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Abstract Nonparametric estimators of a regression function with circular res-

ponse and Rd-valued predictor are considered in this work. Local polynomial 
estimators are proposed and studied. Expressions for the asymptotic condi-
tional bias and variance of these estimators are derived, and some guidelines
to select asymptotically optimal local bandwidth matrices are also provided.
The finite sample behavior of the proposed estimators is assessed through
simulations and their performance is also illustrated with a real data set.
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1 Introduction

New challenges on regression modeling appear when trying to describe re-
lations between variables and some of them do not belong to an Euclidean

Andrea Meilán-Vila
Research group MODES, CITIC, Department of Mathematics, Faculty of Computer Science, 
Universidade da Coruña, Campus de Elviña s/n, 15071, A Coruña, Spain
Tel.: +34981167000 (ext 1301)
Fax: +34981167160
E-mail: andrea.meilan@udc.es

Mario Francisco-Fernández
Research group MODES, CITIC, Department of Mathematics, Faculty of Computer Science, 
Universidade da Coruña, Campus de Elviña s/n, 15071, A Coruña, Spain

Rosa M. Crujeiras
Department of Statistics, Mathematical Analysis and Optimization, Faculty of Mathematics, 
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space. This is the case for regression problems where some or all of the in-
volved variables are circular ones. The special nature of circular data (points
on the circumference of the unit circle; angles in T = [0, 2π)) relies on their
periodicity, which requires ad hoc statistical methods to analyze them. Cir-
cular statistics is an evolving discipline, and several statistical techniques for
linear data now may claim their circular analogues. Comprehensive reviews
on circular statistics (or more general, directional data) are provided in Fisher
(1995), Jammalamadaka and SenGupta (2001) or Mardia and Jupp (2000).
Some recent advances in directional statistics are collected in Ley and Verde-
bout (2017). Examples of circular data arise in many scientific fields such as
biology, studying animal orientation (Batschelet, 1981), environmental appli-
cations (SenGupta and Ugwuowo, 2006), or oceanography (as in Wang et al.,
2015, among others). When the circular variable is supposed to vary with re-
spect to other covariates and the goal is to model such a relation, regression
estimators for circular responses must be designed and analyzed.

Parametric regression approaches were originally considered in Fisher and
Lee (1992) and Presnell et al. (1998), assuming a parametric (conditional) dis-
tribution model for the circular response variable. In this scenario, Euclidean
covariates are supposed to influence the response via the parameters of the con-
ditional distribution (e.g. through the location parameter, as the simplest case,
or through location and concentration, if a von Mises distribution is chosen).
Following the proposal in Presnell et al. (1998), Scapini et al. (2002) analyzed
the orientation of two species of sand hoppers, considering parametric multi-
ple regression methods for circular responses. A parametric multiple circular
regression problem was also studied in Kim and SenGupta (2017), considering
the functional relationship between a multivariate circular dependent variable
and several circular covariates. Further, a multiple angular regression model
for both angular and linear predictors was studied by Rivest et al. (2016).
Maximum likelihood estimators for the parameters were derived for some von
Mises error structures.

Beyond parametric restrictions, flexible approaches are also feasible in this
context, just imposing some regularity conditions on the regression function,
but avoiding the assumption of a specific parametric family for both the re-
gression function and the conditional distribution. Nonparametric estimators
of the regression function considering a model with a circular response and a
single real-valued covariate were introduced in Di Marzio et al. (2013). The
authors proposed smooth estimators for the regression function which are de-
fined as the inverse tangent function of the ratio between two sample statistics,
obtained as weighted sums of the sines and the cosines of the response observa-
tions, respectively. Specifically, they considered local constant and local linear
weights.

The problem of nonparametrically estimating the conditional mean direc-
tion of a circular random variable, given a Rd-valued covariate, is considered in
this work. If the relation between both variables is viewed from a model-based
approach, then our proposal aims to estimate the usual target regression func-
tion, given by the inverse tangent function of the ratio between the conditional
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expectations of the sine and cosine of the response variable. Our proposal con-
siders two regression models for the sine and cosine components, which are
indeed regression models with real-valued responses and d-dimensional covari-
ates. Then, nonparametric estimators for the circular regression function are
obtained as the inverse tangent function of the ratio of local polynomial esti-
mators for the two regression functions of the sine and cosine models, respec-
tively. The estimators obtained with this proposal generalize to both higher
dimensions and higher polynomial degrees the proposals in Di Marzio et al.
(2013). The approach of considering two flexible regression models for the sine
and cosine components has been also explored in Jammalamadaka and Sarma
(1993), where the objective is the estimation of the regression function in a
model with circular response and circular covariate. In this case, the condi-
tional expectations of the sine and the cosine of the response are approximated
by trigonometric polynomials of a suitable degree. A similar approach has been
also considered in Di Marzio et al. (2014), where the problem of nonparamet-
rically estimating a regression function with spherical response and spherical
covariate is addressed as a multi-output regression problem. In this case, each
Cartesian coordinate of the spherical regression function is separately esti-
mated.

This paper is organized as follows. In Section 2, the regression models for
the sine and cosine components of the response are presented, jointly with a
multiple regression model for the circular variable. Assuming that all these
models simultaneously hold, certain relations between the first and second
order moments of the involved errors are established. In Section 3, the non-
parametric estimators of the regression function are proposed. Section 3.1 and
Section 3.2 contain the Nadaraya–Watson (NW) and local linear (LL) versions
of these estimators, respectively, and include expressions for their asymptotic
biases and variances. A local polynomial type estimator with a general degree
p, for the case of univariate predictor, is also analyzed in Section 3.3. The finite
sample performance of the estimators is assessed through a simulation study
provided in Section 4. Finally, Section 5 shows a real data application about
sand hoppers orientation.

The proofs of all the theoretical results, along with some additional simula-
tions experiments, are collected in the accompanying Supplementary Material.

2 Regression models for circular response

In this Section, we will establish the rationale behind our estimation proposal.
First, we will motivate the construction of our estimators, based on the ex-
pression of the conditional mean direction of a circular variable Θ given a
d-dimensional covariate X. Then, we will explain how our proposal can be
related with a classical model-based approach, where the circular response
variable admits a representation in terms of a regression function over the
covariates plus a circular error term.
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2.1 A general approach based on the conditional expectation

Let {(Xi, Θi)}ni=1 be a random sample from (X, Θ), where Θ is a circular
random variable taking values on T = [0, 2π), and X is a random variable
with density f supported on D ⊆ Rd. The dependence relation of Θ on X can
be modeled by the conditional mean direction of Θ given X which, at a point
x ∈ D, is given by:

m(x) = atan2[m1(x),m2(x)], (1)

where m1(x) = E[sin(Θ) | X = x], m2(x) = E[cos(Θ) | X = x] and the
function atan2(y, x) returns the angle between the x-axis and the vector from
the origin to (x, y). With this formulation, m1 and m2 can be regarded as the
regression functions of two regression models respectively having sin(Θ) and
cos(Θ) as their responses. Specifically, we assume the models:

sin(Θi) = m1(Xi) + ξi, i = 1, . . . , n, (2)

and
cos(Θi) = m2(Xi) + ζi, i = 1, . . . , n, (3)

where the ξi and the ζi are independent error terms, absolutely bounded by 1,
satisfying E(ξ | X = x) = E(ζ | X = x) = 0. Additionally, for every x ∈ D, set
s21(x) = Var(ξ | X = x), s22(x) = Var(ζ | X = x) and c(x) = E(ξζ | X = x).

Considering models (2) and (3), a whole class of kernel-type estimators for
m(x) in (1), can be defined replacing in its expression the unknown functions
m1(x) and m2(x) by suitable local polynomial estimators as follows:

m̂H(x; p) = atan2[m̂1,H(x; p), m̂2,H(x; p)], (4)

where for any integer p ≥ 0, m̂1,H(x; p) and m̂2,H(x; p) denote the pth order
local polynomial estimators (with bandwidth matrix H) of m1(x) and m2(x),
respectively. The special cases p = 0 and p = 1 yield a NW (or local constant)
type estimator and a LL type estimator of m(x), respectively.

It should be noted that models (2) and (3) can also be regarded as the
components of a vector-valued regression model for the Cartesian coordinate
representation of the circular response Θ. Hence, taking the representation of
the circular response as the unit vector [cos(Θ), sin(Θ)], these models amount
to a regression model for vector-valued response whose error term is a random
vector having zero conditional mean and conditional covariance matrix with
diagonal entries s22(x) and s21(x), and off-diagonal entries both equal to c(x).
In this case, the dependence relation of [cos(Θ), sin(Θ)] on X can be modeled
by the solution of the following minimization problem:

arg min
u∈R2:||u||=1

E{||[cos(Θ), sin(Θ)]− u||2 | X = x},

where || · || stands for the Euclidean norm. The solution of this problem is
given by the vector

{||[m2(x), m1(x)]||}−1[m2(x), m1(x)],

and its polar coordinate representation coincides with m(x) as given in (1).
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2.2 A model-based approach for polar representation

When trying to describe the relation between Θ and X, apart from the ap-
proach described in the previous section, we can also focus directly on the
polar coordinate representation of the response. With this perspective, using
the random sample {(Xi, Θi)}ni=1 , we assume the regression model:

Θi = [m(Xi) + εi](mod 2π), i = 1, . . . , n, (5)

where mod stands for the modulo operation, and εi, i = 1, . . . , n, is an in-
dependent sample of a circular variable ε, satisfying E[sin(ε) | X = x] = 0
and having finite concentration. In this setting, the circular regression func-
tion m in model (5) can be defined as the minimizer of the risk function
E{1 − cos[Θ − m(X)] | X = x}, which is the analogue of the L2 risk. The
minimizer of this cosine risk is given by (1). The assumption that model (5)
simultaneously holds with the vector-valued regression model presented in the
previous section leads to certain relations between the variances and covari-
ances of the errors in models (2), (3) and (5), as will be described below.

