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ABSTRACT

It has recently been speculated that long-time average quantities of hyperchaotic dissipative systems may be approximated by weighted sums
over unstable invariant tori embedded in the attractor, analogous to equivalent sums over periodic orbits, which are inspired by the rigorous
periodic orbit theory and which have shown much promise in fluid dynamics. Using a new numerical method for converging unstable
invariant two-tori in a chaotic partial differential equation (PDE), and exploiting symmetry breaking of relative periodic orbits to detect
those tori, we identify many quasiperiodic, unstable, invariant two-torus solutions of a modified Kuramoto–Sivashinsky equation. The set
of tori covers significant parts of the chaotic attractor and weighted averages of the properties of the tori—with weights computed based on
their respective stability eigenvalues—approximate average quantities for the chaotic dynamics. These results are a step toward exploiting
higher-dimensional invariant sets to describe general hyperchaotic systems, including dissipative spatiotemporally chaotic PDEs.

© 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0143689

Periodic orbit theory formalizes the idea that if one can iden-
tify a large number of unstable periodic orbits (UPOs) embed-
ded within a chaotic attractor, the properties of each of these
non-chaotic unstable solutions can be summed with suitable
weights to predict statistical properties of the chaotic dynam-
ics itself. Practical computational methods inspired by this
have demonstrated some ability to predict average quantities in
high-dimensional chaotic systems. However, it has been conjec-
tured that in so-called “hyperchaotic” systems, such as turbu-
lent fluid flows and other spatiotemporally chaotic problems,
it may be advantageous to consider higher-dimensional invari-
ant structures called invariant tori, instead of unstable periodic
orbits. Considering a particular hyperchaotic partial differential
equation, we show here that one can indeed successfully identify
many unstable invariant tori and approximate chaotic statistics
with sums over the tori.

I. INTRODUCTION

Chaotic dynamics arise naturally from simple interactions
in many physical systems, from fluid dynamics to electrical

circuits and nonlinear optics. Studying the chaotic dynamics in
terms of simple unstable, non-chaotic solutions to the underly-
ing evolution equations, which are embedded within the stable
chaotic attractor, provides key insights into the observed physics.
In the absence of special symmetries, two types of special unstable
solutions are generally studied: equilibria, zero-dimensional unsta-
ble fixed points in the state space of the system; and periodic
orbits, time-periodic solutions corresponding to one-dimensional
closed loops in state space. Though there is no a priori reason
to expect large numbers of equilibria, analytical results1,2 suggest
that, for certain classes of chaotic systems, infinitely many peri-
odic orbits are embedded within the attractor, densely covering it.
Trajectories within chaotic attractors closely shadow these unsta-
ble periodic orbits (UPOs), and, consequently, periodic orbits are
often described as the “backbone” of chaos. Dynamical averages of
quantities of interest can be expressed in terms of dynamical zeta
functions,3 and if the full collection of periodic orbits is known
for a hyperbolic system, these can, in turn, be evaluated by sum-
ming over UPOs.4–6 For systems exhibiting continuous symmetries,
which are common in physics, extensions of these results imply
summing over relative periodic orbits (RPOs) instead of periodic
orbits.7,8
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Of course, for most realistic systems, it is never possible to
know the full infinite collection of UPOs, and so these exact results
of ergodic theory are of limited direct practical use. In practice,
for the complicated spatiotemporal chaos with a large number of
positive Lyapunov exponents, which is typical in fluid-dynamical
systems, it is not usually possible to find very large numbers of
unstable (relative) periodic orbits, or even to quantify how many
have been missed, and so the formal periodic orbit theory cannot be
applied. Nevertheless, many authors have successfully found mod-
erate numbers of equilibria and periodic orbits in such flows in
computations9–13 and experiments,14,15 and using ad-hoc choices of
weights, reasonable predictions have been achieved for flow statistics
by summing over these solutions.9,13

On a periodic domain, relative periodic orbits are, in fact, a spe-
cial case of invariant tori. Invariant two-tori are, after equilibria and
periodic orbits, the next simplest solutions in continuous dynam-
ical systems. They represent quasiperiodic behavior, in which two
different fundamental frequencies interact. In a previous paper,16 it
was shown that for a particular dissipative system of ordinary dif-
ferential equations that exhibit hyperchaos with three positive Lya-
punov exponents, invariant two-tori are generically found embed-
ded within the attractor, appearing whenever the UPOs undergo
Neimark–Sacker bifurcations. Suri et al.17 studied a hyperchaotic11

fluid-dynamical system, and by searching the unstable manifolds
of equilibria and UPOs, demonstrated the existence of an unstable
invariant two-torus embedded within the attractor.

