alt h o u g h t h e N P B
m et h o d h as a v er y hi g h p o w er, t h e pr o p orti o ns of r ej e cti o ns u n d er t h e n ull h y p ot h esis
ar e v er y l ar g e.

4. 3 N u g g et eff e ct

T h e p erf or m a n c e of t h e pr o p os e d b o otstr a p pr o c e d ur es is n o w pr es e nt e d f or diff er-
e nt v al u es of t h e n u g g et, 0 % ,2 5 % a n d 5 0 % of σ 2 . Pr o p orti o ns of r ej e cti o ns of t h e
n ull h y p ot h esis ar e s h o w n i n Ta bl e 3, f or α = 0 .0 5, c o nsi d eri n g n = 4 0 0, σ 2 = 0 .1 6
a n d a e = 0 .6. T h e b est b e h a vi or is o bs er v e d w h e n t h e C N P B a p pr o a c h is e m pl o y e d,
s h o wi n g a g o o d p erf or m a n c e f or t h e n ull a n d t h e diff er e nt alt er n ati v e h y p ot h es es. F or
l ar g er v al u es of t h e v ari o gr a m at z er o dist a n c e, s m all er b a n d wi dt hs s h o ul d b e t a k e n
t o c ali br at e t h e t est pr o p erl y. O n t h e ot h er h a n d, n o r eli a bl e r es ults ar e o bt ai n e d f or
t h e N P B m et h o d u n d er t h e n ull a n d t h e alt er n ati v e h y p ot h es es. Fi n all y, r e g ar di n g t h e
P B pr o c e d ur e, t h e p o w er of t h e t est is v er y s m all i n all t h e s c e n ari os c o nsi d er e d.

4. 4 M or e g e n er al b a n d wi dt h m atri c es

T his s e cti o n c o nt ai ns a d diti o n al si m ul ati o ns c o nsi d eri n g di a g o n al b a n d wi dt hs wit h
diff er e nt el e m e nts, HHH = di a g (h 1 ,h 2 ). N oti c e t h at f or t h e p ar a m etri c tr e n ds c h os e n i n
t his w or k, t h er e is n o i nt er a cti o n eff e ct b et w e e n t h e s p ati al c o or di n at es a n d, t h er ef or e,
t h e s el e cti o n of a di a g o n al b a n d wi dt h m atri x s e e ms r e as o n a bl e. I n t his si m ul ati o n s c e-
n ari o, v al u es of n = 4 0 0, σ 2 = 0 .1 6, c 0 = 0 .0 4 a n d a e = 0 .6 ar e s et. Firstl y, i n or d er
t o r e d u c e c o m p uti n g ti m es, t h e t est is a p pli e d w h e n c o nsi d eri n g t h e di a g o n al o pti m al
b a n d wi dt h m atri x t h at mi ni mi z es t h e M A S E t o c o m p ut e m̂ N W

HHH a n d m̂ N W
HHH ,β̂ββ

. N ot e t h at
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Table 2 Proportions of rejections of the null hypothesis for the parametric family M1,βββ , with α = 0.05,
considering c0 = 0.04, σ2 = 0.16, n = 400 and different range values

c ae Method h = 0.25 h = 0.50 h = 0.75 h = 1.00 h = 1.25 h = 1.50
0 0.3 PB 0.056 0.050 0.040 0.044 0.044 0.050

NPB 0.158 0.090 0.076 0.062 0.050 0.052
CNPB 0.030 0.024 0.018 0.012 0.010 0.010

0.6 PB 0.038 0.036 0.046 0.046 0.052 0.056
NPB 0.270 0.182 0.152 0.134 0.114 0.098
CNPB 0.048 0.048 0.048 0.034 0.034 0.032

0.9 PB 0.002 0.004 0.018 0.030 0.040 0.042
NPB 0.328 0.266 0.232 0.186 0.162 0.144
CNPB 0.070 0.070 0.068 0.060 0.048 0.048

0.5 0.3 PB 0.000 0.002 0.006 0.022 0.026 0.036
NPB 1.000 1.000 0.998 0.976 0.878 0.716
CNPB 0.346 0.270 0.170 0.042 0.018 0.016