Set `(x) = E[cos(ε) | X = x], σ2
1(x) = Var[sin(ε) | X = x], σ2

2(x) =
Var[cos(ε) | X = x] and σ12(x) = E[sin(ε) cos(ε) | X = x]. Then, using the
sine and cosine addition formulas in model (5), it follows that, for i = 1, . . . , n:

sin(Θi) = sin[m(Xi)] cos(εi) + cos[m(Xi)] sin(εi) (6)

and
cos(Θi) = cos[m(Xi)] cos(εi)− sin[m(Xi)] sin(εi). (7)

Hence, defining f1(x) = sin[m(x)] and f2(x) = cos[m(x)] and applying condi-
tional expectations in (6) and (7), it holds that:

m1(x) = f1(x)`(x) and m2(x) = f2(x)`(x). (8)

Note that f1(x) and f2(x) correspond to the normalized versions of m1(x) and
m2(x), respectively. Indeed, taking into account that f21 (x)+f22 (x) = 1, it can
be easily deduced that `(x) = [m2

1(x) + m2
2(x)]1/2. Hence, under model (5),

`(x) amounts to the mean resultant length of Θ given X = x, which, taking
into account that E[sin(ε) | X = x] = 0 is assumed, also corresponds to the
mean resultant length of ε given X = x.

In addition, if models (2) and (3) simultaneously hold with model (5),
equating expressions (2) and (6), and (3) and (7), and using (8), the errors in
models (2) and (3) can be written as:

ξi = f1(Xi)[cos(εi)− `(Xi)] + f2(Xi) sin(εi) i = 1, . . . , n (9)

and
ζi = f2(Xi)[cos(εi)− `(Xi)]− f1(Xi) sin(εi) i = 1, . . . , n, (10)

which satisfy that E(ξ | X = x) = E(ζ | X = x) = 0. Then, the assumption
that model (5) holds leads to a special case of error structure in models (2)
and (3). As a consequence, the following explicit expressions for the conditional
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variances of the error terms involved in models (2) and (3), in terms of the
conditional variances and covariance of the Cartesian coordinates of ε, can be
obtained:

s21(x) = f21 (x)σ2
2(x) + 2f1(x)f2(x)σ12(x) + f22 (x)σ2

1(x), (11)

s22(x) = f22 (x)σ2
2(x)− 2f2(x)f1(x)σ12(x) + f21 (x)σ2

1(x), (12)

as well as for the covariance between the error terms in (2) and (3):

c(x) = f1(x)f2(x)σ2
2(x)−f21 (x)σ12(x)+f22 (x)σ12(x)−f1(x)f2(x)σ2

1(x). (13)

3 Properties of kernel-type estimators

Asymptotic (conditional) bias and variance of the estimator given in (4) are
derived in this section. We will focus on the cases in which p = 0 and p = 1. The
asymptotic properties of the corresponding NW and LL estimators of mj(x),
j = 1, 2, are firstly recalled just considering that models (2) and (3) hold. These
results are then used to obtain the asymptotic properties of the estimator
presented in (4) with polynomial degrees p = 0 and p = 1. When model (5)
holds simultaneously with (2) and (3), some simplifications for the asymptotic
bias and variance expressions can be obtained. Nevertheless, general results
just assuming that (2) and (3) hold can be easily recovered from the stated
theorems. Finally, asymptotic properties of local polynomial estimators with
a higher order p and D ⊆ R are also studied.

In what follows, ∇g(x) and Hg(x) will denote the vector of first-order
partial derivatives and the Hessian matrix of a sufficiently smooth function g
at x, respectively. Moreover, for a vector u = (u1, . . . , ud)T and an integrable
function g, the multiple integral

∫ ∫
· · ·
∫
g(u)du1du2 . . . dud will be simply

denoted as
∫
g(u)du. Finally, for any matrix A, AT , |A| and tr(A) denote its

transpose, determinant and trace, respectively.

3.1 Nadaraya–Watson type estimator

Considering models (2) and (3), local constant estimators for the regression
functions mj , j = 1, 2, at a given point x ∈ D ⊆ Rd, are respectively defined
as:

m̂j,H(x; 0) =



∑n
i=1KH(Xi − x) sin(Θi)∑n

i=1KH(Xi − x)
if j = 1,

∑n
i=1KH(Xi − x) cos(Θi)∑n

i=1KH(Xi − x)
if j = 2,

(14)

where, for u ∈ Rd, KH(u) = |H|−1K(H−1u) is the rescaled version of a d-
variate kernel function K, and H is a d× d bandwidth matrix. The estimator
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m̂H(x; 0) of m(x), obtained by plugging (14) in (4), corresponds to the mul-
tivariate version of the local constant estimator proposed in Di Marzio et al.
(2013).

Next, the asymptotic conditional bias and variance expressions for m̂H(x; 0)
are derived. First, using asymptotic theoretical results for the multivariate NW
estimator (Härdle and Müller, 2012), the asymptotic conditional bias and vari-
ance of m̂j,H(x; 0), for j = 1, 2, are obtained. These preliminary results, along
with the covariance between m̂1,H(x; 0) and m̂2,H(x; 0), are collected in Propo-
sition 1. The following assumptions on the design density, the kernel function
and the bandwidth matrix are required.

(A1) The design density f is continuously differentiable at x ∈ D, and satisfies
f(x) > 0. Moreover, s2j and all second-order derivatives of the regression

functions mj , for j = 1, 2, are continuous at x ∈ D, and s2j (x) > 0.
(A2) The kernel K is a spherically symmetric density function, twice conti-

nuously differentiable and with compact support (for simplicity with a
nonzero value only if ‖u‖ ≤ 1). Moreover,

∫
uuTK(u)du = µ2(K)Id, where

µ2(K) 6= 0 and Id denotes the d × d identity matrix. It is also assumed
that R(K) =

∫
K2(u)du <∞.

(A3) The bandwidth matrix H is symmetric and positive definite, with H→ 0
and n|H| → ∞, as n→∞.

In assumption (A3), H→ 0 means that every entry of H goes to 0. Notice
that, since H is symmetric and positive definite, H → 0 is equivalent to
λmax(H) → 0, where λmax(H) denotes the maximum eigenvalue of H. |H|
is a quantity of order O

[
λdmax(H)

]
since |H| is equal to the product of all

eigenvalues of H.

Proposition 1 Given the random sample {(Xi, Θi)}ni=1 from (X, Θ) sup-
ported on D × T, assume models (2) and (3). Under assumptions (A1)–(A3),
if x is an interior point of the support of f , then, for j = 1, 2,

E[m̂j,H(x; 0)−mj(x) | X1, . . . ,Xn] =
1

2
µ2(K)tr[H2Hmj

(x)]

+
µ2(K)

f(x)
∇Tmj(x)H2∇f(x)

+oP [tr(H2)],

Var[m̂j,H(x; 0) | X1, . . . ,Xn] =
R(K)s2j (x)

n|H|f(x)
+ oP

(
1

n|H|

)
,

Cov[m̂1,H(x; 0), m̂2,H(x; 0) | X1, . . . ,Xn] =
R(K)c(x)

n|H|f(x)
+ oP

(
1

n|H|

)
.

Now, using Proposition 1, the following theorem provides the asymptotic
conditional bias and the asymptotic conditional variance of m̂H(x; 0).

Theorem 1 Given the random sample {(Xi, Θi)}ni=1 from (X, Θ) supported
on D×T, assume models (2), (3) and (5) hold. Under assumptions (A1)–(A3),
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the asymptotic conditional bias of estimator m̂H(x; 0), at a fixed interior point
x in the support of f , is given by:

E[m̂H(x; 0)−m(x) | X1, . . . ,Xn] =
1

2
µ2(K)tr[H2Hm(x)]

+
µ2(K)

`(x)f(x)
∇Tm(x)H2∇(`f)(x)

+oP [tr(H2)]

and its asymptotic conditional variance is:

Var[m̂H(x; 0) | X1, . . . ,Xn] =
R(K)σ2

1(x)

n|H|`2(x)f(x)
+ oP

(
1

n|H|

)
.

Remark 1 Notice that the assumption that models (2) and (3) hold enable the
definition of local estimators for m1(x) and m2(x), respectively, and then the
definition of estimators of m(x) having the form in (4). The further assumption
that (5) holds lead to a special case where some simplifications in both the
conditional bias and the conditional variance of the estimators are possible. In
particular, as pointed out before, under model (5), in virtue of equations (6)
and (7), it holds that

[m2
1(x) +m2

2(x)]1/2 = `(x).

Further, if models (2), (3) and (5) simultaneously hold, due to the error struc-
ture in (9) and (10), and using (11), (12) and (13), it also holds that

m2
1(x)s22(x) +m2

2(x)s21(x)− 2m1(x)m2(x)c(x)

m2
1(x) +m2

2(x)
= σ2

1(x). (15)

Results for the asymptotic bias and the asymptotic variance for the more gen-
eral setting where just models (2) and (3) hold can be recovered by using the
results of the above theorem with [m2

1(x) +m2
2(x)]1/2 in place of `(x), in both

the bias and variance expressions, and the left hand side of (15) in place of
σ2
1(x) in the variance expression.