These pieces of evidence suggest the hypothesis that unstable
invariant tori (UITs), as well as unstable periodic orbits, should
be generic within hyperchaotic systems. If this is the case, we pro-
pose that both classes of solutions should be taken into account
when constructing the ad-hoc sums, which were mentioned above.
Generic invariant tori could allow the study of key phenomenology
within certain fluid-dynamical systems, for which periodic orbits are
rare or at least computationally problematic to detect. For example,
in wall-bounded turbulence, it has proven difficult to find periodic
orbit solutions which capture the interaction between different pro-
cesses at different length-scales.18 In the absence of phase locking,
we expect the different temporal frequencies associated with these
length-scales to lead to the dynamics manifesting as invariant tori
rather than periodic orbits. It is conjectured that as the complexity
of spatiotemporal chaos increases, which is associated with a greater
number of positive Lyapunov exponents, the likelihood of finding
and relative importance of UITs increases. However, a method to
find such tori generically remains elusive.

When compared with the computation of periodic orbits or rel-
ative periodic orbits, the convergence of invariant tori, even given a
good initial guess, is a difficult computational problem. Various pre-
vious authors19–26 have developed methods for the continuation of
tori, and have successfully applied these to converge attracting tori
and continue them as they become unstable, or to converge specific
tori that arise from bifurcations. The majority of previous stud-
ies have concentrated on Hamiltonian dynamical systems, where
invariant tori are known to be a generic feature. Nevertheless, in
dissipative systems, (stable) invariant tori have been studied, as the
breakdown of a two-torus is one of the possible routes to chaos.27–29

This paper aims at advancing the methodology for generically
finding and exploiting UITs in the description of chaos. To find

generic tori inside a chaotic attractor, we need both a method that
can converge very unstable tori from relatively poor initial guesses
and a way to find such guesses. In order to address the first point, in
this paper, we present a new convergence method, which exploits the
quasi-periodicity of non-phase-locked UITs to parameterize their
full surfaces. This allows an entirely local formulation of the prob-
lem, which is amenable to massive parallelization on GPUs, and
thereby we are able to apply this to a partial differential equation
(PDE) system. In order to address the issue of finding guesses
for UITs, we consider a forced generalized Kuramoto–Sivashinsky
equation (gKSE). Here, we can find invariant tori through their con-
nection to relative periodic orbits in the unforced case, which avoids
the difficult open problem of detecting UITs directly in chaos. We
show that UITs are plentiful and can be summed over to predict
various average quantities of the chaotic dynamics.

This paper is laid out as follows: in Sec. II, we present both the
unforced and forced gKSE, and the Lyapunov exponents associated
with our chosen parameters; in Sec. III, we present and apply meth-
ods to find UITs and their stability properties, which are used in
Sec. IV to estimate dynamical averages for the system; and the results
are discussed in Sec. V.

II. THE FORCED GENERALIZED KSE

The one-dimensional generalized Kuramoto–Sivashinsky
equation (gKSE)30–33 for a real-valued scalar field u(x, t) defined on
a periodic spatial domain of size L can be written as

∂tu + u∂xu + ∂2
x u + β∂3

x u + ∂4
x u = 0. (1)

For β = 0, the gKSE reduces to the classic Kuramoto–Sivashinsky
equation (KSE), which has many applications in physics.34–36 A non-
zero value of β acts to break the discrete left-right antisymmetry of
the KSE, but for β = 0.01, the observed dynamics are not altered sig-
nificantly. The significance of breaking the discrete symmetry will
be discussed in Sec. II A. The complexity of the dynamics in gen-
eral increases as the domain size L is increased. We here consider
L = 22, for which the dynamics are chaotic. Typical timeseries of
the classic KSE and the gKSE for the considered values of the control

parameters are shown in Fig. 1. The mean flow
∫ L

0
u dx is a conserved

quantity of (1), and without loss of generality can be taken to be zero.
Equation (1) is invariant under the continuous family of trans-

formations u(x + l, t) 7→ u(x, t), parameterized by l ∈ R. This has
the consequence that periodic orbits are unlikely in the chaotic
attractor, and instead relative periodic orbits (RPOs), which have
a non-zero phase velocity, are readily found. To break the contin-
uous symmetry of (1) in a controlled way, we add a forcing term and
instead considered the forced gKSE,