0.6 PB 0.004 0.004 0.016 0.038 0.058 0.066
NPB 1.000 1.000 0.984 0.940 0.852 0.716
CNPB 0.384 0.316 0.208 0.076 0.034 0.028

0.9 PB 0.008 0.010 0.020 0.048 0.062 0.072
NPB 1.000 0.996 0.982 0.954 0.880 0.750
CNPB 0.526 0.432 0.284 0.146 0.074 0.052

1 0.3 PB 0.000 0.000 0.000 0.010 0.050 0.062
NPB 1.000 1.000 1.000 1.000 1.000 0.986
CNPB 1.000 0.990 0.906 0.648 0.380 0.194

0.6 PB 0.000 0.000 0.000 0.024 0.064 0.098
NPB 1.000 1.000 1.000 1.000 1.000 0.968
CNPB 0.990 0.944 0.824 0.578 0.304 0.170

0.9 PB 0.000 0.000 0.008 0.030 0.080 0.110
NPB 1.000 1.000 1.000 1.000 1.000 0.968
CNPB 1.000 0.962 0.858 0.662 0.360 0.206

this bandwidth matrix can not be calculated in a real practical situation. However,
as pointed out before, we have checked that very similar results are obtained when
using the data-driven CGCV matrix bandwidth (Francisco-Fernandez and Opsomer,
2005), but with a considerable increase in computing time. Proportions of rejections
of the null hypothesis when c = 0,0.5 and 1, for α = 0.05, jointly with the diago-
nal elements of the corresponding MASE bandwidth matrices, are shown in Table 4.
Results for NPB are omitted due to its deficient calibration. For this scenario, it can
be observed that the test preserves the nominal significance level when using both
methods (PB and CNPB). For alternative hypotheses, the CNPB approach, unlike the
PB one, provides reasonable results. It seems that similar conclusions to those ob-
tained in the previous sections can be deduced when the diagonal MASE bandwidth
matrix is used. However, it should be noted that an optimal bandwidth for estimation
may not be an optimal one for testing (being not even clear what optimal means).
A more reliable comparison between scalar and diagonal bandwidth matrices can be
performed by considering different combinations of h1 and h2. Proportions of rejec-
tions (under the null hypothesis, c = 0) for α = 0.05, are plotted in Fig. 4. Left panel
of Fig. 4 shows the results for the PB approach and right panel for the CNPB one. In
this scenario, it can be observed that for the PB method there are not relevant differ-
ences in terms of proportions of rejections if HHH = diag(h,h) or HHH = diag(h1,h2) (with
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Table 3 Proportions of rejections of the null hypothesis for the parametric family M1,βββ , with α = 0.05,
considering n = 400, σ2 = 0.16, ae = 0.6 and different nugget effect values

c c0 Method h = 0.25 h = 0.50 h = 0.75 h = 1.00 h = 1.25 h = 1.50
0 0% PB 0.014 0.008 0.020 0.034 0.046 0.046

NPB 0.338 0.230 0.182 0.154 0.132 0.110
CNPB 0.060 0.058 0.052 0.044 0.040 0.038

25% PB 0.038 0.036 0.046 0.046 0.052 0.056
NPB 0.270 0.182 0.152 0.134 0.114 0.098
CNPB 0.048 0.048 0.048 0.034 0.034 0.032

50% PB 0.050 0.048 0.042 0.048 0.052 0.056
NPB 0.254 0.172 0.144 0.116 0.092 0.082
CNPB 0.050 0.050 0.046 0.036 0.030 0.028

0.5 0% PB 0.006 0.014 0.034 0.052 0.062 0.068
NPB 1.000 0.990 0.972 0.912 0.834 0.686
CNPB 0.418 0.336 0.240 0.098 0.050 0.036

25% PB 0.004 0.004 0.016 0.038 0.058 0.066
NPB 1.000 1.000 0.984 0.940 0.852 0.716
CNPB 0.640 0.534 0.384 0.206 0.096 0.058