Remark 2 Note that both the asymptotic conditional bias and the asymptotic
conditional variance of m̂H(x; 0) share the form of the corresponding quantities
for the NW estimator of a regression function with real-valued response. In
the asymptotic bias expression, both the gradient and the Hessian matrix of
m refer to a circular regression function. In addition, under the assumption
that models (2), (3) and (5) simultaneously hold, the asymptotic conditional
variance depends on the ratio σ2

1(x)/`2(x), accounting for the variability of
the errors in model (5), which is related by (15) to the covariance and the
variances of the error terms in models (2) and (3).
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From Theorem 1, it is possible to derive the asymptotic (conditional) mean
squared error (AMSE) of m̂H(x; 0), defined as the sum of the square of the
main term of the bias and the main term of the variance,

AMSE[m̂H(x; 0)] =

{
1

2
µ2(K)tr[H2Hm(x)] +

µ2(K)

`(x)f(x)
∇Tm(x)H2∇(`f)(x)

}2

+
R(K)σ2

1(x)

n|H|`2(x)f(x)

=
1

4
µ2
2(K)tr2

(
H2

{
1

`(x)f(x)
[∇(`f)(x)∇Tm(x)

+∇m(x)∇T (`f)(x)] +Hm(x)

})
+

R(K)σ2
1(x)

n|H|`2(x)f(x)
. (16)

An asymptotically optimal local bandwidth matrix for m̂H(x; 0) can be
selected by minimizing (16) with respect to H. Using Proposition 2.6 of Liu
(2001), it can be obtained that this optimal local bandwidth is:

Hopt(x) = h∗(x)
[
B̃(x)

]−1/2
=

[
R(K)σ2

1(x)

ndµ2
2(K)f(x)

|B̃(x)|1/2
]1/d+4

·
[
B̃(x)

]−1/2
, (17)

where

B̃(x) =

{
B(x) if B(x) is positive definite,
−B(x) if B(x) is negative definite,

with

B(x) =
1

`(x)f(x)
[∇(`f)(x)∇Tm(x) +∇m(x)∇T (`f)(x)] +Hm(x).

Note that in the expression of Hopt(x), the matrix B̃(x) determines the
shape and the orientation in the d-dimensional space of the covariate region
which is used to locally compute the estimates. Such data regions are ellipsoids
in Rd, being the magnitude of the axes controlled by B̃(x) . In the particular
case of H = hId, the estimator m̂H(x; 0), with x being an interior point of
the support, achieves an optimal convergence rate of n−4/(d+4), which is the
same as the one for the multivariate NW estimator with real-valued response
(Härdle and Müller, 2012).

Despite deriving the previous explicit expression for the local optimal band-
width (17), its use in practice is limited by the dependence on unknown func-
tions, such as the design density f and the variance of the sine of the errors
σ2
1(x). In addition, when the goal is to reconstruct the whole regression func-

tion and the focus is not only set on a specific point, it is more usual in practice
to consider a global bandwidth for the estimation. An asymptotically optimal
global bandwidth matrix H could be obtained by minimizing a global error
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measurement (such as the integrated version of the AMSE). Again, this will
depend on unknowns, leading to a non-trivial optimization problem, not be-
ing possible to obtain a closed form solution. Alternatively, a suitable adapted
cross-validation criterion can be used to select the bandwidth matrix. This is
indeed the bandwidth selection method employed in our numerical analysis
and our real data application. More details will be provided in Section 4.

3.2 Local linear type estimator

Similarly to the case when p = 0, the local linear case, corresponding to p = 1,
is considered. Specifically, for models (2) and (3), the LL estimators of the
regression functions mj , j = 1, 2, at x ∈ D, are defined by:

m̂j,H(x; 1) =

eT
1 (X T

xWxX x)−1X T
xWxS if j = 1,

eT
1 (X T

xWxX x)−1X T
xWxC if j = 2,

(18)

where e1 is a (d + 1) × 1 vector having 1 in the first entry and 0 in all other
entries, X x is a n × (d + 1) matrix having (1, (Xi − x)T ) as its ith row,
Wx = diag{KH(X1−x), . . . ,KH(Xn−x)}, S = (sin(Θ1), . . . , sin(Θn))T and
C = (cos(Θ1), . . . , cos(Θn))T .

Using asymptotic results for the multivariate local linear estimator (Rup-
pert and Wand, 1994), the asymptotic conditional bias and variance of m̂j,H(x; 1),
j = 1, 2, can be obtained. These expressions, along with the covariance be-
tween m̂1,H(x; 1) and m̂2,H(x; 1), are provided in the following result.

Proposition 2 Given the random sample {(Xi, Θi)}ni=1 from (X, Θ) sup-
ported on D × T, assume models (2) and (3). Under assumptions (A1)–(A3),
if x is an interior point of the support of f , then, for j = 1, 2,

E[m̂j,H(x; 1)−mj(x) | X1, . . . ,Xn] =
1

2
µ2(K)tr[H2Hmj

(x)]

+oP [tr(H2)],

Var[m̂j,H(x; 1) | X1, . . . ,Xn] =
R(K)s2j (x)

n|H|f(x)
+ oP

(
1

n|H|

)
,

Cov[m̂1,H(x; 1), m̂2,H(x; 1) | X1, . . . ,Xn] =
R(K)c(x)

n|H|f(x)
+ oP

(
1

n|H|

)
.

The estimator m̂H(x; 1) of m(x), obtained by plugging (18) in (4), cor-
responds to the multivariate version of the local linear estimator proposed
in Di Marzio et al. (2013). The following theorem provides the asymptotic
conditional bias and the asymptotic conditional variance of m̂H(x; 1).

Theorem 2 Given the random sample {(Xi, Θi)}ni=1 from (X, Θ) supported
on D × T, assume models (2), (3) and (5) hold. Under assumptions (A1)–
(A3), the asymptotic conditional bias of estimator m̂H(x; 1), with x being a
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fixed interior point in the support of f , is given by:

E[m̂H(x; 1)−m(x) | X1, . . . ,Xn] =
1

2
µ2(K)tr[H2Hm(x)]

+
µ2(K)

`(x)
∇Tm(x)H2∇`(x) + oP [tr(H2)]

and its asymptotic conditional variance is:

Var[m̂H(x; 1) | X1, . . . ,Xn] =
R(K)σ2

1(x)

n|H|`2(x)f(x)
+ oP

(
1

n|H|

)
.

Remark 3 Notice that the same comments included in Remark 1 also apply
for Theorem 2.

Remark 4 Estimators m̂H(x; 0) and m̂H(x; 1) have the same leading terms
in their asymptotic conditional variances, while their asymptotic conditional
biases, also being of the same order, have different leading terms. In particular,
the main term of the asymptotic conditional bias of m̂H(x; 1) does not depend
on the design density, f . Moreover, as a consequence of its definition, the
LL type estimator, differently from the NW type one, automatically adapts to
boundary regions, in the sense that for compactly supported f , the asymptotic
conditional bias has the same order both for the interior and for the boundary
of the support of f (Ruppert and Wand, 1994).

Remark 5 For d = 1, asymptotic results for estimators having the same form
as the univariate version of estimator (4) with p = 0 and p = 1, are provided
in Di Marzio et al. (2013). Despite they used slightly different formulations
for their nonparametric estimators, their results, at interior points, can be di-
rectly compared with those obtained in Theorems 1 and 2. This correspondence
is immediately clear for the asymptotic bias terms. For the asymptotic vari-
ance, the equivalence between the expressions can be obtained considering the
relations between the variance of the error term in model (5) with the variance
of the error terms in models (2) and (3), as stated in (15).

As a consequence of Theorem 2, and similarly to the NW case, an asymptot-
ically optimal local bandwidth can also be obtained for m̂H(x; 1), which coin-
cides with (17), but taking B(x) = `−1(x)[∇`(x)∇Tm(x)+∇m(x)∇T `(x)]+
Hm(x).

3.3 Higher order polynomials

Asymptotic theory on local polynomial estimators (Fan and Gijbels, 1996) can
be used to generalize the previous results to the case of an arbitrary polynomial
degree p. Similar arguments to those used to prove Theorems 1 and 2, can be
applied to derive that the conditional bias of the pth order polynomial type
estimator given in (4) will be of order OP {[tr(H2)](p+1)/2}. Moreover, if p
is even, f has a continuous derivative in a neighborhood of x, and x is an
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interior point of the support of the design density f , then the bias will be
of order OP {[tr(H2)](p/2+1)}. Here, as in Ruppert and Wand (1994), we will
only focus on the case d = 1 to analyze asymptotically the nonparametric
regression estimator given in (4) for p > 1. In particular, the pth degree local
polynomial estimators for mj , j = 1, 2, at x ∈ D ⊆ R, are:

m̂j,h(x; p) =


eT
1 (X T

x,pWxX x,p)−1X T
x,pWxS if j = 1,

eT
1 (X T

x,pWxX x,p)−1X T
x,pWxC if j = 2,

(19)

where, in this case, e1 is a (p+1)×1 vector having 1 in the first entry and zero
elsewhere, X x,p is for n×p matrix with the (i, k)th entry equal to (Xi−x)k−1,
andWx is a diagonal matrix of order n with (i, i)th entry equal to Kh(Xi−x),
where Kh(u) = 1/hK(u/h), being K a univariate kernel function, and h the
bandwidth or smoothing parameter. In this univariate framework, the pth
degree local polynomial type estimator of m at x, denoted by m̂h(x; p), has
the same expression as the one given in (4), but using estimators m̂j,h(x; p),
j = 1, 2, defined in (19), as the arguments of the atan2 function.