∂tu + u∂xu + ∂2
x u + β∂3

x u + ∂4
x u = ε sin (2πx/L), (2)

where ε is a small parameter, which controls the breaking of the
continuous shift symmetry. Beyond the control of the continuous
symmetry, there is no physical motivation for studying this aug-
mented system; the choice will become clear below. We will use ε

of the order of 10−3, which is sufficiently large that the system is
detectably different from the unforced equation, without being so
large that the qualitative dynamics significantly change. See Fig. 1
for a visual comparison of the dynamics with and without forcing.
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FIG. 1. Typical chaotic timeseries at L = 22 of length t = 400. Top: the classic KSE β = 0, ε = 0. Middle: The gKSE with β = 0.01 but ε = 0. Bottom: Our forced gKSE
with β = 0.01 and ε = 0.002. The behavior appears very similar, despite the fact that the first system has two symmetries which the last does not.

Figure 2 shows a projection of the chaotic attractors at the dis-
cussed parameter values yielding the classical KSE, the unforced
gKSE, and the forced gKSE. The choice of projection is important
here—since ε 6= 0 breaks the continuous phase-shift symmetry, we
choose a projection which factors out this phase shift, namely, the
absolute value of the complex Fourier coefficients.

We time-march these PDEs using an exponential time-
differencing fourth-order Runge–Kutta scheme, following Kassam
and Trefethen.37 This is coded in Julia so that we may find Jacobians
through automatic differentiation using the package Zygote.38 Some
additional calculations were performed using an identical algorithm
in MATLAB. Throughout, we discretize the domain with 24 points,
or N = 16 Fourier modes after 2/3 dealiasing, which is sufficient for
this relatively low value of L.

From (2), we define the instantaneous energy production,

P :=

∫ L

0

[

(∂xu)2 + εu sin (2πx/L)
]

dx, (3)

and dissipation,

D :=

∫ L

0

(

∂2
x u

)2
dx, (4)

which we will use as key statistics of the flow. The long-time averages
of these should be equal for a statistically stationary trajectory, and
they will be equal when averaged over any (quasi-)periodic solution.

A. Lyapunov exponents

The average rate of growth or decay of perturbations to a
trajectory within a chaotic attractor is measured by the Lyapunov
exponents. The presence of at least one positive Lyapunov exponent
is a necessary and sufficient condition for an attractor to be chaotic.
A chaotic attractor is called hyperchaotic if its Lyapunov spectrum
contains at least two positive exponents.

We compute the leading Lyapunov exponents using
Algorithm 1, which is inspired by an approach initially proposed
by Benettin et al.39 In this algorithm, the state u and the orthonor-
mal basis Q are mapped to f τ (u) and Jτ

uQ, respectively, where f τ

is the time evolution operator for time τ and Jτ
u = ∇uf τ (u) is the

Jacobian of the flow. The deformed basis is reorthonormalized via
QR decomposition, which at the same time allows us to extract the
finite-time evaluation of the Lyapunov exponents from the diagonal
elements of the right triangular matrix.40 This is repeated for n � 1
segments of fixed duration τ along a long chaotic trajectory. The
Lyapunov exponents χi are then computed by averaging the n finite-
time evaluations. Prior to this loop, the dynamics are integrated for
a sufficiently long time τ0 to ensure that the trajectory is confined to
the chaotic attractor.

We employ a slight modification to the usual algorithm: instead
of using arbitrary linearly independent vectors to construct the ini-

tial basis Q̃, Algorithm 1 fills the first column of Q̃ with ∂tu, and—if
ε = 0 and continuous translations in x are allowed—the second col-
umn with ∂xu (lines 3–6). Therefore, the first (two) column(s) of
Q̃ span the neutral subspace of the Jacobian. The neutral action of
the Jacobian on this subspace is enforced at each iteration by fill-
ing the first or the first two columns of W in a similar manner
(lines 12–15). As a result, X starts with the expected zero values
whose number equals the dimension of the neutral subspace, fol-
lowed by the nonzero exponents in descending order. This enables
us to distinguish exponents with very small absolute values from
zeros associated with continuous symmetries.