50% PB 0.000 0.002 0.010 0.026 0.048 0.056
NPB 1.000 1.000 0.998 0.976 0.890 0.776
CNPB 0.880 0.780 0.652 0.468 0.264 0.164

1 0% PB 0.104 0.074 0.092 0.132 0.182 0.204
NPB 1.000 1.000 1.000 1.000 0.992 0.922
CNPB 0.926 0.830 0.676 0.378 0.194 0.080

25% PB 0.000 0.000 0.000 0.024 0.064 0.098
NPB 1.000 1.000 1.000 1.000 1.000 0.968
CNPB 0.990 0.944 0.824 0.578 0.304 0.170

50% PB 0.000 0.000 0.004 0.014 0.052 0.076
NPB 1.000 1.000 1.000 1.000 1.000 0.996
CNPB 1.000 1.000 0.970 0.840 0.576 0.378

0.4 0.6 0.8 1.0 1.2 1.4

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

h1

h 2

0.02
0.03
0.04
0.05
0.06
0.07

0.4 0.6 0.8 1.0 1.2 1.4

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

h1

h 2

0.02
0.03
0.04
0.05
0.06
0.07

Fig. 4 Proportions of rejections of the null hypothesis (c = 0), for α = 0.05, considering c0 = 0.04, σ2 =
0.16, ae = 0.6 and n = 400, using PB (left) and CNPB (right), for several values of h1 and h2

h1 6= h2) are considered. Regarding the CNPB approach, the use of a more general
bandwidth matrix does not provide better results with respect to using scalar band-
width matrices. On the other hand, although it is omitted here, similar conclusions
can be obtained for alternative hypotheses (c 6= 0).
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Table 4 Proportions of rejections of the null hypothesis for the parametric family M1,βββ , with α = 0.05,
considering n = 400, σ2 = 0.16, ae = 0.6 and c0 = 0.04, obtained with the optimal MASE bandwidth
matrix HHH = diag(h1,h2).

c = 0 c = 0.5 c = 1
Proportion of rejections PB 0.044 0.004 0.000

CNPB 0.070 0.620 1.000
MASE bandwidth matrix h1 0.190 0.282 0.316

h2 1.500 0.291 0.151

5 Discussion

A goodness-of-fit test to assess a parametric trend surface for a geostatistical process
is studied in this work. An exhaustive analysis of the behavior of the test consid-
ering different trends and dependence configurations is provided. The proposed test
statistic measures the difference between parametric and nonparametric fits using an
L2-distance. An iterative least squares procedure has been used to obtain the para-
metric trend estimates, but other approaches such as maximum likelihood methods,
could be also used, as long as a

√
n-consistency property is satisfied. Regarding the

nonparametric fit, the multivariate Nadaraya–Watson estimator was employed. Other
kernel-type estimator specifically defined for fixed design, such as the Gasser–Müller
(Gasser and Müller, 1979) or the Priestley–Chao (Priestley and Chao, 1972) estima-
tors could be used instead. However, the computation of the Gasser–Müller estimator
involves sorting and taking middle points in the design space, which is not compu-
tationally trivial in a multidimensional setting. That makes it unsuitable to use in the
setting of the present paper. The Priestley–Chao estimator has a simple expression
and can be directly defined in a multidimensional framework. Moreover, although
this estimator was initially introduced for equally spaced fixed and uniformly random
designs, it could be adapted to the context of this paper (i.e., for non-equally spaced
fixed designs). Nevertheless, its use would not allow us to extend the asymptotic the-
ory to the non-uniform random design case, since this estimator is asymptotically
biased in that setting. With these elections of parametric and nonparametric fits, the
asymptotic distribution of the test statistic, under the null and under local alternatives,
was derived considering the assumption of increasing-domain spatial asymptotics.

