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RESUMO 

Os desenvolvimentos da era digital exigem novas formas de produzir bens e prestar 

serviços. Esta evolução acelerada nas empresas obriga a uma nova postura por parte dos 

auditores, que devem acompanhar a constante transformação. Com as características 

dinâmicas dos dados, é importante aproveitar a oportunidade para criar valor às empresas. 

A necessidade de aplicar métodos mais robustos para deteção de fraudes é evidente. 

Nesta tese será investigada a utilização de métodos analíticos avançados para deteção de 

fraude, através da análise da literatura existente sobre o tema. 

Será feita uma revisão sistemática da literatura e serão aplicados indicadores 

bibliométricos numa pesquisa à base de dados mais adequada para medir a produção 

científica e as tendências atuais. 

Este estudo pretende contribuir para as pesquisas académicas que têm vindo a ser 

realizadas, de forma a centralizar a informação existente sobre esta temática. 

 

Palavras-chave: Big Data, Revisão Sistemática da Literatura, Indicadores Bibliométricos, 

Deteção de Fraude, Métodos Analíticos Avançados. 
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ABSTRACT 

The developments of the digital era demand new ways of producing goods and rendering 

services. This fast-paced evolution in the companies implies a new approach from the 

auditors, who must keep up with the constant transformation. With the dynamic 

dimensions of data, it is important to seize the opportunity to add value to the companies.  

The need to apply more robust methods to detect fraud is evident.  

In this thesis the use of advanced analytical methods for fraud detection will be 

investigated, through the analysis of the existent literature on this topic. 

Both a systematic review of the literature and a bibliometric approach will be applied to 

the most appropriate database to measure the scientific production and current trends. 

This study intends to contribute to the academic research that have been conducted, in 

order to centralize the existing information on this topic. 

 

Keywords: Big Data, Systematic Literature Review, Bibliometric Indicators, Fraud 

Detection, Advanced Analytical Methods. 
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INTRODUCTION 

The data mining process arises from the irrefutable need to extract information from 

the growing databases of companies, with the aim of creating knowledge that increases 

their profits. Transforming data into information can mitigate risks and create 

opportunities. However, to do so, it is crucial to use the most appropriate tools, 

considering the speed, volume and variety of data. 

The auditor's role is linked to the need of understanding the risks associated with 

predominantly technological environments and how it is possible to reduce the impact 

of these risks on financial information. To prevent the catastrophic consequences - 

already proven in the past - that can result from financial fraud, it is important to 

develop and implement mechanisms that detect signs and prevent their occurrence.  

Short description of the methodology 

The topic to be studied in this dissertation is the use of advanced analytical methods 

for detecting fraud. As this is a subject in vogue, there is a need to summarize and 

outline the studies that have been carried out on the subject. Thus, the proposed study 

methodology is a systematic review of the literature. 

Additionally, a bibliometric approach will be adopted to measure the scientific 

production related to advanced analytical methods for fraud detection., through the 

analysis of bibliometric indicators. 

This type of investigations on computer science topics is critical to understand the 

trends: not only for academic purposes; but also to lead future investigations on such a 

trendy subject as the use of technology for fraud detection.   

Objectives 

The main objective of this thesis is to identify the most relevant studies that propose 

the application of advanced analytical methods for the fraud detection.  
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Moreover, this study aims to analyse the categorization made for the different 

analytical methods advanced and for types of fraud, as well as analyse the relationships 

established between the various categories of analytical methods and types of fraud. 
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1 Context 

1.1 Evolution of the Auditing Profession 

Arens et al. (2014) define auditing as “the accumulation and evaluation of evidence 

about information to determine and report on the degree of correspondence between the 

information and established criteria”, adding it “should be done by a competent, 

independent person”. 

The role of auditing has developed in the last twenty years due to the changes in the 

modus operandi of companies and, consequently, the regulatory requirements 

established to homogenize them.  

Depending on the approaches to this theme, a variable branch of factors can be 

pointed out as the drivers for the evolutions of the role of the auditor. The specialists 

generally choose to rely on the Sarbanes-Oxley (SOX) Act of 2002 and its’ 

requirements and on the use of technology in the auditing profession. Indeed, both 

factors are irrefutable and are linked to one another.  

 The publication of the SOX Act in July of 2002 came in response to the financial 

scandals that occurred in the previous years – such as: 

1. Enron Corp., whose financial losses’ were hidden using the MTM accounting 

technique - where the value of a security it’s measured using its current market 

value, instead of it’s book value (Segal, 2021). Enron’s share prices came down 

to $0.26 and the firm declared bankruptcy in December 2nd of 2001. The 

scandal led to the dissolution of Enron’s accounting firm, Arthur Andersen, who 

provided other services besides audit services, which raised questions about 

independence; 

2. Tyco International, Ltd., involved in a long trial due to theft, tax evasion and 

ethical conflicts accusations of the company’s CEO and Chairman, Dennis 

Kozlowski, and former corporate Chief Financial Officer, Mark Swartz; 

3. WorldCom, who admitted to inflating its earnings by fraudulently capitalizing 

expenditures – rather than booking those entries as expenses – and booking 
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accounting entries related to fake revenues in “Corporate Unallocated” revenue 

accounts. 

The motivations behind these scandals, as well as the cyclical recessions capable of 

shaking investor’s confidence in their investments, led to the establishment of 

procedures to assure the transparency and reliability of the financial information.  

1.2 The Sarbanes-Oxley Act  

For a better understanding of the financial scandals mentioned above, it’s important 

to insert these events in a timeline. The economy is cyclical, combining periods of 

expansion and growth with periods of stagnation or contraction. These fluctuations 

impact sharply companies’ financial health, mainly during speculative bubbles. Below, 

the outlines of a specific bubble will be addressed. 

 The dot.com bubble, or the internet bubble, was a period between the late 1990s 

and early 2000s during which the value of internet-based companies increased. These 

companies’ stock prices value was highly impacted by the potential and future growth 

expectations related to the beginning of the commercialization of the internet. Even 

though many of these companies were only start-ups with not so solid financial results, 

the investors chose to take a risk, leading to the companies’ investment in their 

marketing and advertising, resulting in a speculative bubble.  

Audit companies took the opportunity to start providing a wider range of 

services, making what was their core business a secondary slice of their honoraires 

charged.  

Eventually, the money started to dry up, leading to the crash of the market. The 

burst of this bubble, in 2000, was driven by availability of venture capital, the 

mainstreaming of the internet and the hype regarding this type of companies. 

 Although the dot.com bubble was not the first asset bubble to occur, this crisis 

overlapped the beginning of the digital age.  
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1.3 The Big Data concept 

 ISACAs framework for information technology (IT) management and IT 

governance, COBIT 5 (ISACA, 2012), defines data “as something that is, or represents, 

a fact” and information as “data in context”, meaning information is the main enabler 

for decision making at operation, management and governance levels.  

 For the same Association, big data “is a common term for a set of problems and 

techniques concerning the management and exploitation of very large sets of data”. The 

term “big data” must be understood taking into consideration the enterprise’s reality but 

always implies that the use of traditional techniques or tools is not efficient or useful to 

manage the amount of data available. This data is usually in a unstructured form but, 

when efficiently managed, can provide valuable findings and predictions to a wide 

range of stakeholders (e.g. consumers’ behaviour; markets’ latest trends; or competitors’ 

strategy based on their public information). Data’s value depends on the interested part 

on the data itself because it depends on the treatment and application of that 

information. 

 Initially, big data was categorised into three dimensions: 

(1) Variety of information; 

(2) Velocity of information creation and; 

(3) Volume of information (ISACA, 2012).  

Later, other two V’s were added to the characteristics of big data: 

(4) Value and; 

(5) Veracity. 

Ishwarappa and Anuradha J (2015) explain the link between (4) Veracity and (1) 

Variety, (2) Velocity and (3) Volume of data through the necessity of assuring the 

quality of data, when there is a high volume, variety and velocity of data to analyse. The 

accuracy of the analysed data can only be guaranteed through the veracity of the data 

source. 
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The same authors indicate (5) Value as “the most important aspect in the big data”. 

The relevance of big data implies the creation of value to its stakeholders. There must 

exist a turnover in order to justify the investment in this type of IT infrastructures. 

With the recognition and acceptance of the importance of data for enterprises, more 

categorizations with V words have emerged. Some authors add Variability - taking into 

consideration the inconsistency of the data flows - and Visibility or Visualization - the 

data comprehension is intrinsically linked to the way is displayed, meaning the way its 

presented is fundamental for the decision-making (Sami Owais & Sael Hussein, 2016; 

Zafar et al., 2021).  

 

Figure 1 - The 7 Vs of Big Data 

Besides the 7 Vs categorization explained above, other categorizations have been 

explored. Arockia Panimalar et al (2017) developed a categorization of 17 Vs, including 

some trendy classifications, such as Virality – defining the spreading speed of data – 

and Venue – data can be obtained through various platforms and sources, some of them 

being private and others being public (e.g. internet).  

Big 
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Velocity
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1.4 Data Mining and CRISP-DM 

Data Mining can be defined as the process where statistical, mathematical and 

machine-learning techniques are used to extract and examine useful information from a 

database, creating knowledge to its stakeholders (Ko et al., 2011 apud Ngai et al., 

2011). 

IBM defines the Cross-Industry Standard Process for Data Mining (CRISP-DM) 

(2011) as process model that can be used as a guide for the data mining lifecycle. This 

process is represented in Figure 2, where the arrows indicate the most important and 

frequent dependencies between phases. 

 

Figure 2 - The data mining life cycle Source: IBM SPSS Modeler CRISP-DM Guide, n.d. 