Let K(p) be the equivalent kernel function defined in Lejeune and Sarda
(1992), which is a kernel of order p + 2 when p is even and of order p + 1
otherwise. Let µj(K(p)) and R(K(p)) denote the moment of order j and the
roughness of K(p), respectively. Under suitable adaptations of assumptions
(A1)–(A3) to the univariate case and using asymptotic results for local poly-
nomial estimators of an arbitrary order p, the asymptotic conditional bias and
variance of m̂j,h(x; p), j = 1, 2, can be obtained. In the following theorems, we
derive the asymptotic bias and variance expressions of m̂h(x; p), x ∈ D, only
for p = 2 and p = 3. However, following similar arguments, these results could
be extended with tedious calculations for higher-order polynomial degrees. It
should be noted that for local polynomial regression in an Euclidean context,
Fan and Gijbels (1996) recommended the use of polynomial orders p = 1 or
p = 3.

Theorem 3 Let {(Xi, Θi)}ni=1 be a random sample from (X,Θ) supported on
D × T, with D ⊆ R, assume models (2), (3) and (5) hold (with d = 1),
and let x be an interior point of the support of the design density f . Under
assumptions (A1)–(A3) (adapted for d = 1) and assuming that mj, j = 1, 2,
admits continuous derivatives up to order four in a neighborhood of x, then,

E[m̂h(x; 2)−m(x) | X1, . . . , Xn] =
h4µ4(K(2))f

(1)(x)

3!f(x)
[m(3)(x) + a(x)]

+
h4µ4(K(2))

4!
[m(4)(x) + b(x)] + oP

(
h4
)

and

Var[m̂h(x; 2) | X1, . . . , Xn] =
R
(
K(2)

)
nh`2(x)f(x)

σ2
1(x) + oP

(
1

nh

)
,



Nonparametric multiple regression estimation for circular response 13

where

a(x) =
2`(2)(x)m(1)(x) + 4`(1)(x)m(2)(x)

`(x)

+
m

(2)
2 (x)m

(1)
1 (x)−m(2)

1 (x)m
(1)
2 (x) + 2`(1)

2
(x)m(1)(x)

`2(x)

and

b(x) =
2`(3)(x)m(1)(x) + 6`(1)(x)m(3)(x) + 6`(2)(x)m(2)(x)

`(x)

+
2m

(3)
2 (x)m

(1)
1 (x)− 2m

(3)
1 (x)m

(1)
2 (x)

`2(x)

+
6`(1)

2
(x)m(2)(x) + 6`(1)(x)`(2)(x)m(1)(x)

`2(x)
.

Theorem 4 Let {(Xi, Θi)}ni=1 be a random sample from (X,Θ) supported on
D × T, with D ⊆ R, assume models (2), (3) and (5) hold (with d = 1),
and let x be an interior point of the support of the design density f . Under
assumptions (A1)–(A3) (adapted for d = 1) and assuming that mj, j = 1, 2,
admits continuous derivatives up to order five in a neighborhood of x, then,

E[m̂h(x; 3)−m(x) | X1, . . . , Xn] =
h4µ4(K(3))

4!
[m(4)(x) + b(x)] + oP

(
h4
)

and

Var[m̂h(x; 3) | X1, . . . , Xn] =
R
(
K(3)

)
nh`2(x)f(x)

σ2
1(x) + oP

(
1

nh

)
.

Remark 6 Similar comments to those included in Remark 1 can be considered
for Theorems 3 and 4.

4 Simulation study

In order to illustrate the performance of the estimators proposed in Section
3, a simulation study considering different scenarios and model (5) is carried
out for d = 2 (that is, considering a circular response and a bidimensional
covariate). For each scenario, 500 samples of size n (n = 64, 100, 225 and 400)
are generated on a bidimensional regular grid in the unit square considering
the following regression models, for i = 1, . . . , n:

M1. Θi = [atan2(6X5
i1 − 2X3

i1 − 1,−2X5
i2 − 3Xi2 − 1) + εi](mod 2π),

M2. Θi = [acos(X5
i1 − 1) +

3

2
asin(X3

i2 −Xi2 + 1) + εi](mod 2π),
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Fig. 1 Illustration of model generation (model M1: top row; model M2: bottom row) on
a 15 × 15 grid. In left panels, regression functions evaluated at the grid points. In center
panels, independent errors from a von Mises distribution with zero mean and concentration
κ = 5, for model M1, and κ = 15, for model M2. In right panels, random response variables
obtained by adding the two previous plots.

where {(Xi1, Xi2)}ni=1 denotes a sample of the bidimensional covariate X =
(X1, X2), and the circular errors εi are drawn from a von Mises distribution
vM(0, κ) with different values of κ (5, 10 and 15).

Figure 1 shows two realizations of simulated data (model M1 in top row
and model M2 in bottom row). In both cases, the sample size is n = 225. Left
plots show the regression functions evaluated in the regularly spaced sample
{(Xi1, Xi2)}ni=1. Central panels present the random errors generated from a
von Mises distribution with zero mean direction and concentration κ = 5, for
model M1, and κ = 15, for model M2. Right panels show the values of the
response variables, obtained adding regression functions and circular errors. It
can be seen that the errors in the top row, corresponding to κ = 5, present
more variability than the ones generated with κ = 15.

Numerical and graphical outputs summarize the finite sample performance
of NW and LL type estimators in the different scenarios. The bandwidth ma-
trix is chosen by cross-validation, selecting H that minimizes the function:

CV(H) =
n∑

i=1

{
1− cos

[
Θi − m̂(i)

H (Xi; p)
]}

,

where m̂
(i)
H (·; p) stands for the NW type estimator (p = 0) or the LL type

estimator (p = 1), computed using all observations except (Xi, Θi). Taking
into account the type of regression functions considered in models M1 and
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κ n NW LL
HCV HCASE HCV HCASE

5 64 0.0610 0.0152 0.0672 0.0147
100 0.0280 0.0111 0.0358 0.0100
225 0.0124 0.0066 0.0158 0.0051
400 0.0075 0.0047 0.0091 0.0033

10 64 0.0094 0.0092 0.0071 0.0066
100 0.0102 0.0072 0.0055 0.0043
225 0.0065 0.0042 0.0028 0.0026
400 0.0042 0.0029 0.0019 0.0016

15 64 0.0182 0.0072 0.0201 0.0056
100 0.0091 0.0054 0.0110 0.0041
225 0.0046 0.0032 0.0050 0.0021
400 0.0032 0.0023 0.0029 0.0014

Table 1 Average error (over 500 replicates) of the CASE given in (20), for regression model
M1, using NW and LL type estimators. Errors are generated from a von Mises distribution
with different concentration parameters (κ = 5, 10, 15). Bandwidth matrix is selected by
cross-validation, HCV. Additionally, results when using the optimal bandwidth HCASE are
also included.

M2 and to speed up the computing times, in this simulation study, the band-
width matrix is restricted to be diagonal with possibly different elements. A
multivariate Epanechnikov kernel is considered for simulations.

Table 1 shows, for model M1 and in the different scenarios, the average
(over the 500 replicates) of the circular average squared error (CASE), defined
as (Kim and SenGupta, 2017):

CASE[m̂H(·; p)] =
1

n

n∑
i=1

{1− cos [m(Xi)− m̂H(Xi; p)]} , (20)

with p = 0 (NW) and p = 1 (LL), when H is selected by cross-validation.
For comparative purposes, the diagonal optimal bandwidth matrix HCASE

minimizing (20) (obtained by intensive search) is also computed. The corre-
sponding averages of the minimum values of the CASE are also included in
Table 1. It can be seen that the average errors decrease when the sample size
increase, and it is smaller for the LL type estimator for most of the scenarios.
Additionally, as expected, results are generally better when the error concen-
tration gets larger. Average errors of the CASE for model M2 are shown in
Table 2.

Numerical outputs are completed with some additional plots. As an illus-
tration of the correct performance of NW and LL type estimators, Figure 2
shows the theoretical regression functions for models M1 and M2 (left panels)
and the corresponding average, over 500 replicates, of the estimates, using the
specific scenarios considered in Figure 1 (NW and LL estimates in the cen-
ter and right panels, respectively). Notice that, for comparison purposes, the
theoretical regression functions are plotted in a 100 × 100 regular grid of the
explanatory variables (the same grid where the estimations were computed).
Plots in the top row present the results for the data generated from model M1
and those in the bottom row for model M2. Although both estimators have a
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κ n NW LL
HCV HCASE HCV HCASE

5 64 0.0638 0.0303 0.0684 0.0209
100 0.0330 0.0239 0.0369 0.0154
225 0.0190 0.0158 0.0170 0.0089
400 0.0141 0.0120 0.0102 0.0061

10 64 0.0297 0.0184 0.0315 0.0118
100 0.0181 0.0151 0.0172 0.0091
225 0.0131 0.0106 0.0085 0.0054
400 0.0109 0.0086 0.0054 0.0038

15 64 0.0198 0.0139 0.0206 0.0088
100 0.0138 0.0116 0.0118 0.0068
225 0.0114 0.0087 0.0061 0.0041
400 0.0100 0.0075 0.0041 0.0029

Table 2 Average error (over 500 replicates) of the CASE given in (20), for regression model
M2, using NW and LL type estimators. Errors are generated from a von Mises distribution
with different concentration parameters (κ = 5, 10, 15). Bandwidth matrix is selected by
cross-validation, HCV. Additionally, results when using the optimal bandwidth HCASE are
also included.

similar and correct behavior, the LL type estimator seems to show a slightly
better performance, at least, for these samples. More reliable comparisons be-
tween NW and LL type estimators can be performed computing the circular
bias (CB), the circular variance (CVAR), and the circular mean squared error
(CMSE) for both estimators, in a grid of values of the explanatory variables.
These quantities, at a point x, are defined as:

CB[m̂H(x; p)] = E{sin[m̂H(x; p)−m(x)]}, (21)

CVAR[m̂H(x; p)] = E{1− cos[m̂H(x; p)− µ(x; p)]}, (22)

CMSE[m̂H(x; p)] = E{1− cos[m(x)− m̂H(x; p)]}, (23)

where µ(x; p) in CVAR denotes the circular mean of m̂H(x; p). Notice that,
using Taylor expansions, equations (21), (22) and (23) are equivalent to the
Euclidean versions of these expressions (Kim and SenGupta, 2017).