For a practical implementation, due to the slow convergence to the limit distribu-
tion, resampling methods were used to calibrate the test. Specifically, three bootstrap
procedures were designed and applied in practice: PB, NPB and CNPB. The CNPB
resampling method avoids model selection and, therefore, prevents against misspec-
ification problems in the estimation of the trend and/or the dependence structure,
unlike the PB approach. The CNPB method also corrects the bias induced by the use
of the residuals in the approximation of the dependence, using an iterative method,
providing good results of the test under the null and alternative hypotheses. As it
was pointed out in Fernández-Casal and Francisco-Fernández (2014), a similar tool
for bias adjustment could be included in the parametric semivariogram estimation in
the PB approach (see Davison and Hinkley, 1997). However, this way of proceeding
would not avoid misspecification problems in the parametric semivariogram estima-
tion.
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The performance of the goodness-of-fit test, in terms of calibration and power,
has been explored in a grid of different bandwidths to check how it is affected by
the bandwidth choice. In the vast majority of scenarios considered in the simulation
study, the best performance is observed when the CNPB approach is employed, show-
ing a reasonable behavior for both null and alternative hypotheses. It seems that the
use of non-scalar bandwidths has not provided better results for the CNPB procedure,
at least for the scenarios considered in this work. The PB proposal works properly for
calibration, but it shows a limited capacity to detect alternatives. On the other hand,
although similar resampling methods to the NPB proposal have given good results
when used in goodness-of-fit tests considering regression models with independent
and univariate data, this is not the case in the geostatistical context. In this case,
the proportions of rejections under the null hypothesis are very large compared with
the significance level considered, due to the underestimation of the variability of the
process. For the sake of brevity, the performance of the test was only shown for non-
linear trends, although a linear model has been also considered as a null hypothesis.
In general, no matter the parametric family considered, results obtained by the CNPB
approach improve those achieved by the PB and NPB methods, for the null and the
different alternative hypotheses.

The three resampling approaches compared in this paper are based on comput-
ing the residuals from a pilot fit, estimating the corresponding covariance matrix of
the errors and, finally, using a Cholesky decomposition, obtaining a vector of inde-
pendent errors to generate bootstrap resamples. Other resampling procedures, such
as the block bootstrap (see Lahiri, 2013), could be used to calibrate the test. This
method, unlike parametric and nonparametric bootstrap based methods, requires an
appropriate partition of the observation region. These procedures fail to reproduce the
variability of the process, thus leading to an underestimation of the semivariogram,
possibly caused by the selection of the blocks. In Castillo-Páez et al. (2019), para-
metric, corrected nonparametric and block bootstrap mechanisms were compared by
checking their performance in the approximation of the bias and the variance of two
variogram estimators. For inference on geostatistical processes and, particularly, on
dependence structure estimation, those authors recommend the use of corrected non-
parametric bootstrap methods. For these reasons, block bootstrap approaches were
not employed in the present research.

The procedures used in the simulation study were implemented in the statistical
environment R (R Development Core Team, 2020), using functions included in the
npsp and geoR packages (Fernández-Casal, 2019; Ribeiro and Diggle, 2020) to esti-
mate the variogram and the spatial regression functions. In particular, the bias correc-
tion in CNPB bootstrap algorithm is implemented in the function np.svariso.corr
of the npsp R package.
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Appendix. Proof of the main theorem

In this appendix, under assumptions (A1)–(A8), Theorem 1 is proved. The asymptotic
distribution of the test statistic, given in (7), is derived. This test compares the non-
parametric and the smooth parametric estimators, given in (6) and (8), respectively,
using an L2-distance.



24 Meilán-Vila, A. et al.

Proof The test statistic (7) can be decomposed as

Tn = n|HHH|1/2
∫ [

m̂NW
HHH (sss)− m̂NW

HHH,β̂ββ
(sss)
]2

w(sss)dsss

= n|HHH|1/2
∫ [

∑
n
i=1 KHHH(sssi− sss)Zi

∑
n
i=1 KHHH(sssi− sss)

−
∑

n
i=1 KHHH(sssi− sss)m

β̂ββ
(sssi)

∑
n
i=1 KHHH(sssi− sss)

]2

w(sss)dsss

= n|HHH|1/2
∫ {

∑
n
i=1 KHHH (sssi− sss)

[
m(sssi)+ εi−m

β̂ββ
(sssi)
]}2

[∑n
i=1 KHHH(sssi− sss)]2

w(sss)dsss.