The first phase of the process is “Business Understanding”, which consists of the 

determination of the business objectives, through the clarification of the business 

problems, goals and available resources. It is also important to set the data mining goals 

by questioning the data mining problem:  

1. Clustering - unsupervised learning approach, where the machine applies 

grouping rules based on similarities to existing data; 
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2. Classification - supervised learning approach, where a specific label/rule is 

setup in the machine to classify new observations; 

3. Or Prediction – Based on the system’s setup, the algorithm generates a 

model or a predictor. Then, when new data is provided to the system, a 

numerical output is generated. In most cases, regression analysis is the 

statistical methodology used. The model or predictor will predict a 

continuous-valued function or an ordered value. 

Furthermore, it’s important to go through the “Data Understanding” phase, which 

requires analysing the variety of data sources and describing the data available, though 

the following characteristics: 

o amount of data – although bigger loads of data usually allow more 

reliability on the results, it is not always possible to invest a lot of time in 

processing these kinds of datasets; 

o value types – variety of formats like numerical, categorical (string) or 

Boolean (true/false); 

o and coding schemes – used to categorize data in a certain dataset (e.g. “F” 

and “M” generally stand for “Female” and “Male” respectively. 

It might also be relevant to elaborate a data report, listing the data features 

abovementioned and testing data quality (e.g. missing data, data errors, coding 

inconsistencies). 

After evaluating and understanding the dataset, researchers may proceed to the 

most time-consuming phase of this process: “Data Preparation”, estimated to take up to 

70% of the project’s time. IBM (2011) notes the following tasks as the components of 

this phase: 

• Merging data sets and/or records – taking into consideration their format; 

• Selecting a sample subset of data – through inclusion or exclusion criteria; 

• Aggregating records; 

• Deriving new attributes  ; 
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• Sorting the data for modelling; 

• Removing or replacing blank or missing values; 

• And splitting into training and test data sets. 

Following the preparation of the data, data miners are able to prepare the Modeling 

phase. The most appropriate Modeling techniques are applied and several models with 

default parameters are tested. Then a fine-tune of those parameters is applied in order to 

achieve the data mining goals. After the refinement of the model, a comprehensive 

model assessment can be made to formalise its accuracy and results. 

The “Evaluation” phases aims to measure the success of the data mining 

application in the business goals. Using the criteria established in the beginning of the 

process, findings can be discussed and presented. After that, data miners can determine 

the next steps: continue to the deployment phase or go back and define or replace the 

models (IBM, 2011). 

“Deployment” is where the new insights are applied to the business. The results are 

monitored, and a project review can be produced.  
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2 Methodology 

2.1 Types of Literature Review 

As abovementioned, one of the main goals of this investigation is to define which 

advanced analytical methods are most used for fraud detection. To do so, the most 

common types of literature reviews were studied; and what was considered the most 

appropriate approach, was the selected one. 

When it comes to literature reviews, one can categorize into three types:  

▪ State-of-the-art review: it aims to define a broader concept in a certain period 

of time. It intends to summarize the current work of a specific field, by offering 

“interpretations of the historical progression of knowledge relating to a 

phenomenon (…)” (Barry et al., 2022); 

▪ Scoping review: intends to present an overview of the investigations developed 

concerning a certain topic (Amendoeira et al., 2022). It consists in building 

maps of literature in order to do a preliminary assessment, and may be 

followed by systematic reviews; 

▪ And systematic reviews: unlike state-of-the-art reviews, this type of reviews 

tend to concentrate on what was studied in the past and identify potentials for 

future research. Although the goal is not to focus on outdated literature, 

systematic reviews aim to reflect on the development of the studied field over 

time. 

The selected methodology was Systematic Literature Review (SLR). Hereafter, this 

methodology and the required protocol will be explained. Even though SLR is not a 

new approach, there are not plenty of tutorials on how to implement such methodology. 

The perspective of Chitu Okoli and it’s “Guide to Conducting a Standalone Systematic 

Literature Review” will be adapted ahead.  
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2.2 Systematic Literature Review  

Okoli (2015) lists three characteristics through which is possible to define a 

Systematic Literature Review (SLR):  

(1) systematic – in the methodology adopted. 

(2) comprehensive and explicit – by including all the relevant contributes and 

transparent regarding the procedures used, respectively. 

(3) and reproducible – in a way that the same methodology can be applied by other 

researchers. 

This methodology aims to scrutinize a certain topic with such rigor and step-by-step 

technique that is acknowledged as a proper standalone investigation work. According to 

the same author, the systematic reviews of literature stand out from the ordinary reviews 

of literature due to being an objective exercise, rather than a subjective one.  

Describing the available knowledge and identifying the “experts within a given 

field” are a few of the motivations sustained by Fink (2005 apud Okoli, 2015). On the 

other hand, this methodology doesn’t add much value when it concerns a field in a early 

stage of investigation; when a similar and up-to-date summarization of literature can be 

found; or when the question behind the investigation is to vague, rather than concise and 

objective. 

2.2.1 A guide to a Systematic Literature Review 

It’s possible to distinguish a systematic literature review from a conventional 

literature review by defining its scope and rigour. A SLR is most likely to be cited by 

other researchers because it’s very clear and objective when it comes to its purpose. The 

first step to execute this kind of investigation is therefore to (1.) identify the purpose. 

It’s important to determine the answer to the question “why do a literature review?” 

and, consequently, define its main goals. To do that, it’s important to establish the 

necessity and the purpose of the review. 

Still according to the same author, one should (2.) draft the protocol to be 

followed during the research, including the search’s parameters and steps. This phase 

should start with the formulations of the investigation, which should define the 
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audience, the purpose and the use of the review. This document doesn’t need to be 

finished before the research starts. It should be used as a guide to the researchers during 

the investigation and as a detailed explanation of the procedure adopted by the 

stakeholders of the SLR. The protocol should be the formalization of the planning stage. 

Afterwards, (3.) a practical screen should be applied through the selection of a 

feasible number of studies to be analysed by the researchers. The intention shouldn’t be 

to categorize the studies taking into account it’s quality; instead, the researchers should 

decide if the studies that resulted from the initial search are worth of further analysis or 

if they don’t fall into the scope. Multiple criteria can be used, such as the filters 

available in the databases: year of publication, journals, authors, keywords, between 

others. When in doubt in this phase, the study should be included. 

The following step consists in the (4.) searching of the literature itself. For that, 

researchers must define the library in which the search will be applied. All sources 

should be considered, and its’ inclusion or exclusion should be justifiable. 

Regarding the (5.) data extraction, Okoli (2015) suggests the use of a form 

where the extraction and treatment of the data is fully explained. 

After a practical screening is executed, it’s important to assure that only relevant 

results are considered in the review. The author indicates (6.) the quality appraisal as the 

last step in the extraction phase. The purpose is to both categorize studies accordingly to 

their quality - regarding the search’s scope - and exclude studies that don’t follow the 

standards for the review. This scoring can be qualitative and/or quantitative. 

Finished the stages of planning, selection and extraction, the researchers are now 

able to execute. To (7.) synthetize the studies means to transition “from an author- to a 

concept- centric focus” (Webster & Watson, 2002). Like the quality appraisal, this 

could be done in a quantitative or qualitative way. After knowing and understanding the 

literature, in this phase the researchers must synthesize and evaluate the search.  

At last, the process ends when the researchers (8.) write the review. Depending 

on the criteria and standards established in the previous stages, this phase could be more 
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or less time consuming. The goal is to communicate the results and make them available 

by publishing them. 

  

Figure 3 - The steps of a systematic review of literature  Source: adapted from Okoli (2015) 

2.2.2 PROSPERO and PRISMA-P 

In an effort to provide guidance and increase the use of this methodology, the 

Centre for Reviews and Dissemination, of the University of York, created an 

international register system called PROSPERO (International Prospective Register of 

Ongoing Systematic Reviews). With the availability of a protocols’ database, the 

duplication of effort in this phase of the investigation would be avoided, and the 

publication bias would be reduced (Moher et al., 2016). 

In order to help researchers “to create a clear and complete document of their a 

priori methods”, Moher et al. (2016) created a reporting guideline called PRISMA-P 

(Preferred Reporting Items for Systematic reviews and Meta-Analyses for Protocols).  

Besides enabling the steps of a Systematic Literature Review, a protocol empowers 

transparency and trustworthiness on the investigation (Amendoeira et al., 2022). 

The following protocol was adapted from the most recent PRISMA-P Checklist, 

from 2020 (in Annex 1 and 2).  

Planning

• 1. Identify the purpose

• 2. Draft protocol

Selection

• 3. Apply practical screen

• 4. Search for literature

Extraction

• 5. Extract data

• 6. Appraise quality

Execution

• 7. Synthesize studies

• 8. Write the review
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2.3 Protocol for Systematic Literature Review 

Below it is established the protocol used as a guideline during the research. 

2.3.1 Review objective 

Identify studies that propose the application of advanced analytical methods for 

detecting fraud. Analyse the categorization made for the different advanced analytical 

methods and for the types of fraud. Analyse the relationships established between the 

various categories of analytical methods and types of fraud. 

2.3.2 Review question 

How have advanced analytical methods been applied in fraud detection? 

2.3.3 Specific investigation questions 

i. What advanced analytical methods are there? 

ii. What types of fraud are there? How are they categorized?  

iii. How can analytical methods for fraud detection be categorized? 

iv. How are advanced analytical methods selected to detect each type of 

fraud? 

v. How to apply advanced analytical methods in fraud detection? 

vi. What types of fraud signs can be detected using advanced analytical 

methods? And what types of fraud? 

vii. What are the most used advanced analytical methods in fraud detection? 

viii. How to measure the reliability of the use of analytical methods in the 

detection of fraud? What are the most reliable analytical methods for 

detecting fraud? 