The four leading Lyapunov exponents of the chaotic attrac-
tor over 2−7 < 103ε < 24 (with β = 0.01 and L = 22 being fixed)
are shown in Fig. 3. The parameters τ0 = 2.5 × 103, τ = 2.0, and
n = 7.5 × 105 are fixed in the calculations. Outside the plotted range
of ε, the attractor behaves as follows: for large values of ε, the
global attractor is a stable fixed point; as ε decreases, the system
becomes chaotic via the Ruelle–Takens–Newhouse route to chaos:

Chaos 33, 083111 (2023); doi: 10.1063/5.0143689 33, 083111-3
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FIG. 2. The chaotic attractor at L = 22, depicted as a timeseries of length t = 106. Left: the classic KSE β = 0, ε = 0. Middle: The gKSE with β = 0.01 but ε = 0. Right:
Our forced gKSE with β = 0.01 and ε = 0.002. The projection shows the magnitude of the first, second, and third Fourier coefficients. Notice the subtle effect of nonzero
β and ε to “blur” the attractor, with more fine detail being visible in the ε = 0, β = 0 case on the left and bottom of the figures. Nevertheless, the overall structure of the
strange attractor, at least in this projection, is very similar.

at ε ≈ 0.1202, the fixed point loses its stability and the attractor
becomes a limit cycle; at ε ≈ 0.1021, the attractor becomes a sta-
ble torus; and at ε ≈ 0.0998, the attractor turns chaotic and remains
chaotic until ε ≈ 0.0819. Below this value, the attractor—or some-
times coexisting attractors—consist(s) of stable periodic orbits or
stable tori. At ε ≈ 0.0190, the attractor again becomes chaotic and
remains so for all smaller values of ε.

Due to the presence of the continuous translational symme-
try in the case of unforced ε = 0 system, we do not expect to find
many periodic orbits but rather relative periodic orbits (RPOs).

FIG. 3. The three most positive Lyapunov exponents of the forced gKSE with
L = 22 and β = 0.01, as ε is varied. The vertical line marks ε = 0.001.

For β = 0, the combination of the continuous and discrete sym-
metries leads to a dense class of periodic orbits called preperiodic
orbits by Cvitanović et al.,41 but these are not present when β 6= 0.
As the continuous symmetry is broken by ε > 0, the remaining
RPOs should generically become invariant two-tori, as discussed in
Sec. III B. Intuitively, for two-tori to be embedded within a hyper-
bolic chaotic attractor, we require more than one positive Lyapunov
exponent—with only one, the chaotic attractor locally looks like a
very thin sheet, which cannot geometrically include an invariant
two-dimensional non-chaotic manifold. Indeed, we see two positive
Lyapunov exponents for ε > 0, so this is consistent. Note that the
Kaplan–Yorke dimension DKY of the attractor slightly decreases with
increasing ε, while the first and fourth Lyapunov exponents become
more negative (see Table I). In all cases, DKY ≈ 4.2—the system we
are studying exhibits low-dimensional chaos, in contrast with the
spatiotemporal chaos seen at higher L in the KSE, for example.

III. UNSTABLE INVARIANT TORI

A. Torus convergence algorithm

Rather than discretizing a loop on a Poincaré section which
slices the torus, as in Parker and Schneider,16 the full surface
of the two-torus is parameterized by coordinates (ρ, σ) ∈ [0, 2π)

× [0, 2π). The local dynamics on the torus is assumed to be a
rotation with a fixed velocity (R, S) ∈ R2, so that

∂tu = R∂ρu + S∂σ u, (5)

which states that the flow of the dynamical system lies in the tangent
space of the torus at that point, as shown in Fig. 4. For u(x, ρ, σ) to
describe an invariant torus of the system (2), we, therefore, require
that

R∂ρu + S∂σ u + u∂xu + ∂2
x u + β∂3

x u + ∂4
x u = ε sin

2πx

L
. (6)
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Algorithm 1. Computation of the leading Lyapunov exponents.