Now, taking into account that the trends considered are of the form m = mβββ 0
+

n−1/2|HHH|−1/4g, one gets:

Tn = n|HHH|1/2
∫ {

∑
n
i=1 KHHH (sssi− sss)

[
mβββ 0

(sssi)+n−1/2|HHH|−1/4g(sssi)+ εi−m
β̂ββ
(sssi)
]}2

[∑n
i=1 KHHH(sssi− sss)]2

w(sss)dsss

= n|HHH|1/2
∫

[I1(sss)+ I2(sss)+ I3(sss)]
2 w(sss)dsss,

where

I1(sss) =
∑

n
i=1 KHHH (sssi− sss)

[
mβββ 0

(sssi)−m
β̂ββ
(sssi)
]

∑
n
i=1 KHHH(sssi− sss)

,

I2(sss) =
∑

n
i=1 KHHH (sssi− sss)n−1/2|HHH|−1/4g(sssi)

∑
n
i=1 KHHH(sssi− sss)

,

I3(sss) =
∑

n
i=1 KHHH (sssi− sss)εi

∑
n
i=1 KHHH(sssi− sss)

.

Under assumptions (A1), (A2) and (A6), and given that the difference m
β̂ββ
(sss)−mβββ 0

(sss)=

Op(n−1/2), it is obtained that

n|HHH|1/2
∫

I2
1 (sss)w(sss)dsss = n|HHH|1/2

∫ ∑
n
i=1 KHHH (sssi− sss)

[
mβββ 0

(sssi)−m
β̂ββ
(sssi)
]

∑
n
i=1 KHHH(sssi− sss)


2

w(sss)dsss

= Op(|HHH|1/2).

For the term I2(sss), using the assumption (A2), it follows that

n|HHH|1/2
∫

I2
2 (sss)w(sss)dsss = n|HHH|1/2

∫ [
∑

n
i=1 KHHH (sssi− sss)n−1/2|HHH|−1/4g(sssi)

∑
n
i=1 KHHH(sssi− sss)

]2

w(sss)dsss

= n|HHH|1/2n−1|HHH|−1/2
∫

[KHHH ∗g(sss)]2 w(sss)dsss

=
∫

[KHHH ∗g(sss)]2 w(sss)dsss, (12)
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which corresponds to b1HHH in Theorem 1. Finally, I3(sss) (associated with the error
component) can be decomposed as:

n|HHH|1/2
∫

I2
3 (sss)w(sss)dsss = n|HHH|1/2

∫ [
∑

n
i=1 KHHH (sssi− sss)εi

∑
n
i=1 KHHH(sssi− sss)

]2

w(sss)dsss

= n|HHH|1/2
∫

∑
n
i=1 K2

HHH (sssi− sss)ε2
i

[∑n
i=1 KHHH(sssi− sss)]2

w(sss)dsss

+ n|HHH|1/2
∫

∑i6= j KHHH (sssi− sss)KHHH (sss j− sss)εiε j

[∑n
i=1 KHHH(sssi− sss)]2

w(sss)dsss

= I31 + I32.

Close expressions of I31 and I32 can be obtained computing the expectation and
the variance of these terms. Under assumption (A6), it can be proved that

E(|HHH|1/2I31) = E

{
n|HHH|

∫
∑

n
i=1 K2

HHH (sssi− sss)ε2
i

[∑n
i=1 KHHH(sssi− sss)]2

w(sss)dsss

}
= σ

2K(2)(0)
∫

w(sss)dsss · [1+o(1)] . (13)

Similarly, using assumptions (A3), (A6) and (A7), it can be obtained that

Var(|HHH|1/2I31) = Var

{
n|HHH|

∫
∑

n
i=1 K2

HHH (sssi− sss)ε2
i

[∑n
i=1 KHHH(sssi− sss)]2

w(sss)dsss

}

= 2n2|HHH|2
n

∑
i=1

n

∑
j=1

∫ ∫ K2
HHH (sssi− sss)K2

HHH (sss j− ttt) [Cov(εi,ε j)]
2[

∑
n
i=1 K2

HHH(sssi− sss)
][

∑
n
i=1 K2

HHH(sssi− ttt)
]w(sss)w(ttt)dsssdttt

= 2σ
4|HHH|

∫ ∫ ∫ ∫
K2(vvv)K2(zzz)w2(sss)ρ2

n [HHH(vvv− zzz+uuu)]dvvvdzzzdsssduuu · [1+o(1)] .