2.3.4 Inclusion criteria 

• Free access publications, available through Scopus database;  

• Recent publications, published between 2003 and 2022; 
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• Publications containing “Fraud Detection” as one of the keywords 

(Indexed Keyword or Author Keyword), and at least one advanced 

analytical method as another keyword. 

2.3.5 Exclusion criteria 

• Publications unavailable, through Scopus, other databases or Journal’s 

website; 

• Publications unrelated to the theme (i.e. combining advanced analytical 

methods with fraud detection); 

• Publications with little scientific value for the study (i.e. studies that couldn’t 

answer the review question). 

2.3.6 Search strategy 

Application of the query “KEY ( "Fraud Detection" )” in Scopus “Advanced 

document search”.  

Depending on the number of results and the characteristics of the results, proceed to 

the application of filters to obtain publications that: 

• answer to the review question; 

• and comply with the inclusion and exclusion criteria previously established.  
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2.4 Data collection 

The database selected for this research was Scopus, after concluding that other 

databases (namely Web of Science, IEEE, Research Gate, Springer, Arxiv, dblp, 

EBSCO) would not add value to the search, since the documents indexed in those 

databases were also available in Scopus. Therefore, using additional databases would 

create duplicate results. 

The query “KEY ( "Fraud Detection" )” was applied in Scopus “Advanced 

document search”, resulting in 3073 documents.  

Afterwards, the following filters were applied: 

• “Document type” was limited to “Article”, resulting in 1032 document 

results; 

• “Subject Area” was limited to “Computer Science” and “Business, 

Management and Accounting”, resulting in 815 document results; 

• “Keywords” were limited to all advanced analytical methods used in more 

than 9 documents1, resulting in 191 documents: 

o “Decision Trees” (75); 

o “Outlier Detection” (41); 

o “Clustering Algorithms” (29); 

o “Logistic Regression” (23); 

o “Clustering” (19); 

o “Random Forests” (17); 

o “Adaptive Boosting” (16); 

o “Signal Detection” (15); 

o “Bayesian Networks” (13); 

o “Random Forest” (12); 

o  “Benford's Law” (9). 

 

1 In parenthesis on the list are the number of documents with the mentioned keywords. 
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• The results without open access were excluded, leaving 60 document 

results. 

 

Figure 4 – SLR Search results (Extracted from Scopus) 

 Due to access restrictions, 55 out of the 60 documents were analysed. 

  



 

Advanced analytical methods for fraud detection: a systematic literature review 
  

 

18 
 
 

3 Advanced analytical methods in fraud detection 

The 55 documents published in Scopus between 2003 and 1 of February 2023 were 

analysed and categorized regarding the advanced analytical method(s) applied and the 

type of fraud(s) object of study. The most representative ones will be discussed ahead. 

After classifying the 55 documents, 110 results were found, as each article studied 

one or more advanced analytical method in one or more types of fraud (Annex 3). 

3.1 Advanced analytical methods 

The advanced analytical methods with higher occurrence where split in the 

aforementioned data mining approaches - (1) Clustering, (2) Classification or (3) 

Prediction. Some methods were broken down into more specific methods (e.g. Isolation 

Forest and Random Forest are based on the Decision Tree Algorithm so they were 

classified as more specific methods).  

These relations were schematized in the table below: 

Table 1 - Relation between data mining modalities and advanced analytical methods 

Data Mining Modalities 
Advanced Analytic Methods Specific Methods 

Clustering 

Clustering   

Patient Clustering Divergence   

Elliptic Envelope   

K-means   

Classification 

Decision Tree 
Isolation Forest 

Random Forest 

Neural Networks   

Bayesian Networks   

Support Vector Machine   

Gradient Boosting 

Adaptive boosting 

XGBoost 

CatBoost 

Prediction 

Linear Regression   

Logistic Regression   

Benford's Law   

Hidden Markov Model (HMM)   
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In Graph 1 are represented the advanced analytical methods found of in the results. 

 

Graph 1 - Advanced analytical methods in SLR results 

 The classification techniques with higher occurrence are: (i) Random Forest; (ii) 

Neural Network), (iii) Outlier Detection; (iv) XGBoost and CatBoost and (v) Logistic 

Regression. 

(i) Random Forest is a machine learning technique that integrates several decision 

trees (Ashfaq et al., 2022), combining their output in an unique result, based on 

the majority vote. Decision tree, in its turn, is a technique that splits data into 

different categories and classifies it “from the root to the leaf node” while 

“highlights the structural information in the data” (Valavan & Rita, 2023). Easily 

understandable by different stakeholders, Decision Trees can manage missing 

information while handling high volumes of data with a lot of attributes. These 

techniques can “ ensemble a learning model for classification, regression, and 

other tasks” (Lin & Jiang, 2021). Random forests are far used because they work 

with both categorical/qualitative and numerical/quantitative data (Sharma et al., 

2021; Valavan & Rita, 2023). The bias of Random Forest is the same of any 

individual Decision Tree, making this a more robust model over Decision Trees; 

(ii) Neural Network is a series of algorithms composed by neurons who “rely on 

training data to learn and improve their accuracy over time” (IBM, n.d.). This 
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subset of machine learning is inspired in human nervous system, as the signal 

obtained in the input layer is carried out to the hidden layers (Nguyen et al., 

2022). These deep learning methods can be categorized in Convolutional Neural 

Networks (CNN) and Recurrent Neutral Networks (RNN) (Dong et al., 2020). 

They differentiate from one another through the ability to process temporal 

information, that can only be done using RNN. On the other hand, CNN can be 

useful to analyse spatial data (e.g. images); 

(iii) Outlier Detection is technique that aims to identify data points that differ 

significantly from the remaining dataset (Elmogy et al., 2021). As these 

algorithms detect variations and abnormal behaviours, they have been 

exhaustively developed and applied in different realities. Although the causes  

might be related to simple changes in the environment, instrumentation error or 

human error (Hassaan et al., 2021), they have been crucial to detect malicious 

activity. Detecting outliers is a quite useful task when preparing large datasets 

and is normally applied in preliminary stages of machine learning models, to 

highlight and help to understand information; 

(iv) XGBoost and CatBoost are two methods based on Gradient Boosted Trees. Both 

GBT and Random Forests use Decision Trees; yet the two algorithms differ in 

the way individual trees are built and in the way the results are combined. 

Boosting collects weak learners (i.e. predictors with poor accuracy) and 

transforms them in a strong learner (i.e. predictor with high accuracy). In GBT. 

the trees are built consecutively so that new trees learn from the previous ones; 

in Random Forests, trees are built independently and combined in parallel. 

XGBoost, or Extreme Gradient Boosting, generates sequential trees “and each 

successive tree aims to reduce the error of the previous tree and update the 

residual error” (Ashfaq et al., 2022). Whereas this method creates asymmetric 

trees (i.e. splitting condition for each node across the same depth can differ), 

CatBoost, or Categorical Boosting, creates symmetric trees or balanced trees. 

This algorithm, developed after XGBoost, is seen as an improved version of the 

other boosted trees algorithms (Nguyen et al., 2022) since the splitting condition 

is consistent across all nodes at the same depth of the tree. 
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(v) Logistic Regression is a machine learning algorithm from the same group as 

Linear Regression. Logistic Regression provides a discreet output, predicting if 

the evaluated data is “True” or “False” (i.e. binary classification). On the other 

hand, Linear Regression provides a linear output, evaluating the correlation 

between data and determining if the value found is statistically significant. 

Although Logistic Regression also provides a statistic output, it is mainly used 

for classification (e.g. if the percentage of a value is high, then is classified as 

True). This algorithm is known for its “efficiency of detecting frauds based on 

its ability to isolate the data that belong to different binary classes” (Alenzi & 

Aljehane, 2020). 

3.2 Types of Fraud 

In Graph 2 are represented the classifications of the Types of Fraud mentioned in 

the articles studied.  

 

Graph 2 - Types of fraud in SLR results 

Payment-related fraud is the type of fraud with more occurrences: 45% of the 

results. This category aggregate types of fraud related with payments, namely credit 

card fraud (Alenzi & Aljehane, 2020; Alfaiz & Fati, 2022; Carneiro et al., 2022; 
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Jiang, 2021; Lucas et al., 2020; Muaz et al., 2020; Randhawa et al., 2018; Santosh & 

Ramesh, 2020; Sasikala et al., 2022; Zhang et al., 2022), card payment fraud (Nguyen et 

al., 2022) and online payment fraud (Chang et al., 2022; Hajek et al., 2022; Nasr et al., 

2022). 

General/Financial Fraud category represents 30% of the results, yet it doesn’t 

represent a specific type of fraud. The researchers which articles rely on this tier tested 

data mining approaches: 

▪ In specific situations with low representation among the results (e.g. frauds 

and anomalies related to financial data, e-commerce, fintech applications) 

(Li et al., 2021; Liu et al., 2020; Stojanović & Božić, 2022); 

▪ Or in nonspecific datasets (Rubaidi et al., 2022). 

Insurance Fraud category comprises studies where the data mining model aimed 

to detect insurance related anomalies (Dhieb et al., 2020; Palacio, 2019). The insurance 

category targeted by the largest number of studies was health insurance (Kotekani & 

Ilango, 2022; Kotekani & Velchamy, 2020; Sun et al., 2019). 

Researchers also identified loans as a sensitive accounting item in which fraud 

occurs and for which data mining techniques can be used to detect it (W. Fang et al., 

2021). 

In the last years, publications on cryptocurrency markets fraud were published. 