The fact that R and S are independent of ρ and σ partially
constrains the choice of parameterization, which improves numer-
ical convergence, but also assumes quasiperiodic dynamics. This is
a strong assumption, which is certainly not valid in Arnold tongues,
regions of parameter space in which phase locking implies the exis-
tence of periodic orbits on an invariant torus. In such regions, we

TABLE I. The eight most positive Lyapunov exponents of the chaotic attractor of the

forced gKSE for domain length L= 22 and different parameter settings.

β = 0 β = 0.01 β = 0.01
ε = 0 ε = 0 ε = 0.001

χ 1 0.0484 0.0485 0.0476
χ 2 0 0 0.0036
χ 3 0 0 0
χ 4 −0.0028 −0.0061 −0.0098
χ 5 −0.1884 −0.1805 −0.1815
χ 6 −0.2562 −0.2608 −0.2600
χ 7 −0.2902 −0.2918 −0.2903
χ 8 −0.3102 −0.3089 −0.3083
DKY 4.2425 4.2348 4.2279

FIG. 4. The flow ∂tu at any point on the surface of the two-torus M can be
expressed as a linear combination of the tangent vectors along the coordinates σ

and ρ, which span the local tangent space TM [see Eq. (5)].

may instead directly converge the periodic orbits.16 In practice, when
the phase locking of a UIT is such that the periodic orbits on it
are of very long period, it is numerically indistinguishable from a
quasiperiodic invariant torus, and our algorithm will converge.

We start with an initial guess, which geometrically describes
a two-torus in state space, but not an invariant manifold. We then
iteratively deform this torus until (6) is satisfied at every point on
the surface. The torus is discretized with N = 16 Fourier modes in
x, as for (2), so the linear terms are entirely local differential opera-
tors in Fourier space. In ρ and σ , we discretize on an evenly spaced
grid of M × M = 64 × 64 points, and the derivatives are calculated
with dense trigonometric differentiation matrices. This means that
we can compute a sparse Jacobian for the left hand side of (6), of
size NM2 × (NM2 + 2), where the two additional columns come
from derivatives with respect to R and S. The matrix consists of
dense N × N blocks on the main diagonal, corresponding to the
nonlinear terms, and diagonal N × N blocks elsewhere, correspond-
ing to the derivatives with respect to ρ and σ . This gives a total of
M2N2 + M4N + M2N nonzero entries. Following Cvitanović et al.,41

we can solve this system using a Levenberg–Marquardt algorithm.
As a consequence, we do not need to introduce additional con-
straints for this underconstrained optimization problem. At each
iteration of Levenberg–Marquardt, the sparse linear system is solved
using the conjugate-gradient-like least squares minimum residual.42

Since this requires only sparse matrix multiplications, this can be
performed on a GPU in Julia at great speed despite the size of the
system.

As a consequence of using the Levenberg–Marquardt algorithm,
our method is able to converge from relatively poor initial guesses,
since it is effectively gradient-descent when far from a solution, and
so shares the convergence properties of recent improvements in
methods for the computation of periodic orbits.12,13,43 Figure 5 shows
the torus-shaped but not invariant initial guess at ε = 0.002 (gen-
erated by continuation, see Sec. III B), and the drastically different
converged solution.

Our method is also able to converge some UPOs which exist
when strong phase locking is present, as UPOs are a degenerate case
of the solution given by (6) in which either ∂ρu ≡ 0 or ∂σ u ≡ 0.
Indeed, if they were both zero, the algorithm would have converged
to a steady state solution, but this never occurred.

Chaos 33, 083111 (2023); doi: 10.1063/5.0143689 33, 083111-5
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FIG. 5. Initial guess (blue), the partially converged torus after five iterations
(green), and the fully converged UIT (red) for T2 at ε = 0.003. The projection
shows the magnitude of the first, second, and third Fourier coefficients.