Let

jn(vvv,uuu) = n|HHH|
∫

K2(vvv)ρ2
n [HHH(vvv− zzz+uuu)]dzzz.

Notice that, using assumption (A3),

| jn(vvv,uuu)| ≤ K2
M

{
n|HHH|

∫
|ρ2

n [HHH(vvv− zzz+uuu)]|dzzz
}

≤ K2
M

[
n
∫
|ρn(ttt)|dttt

]
≤ K2

MρM,

where KM=maxsss(K(sss)) and ρM=maxsss(ρn(sss)), and using assumptions (A2), (A3),
(A6) and (A8), one gets that

Var(I31) = o(1). (14)
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From (13) and (14) it follows that

I31 = σ
2|HHH|−1/2K(2)(000)

∫
w(sss)dsss · [1+op(1)] . (15)

Now, consider the term

I32 = n|HHH|1/2
∫

∑i6= j KHHH (sssi− sss)KHHH (sss j− sss)εiε j

[∑n
i=1 KHHH(sssi− sss)]2

w(sss)dsss.

Let

κi j = n|HHH|1/2
∫ KHHH (sssi− sss)KHHH (sss j− sss)

[∑n
i=1 KHHH(sssi− sss)]2

w(sss)dsssε(sssi)ε(sss j).

Thus,
I32 = ∑

i6= j
κi j,

and this can be seen as a U-statistic with degenerate kernel. To obtain the asymptotic
normality of I32 we apply the central limit theorem for reduced U-statistics under
dependence given by Kim et al. (2013).

For this term I32 we have

E
(
|HHH|1/2I32

)
= E

{
n|HHH|

∫
∑i6= j KHHH (sssi− sss)KHHH (sss j− sss)εiε j

[∑n
i=1 KHHH(sssi− sss)]2

w(sss)dsss

}

= n−1|HHH|∑
i6= j

Cov[ε(sssi),ε(sss j)]
∫ KHHH (sssi− sss)KHHH (sss j− sss)

[∑n
i=1 KHHH(sssi− sss)]2

w(sss)dsss · [1+o(1)]

= (n−1)|HHH|σ2
∫ ∫ ∫

K (vvv)K (zzz)ρn[HHH(vvv− zzz)]w(sss)dvvvdzzzdsss · [1+o(1)] .

Under the assumptions (A4)–(A8), as shown by Liu (2001),

lim
n→∞

n|HHH|
∫

K(vvv)K(zzz)ρn[HHH(vvv− zzz)]dvvvdzzz = K(2)(0)ρc.

It follows that

E(|HHH|1/2I32) = σ
2K(2)(0)ρc

∫
w(sss)dsss · [1+o(1)] . (16)

Similarly, it can be obtained that the asymptotic variance of I32 is

V = σ
4K(4)(0)

∫
w2(sss)dsss

(
1+ρc +2ρ

2
c
)
. (17)

The term I32 converges in distribution to a normally distributed random variable
with mean the second term of b0HHH and variance V .

In virtue of the Cauchy–Bunyakovsky–Schwarz inequality, the cross terms in Tn
resulting from the products of I1, I2 and I3 are all of small order. Therefore, combining
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the results given in equations (12) and (15), and the asymptotic normality of I32 (with
its bias (16) and its variance (17)), it follows that

V−1/2(Tn−b0HHH −b1HHH)→L N(0,1), as n→ ∞,

where

b0HHH = |HHH|−1/2
σ

2K(2)(0)
∫

w(sss)dsss(1+ρc) ,

b1HHH =
∫

[KHHH ∗g(sss)]2 w(sss)dsss,

V = σ
4K(4)(0)

∫
w2(sss)dsss

(
1+ρc +2ρ

2
c
)
.