Although these still have low representation in this study results, it is worth noting the 

investment in the research of this trendy topic (Ashfaq et al., 2022; Mittal & Bhatia, 

2021; Nerurkar et al., 2021) 

Other types of fraud include non-financial types of fraud (e.g. medical 

prescriptions fraud) (Aral et al., 2012) and studies in which the models examined had as 

objective identify fraudsters (Bhargava et al., 2003).  
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3.3 Review conclusions 

According to the results obtained with this systematic review of literature, it is 

concluded that the type of fraud for which there is more articles published is payment-

related frauds, namely credit card fraud.  

The advanced analytical methods most used to develop fraud and anomaly 

detection models are Random Forests, Neutral Networks, Outlier Detection, Logistic 

Regression and XGBoost/CatBoost.  

It is also possible to conclude that the most recurrent advanced analytical methods 

are Decision Trees ensembles, in particular Random Forests, XGBoost and CatBoost. 

Also, Isolation Forests, Extra Trees and Adaptive Boosting were found among the 

results. 

The majority of the methods – both in the top 5 and in the overall results – are 

Supervised Learning methods. In this approach, input and output data are provided to 

the model with the goal of training it so it can predict results when new data is given. 

On the other side, Unsupervised Learning uses machine learning methods to cluster 

unlabelled datasets and discover patterns and outliers without human intervention. 

 Within Supervised machine learning, the category of methods in which 

researchers tend to investigate is Classification, since the ultimate goal is to classify if a 

certain transaction is fraudulent or non-fraudulent. 

 

Figure 5 - Machine Learning Approaches 
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4 Bibliometric Approach 

In Chapter 3 the results of a standard database search were explained, narrowing 

them down by using the filters available in the search engine Scopus.  

In the present Chapter, the results will be selected through an advanced search in 

the same database using a query, in order to measure the scientific production related to 

advanced analytical methods for fraud detection.  

The study on the scientific production of the topic advanced analytical methods for 

fraud detection is relevant for academic purposes of future thesis but also to 

acknowledge the authors and journals who have been studying this matter. Therefore, 

highlighting the trends on advanced analytical methods used to detect fraud will ease 

future scientific investigations. 

The specific objectives of this research are: 

i. Analyse bibliometric indicators of the articles’ characteristics, namely: the 

year of publications, the number of citations, the journal in which it was 

published the articles and the topics investigated; and  

ii. Analyse bibliometric indicators regarding the articles’ authors, namely: their 

productivity, the authorship type of the article and the geographic affiliation.  

To follow the protocol abovementioned in Chapter 2, the list of specific 

investigation questions was prepared (in Table 2): 

Table 2 - Specific investigation questions used for BA 

Specific 

objectives 
Specific investigation questions 

Reference Description 

i. 

SIQ #1 
Was there an increase in the number of scientific articles regarding 

advanced analytical methods for fraud detection? 

SIQ #2 
Was there an increase in the number of citations of the articles about 

advanced analytical methods for fraud detection? 

SIQ #3 
Is the research on advanced analytical methods for fraud detection 

more relevant on journals of which area? 

SIQ #4 
Which are the most used keywords on articles about advanced 

analytical methods for fraud detection? 

ii. 
SIQ #5 

Is there any investigator who prevails in the publication of scientific 

articles on advanced analytical methods for fraud detection? 

SIQ #6 
Is there a prevalence of collective authorship over individual 

authorship in scientific articles on advanced analytical methods for 
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fraud detection? 

SIQ #7 

Is there any country and/or continent that prevails in the affiliation of 

authors in the investigation about advanced analytical methods for 

fraud detection? 

4.1 Bibliometric Indicators – An Overview 

Cole and Eales were the pioneers of the bibliometric analysis, when presented in 

1917 “a quantitative picture of progress in a field of research”, with their statistical 

analysis of the history of comparative anatomy (Okubo, 1997). 

When executing a bibliometric research, it is important to define the criteria to rank 

the different journals and, consequently, the papers published by that journal, this is, to 

apply the most appropriate indicators in order to measure the scientific activity. 

Sengupta (1986) discussed how the ranking of scientific periodicals should not be 

strictly dependent of the citations counting, but also rely on “(1) scientific interest of a 

journal in relation to total number of articles published; (2) compactness of information 

content in a scientific periodical; and (3) scientific value of the papers in relation to 

compactness of presentation”. 

The most widely used bibliometric indicators (hereafter, BIs) classification is 

qualitative and quantitative. Qualitative BIs focus on measuring the quality of the 

journal and/or the authors, ending up being judgemental indicators more than objective 

indicators. On the other hand, quantitative BIs are numerical and aim to measure co-

relations between authors and journals’ scientific activity (García-Villar & García-

Santos, 2021).  

4.2 Bibliometric Research - Methodology 

In this analysis, the production of articles published in journals regarding advanced 

analytical methods used for fraud detection will be analysed. To do so, several 

bibliometric indicators that can be divided into indicators of (i) scientific quality, (ii) 

scientific activity, (iii) scientific impact and (iv) thematic associations will be applied.  

The database selected for this research was, again, Scopus, since it ensures a broad 

scientific coverage. 
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(Audit* OR "Fraud Detection" OR "Fraud Prevention" OR "Risk Management") AND 

("Data Forensic" OR "Data Analytics" OR "Predictive Analytics" OR "Data Mining" OR 

"Text Mining" OR "Machine Learning" OR "Deep Learning" OR Big Data OR Social 

Network* OR "Artificial Intelligence") 

The following query was designed: 

 

The strings that compose this query are related to (1) fraud/risk related terms, (2) 

data analytics related terms and (3) financial related terms. The Boolean operator 

“AND” was used to assure each one of the upper mentioned topics were included in the 

results. 

Within each string, the Boolean operator “OR” was used to guarantee the results 

contained any of the terms. (Scopus Search Guide, 2019) 

Although Scopus default search is in Keywords, Title and Abstract, the query was 

only applied to Keywords, since they are used as the “key” to the article. This item must 

respect the journal’s scope in order to be accepted and published. Consequently, 

keywords are considering the marketing to appeal to the article’s target audience. (The 

Importance of Using Strategic Keywords in Research Papers, n.d.) 

The results were then limited to the subject areas “Business, Management and 

Accounting” and “Computer Science” and to the document type “Article”. 

The sample of 337 documents, published between 2000 and 11 of July 2023, were 

considered eligible for the study. 
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Figure 6 - Flowchart of the application of restrictions in BA 

A *csv file with the abovementioned results was exported from Scopus. This file - 

containing the information on all results Author(s), Document Title, Year, Source Title, 

Citation Count, Digital Object Identifier (DOI), Affiliations e Author Keywords - was 

used to process and analyse the data in Excel and in VOSviewer, a software developed in 

2010 by Nees Jan van Eck and Ludo Waltman in University of Leiden.  

The metrics provided by Scopus (i.e. “Analyze results” feature) were also analysed, 

including h-index. 

4.3 Indicators of scientific activity 

The indicators of scientific activity that will be analysed in this study are: the 

evolution of the number of articles published by the researcher over the years, their 

productivity, collaboration in the authorship of the studies and geographic collaboration.  

4.3.1 Number of articles 

As can be seen from Graph 3, this search comprises a time horizon of 23 years, 

with the first article being published in 2003 and the most recent ones in the current 

year, 2023.  

•Restriction 1:  
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Graph 3 - Number of publications per year in BA results 

The number of publications regarding advanced analytical methods for fraud 

detection has been increasing over the years, presenting consistent growth rates in the 

last 10 years.  

Most of the articles has been published in the last 5 years, considering the 

number of articles from 2018 to 2022 (since 2023 data does not represent a full year). 

The year with the highest number of publications is last year, 2022. 

In conclusion, the answer to SIQ #1 is positive, as there has been a clear 

increase in the number of scientific articles regarding advanced analytical methods for 

fraud detection. 

4.3.2 Authors’ productivity 

The authors’ productivity indicator attempts to clarify which researchers contribute 

the most for the developments on a topic. 

In this case, none of the authors has published more than 2 articles of the sample 

analysed. 

The answer to the SIQ #5 question is no, as there were not an investigator who 

prevailed in the publication of scientific articles on advanced analytical methods for 

fraud detection. 

1 2 2 2
4 5 4

9
5 4

7 8

13
17

20

34

39

48

64

49

0

10

20

30

40

50

60

70



 

Advanced analytical methods for fraud detection: a systematic literature review 
  

 

29 
 
 

4.3.3 Collaboration in the authorship of the studies 

An article can be published by only one author (i.e. individual authorship) or by more 

than one author (i.e. collaboration).  

In the Graph 4 is represented the distribution of type of authorship of the 

analysed sample: 38 articles (11%) were written by a single author and the remaining 

299 (89%) were result of a authorship collaboration. 

 

Graph 4 - Types of authorship in BA results 

It is possible to conclude that yes, there is a prevalence of collective authorship 

over individual authorship in scientific articles on advanced analytical methods for 

fraud detection, as an answer to SIQ #6. 

In order to understand the relationship between the authors, it would be interesting 

to create a network authorship map. However, since the maximum number of articles 

per author is very low (i.e. 2 articles), there is not enough data in this sample to analyse 

such relation. 

4.3.4 Geographic affiliation 

Authors’ affiliation was identified through their university’s/institution’s country at 

the date of publication.  
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121 (36%) articles were published in China, followed by United Sates with 69 

(20%) and United Kingdom with 27 (8%) articles.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The majority of the articles were published in Asia, with 208 (62%) out of the 337 

publications. In response to the question SIQ #7, yes, there is a country that prevails in the 

affiliation of authors: China. Also, Asia is the continent with higher number of publications 

about advanced analytical methods for fraud detection. 

Figure 7 - Tope 10 countries with higher number of articles published in BA results 

Figure 8 - Number of publications in Asia in BA results 
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4.4 Indicators of scientific impact 

After analysing the activity production regarding the advanced analytical methods 

used for fraud detection, it is important to assess the impact of that production.  