Figures 3 and 4 show, in the scenarios considered in Figure 1, the CB,
CVAR and CMSE computed in a 100 × 100 regular grid of the explanatory
variables, when using NW (top row) and LL (bottom row) type estimators,
for models M1 and M2, respectively. The expectations in (21), (22) and (23)
are approximated by the averages over the 500 replicates generated. It can be
seen that the NW type estimator (p = 0) provides larger biases and smaller
variances than the LL type estimator (p = 1) in both settings. However, the
CMSE is smaller for the LL fit in most of the grid points. Similar results for the
CB, CVAR and CMSE for both estimators were obtained in other scenarios.

5 Real data example

A real data example is presented in order to illustrate the application of the
proposed estimators. Based on the simulation study, where the LL type es-



N o n p a r a m e t ri c m ul ti pl e r e g r e s si o n e s ti m a ti o n f o r ci r c ul a r r e s p o n s e 1 7

0. 0 0. 2 0. 4 0. 6 0. 8 1. 0

0.
0 

0.
2 

0.
4 

0.
6 

0.
8 

1.
0

0

π

2

π

3 π

2

2 π

0. 0 0. 2 0. 4 0. 6 0. 8 1. 0

0.
0 

0.
2 

0.
4 

0.
6 

0.
8 

1.
0

0

π

2

π

3 π

2

2 π

0. 0 0. 2 0. 4 0. 6 0. 8 1. 0

0.
0 

0.
2 

0.
4 

0.
6 

0.
8 

1.
0

0

π

2

π

3 π

2

2 π

0. 0 0. 2 0. 4 0. 6 0. 8 1. 0

0.
0 

0.
2 

0.
4 

0.
6 

0.
8 

1.
0

0

π

2

π

3 π

2

2 π

0. 0 0. 2 0. 4 0. 6 0. 8 1. 0

0.
0 

0.
2 

0.
4 

0.
6 

0.
8 

1.
0

0

π

2

π

3 π

2

2 π

0. 0 0. 2 0. 4 0. 6 0. 8 1. 0

0.
0 

0.
2 

0.
4 

0.
6 

0.
8 

1.
0

0

π

2

π

3 π

2

2 π

Fi g. 2 T h e o r e ti c al r e g r e s si o n f u n c ti o n (l ef t ), j oi ntl y wi t h t h e a v e r a g e, o v e r 5 0 0 r e pli c a t e s,
of N W ( c e nt e r ) a n d L L ( ri g ht ) t y p e e s ti m a t e s, u si n g t h e s p e ci fi c s c e n a ri o s c o n si d e r e d i n
Fi g u r e 1, f o r m o d el M 1 ( t o p r o w ) a n d m o d el M 2 ( b o t t o m r o w ).

ti m at or pr e s e nt e d a sli g htl y b ett er p erf or m a n c e t h a n t h e N W o n e, j u st r e-
s ult s c orr e s p o n di n g t o ˆm H (x ; 1) ar e pr o vi d e d f or r e al d at a. Ori e nt ati o n s of
t w o s p e ci e s of s a n d h o p p er s ( T al o r c h e sti a b rit o a n d T alit r u s s alt at o r ) o n t h e
Z o u ar a b e a c h i n n ort h w e st er n T u ni si a ar e c o n si d er e d. F oll o wi n g t h e pr o p o s al
i n Pr e s n ell et al. ( 1 9 9 8), t h e s e o b s er v ati o n s w er e a n al y z e d i n S c a pi ni et al.
( 2 0 0 2). T h e y u s e d a p ar a m etri c a p pr o a c h t h at a s s u m e s a pr oj e ct e d n or m al
di stri b uti o n f or t h e s c a p e dir e cti o n s a n d t h e c orr e s p o n di n g p ar a m et er s ( cir-
c ul ar m e a n a n d m e a n r e s ult a nt v e ct or) d e p e n d o n t h e e x pl a n at or y v ari a bl e s
t hr o u g h a li n e ar m o d el. We r ef er t o S c a pi ni et al. ( 2 0 0 2) a n d M ar c h etti a n d
S c a pi ni ( 2 0 0 3) f or d et ail s o n t h e e x p eri m e nt, a t h or o u g h d at a a n al y si s a n d
s o u n d bi ol o gi c al c o n cl u si o n s. D e ali n g wit h t h e s a m e d at a s et, i n M ar c h etti
a n d S c a pi ni ( 2 0 0 3), t h e a ut h or s c o n cl u d e t h at t h e ori e nt ati o n i s di ff er e nt f or
t h e t w o s e x e s ( m al e s a n d f e m al e s) a n d t h e y e x pli citl y m e nti o n t h at n o n p ar a-
m etri c s m o ot h er s ar e fl e xi bl e t o ol s t h at m a y s u g g e st u n e x p e ct e d f e at ur e s of
t h e d at a. S o, t h e ill u str ati o n wit h o ur pr o p o s al i s a fir st att e m pt t o a n al y z e
t hi s d at a s et wit h n o n p ar a m etri c t o ol s i n or d er t o c h e c k h o w ori e nt ati o n (i n
d e gr e e s) b e h a v e s w h e n t e m p er at ur e (i n C el si u s d e gr e e s) a n d (r el ati v e) h u mi d-
it y (i n p er c e nt a g e) ar e i n cl u d e d a s c o v ari at e s. F or ill u str ati o n p ur p o s e s, o nl y
o b s er v ati o n s c orr e s p o n di n g t o (r el ati v e) h u mi dit y v al u e s l ar g er t h a n 4 5 % ar e
c o n si d er e d i n t hi s a n al y si s. T h e c orr e s p o n di n g d at a s et s ar e pl ott e d i n Fi g ur e
5 ( m al e s i n t h e l eft p a n el a n d f e m al e s i n t h e ri g ht p a n el), b ei n g t h e s a m pl e
si z e s n = 3 3 0 a n d n = 4 0 4, f or m al e a n d f e m al e s a n d h o p p er s, r e s p e cti v el y.
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Fig. 3 Circular bias (left), circular variance (center) and CMSE (right) surfaces for model
M1 for a 100 × 100 regular grid, using NW (top row) and LL (bottom row) fits. n = 225
and von Mises errors with zero mean and κ = 5.

Figure 6 shows the LL type estimates for male (left) and female (right)
mean orientations, considering temperature (horizontal axis) and relative hu-
midity (vertical axis) as covariates. Note that measurements of temperature
and humidity are the same for males and females, given that these values
correspond to experimental conditions. In this example, unlike in the sim-
ulation experiments, the CV bandwidth matrix has been searched in the
family of the symmetric and definite positive full bandwidth matrices, using
an optimization algorithm based on the Nelder–Mead simplex method de-
scribed in Lagarias et al. (1998). Using the initial bandwidth matrix Hinit =
1.5 · diag {σ̂X1 , σ̂X2}, the algorithm converged to

Hm
CV =

[
2.7781 0.0001
0.0001 15.2529

]
,

for males, and to

Hf
CV =

[
4.0930 −0.0009
−0.0009 13.1937

]
,

for females, where σ̂X1
and σ̂X2

denote the sample standard deviations of
the covariates X1 =“temperature” and X2 =“humidity”, respectively. As in
the previous section, a multivariate Epanechnikov kernel is considered. Note
that the estimation grid of explanatory variables on which the estimates of
the mean were computed was constructed by overlying the survey values of
temperature and humidity with a 100 × 100 grid and, then, dropping every
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Fig. 4 Circular bias (left), circular variance (center) and CMSE (right) surfaces for model
M2 for a 100 × 100 regular grid, using NW (top row) and LL (bottom row) fits. n = 225
and von Mises errors with zero mean and κ = 15.

grid point that did not satisfy one of the following two requirements: (a) it is
within 15 “grid cell length” from an observation point, or (b) the calculation
for the estimates of the sine and cosine components at that grid point uses a
smoothing vector that is sufficiently stable. Both requirements are admittedly
somewhat arbitrary, but they represent a compromise between coverage over
the region of interest and ability to avoid singular design matrices. Even with
these restrictions, some of the estimates for low temperature values (around 20
Celsius degrees) seem to be spurious, specially in the case of male individuals.
This can be due to data sparseness or a boundary effect, two well-known situa-
tions where kernel-based smoothing methods may present certain drawbacks.
Trying to avoid some of these problems and taking into account that there
are repeated values of the covariates, additional estimates have been obtained
after jittering the original data (the corresponding plots are not shown), ob-
taining estimates that follow similar patterns to those shown in Figure 6. The
mean direction followed by male and female sand hoppers is different for some
temperature and humidity conditions. Seawards orientation was roughly 7π/4,
so it can be seen that females are more seawards oriented than males, specially
for mid to low values of temperature.
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Fig. 5 Observed orientation of male (left) and female (right) sand hoppers as a function of
temperature and relative humidity.
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Fig. 6 Estimates of the mean orientation of males (left) and females (right) sand hoppers,
considering a LL type estimator with a cross-validation bandwidth matrix. Horizontal axis:
temperature, in Celsius degrees. Vertical axis: relative humidity, in percentage.