The indicators of scientific impact can refer to impact indicators on the scientific 

community or impact indicators on publication sources (Costa et al., 2012). 

In this study, to analyse the scientific impact, the h-index indicator will be used. 

Besides this analysis on the number of citations of each article, the CiteScore will be 

analysed in order to measure the impact of each journal. 

4.4.1 Number of citations 

The more citations an article has, the higher is the influence it has in the 

scientific community, which can be used to understand the trends and define future 

investigations.  

As of July 28 of 2023, there are 25 articles with more than 100 citations. The 

article with the higher number of citations is “The application of data mining techniques 

in financial fraud detection: A classification framework and an academic review of 

literature” with 669 citations to date. 

Table 3 - Articles with more than 100 citations in BA results 

Title Authors Cited 

by 

The application of data mining techniques 

in financial fraud detection: A 

classification framework and an academic 

review of literature 

Ngai E.W.T.; Hu Y.; Wong Y.H.; Chen 

Y.; Sun X. 

669 

The comparisons of data mining 

techniques for the predictive accuracy of 

probability of default of credit card clients 

Yeh I.-C.; Lien C.-h. 432 

Data Mining techniques for the detection 

of fraudulent financial statements 

Kirkos E.; Spathis C.; Manolopoulos Y. 410 

A digital supply chain twin for managing 

the disruption risks and resilience in the 

era of Industry 4.0 

Ivanov D.; Dolgui A. 395 

On-line unsupervised outlier detection 

using finite mixtures with discounting 

learning algorithms 

Yamanishi K.; Takeuchi J.-I.; Williams 

G.; Milne P. 

299 
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Detection of financial statement fraud and 

feature selection using data mining 

techniques 

Ravisankar P.; Ravi V.; Raghava Rao 

G.; Bose I. 

295 

Using generative adversarial networks for 

improving classification effectiveness in 

credit card fraud detection 

Fiore U.; De Santis A.; Perla F.; Zanetti 

P.; Palmieri F. 

281 

Feature engineering strategies for credit 

card fraud detection 

Correa Bahnsen A.; Aouada D.; 

Stojanovic A.; Ottersten B. 

210 

Effective detection of sophisticated online 

banking fraud on extremely imbalanced 

data 

Wei W.; Li J.; Cao L.; Ou Y.; Chen J. 203 

A comparison of models for predicting 

early hospital readmissions 

Futoma J.; Morris J.; Lucas J. 187 

Survey of data management and analysis 

in disaster situations 

Hristidis V.; Chen S.-C.; Li T.; Luis S.; 

Deng Y. 

171 

Recent Development in Big Data Analytics 

for Business Operations and Risk 

Management 

Choi T.-M.; Chan H.K.; Yue X. 168 

A data mining based system for credit-

card fraud detection in e-tail 

Carneiro N.; Figueira G.; Costa M. 161 

Beyond positive or negative: Qualitative 

sentiment analysis of social media 

reactions to unexpected stressful events 

Gaspar R.; Pedro C.; Panagiotopoulos 

P.; Seibt B. 

139 

Mining corporate annual reports for 

intelligent detection of financial statement 

fraud – A comparative study of machine 

learning methods 

Hajek P.; Henriques R. 135 

Software project risk analysis using 

Bayesian networks with causality 

constraints 

Hu Y.; Zhang X.; Ngai E.W.T.; Cai R.; 

Liu M. 

130 

SCARFF: A scalable framework for 

streaming credit card fraud detection with 

spark 

Carcillo F.; Dal Pozzolo A.; Le Borgne 

Y.-A.; Caelen O.; Mazzer Y.; Bontempi 

G. 

128 

Fraud detection: A systematic literature 

review of graph-based anomaly detection 

approaches 

Pourhabibi T.; Ong K.-L.; Kam B.H.; 

Boo Y.L. 

124 

An intraday market risk management 

approach based on textual analysis 

Groth S.S.; Muntermann J. 116 

Automatic identification of eyewitness 

messages on twitter during disasters 

Zahra K.; Imran M.; Ostermann F.O. 110 

Enabling Cloud Computing in Emergency 

Management Systems 

Qiu M.; Ming Z.; Wang J.; Yang L.T.; 

Xiang Y. 

110 

Detecting evolutionary financial statement 

fraud 

Zhou W.; Kapoor G. 110 

An overview of social network analysis Oliveira M.; Gama J. 106 

Machine Learning Algorithms for 

Construction Projects Delay Risk 

Prediction 

Gondia A.; Siam A.; El-Dakhakhni W.; 

Nassar A.H. 

101 
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 In Graph 5 it is represented the evolution of the number of citations over the 

year.  

To note that the number of citations previous to 2019 are aggregated in a single 

sum. Also, to note that this analysis was performed during the year of 2023, therefore 

not being considered.  

Nevertheless, the answer to SIQ #2 is positive, as there was an increase in the 

number of citations of the articles about advanced analytical methods for fraud detection 

over the years. 

It is possible to conclude that the increase in the number of citations confirms 

that tis topic is becoming more relevant every year. 

 

Graph 5 - Evolution of the number of citations in BA results 

4.4.1.1 H-index 

The h-index attempts to measure the productivity and the impact of the published 

work from a certain author. It can be applied to a single publication or to a set of 

publications, journals, countries, between other factors.  

Through the “Analyse results” Scopus database’s feature it is possible to apply the 

h-index in the analysed sample, resulting in 50. This means that, for the 337 analysed 

articles, 50 were cited at least 50 times.  
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Figure 9 - H-index in BA results 

4.4.2 Journals’ influence and reputation 

The impact factor of a journal is measured through the SCImago Journal Rank 

(hereafter, SJR). This indicator is a measure of prestige pf scholarly journals, impacted 

by both the number of citations received by a journal and the prestige of the journal 

where the citations came from. The rating goes from Q1, the most prestigious journals 

in the field with the higher number of citations, to Q4, that gathers journals with lower 

impact factors (Scimago Journal & Country Rank, n.d.).  

The 337 articles sampled in this study were published by 192 different journals. 

To better understand the journals that publish more articles about advanced 

analytical methods for fraud detection, were considered journals with more than 5 (1%) 

articles from the sample: 
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Table 4 - Journals with more than 5 articles published in BA results 

Journal N.º Articles % 

IEEE Access 25 7% 

Expert Systems with Applications 17 5% 

IEEE Journal of Biomedical and Health Informatics 11 3% 

Decision Support Systems 10 3% 

International Journal of Advanced Computer Science and 

Applications 

7 2% 

25 (7%) articles were published by IEEE Access, a professional association for 

electronics engineering, electrical engineering, and other related disciplines. 11 (3%) 

articles were published by a journal of the same association: IEEE Journal of 

Biomedical and Health Informatics. Both these journals present a Q1 as of 2022. 

The other three journals with more than 5 articles published are: Expert Systems 

with Applications, published by Elsevier; Decision Support Systems, also published by 

Elsevier; and International Journal of Advanced Computer Science and Applications, 

published by the Science and Information Organization. Both Elsevier journals are Q1 

journals in 2022 ranking, whereas the Science and Information Organization journal is a 

Q3.  

In conclusion, the answer to the SIQ #3 is yes, the research on advanced analytical 

methods for fraud detection is more relevant on journals of Computer Science area. 

Although the search was restricted to both “Business, Management and 

Accounting” and “Computer Science” areas, the second one presents more articles and 

in prestigious journals.  
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4.5 Indicators of thematic associations 

Lastly, it is relevant to analyse thematic associations of the sampled articles. To do so, 

the most frequent keywords were analysed.  

4.5.1 Keywords analysis 

In order to understand which are the advanced analytical methods for fraud 

detection subject to more investigations, VOSviewer was used to create a network map. 

In this map, each circle represents a theme – which means, the bigger the circle, the 

higher is the number of occurrences in the sample. Therefore, more relevant it is -, and 

each colour represents a cluster. The lines between the circles represent links, and the a 

smaller distance between circles represents a higher level of co-relation between the 

items  (van Eck & Waltman, 2018). 

The threshold chosen to create this network map was the minimum of 5 

occurrences of a keyword. From the 1113 keywords, 26 meet the criteria. These will be 

analysed in order to answer the SIQ #4:“Which are the most used keywords on articles 

about advanced analytical methods for fraud detection?”. 

To avoid that similar keywords would appear in different circles, the input data of 

the network map was manipulated. This way, some keywords were merged and/or 

replaced by similar ones, for example “neural network” and neural networks”. 
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Figure 10 - VOSviewer authors' keywords network map in BA results 

The keywords “deep learning”, “big data” and “machine learning” have the 

higher number of occurrences, with a total of 39, 40 and 53 occurrences, respectively, 

and connect all the clusters.  

Regarding the advanced analytical method with the higher number of 

occurrences is “neural network”, with 15 occurrences. This keyword is associated with 

“farud detection”, “data mining” and “anomaly detection”. So, as a conclusion, taking 

into consideration the analysis on studies performed over the last 20 years, neural 

networks are the most appropriate advanced analytical method for fraud detection. 

This method was already explored in Chapter 3, as it was one of the advanced 

analytical methods resulting from the systematic literature review.  
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The advanced analytical method “outlier detection” presents 5 occurrences as a 

authors’ keyword and was also subject to study in Chapter 3. 

 

The keywords “convolutional neural network”, “generative adversarial network” 

and “graph neural network” were also used in 5 or more sampled articles, namely used 

in 8, 7 and 5 results, respectively. These are variations and adaptations of neural 

networks and were not combined with the main keyword to highlight the diversity of 

neural network approaches being investigated over the last years, as visible in Figure 

11. 