Discussion

Nonparametric estimation of the conditional mean direction (or the regression
function, from a model-based approach) of a circular random variable, given
a Rd-valued covariate, is studied in this paper. Our proposal considers kernel-
based approaches, with special attention on NW and LL type estimators in
general dimension, and for higher order polynomials in the one-dimensional
case. Asymptotic conditional bias and variance are derived and the perfor-
mance of the estimators is assessed in a simulation study.

For practical implementation, the selection of a d-dimensional bandwidth
matrix is required. In the regression Euclidean context, the bandwidth selec-
tion problem has been widely addressed in the last decades (see, for example
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Köhler et al., 2014, where a review on bandwidth selection methods for ker-
nel regression is provided). More related to the topic of the present paper, a
rule-of-thumb and a bandwidth rule for selecting scalar or diagonal bandwidth
matrices for the multivariate local linear regression estimator with real-valued
response and Rd-valued covariate is derived in Yang and Tschernig (1999).
Also in this setting, in González-Manteiga et al. (2004), a bootstrap method
to estimate the mean squared error and the smoothing parameter for the mul-
tidimensional regression local linear estimator is proposed. However, in the
framework of nonparametric regression methods for circular variables, the re-
search on bandwidth selection is very scarce or non-existent. Our practical
results are derived with a cross-validation bandwidth given that, up to our
knowledge, there are no other bandwidth selectors available in this context.
The design of alternative procedures to select the bandwidth matrix for the
estimators studied in this paper based, for example, on bootstrap methods are
indeed of great interest. This problem is out of the scope of the present paper,
but it is an interesting topic of research for a future study.

Once the problem of including a Rd-valued covariate for explaining the
behavior of a circular response is solved, it seems natural to think about the
consideration of covariates of different nature. Since the proposed estimator is
constructed by considering the atan2 of the smooth estimators of the regression
functions for the sine and cosine components of the response, an adaptation
of our proposal for different types of covariates implies the use of suitable
weights. For instance, if a spherical (circular, as a particular case) or a mixture
of spherical and real-valued covariates are considered to influence a circular
response, weights for estimating the sine and cosine components could be
constructed following the ideas in Garćıa-Portugués et al. (2013) for cylindrical
density estimation. If a categorical covariate is included in the model, a similar
approach to the one in Racine and Li (2004) or in Li and Racine (2004) could
be also followed. In all these cases, bandwidth matrices should be selected,
and cross-validation techniques could be applied.

The results obtained in Theorem 3 and 4 can be extended to an arbitrary
dimension d of the space of the covariates by using the asymptotic properties
for m̂j,H(x; p), provided in Gu et al. (2015), who considered the leading term
of the bias and the variance of the multivariate local polynomial estimator
of general order p. Results on the asymptotic distribution of the multivariate
local polynomial estimator (for a general p) is also provided in Gu et al. (2015).
The joint asymptotic normality of m̂1,H(x; p) and m̂2,H(x; p) can be used to
derive, via the delta-method, the asymptotic distribution of statistics which
can be expressed in terms of m̂1,H(x; p) and m̂2,H(x; p). For example, a suitable
adaptation of Proposition 3.1 of Jammalamadaka and SenGupta (2001) can
be used to derive the limiting distribution of the tangent of m̂H(x; p).

In our scenario, data generated from the regression model are assumed to
be independent. However, in many practical situations, this assumption does
not seem reasonable (e.g. data area collected over time or space). The simple
construction scheme behind the proposed class of estimators makes possible
to easily obtain asymptotic properties in more general frameworks. As an
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example, when data are not independent but are realizations of stationary
processes satisfying some mixing conditions, the results provided in Masry
(1996) can be used. It should be also noted that, when the data exhibit some
kind of dependence, although the expression for the estimator will be the
same, this structure will affect the estimator variance and should be taking
into account to select properly the bandwidth parameter, as in Francisco-
Fernandez and Opsomer (2005).
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(LL) estimators, respectively. For d = 1, the extensions for p = 2 and p = 3 are considered in

theorems 3 and 4, respectively. The assumptions required for these results are the following (in

the case of theorems 3 and 4 suitably adapted for d = 1):
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(A2) The kernel K is a spherically symmetric density function, twice continuously differentiable

and with compact support (for simplicity with a nonzero value only if ‖u‖ ≤ 1). Moreover,∫
uuTK(u)du = µ2(K)Id, where µ2(K) 6= 0 and Id denotes the d × d identity matrix. It

is also assumed that R(K) =
∫
K2(u)du <∞.

(A3) The bandwidth matrix H is symmetric and positive definite, with H→ 0 and n|H| → ∞,

as n→∞.

In what follows, 1d and 1d×d are used to denote the d×1 vector and the d×d matrix with all

entries equal to 1, respectively. Moreover, if Un is a random matrix, then OP (Un) and oP (Un)

are to be taken componentwise.

Proof of Proposition 1. The asymptotic bias and variance of m̂j,H(x; 0), for j = 1, 2, can be

directly obtained using the asymptotic properties on the multivariate NW estimator (Härdle

and Müller 2012). Regarding the conditional covariance between m̂1,H(x; 0) and m̂2,H(x; 0), it

follows that

Cov[m̂1,H(x; 0), m̂2,H(x; 0) | X1, . . . ,Xn] =

∑n
i=1

∑n
j=1KH(Xi − x)KH(Xj − x)∑n

i=1KH(Xi − x)
∑n

j=1KH(Xj − x)

Cov[sin(Θi), cos(Θj) | X1, . . . ,Xn]

=

∑n
i=1K

2
H(Xi − x)c(Xi)

[
∑n

i=1KH(Xi − x)]2

=
R(K)c(x)

n|H|f(x)
+ oP

(
1

n|H|

)
,

since
1

n

n∑
i=1

KH(Xi − x) = f(x) + oP (1)

and
1

n

n∑
i=1

K2
H(Xi − x)c(Xi) =

1

|H|
R(K)f(x)c(x) + oP

(
|H|−1

)
.

Next, the proof of Theorem 1 of the main paper is presented.

Proof of Theorem 1. First, to obtain the bias of m̂H(x; 0), using the same linearization argu-

ments as in the proof of Theorem 1 of Di Marzio et al. (2013), atan2(m̂1,H, m̂2,H) is expanded

in Taylor series around (m1,m2), where for simplicity, m̂j,H and mj denote m̂j,H(x) and mj(x),

2



respectively, for j = 1, 2, to get

atan2(m̂1,H, m̂2,H) = atan2(m1,m2) +
m2

m2
1 +m2

2

(m̂1,H −m1)

− m1

m2
1 +m2

2

(m̂2,H −m2) +
m1m2

(m2
1 +m2

2)
2
(m̂2,H −m2)

2

− m1m2

(m2
1 +m2

2)
2
(m̂1,H −m1)

2

− m2
1 −m2

2

(m2
1 +m2

2)
2
(m̂1,H −m1)(m̂2,H −m2)

+O
[
(m̂1,H −m1)

3
]

+O
[
(m̂2,H −m2)

3
]
, (A.1)

Taking conditional expectations, noting that E
[
(m̂j,H −mj)

2 | X1, . . . ,Xn

]
= Var(m̂j,H |

X1, . . . ,Xn)+[E(m̂j,H −mj | X1, . . . ,Xn)]2, and using the results in Proposition 1, it is obtained

that

E[m̂H(x; 0)−m(x) | X1, . . . ,Xn] =
1

2

m2(x)

m2
1(x) +m2

2(x)
µ2(K)tr

[
H2Hm1(x)

]
+

m2(x)

m2
1(x) +m2

2(x)

µ2(K)

f(x)
∇Tm1(x)H2∇f(x)

−1

2

m1(x)

m2
1(x) +m2

2(x)
µ2(K)tr

[
H2Hm2(x)

]
− m1(x)

m2
1(x) +m2

2(x)

µ2(K)

f(x)
∇Tm2(x)H2∇f(x)

+oP [tr(H2)].

Therefore,

E[m̂H(x; 0)−m(x) | X1, . . . ,Xn]

=
1

2

µ2(K)

m2
1(x) +m2

2(x)
tr

{
H2

[
m2(x)Hm1(x)−m1(x)Hm2(x)

]}
+

µ2(K)

[m2
1(x) +m2

2(x)]f(x)

{[
m2(x)∇Tm1(x)−m1(x)∇Tm2(x)

]
H2∇f(x)

}
+oP [tr(H2)].

Now, taking into account that

∇m(x) =
1

m2
1(x) +m2

2(x)
[∇m1(x)m2(x)−∇m2(x)m1(x)] , (A.2)

Hm(x) =
1

m2
1(x) +m2

2(x)

[
Hm1(x)m2(x) + ∇m1(x)∇Tm2(x) − ∇m2(x)∇Tm1(x)−Hm2(x)m1(x)

]
− 2

[m2
1(x) +m2

2(x)]1/2
∇
(

[m1 +m2]
1/2
)

(x)∇Tm(x), (A.3)
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and using the fact that if model (5) of the main paper holds, then

m1(x) = f1(x)`(x) and m2(x) = f2(x)`(x), (A.4)

and, therefore (given that f21 (x) + f22 (x) = 1),[
m2

1(x) +m2
2(x)

]1/2
= `(x), (A.5)

it follows that

E[m̂H(x; 0)−m(x) | X1, . . . ,Xn] =
1

2
µ2(K)tr[H2Hm(x)] +

µ2(K)

`(x)f(x)
∇Tm(x)H2∇(`f)(x)

+oP [tr(H2)].