 

  

Figure 11 - VOSviewer Authors' keywords - Evolution per year in BA results 
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CONCLUSION 

This thesis had as main objective to answer the question “How have advanced 

analytical methods been applied in fraud detection?”. By performing a Systematic 

Literature Review, reinforced with a Bibliometric Indicators approach, the present study 

contributes to a better understating of the literature published in the last 20 years 

regarding advanced analytical methods and its application in the detection of fraud.  

In the beginning of the dissertation, a theoretical framework was defined, through 

the concept of big data, data mining and the role of the auditor in the detection of fraud. 

Afterwards, it was given an explanation on the methodology, a protocol of 

Systematic Literature Review was defined, with resource to the PRISMA 2020 

checklist. The applications of the necessary filters and restrictions was presented, 

culminating in the search results’ analysis.  

The advanced analytical methods and types of fraud mentioned in the 55 articles 

were summarised and the conclusions were explained. 

In the last Chapter, a Bibliometric approach was taken. Firstly, the bibliometric 

indicators’ framework was justified, and then the Specific Investigation Questions 

(hereafter, SIQs) were justified. Then indicators of scientific activity, indicators of 

scientific impact and indicators of thematic associations were applied to a larger branch 

of results than the SLR and each SIQ was answered. 

Research Contribution 

The contributions of the SLR are based on the answer to the research question, this 

is, the results show which advanced analytical methods have been applied in the 

detection of fraud.  

In accordance with the results, the investigations performed in the last 20 years 

have been focusing on payment-related frauds, namely credit card frauds. In terms of 

advanced analytical methods, researchers have been using Random Forests, Neutral 

Networks, Outlier Detection, Logistic Regression and XGBoost/CatBoost to the 

develop mechanisms to detect fraud. 
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The bibliometric approach reinforced some of the conclusions already stated in the 

SLR, and enriched the characterization of the publications: (i) the number of scientific 

articles regarding advanced analytical methods for fraud detection has been increasing 

over the past years; (ii) the same is true for the number of citations; (iii) the most 

relevant journals with published articles on this topic are Computer Science related 

journals; (iv) considering the keywords used by the authors, the advanced analytical 

method that presents more occurrences is neural networks; (v) there is not a prevalent 

author publishing investigations’ conclusions on this topic; (vi) there is a prevalence of 

co-authorship over individual authorship; and (vii) the majority of the articles were 

published in Asia, namely in China. 

Research Limitations 

During this study, the most relevant limitation found was related to the keywords 

used by the authors.  

In the beginning it was made the decision to perform the SLR and BA searches 

solely on the keywords. Although the number of results would increase if the query was 

also applied in the articles’ title and abstract, the authors’ keywords should be selected 

in a way that other researchers should feel invited to read the article and get to know the 

investigation. However, the present investigation revealed that authors commonly 

choose broader keywords, making some investigations harder to perform.  

In this thesis, finding investigations that handle the treatment and application of 

data in the detection of anomalies in such a comprehensive way made it difficult to 

fulfil the main objective. 

Some of the bibliometric indicators could not be analysed due to lack of 

occurrences in the search results. For example, if there was one or more outstanding 

authors in terms of number of publications in the analysed sample, it would be 

interesting to assess the relationship between those authors and the articles with higher 

number of citations. 
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Future Work 

In future work it would be interesting to perform this investigation in a more in-

depth way, to better understand what type of studies have been published regarding the 

use of advanced analytical methods in the detection of fraud. To do so, a preliminary 

analysis of the databases could be useful, to learn how have these studies been 

published, and which characteristics of the articles call for further analysis.  

It could also be valuable to perform similar studies in collaboration with specialists 

in data science and/or information systems managers. That way, a case study could be 

developed using a combination of methods or creating a specific model.  
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ANNEX 1 - PRISMA 2020 Checklist   
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Section and 
Topic  

Item 
# 

Checklist item  
Location 
where item 
is reported  

TITLE   

Title  1 Identify the report as a systematic review.  

ABSTRACT   

Abstract  2 See the PRISMA 2020 for Abstracts checklist.  

INTRODUCTION   

Rationale  3 Describe the rationale for the review in the context of existing knowledge.  

Objectives  4 Provide an explicit statement of the objective(s) or question(s) the review addresses.  

METHODS   

Eligibility criteria  5 Specify the inclusion and exclusion criteria for the review and how studies were grouped for the syntheses.  

Information 
sources  

6 Specify all databases, registers, websites, organisations, reference lists and other sources searched or consulted to identify studies. Specify the 
date when each source was last searched or consulted. 

 

Search strategy 7 Present the full search strategies for all databases, registers and websites, including any filters and limits used.  

Selection process 8 Specify the methods used to decide whether a study met the inclusion criteria of the review, including how many reviewers screened each record 
and each report retrieved, whether they worked independently, and if applicable, details of automation tools used in the process. 

 

Data collection 
process  

9 Specify the methods used to collect data from reports, including how many reviewers collected data from each report, whether they worked 
independently, any processes for obtaining or confirming data from study investigators, and if applicable, details of automation tools used in the 
process. 

 

Data items  10a List and define all outcomes for which data were sought. Specify whether all results that were compatible with each outcome domain in each 
study were sought (e.g. for all measures, time points, analyses), and if not, the methods used to decide which results to collect. 

 

10b List and define all other variables for which data were sought (e.g. participant and intervention characteristics, funding sources). Describe any 
assumptions made about any missing or unclear information. 

 

Study risk of bias 
assessment 

11 Specify the methods used to assess risk of bias in the included studies, including details of the tool(s) used, how many reviewers assessed each 
study and whether they worked independently, and if applicable, details of automation tools used in the process. 
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Section and 
Topic  

Item 
# 

Checklist item  
Location 
where item 
is reported  

Effect measures  12 Specify for each outcome the effect measure(s) (e.g. risk ratio, mean difference) used in the synthesis or presentation of results.  

Synthesis 
methods 

13a Describe the processes used to decide which studies were eligible for each synthesis (e.g. tabulating the study intervention characteristics and 
comparing against the planned groups for each synthesis (item #5)). 

 

13b Describe any methods required to prepare the data for presentation or synthesis, such as handling of missing summary statistics, or data 
conversions. 

 

13c Describe any methods used to tabulate or visually display results of individual studies and syntheses.  

13d Describe any methods used to synthesize results and provide a rationale for the choice(s). If meta-analysis was performed, describe the 
model(s), method(s) to identify the presence and extent of statistical heterogeneity, and software package(s) used. 

 

13e Describe any methods used to explore possible causes of heterogeneity among study results (e.g. subgroup analysis, meta-regression).  

13f Describe any sensitivity analyses conducted to assess robustness of the synthesized results.  

Reporting bias 
assessment 

14 Describe any methods used to assess risk of bias due to missing results in a synthesis (arising from reporting biases).  

Certainty 
assessment 

15 Describe any methods used to assess certainty (or confidence) in the body of evidence for an outcome.  

RESULTS   

Study selection  16a Describe the results of the search and selection process, from the number of records identified in the search to the number of studies included in 
the review, ideally using a flow diagram. 

 

16b Cite studies that might appear to meet the inclusion criteria, but which were excluded, and explain why they were excluded.  

Study 
characteristics  

17 Cite each included study and present its characteristics.  

Risk of bias in 
studies  

18 Present assessments of risk of bias for each included study.  

Results of 
individual studies  

19 For all outcomes, present, for each study: (a) summary statistics for each group (where appropriate) and (b) an effect estimate and its precision 
(e.g. confidence/credible interval), ideally using structured tables or plots. 

 

Results of 20a For each synthesis, briefly summarise the characteristics and risk of bias among contributing studies.  
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Section and 
Topic  

Item 
# 

Checklist item  
Location 
where item 
is reported  

syntheses 20b Present results of all statistical syntheses conducted. If meta-analysis was done, present for each the summary estimate and its precision (e.g. 
confidence/credible interval) and measures of statistical heterogeneity. If comparing groups, describe the direction of the effect. 

 

20c Present results of all investigations of possible causes of heterogeneity among study results.  

20d Present results of all sensitivity analyses conducted to assess the robustness of the synthesized results.  

Reporting biases 21 Present assessments of risk of bias due to missing results (arising from reporting biases) for each synthesis assessed.  

Certainty of 
evidence  

22 Present assessments of certainty (or confidence) in the body of evidence for each outcome assessed.  

DISCUSSION   

Discussion  23a Provide a general interpretation of the results in the context of other evidence.  

23b Discuss any limitations of the evidence included in the review.  

23c Discuss any limitations of the review processes used.  

23d Discuss implications of the results for practice, policy, and future research.  

OTHER INFORMATION  

Registration and 
protocol 

24a Provide registration information for the review, including register name and registration number, or state that the review was not registered.  

24b Indicate where the review protocol can be accessed, or state that a protocol was not prepared.  

24c Describe and explain any amendments to information provided at registration or in the protocol.  

Support 25 Describe sources of financial or non-financial support for the review, and the role of the funders or sponsors in the review.  

Competing 
interests 

26 Declare any competing interests of review authors.  

Availability of 
data, code and 
other materials 

27 Report which of the following are publicly available and where they can be found: template data collection forms; data extracted from included 
studies; data used for all analyses; analytic code; any other materials used in the review. 

 

 
From:  Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ 2021;372:n71. doi: 

10.1136/bmj.n71 http://www.prisma-statement.org/  

http://www.prisma-statement.org/
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ANNEX 2 – PRISMA 2020 for Abstracts Checklist 



 

Advanced analytical methods for fraud detection: a systematic literature review 
  

 

55 
 
 

 Section and Topic  
Item 
# 

Checklist item  

TITLE  

Title  1 Identify the report as a systematic review. 