To derive the variance of m̂H(x; 0), the function atan22(m̂1,H, m̂2,H) is expanded in Taylor

series around (m1,m2), to obtain

atan22(m̂1,H, m̂2,H) = atan22(m1,m2) +
2atan2(m1,m2)m2

m2
1 +m2

2

(m̂1,H −m1)

−2atan2(m1,m2)m1

m2
1 +m2

2

(m̂2,H −m2)

+
2atan2(m1,m2)m1m2

(m2
1 +m2

2)
2

(m̂2,H −m2)
2

−2atan2(m1,m2)m1m2

(m2
1 +m2

2)
2

(m̂1,H −m1)
2

−2atan(m1,m2)(m
2
1 −m2

2)

(m2
1 +m2

2)
2

(m̂1,H −m1)(m̂2,H −m2)

+
m2

1

(m2
1 +m2

2)
2
(m̂2,H −m2)

2 +
m2

2

(m2
1 +m2

2)
2
(m̂1,H −m1)

2

− 2m1m2

(m2
1 +m2

2)
2
(m̂1,H −m1)(m̂2,H −m2)

+O
[
(m̂1,H −m1)

3
]

+O
[
(m̂2,H −m2)

3
]
. (A.6)

So, noting that Var(m̂H | X1, . . . ,Xn) = E
(
m̂2

H | X1, . . . ,Xn

)
− [E(m̂H | X1, . . . ,Xn)]2, and

taking conditional expectations in the Taylor expansions (A.1) and (A.6), it can be obtained

that the conditional variance of m̂H(x; 0) is:

Var[m̂H(x; 0) | X1, . . . ,Xn] =
m2

1(x)[
m2

1(x) +m2
2(x)

]2Var[m̂2,H(x; 0) | X1, . . . ,Xn]

+
m2

2(x)[
m2

1(x) +m2
2(x)

]2Var[m̂1,H(x; 0) | X1, . . . ,Xn]

− 2m1(x)m2(x)[
m2

1(x) +m2
2(x)

]2Cov[m̂1,H(x; 0), m̂2,H(x; 0) | X1, . . . ,Xn]

+O
[
(m̂1,H(x; 0)−m1(x))3

]
+O

[
(m̂2,H(x; 0)−m2(x))3

]
.
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Therefore, using Proposition 1, one gets that

Var[m̂H(x; 0) | X1, . . . ,Xn] =
1

n|H|
R(K)

m2
1(x)s22(x)[

m2
1(x) +m2

2(x)
]2
f(x)

+
1

n|H|
R(K)

m2
2(x)s21(x)[

m2
1(x) +m2

2(x)
]2
f(x)

− 2

n|H|
R(K)

m1(x)m2(x)c(x)[
m2

1(x) +m2
2(x)

]2
f(x)

+oP

(
1

n|H|

)
.

Considering (A.4), (A.5), and equations (11), (12) and (13) of the main paper, it follows

that

m2
1(x)s22(x) +m2

2(x)s21(x)− 2m1(x)m2(x)c(x) = `2(x)σ21(x)

and, therefore, it can be obtained that

Var[m̂H(x; 0) | X1, . . . ,Xn] =
R(K)σ21(x)

n|H|`2(x)f(x)
+ oP

(
1

n|H|

)
.

Proof of Proposition 2. The asymptotic bias and variance of m̂j,H(x; 1), for j = 1, 2, can be

directly obtained using the asymptotic properties on the multivariate LL estimator (Ruppert

and Wand 1994). Regarding the conditional covariance between m̂1,H(x; 1) and m̂2,H(x; 1), it

follows that

Cov[m̂1,H(x; 1), m̂2,H(x; 1) | X1, . . . ,Xn]

= eT1 (X T
xWxX x)−1X T

xWxΣWxX x(X T
xWxX x)−1e1,

where Σ is the diagonal covariance matrix of sin(Θ) and cos(Θ), whose (i, j) entry is Σ(i, j) =

Cov[sin(Θi), cos(Θj)], i, j = 1, . . . , n. Note that Σ(i, j) = 0, for i 6= j. After some calculations,

it can be obtained that(
1

n
X T

xWxX x

)−1
=

(
1
n

∑n
i=1KH(Xi − x) 1

n

∑n
i=1KH(Xi − x)(Xi − x)T

1
n

∑n
i=1KH(Xi − x)(Xi − x) 1

n

∑n
i=1KH(Xi − x)(Xi − x)(Xi − x)T

)−1

=

(
f−1(x) + oP (1) −f−2(x)∇T f(x) + oP (1T

d )

−f−2(x)∇f(x) + oP (1d)
[
µ2(K)f(x)H2

]−1
+ oP (H1d×dH)

)
.

5



Moreover, defining

s1,n(x) =
1

n2

n∑
i=1

K2
H(Xi − x)c(Xi),

s2,n(x) =
1

n2

n∑
i=1

K2
H(Xi − x)(Xi − x)c(Xi),

s3,n(x) =
1

n2

n∑
i=1

K2
H(Xi − x)(Xi − x)(Xi − x)T c(Xi),

it follows that

1

n2
X T

xWxΣWxX x =

(
s1,n(x) sT2,n(x)

s2,n(x) s3,n(x)

)

=
1

n|H|

(
R(K)f(x)c(x) + oP (1) oP (1T

d )

oP (1d) oP (1d×d).

)
,

Consequently, by straightforward calculations, it is obtained that

Cov[m̂1,H(x; 1), m̂2,H(x; 1) | X1, . . . ,Xn] =
R(K)c(x)

n|H|f(x)
+ oP

(
1

n|H|

)
.

Proof of Theorem 2. To obtain the bias of m̂H(x; 1), following the arguments used in the proof

of Theorem 1 and using results in Proposition 2, one gets that

E[m̂H(x; 1)−m(x) | X1, . . . ,Xn] =
1

2
µ2(K)

m2(x)

m2
1(x) +m2

2(x)
tr
[
H2Hm1(x)

]
−1

2
µ2(K)

m1(x)

m2
1(x) +m2

2(x)
tr
[
H2Hm2(x)

]
+ oP [tr(H2)]

=
1

2

µ2(K)

m2
1(x) +m2

2(x)
tr
{
H2 [m2(x)Hm1(x)−m1(x)Hm2(x)]

}
+oP [tr(H2)].

Considering (A.2) and (A.3), and using the fact that, under model (5) of the main paper,

relation (A.5) holds, it follows that

E[m̂H(x; 1)−m(x) | X1, . . . ,Xn]

=
1

2
µ2(K)tr

{
H2

[
Hm(x) +

2

`(x)
∇`(x)∇Tm(x)

]}
+ oP [tr(H2)]

=
1

2
µ2(K)tr[H2Hm(x)] +

µ2(K)

`(x)
∇Tm(x)H2∇`(x) + oP [tr(H2)]
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As for the variance of m̂H(x; 1), the same arguments as those employed in the proof of

Theorem 1 to obtain the variance of m̂H(x; 0) can be used. In this case, using Proposition 2,

we get that the variance of m̂H(x; 1) is:

Var[m̂H(x; 1) | X1, . . . ,Xn] =
R(K)σ21(x)

n|H|`2(x)f(x)
+ oP

(
1

n|H|

)
.

Proof of Theorem 3. Using the asymptotic properties of the local quadratic estimator (Ruppert

and Wand 1994), close expressions of E[m̂j,h(x; 2) | X1, . . . , Xn] and Var[m̂j,h(x; 2) | X1, . . . , Xn],

for j = 1, 2, can be obtained. To derive the bias of m̂h(x; 2), following similar arguments to

those used in the proofs of theorems 1 and 2, one gets that

E[m̂h(x; 2)−m(x) | X1, . . . , Xn]

=
h4µ4(K(2))f

(1)(x)

3!f(x)

m2(x)

m2
1(x) +m2

2(x)
m

(3)
1 (x) +

h4µ4(K(2))

4!

m2(x)

m2
1(x) +m2

2(x)
m

(4)
1 (x)

−
h4µ4(K(2))f

(1)(x)

3!f(x)

m1(x)

m2
1(x) +m2

2(x)
m

(3)
2 (x)−

h4µ4(K(2))

4!

m1(x)

m2
1(x) +m2

1(x)
m

(4)
2 (x)

+oP (h4).

Therefore, using (A.5),

E[m̂h(x; 2)−m(x) | X1, . . . , Xn]

=
h4µ4(K(2))f

(1)(x)

3!f(x)`2(x)
[m2(x)m

(3)
1 (x)−m1(x)m

(3)
2 (x)]

+
h4µ4(K(2))

4!`2(x)
[m2(x)m

(4)
1 (x)−m1(x)m

(4)
2 (x)] + oP (h4).

7



Now taking into account that

m(1)(x) =
1

`2(x)

[
m

(1)
1 (x)m2(x)−m(1)

2 (x)m1(x)
]
,

m(2)(x) =
1

`2(x)

[
m

(2)
1 (x)m2(x)−m(2)

2 (x)m1(x)
]
− 2

`(x)
`(1)(x)m(1)(x),

m(3)(x) =
1

`2(x)

[
m

(3)
1 (x)m2(x)−m(3)

2 (x)m1(x) +m
(2)
1 (x)m

(1)
2 (x)−m(1)

1 (x)m
(2)
2 (x)

]
− 4

`(x)
`(1)(x)m(2)(x)− 2

`2(x)
`(1)

2
(x)m(1)(x)− 2

`(x)
`(2)(x)m(1)(x),

m(4)(x) =
1

`2(x)

[
m

(4)
1 (x)m2(x)−m(4)

2 (x)m1(x) + 2m
(3)
1 (x)m

(1)
2 (x)− 2m

(1)
1 (x)m

(3)
2 (x)

]
− 6

`(x)
`(1)(x)m(3)(x)− 2

`(x)
`(3)(x)m(1)(x)− 6

`(x)
`(2)(x)m(2)(x)

− 6

`(x)2
`(1)

2
(x)m(2)(x)− 6

`(x)2
`(1)(x)`(2)(x)m(1)(x),

it follows that

E[m̂h(x; 2)−m(x) | X1, . . . , Xn]

=
h4µ4(K(2))f

(1)(x)

3!f(x)
m(3)(x)

+
h4µ4(K(2))f

(1)(x)

3!f(x)

[
2`(2)(x)m(1)(x)

`(x)
+
m

(2)
2 (x)m

(1)
1 (x)−m(2)

1 (x)m
(1)
2 (x)]

`2(x)

]

+
h4µ4(K(2))f

(1)(x)

3!f(x)

[
4`(1)(x)m(2)(x)

`(x)
+

2`(1)
2
(x)m(1)(x)

`2(x)

]

+
h4µ4(K(2))

4!
m(4)(x)

+
h4µ4(K(2))

4!

[
2`(3)(x)m(1)(x)

`(x)
+

2m
(3)
2 (x)m

(1)
1 (x)− 2m

(3)
1 (x)m

(1)
2 (x)

`2(x)

]

+
h4µ4(K(2))

4!

[
6`(1)(x)m(3)(x) + 6`(2)(x)m(2)(x)

`(x)
+

6`(1)
2
(x)m(2)(x) + 6`(1)(x)`(2)(x)m(1)(x)

`2(x)

]
+oP

(
h4
)

As for the variance of m̂h(x; 2), the same arguments as those employed in the proof of

theorems 1 and 2 can be used. In this case, the conditional covariance between both m̂1,h(x; 2)

and m̂2,h(x; 2) is:

Cov[m̂1,h(x; 2), m̂2,h(x; 2) | X1, . . . , Xn] =
1

nhf(x)
R(K(2))c(x) + oP

(
1

nh

)
,
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and, therefore, the variance of m̂h(x; 2) is:

Var[m̂h(x; 2) | X1, . . . , Xn] =
R(K(2))

nh`2(x)f(x)
σ21(x) + oP

(
1

nh

)
.

Proof of Theorem 4. To obtain the conditional bias of m̂h(x; 3), using the asymptotic properties

of the local cubic estimator (Ruppert and Wand 1994) and (A.5), one gets that

E[m̂h(x; 3)−m(x) | X1, . . . , Xn]

=
h4µ4(K(3))

4!

m2(x)

m2
1(x) +m2

2(x)
m

(4)
1 (x)−

h4µ4(K(3))

4!

m1(x)

m2
1(x) +m2

1(x)
m

(4)
2 (x) + oP (h4)

=
h4µ4(K(3))

4!
m(4)(x)

+
h4µ4(K(3))

4!

[
2`(3)(x)m(1)(x)

`(x)
+

2m
(3)
2 (x)m

(1)
1 (x)− 2m

(3)
1 (x)m

(1)
2 (x)

`2(x)

]

+
h4µ4(K(3))

4!

[
6`(1)(x)m(3)(x) + 6`(2)(x)m(2)(x)

`(x)
+

6`(1)
2
(x)m(2)(x) + 6`(1)(x)`(2)(x)m(1)(x)

`2(x)

]
+oP

(
h4
)
.

Reasoning as in the proof of Theorem 3, the conditional variance of m̂h(x; 3) can be obtained:

Var[m̂h(x; 3) | X1, . . . , Xn] =
R
(
K(3)

)
nh`2(x)f(x)

σ21(x) + oP

(
1

nh

)
.

2 Simulation results

In this section, additional simulations, analyzing empirically some of the asymptotic results

obtained in the main paper, are presented. In the first experiment, we study the behavior of the

asymptotic mean squared error (AMSE) of m̂H(x; 1), given in Theorem 2 of the main paper, as

the sample size n increases. The second simulation experiment is similar, but now focusing on

the performance of the optimal local bandwidth matrices.

2.1 Asymptotic mean squared error (AMSE) of m̂H(x; 1)

Theorem 2 of the main paper provides the expressions of the asymptotic bias and variance of the

circular regression estimator m̂H(x; 1), at a fixed interior point x. For the sake of illustration, a
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brief simulation experiment is presented to study the behavior of these quantities as a function

of n. Additionally, we compute the AMSE of m̂H(x; 1), defined as the sum of the square of the

main term of its bias and the main term of its variance, and compare it with the circular mean

squared error (CMSE) of m̂H(x; 1) (approximated by Monte Carlo), as n gets larger.

For this purpose, 500 samples of size n (n = 64, 100, 225, 400 and 900) are generated on a

bidimensional regular grid in the unit square considering the following regression model (which

corresponds to a particular case of model (5) in the main document):

Θi = [−atan(Xi1)− atan(Xi2 + 1) + εi](mod 2π), i = 1, . . . , n, (A.7)

where {(Xi1, Xi2)}ni=1 denotes a sample of the bidimensional covariate X = (X1, X2), and the

circular errors εi are drawn from a von Mises distribution vM(0, 10). The interior point x =

(0.5, 0.5) is considered.

For each sample, the leading terms of the asymptotic bias and variance m̂H(x; 1), given in

Theorem 2 of the main paper, are computed using the diagonal optimal local bandwidth matrix

HCMSE(x) that minimizes the CMSE:

CMSE[m̂H(x; 1)] = E{1− cos[m̂H(x; 1)−m(x)]}.

Such a bandwidth is obtained by intensive search. A multivariate Gaussian kernel is employed

in this experiment, facilitating the computations of µ2(K) and R(K) in the expressions obtained

in Theorem 2. Taking into account that the errors are generated from a von Mises distribution

vM(0, 10), `(x) = I1(10)/I0(10) = 0.9485998, where I1 and I0 denote modified Bessel functions

of the first kind. Other quantities appearing in the leading terms of the bias and the variance

of m̂H(x; 1) are easily computed or approximated by simulation.

Table A1 shows, for different sample sizes, the average values (over the 500 samples) of the

leading terms of the asymptotic bias and variance of m̂H(x; 1), as well as the average values of

the AMSE and the CMSE for the estimator at x = (0.5, 0.5).

We also include in this table the distance (in quadratic mean) between the AMSE and

the CMSE, for the different values of n. Specifically, denoting by AMSEb
j and CMSEb

j , b =

1, . . . , 500, j = 1, . . . , 5, the AMSE and the CMSE computed with the bth sample of size nj ∈
{64, 100, 225, 400, 900}, the distance between the AMSE and the CMSE, for the different sample

sizes considered, is calculated by:

Distancej =
1

500

500∑
b=1

(
AMSEb

j − CMSEb
j

)2
, j = 1, . . . , 5. (A.8)

It can be observed in Table A1 that, as n increases, the leading terms of the asymptotic

bias and variance (at that point x) get smaller. The same obviously happens with the AMSE

and also with the CMSE and, more importantly, the AMSE values get closer to the CMSE

approximations (less distance), as n gets larger.
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n Bias Variance AMSE CMSE Distance

64 0.13468 0.00452 0.04135 0.00055 0.00500

100 0.13274 0.00311 0.03911 0.00037 0.00469

225 0.09427 0.00177 0.02153 0.00018 0.00189

400 0.08673 0.00104 0.01886 0.00015 0.00169

900 0.06108 0.00062 0.01109 0.00012 0.00072

Table A1: Averages (over the 500 samples) of the leading terms of the asymptotic bias and variance,

and of the AMSE and the CMSE of m̂H(x; 1) evaluated at x = (0.5, 0.5), for different sample sizes. The

distance between the AMSE and the CMSE, given in (A.8), as a function of n, is also included in the

last column.

2.2 Optimal local bandwidth matrices for m̂H(x; 1)

The empirical behavior of the asymptotically optimal local bandwidth matrix for m̂H(x; 1),

defined after Theorem 2 of the main paper, is studied in this section. With this aim, we perform

a simulation experiment similar to the one described in the previous section, but now focusing on

the local optimal bandwidths. Same scenarios as those considered in Section 2.1 are employed.

In this case, for each one of the 500 samples of size 64, 100, 225, 400 and 900, the asymptotically

optimal local bandwidth matrix for m̂H(x; 1), at x = (0.5, 0.5), given in Section 3.2 of the main

paper, and the diagonal optimal local bandwidth matrix, HCASE(x), obtained by intensive search

as described in the previous section, are computed. The distance or similarity between both

optimal local bandwidth matrices is calculated using different matrix norms. Specifically, the

Frobenius, L1, maximum and spectral matrix norms (see, for example, Ciarlet et al. 1989) are

employed. Finally, for the different sample sizes considered, the averages (over the 500 samples)

of these distances are computed and shown in Table A2.

n Frobenius L1 Maximum Spectral

64 0.46411 0.40132 0.40132 0.40132

100 0.46448 0.40589 0.40589 0.40589

225 0.41699 0.37304 0.37304 0.37304

400 0.40552 0.36948 0.36948 0.36948

900 0.35368 0.32811 0.32811 0.32811

Table A2: Averages (over the 500 samples) of the distance between the optimal local bandwidth matrix

HCASE(x) evaluated at x = (0.5, 0.5) and the asymptotically optimal local bandwidth matrix, described

in Section 3.2 of the main paper, for the different values of n, using different matrix norms.

In the vast majority of the cases, as the sample size gets larger, the distance between the
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optimal local bandwidth matrices is smaller. No major differences have been found when the

different matrix norms are employed.
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