BACKGROUND  

Objectives  2 Provide an explicit statement of the main objective(s) or question(s) the review addresses. 

METHODS  

Eligibility criteria  3 Specify the inclusion and exclusion criteria for the review. 

Information sources  4 Specify the information sources (e.g. databases, registers) used to identify studies and the date when each 
was last searched. 

Risk of bias 5 Specify the methods used to assess risk of bias in the included studies. 

Synthesis of results  6 Specify the methods used to present and synthesise results. 

RESULTS  

Included studies  7 Give the total number of included studies and participants and summarise relevant characteristics of studies. 

Synthesis of results  8 Present results for main outcomes, preferably indicating the number of included studies and participants for 
each. If meta-analysis was done, report the summary estimate and confidence/credible interval. If comparing 
groups, indicate the direction of the effect (i.e. which group is favoured). 

DISCUSSION  

Limitations of evidence 9 Provide a brief summary of the limitations of the evidence included in the review (e.g. study risk of bias, 
inconsistency and imprecision). 

Interpretation 10 Provide a general interpretation of the results and important implications. 

OTHER  

Funding 11 Specify the primary source of funding for the review. 

Registration 12 Provide the register name and registration number. 

From:  Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ 2021;372:n71. doi: 

10.1136/bmj.n71 http://www.prisma-statement.org/  

http://www.prisma-statement.org/
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N.º Title Authors Year DOI 

1 Fraud Detection in Mobile Payment 

Systems using an XGBoost-based 

Framework 

Hajek P., Abedin M.Z., Sivarajah U. 2022 10.1007/s10796-022-10346-6 

2 A Proposed Model for Card Fraud 

Detection Based on CatBoost and Deep 

Neural Network 

Nguyen N., Duong T., Chau T., 

Nguyen V.-H., Trinh T., Tran D., 

Ho T. 

2022 10.1109/ACCESS.2022.3205416 

3 Feature Engineering and Resampling 

Strategies for Fund Transfer Fraud with 

Limited Transaction Data and a Time-

Inhomogeneous Modi Operandi 

Hsin Y.-Y., Dai T.-S., Ti Y.-W., 

Huang M.-C., Chiang T.-H., Liu L.-

C. 

2022 10.1109/ACCESS.2022.3199425 

4 The Optimized Anomaly Detection 

Models Based on an Approach of 

Dealing with Imbalanced Dataset for 

Credit Card Fraud Detection 

Zhang Y.-F., Lu H.-L., Lin H.-F., 

Qiao X.-C., Zheng H. 

2022 10.1155/2022/8027903 

5 Developing a Credit Card Fraud 

Detection Model using Machine 

Learning Approaches 

Khan S., Alourani A., Mishra B., 

Ali A., Kamal M. 

2022 10.14569/IJACSA.2022.0130350 

6 A Neural Network Ensemble with 

Feature Engineering for Improved Credit 

Card Fraud Detection 

Esenogho E., Mienye I.D., Swart 

T.G., Aruleba K., Obaido G. 

2022 10.1109/ACCESS.2022.3148298 

7 Deep Learning Anti-Fraud Model for 

Internet Loan: Where We Are Going 

Fang W., Li X., Zhou P., Yan J., 

Jiang D., Zhou T. 

2021 10.1109/ACCESS.2021.3051079 

8 Opinion fraud detection via neural 

autoencoder decision forest 

Dong M., Yao L., Wang X., 

Benatallah B., Huang C., Ning X. 

2020 10.1016/j.patrec.2018.07.013 

9 Credit card fraud detection based on 

machine learning 

Fang Y., Zhang Y., Huang C. 2019 10.32604/cmc.2019.06144 

10 Credit Card Fraud Detection Using 

AdaBoost and Majority Voting 

Randhawa K., Loo C.K., Seera M., 

Lim C.P., Nandi A.K. 

2018 10.1109/ACCESS.2018.2806420 

11 A Credit Card Fraud Model Prediction 

Method Based on Penalty Factor 

Optimization AWTadaboost 

Ning W., Chen S., Qiang F., Tang 

H., Jie S. 

2023 10.32604/cmc.2023.035558 

12 Predictive-Analysis-based Machine 

Learning Model for Fraud Detection with 

Boosting Classifiers 

Valavan M., Rita S. 2023 10.32604/csse.2023.026508 

13 Robust Financial Fraud Alerting System 

Based in the Cloud Environment 

Stojanović B., Božić J. 2022 10.3390/s22239461 

14 Fraud Detection Using Large-scale 

Imbalance Dataset 

Rubaidi Z.S., Ammar B.B., Aouicha 

M.B. 

2022 10.1142/S0218213022500373 

15 An Integrated Cluster Detection, 

Optimization, and Interpretation 

Approach for Financial Data 

Li T., Kou G., Peng Y., Yu P.S. 2022 10.1109/TCYB.2021.3109066 

16 High-Cardinality Categorical Attributes 

and Credit Card Fraud Detection 

Carneiro E.M., Forster C.H.Q., 

Mialaret L.F.S., Dias L.A.V., da 

Cunha A.M. 

2022 10.3390/math10203808 

17 A Machine Learning and Blockchain 

Based Efficient Fraud Detection 

Mechanism 

Ashfaq T., Khalid R., Yahaya A.S., 

Aslam S., Azar A.T., Alsafari S., 

Hameed I.A. 

2022 10.3390/s22197162 
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18 Digital payment fraud detection methods 

in digital ages and Industry 4.0 

Chang V., Doan L.M.T., Di Stefano 

A., Sun Z., Fortino G. 

2022 10.1016/j.compeleceng.2022.107734 

19 Tax evasion risk management using a 

Hybrid Unsupervised Outlier Detection 

method 

Savić M., Atanasijević J., Jakovetić 

D., Krejić N. 

2022 10.1016/j.eswa.2021.116409 

20 Enhanced Credit Card Fraud Detection 

Model Using Machine Learning 

Alfaiz N.S., Fati S.M. 2022 10.3390/electronics11040662 

21 An Effective Ensemble-based 

Framework for Outlier Detection in 

Evolving Data Streams 

Hassan A.F., Barakat S., Rezk A. 2022 10.14569/IJACSA.2022.0131135 

22 An Innovative Sensing Machine 

Learning Technique to Detect Credit 

Card Frauds in Wireless 

Communications 

Sasikala G., Laavanya M., Sathyasri 

B., Supraja C., Mahalakshmi V., 

Mole S.S.S., Mulerikkal J., 

Chidambaranathan S., Arvind C., 

Srihari K., Dejene M. 

2022 10.1155/2022/2439205 

23 Mixed Quantum-Classical Method for 

Fraud Detection With Quantum Feature 

Selection 

Grossi M., Ibrahim N., Radescu V., 

Loredo R., Voigt K., Von Altrock 

C., Rudnik A. 

2022 10.1109/TQE.2022.3213474 

24 A Proposed Fraud Detection Model 

based on e-Payments Attributes a Case 

Study in Egyptian e-Payment Gateway 

Nasr M.H., Farrag M.H., Nasr M.M. 2022 10.14569/IJACSA.2022.0130522 

25 E-Commerce Fraud Detection Model by 

Computer Artificial Intelligence Data 

Mining 

Li J. 2022 10.1155/2022/8783783 

26 HEMClust: An Improved Fraud 

Detection Model for Health Insurance 

using Heterogeneous Ensemble and K-

prototype Clustering 

Kotekani S.S., Ilango V. 2022 10.14569/IJACSA.2022.0130318 

27 Credit Card Fraud Detection Using State-

of-the-Art Machine Learning and Deep 

Learning Algorithms 

Alarfaj F.K., Malik I., Khan H.U., 

Almusallam N., Ramzan M., 

Ahmed M. 

2022 10.1109/ACCESS.2022.3166891 

28 An In-Depth Study and Improvement of 

Isolation Forest 

Chabchoub Y., Togbe M.U., Boly 

A., Chiky R. 

2022 10.1109/ACCESS.2022.3144425 

29 Improving Tax Audit Efficiency Using 

Machine Learning: The Role of 

Taxpayer’s Network Data in Fraud 

Detection 

Baghdasaryan V., Davtyan H., 

Sarikyan A., Navasardyan Z. 

2022 10.1080/08839514.2021.2012002 

30 Machine learning model for credit card 

fraud detection-A comparative analysis 

Sharma P., Banerjee S., Tiwari D., 

Patni J.C. 

2021 10.34028/iajit/18/6/6 

31 Credit card fraud detection with 

autoencoder and probabilistic random 

forest 

Lin T.-H., Jiang J.-R. 2021 10.3390/math9212683 

32 Supervised learning model for 

identifying illegal activities in Bitcoin 

Nerurkar P., Bhirud S., Patel D., 

Ludinard R., Busnel Y., Kumari S. 

2021 10.1007/s10489-020-02048-w 

33 Follow the trail: Machine learning for 

fraud detection in fintech applications 

Stojanović B., Božić J., Hofer-

Schmitz K., Nahrgang K., Weber 

A., Badii A., Sundaram M., Jordan 

E., Runevic J. 

2021 10.3390/s21051594 
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34 Performance Evaluation of Machine 

Learning Methods for Credit Card Fraud 

Detection Using SMOTE and AdaBoost 

Ileberi E., Sun Y., Wang Z. 2021 10.1109/ACCESS.2021.3134330 

35 A Fast and Efficient Algorithm for 

Outlier Detection Over Data Streams 

Hassaan M., Maher H., Gouda K. 2021 10.14569/IJACSA.2021.0121185 

36 Financial Fraud Detection in Healthcare 

Using Machine Learning and Deep 

Learning Techniques 

Mehbodniya A., Alam I., Pande S., 

Neware R., Rane K.P., Shabaz M., 

Madhavan M.V. 

2021 10.1155/2021/9293877 

37 OFCOD: On the fly clustering based 

outlier detection framework 

Elmogy A., Rizk H., Sarhan A.M. 2021 10.3390/data6010001 

38 Detection of Suspicious or UnTrusted 

Users in Crypto-Currency Financial 

Trading Applications 

Mittal R., Bhatia M.P.S. 2021 10.4018/IJDCF.2021010105 

39 Statistical hierarchical clustering 

algorithm for outlier detection in 

evolving data streams 

Krleža D., Vrdoljak B., Brčić M. 2021 10.1007/s10994-020-05905-4 

40 Deshelling the Shell Companies Using 

Benford’s Law: An Emerging Market 

Study 

Aggarwal V., Dharni K. 2020 10.1177/0256090920979695 

41 A comparative evaluation of novelty 

detection algorithms for discrete 

sequences 

Domingues R., Michiardi P., Barlet 

J., Filippone M. 

2020 10.1007/s10462-019-09779-4 

42 Machine learning approach on apache 

spark for credit card fraud detection 

Santosh T., Ramesh D. 2020 10.18280/isi.250113 

43 An Effective Data Sampling Procedure 

for Imbalanced Data Learning on Health 

Insurance Fraud Detection 

Kotekani S.S., Velchamy I. 2020 10.20532/cit.2020.1005216 

44 Fraud Detection in Credit Cards using 

Logistic Regression 

Alenzi H.Z., Aljehane N.O. 2020 10.14569/IJACSA.2020.0111265 

45 Quantitative Detection of Financial 

Fraud Based on Deep Learning with 

Combination of E-Commerce Big Data 

Liu J., Gu X., Shang C. 2020 10.1155/2020/6685888 

46 A comparison of data sampling 

techniques for credit card fraud detection 

Muaz A., Jayabalan M., 

Thiruchelvam V. 

2020 10.14569/IJACSA.2020.0110660 

47 A Secure AI-Driven Architecture for 

Automated Insurance Systems: Fraud 

Detection and Risk Measurement 

Dhieb N., Ghazzai H., Besbes H., 

Massoud Y. 

2020 10.1109/ACCESS.2020.2983300 

48 Towards automated feature engineering 

for credit card fraud detection using 

multi-perspective HMMs 

Lucas Y., Portier P.-E., Laporte L., 

He-Guelton L., Caelen O., Granitzer 

M., Calabretto S. 

2020 10.1016/j.future.2019.08.029 

49 Evaluating the benefits of using 

proactive transformed-domain-based 

techniques in fraud detection tasks 

Saia R., Carta S. 2019 10.1016/j.future.2018.10.016 

50 Fraud detection using machine learning 

in e-commerce 

Saputra A., Suharjito 2019 10.14569/ijacsa.2019.0100943 

51 Abnormal pattern prediction: Detecting 

fraudulent insurance property claims 

with semi-supervised machine-learning 

Palacio S.M. 2019 10.5334/dsj-2019-035 
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52 Patient Cluster Divergence Based 

Healthcare Insurance Fraudster Detection 

Sun C., Li Q., Li H., Shi Y., Zhang 

S., Guo W. 

2019 10.1109/ACCESS.2018.2886680 

53 Abnormal Group-Based Joint Medical 

Fraud Detection 

Sun C., Yan Z., Li Q., Zheng Y., Lu 

X., Cui L. 

2019 10.1109/ACCESS.2018.2887119 

54 Universal outlier hypothesis testing Li Y., Nitinawarat S., Veeravalli 

V.V. 

2014 10.1109/TIT.2014.2317691 

55 Fraud formalization and detection Bhargava B., Zhong Y., Lu Y. 2003 10.1007/978-3-540-45228-7_33 
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ANNEX 4 – Results categorization:  Advanced Analytical Methods/Types of Fraud
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Advanced Analytical Methods/Types of Fraud Payments "General" fraud Cryptocurrency market Loan Insurance Non-financial Fraudsters TOTAL 

Logistic Regression 5 2     2     9 

Clustering   3     1     4 
Benford's law   1           1 
Naive Bayes classifier 1 2     1     4 
Decision trees - Random forest 10 4 3 2 2 1   22 
Outlier Detection 2 6     2 1   11 
Hidden Markov Model (HMM) 1 1           2 
Anomaly Detection 1           1 2 

Isolation Forest 3 2           5 
Neural Network 7 3   1 2     13 
Linear Regression       1       1 
Gradient Boosting method 5 2   1       8 
Support Vector Machine  4 2           6 
Extra tree 1             1 
Patient Cluster Divergence         1     1 
Elliptic Envelope 2 1           3 
Adaptive Boosting 4 1           5 
K-means 1       2     3 
XGBoost/CatBoost 3 3 1 1 1     9 
Pattern Mining               0 

TOTAL 50 33 4 6 14 2 1 110 
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classification framework and an academic 
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2 The comparisons of data mining 
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Yeh I.-C.; Lien C.-h. 2009 10.1016/j.eswa.2007.12.020 

3 Data Mining techniques for the detection 

of fraudulent financial statements 

Kirkos E.; Spathis C.; 

Manolopoulos Y. 

2007 10.1016/j.eswa.2006.02.016 

4 A digital supply chain twin for managing 

the disruption risks and resilience in the 

era of Industry 4.0 

Ivanov D.; Dolgui A. 2021 10.1080/09537287.2020.1768450 

5 On-line unsupervised outlier detection 

using finite mixtures with discounting 

learning algorithms 

Yamanishi K.; Takeuchi J.-I.; 

Williams G.; Milne P. 
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6 Detection of financial statement fraud and 

feature selection using data mining 
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7 Using generative adversarial networks for 

improving classification effectiveness in 

credit card fraud detection 

Fiore U.; De Santis A.; Perla 
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8 Feature engineering strategies for credit 

card fraud detection 

Correa Bahnsen A.; Aouada 

D.; Stojanovic A.; Ottersten B. 

2016 10.1016/j.eswa.2015.12.030 

9 Effective detection of sophisticated online 

banking fraud on extremely imbalanced 

data 

Wei W.; Li J.; Cao L.; Ou Y.; 

Chen J. 

2013 10.1007/s11280-012-0178-0 

10 A comparison of models for predicting 

early hospital readmissions 

Futoma J.; Morris J.; Lucas J. 2015 10.1016/j.jbi.2015.05.016 

11 Survey of data management and analysis 

in disaster situations 

Hristidis V.; Chen S.-C.; Li T.; 

Luis S.; Deng Y. 

2010 10.1016/j.jss.2010.04.065 

12 Recent Development in Big Data 

Analytics for Business Operations and 

Risk Management 

Choi T.-M.; Chan H.K.; Yue 

X. 

2017 10.1109/TCYB.2015.2507599 

13 A data mining based system for credit-

card fraud detection in e-tail 

Carneiro N.; Figueira G.; Costa 

M. 

2017 10.1016/j.dss.2017.01.002 

14 Beyond positive or negative: Qualitative 

sentiment analysis of social media 

reactions to unexpected stressful events 

Gaspar R.; Pedro C.; 

Panagiotopoulos P.; Seibt B. 

2016 10.1016/j.chb.2015.11.040 

15 Mining corporate annual reports for 

intelligent detection of financial statement 

fraud – A comparative study of machine 

learning methods 

Hajek P.; Henriques R. 2017 10.1016/j.knosys.2017.05.001 

16 Software project risk analysis using 

Bayesian networks with causality 

constraints 

Hu Y.; Zhang X.; Ngai E.W.T.; 

Cai R.; Liu M. 

2013 10.1016/j.dss.2012.11.001 

17 SCARFF: A scalable framework for 

streaming credit card fraud detection with 

spark 

Carcillo F.; Dal Pozzolo A.; Le 

Borgne Y.-A.; Caelen O.; 

Mazzer Y.; Bontempi G. 

2018 10.1016/j.inffus.2017.09.005 

18 Fraud detection: A systematic literature 

review of graph-based anomaly detection 

approaches 

Pourhabibi T.; Ong K.-L.; Kam 

B.H.; Boo Y.L. 

2020 10.1016/j.dss.2020.113303 
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19 An intraday market risk management 

approach based on textual analysis 

Groth S.S.; Muntermann J. 2011 10.1016/j.dss.2010.08.019 

20 Automatic identification of eyewitness 

messages on twitter during disasters 
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25 Machine Learning Algorithms for 
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26 Comparing the learning effectiveness of 

BP, ELM, I-ELM, and SVM for 

corporate credit ratings 
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Multi-Sequence Representation for 
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28 Extreme learning machines for credit 

scoring: An empirical evaluation 

Bequé A.; Lessmann S. 2017 10.1016/j.eswa.2017.05.050 

29 Incorporating domain knowledge into 

data mining classifiers: An application in 
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Sinha A.P.; Zhao H. 2008 10.1016/j.dss.2008.06.013 

30 DGHNL: A new deep genetic 

hierarchical network of learners for 

prediction of credit scoring 

Pławiak P.; Abdar M.; Pławiak 

J.; Makarenkov V.; Acharya 

U.R. 

2020 10.1016/j.ins.2019.12.045 

31 Remote Music Teaching Classroom 

Based on Machine Learning and 5G 

Network Station 

Seng W. 2022 10.1155/2022/7569763 

32 The digital transformation of external 

audit and its impact on corporate 

governance 
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33 Participatory sensing-based semantic and 

spatial analysis of urban emergency 

events using mobile social media 
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34 A data mining-based framework for 
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36 A survey of intrusion detection and 

prevention systems 

Patel A.; Qassim Q.; Wills C. 2010 10.1108/09685221011079199 
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