B. Continuation of UITs from RPOs

A relative periodic orbit is a particular case of an invariant
torus, where one of the two dimensions of the invariant manifold
exactly corresponds to a continuous symmetry of the system. In

the presence of such a symmetry (and the absence of discrete sym-
metries), RPOs are expected to be the generic structure in chaotic
attractors, with pure periodic orbits rare special cases, for example,
related to bifurcations of solutions outside the chaos. The unforced
system with ε = 0 has a continuous symmetry, and we can find
RPOs in it using the now-routine method of recurrent flow anal-
ysis, followed by a Newton–Krylov based shooting method.9 Our
implementation of recurrent flow analysis exactly matches that of
Cvitanović et al.41 Since β 6= 0, the system has no discrete symmetry,
and so we do not anticipate the existence of “pre-periodic orbits,” a
special case of (non-relative) periodic orbits.41

Given an RPO with period T and phase velocity c so that
u(x + cT, t + T) = u(x, t) for all x and t, we can satisfy the form
of Sec. III B by defining

u(x, ρ, σ) = u

(

x +
Lσ

2π
,
Tρ

2π

)

, R =
2π

T
, S = −

2πc

L
. (7)

Therefore, we can take RPOs found via recurrent flow analysis and
shooting and reconverge them using the algorithm described in
Sec. III A. Afterward, we continue the solution to non-zero ε, at
which point it ceases to be an RPO and is instead a generic two-torus.

It was found to be sufficient to use the RPO as an initial con-
dition for the algorithm at ε = 0.001 and then use this converged
UIT and the ε = 0 RPO to linearly extrapolate an initial guess for
ε = 0.002. Several of the UITs were continued to ε = 0.005 and
beyond—Fig. 6 shows an RPO at ε = 0 and its continuation to a
UIT at ε = 0.01—but for the more geometrically complex tori this
proved difficult and higher resolution discretizations of ρ and σ are
likely to be required. Indeed, we only searched for RPOs for periods
up to T = 100 for this reason. In other cases, strong phase lockings
were detected, at which point it is no longer possible to satisfy (6)
and the continuation algorithm breaks down. Such phase lockings
are generic when invariant tori are continued, as Arnold tongues are
encountered.44 It is nevertheless still possible to continue the UITs
past these tongues with considerable additional effort,16 but this was
not performed here.

Figure 7 shows two different projections of a simple RPO at
ε = 0, which is continued to a UIT at ε = 0.01. With a projec-
tion showing the absolute values of the Fourier coefficients, which

FIG. 6. Timeseries at L = 22 and β = 0.01 of length t = 200 for the solution T10. Top: relative periodic orbit at ε = 0. Bottom: full torus at ε = 0.01. Note the modulation
of the periodic behavior in the forced, asymmetric case.
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FIG. 7. Projections of the solutions of Fig. 6. (a) RPO at ε = 0, showing the real part of the first three Fourier coefficients, (b) UIT at ε = 0.01, the real part of first three
Fourier coefficients, (c) RPO at ε = 0, absolute value of first three Fourier coefficients, (d) UIT at ε = 0.01, absolute values. The first projection shows that the RPO is
indeed geometrically a two-dimensional invariant torus, but disguises the fact that this is due to the continuous symmetry and does not easily allow us to distinguish the two
values of ε. The second projection, which is that used in the other figures, removes the continuous symmetry and we can clearly see the development from RPO to UIT.

are invariant under shifts in the x direction, the RPO appears as a
simple loop but at non-zero ε, the structure is clearly a full two-
dimensional structure. A more naïve projection showing the real
parts of the Fourier coefficients, which are not invariant under phase
shifts, shows that the RPO is indeed topologically a torus at ε = 0,
but then the difference between the UIT and the RPO is obscured.

Twelve distinct UITs were successfully converged at ε = 0.001
from the continuation of 27 distinct RPOs. A projection of all 12 of
these is shown in Fig. 8. Of these, eight were successfully continued
to ε = 0.002. In addition to these, a common traveling wave solution
at ε = 0 was continued to give a periodic orbit, but this was omitted
from our calculations in Sec. IV, as were any UPOs resulting from
phase lockings of the UITs.

C. Stability of UITs

Algorithms for finding the stability properties of invariant tori
are notoriously difficult to use.45,46 Here, we propose a simple itera-
tive method which accurately finds the leading Lyapunov exponents
for a UIT, i.e., the real parts of the stability eigenvalues. It is suf-
ficient to know these to calculate the weights for the statistical
averages discussed in Sec. IV. Our method does not give the imagi-
nary parts of the eigenvalues or the linear manifolds associated with
the eigenvectors.

The algorithm is an extension of that discussed in Sec. II A to
calculate Lyapunov exponents for the attractor. In theory, if we start
with a point exactly on an invariant set, the Lyapunov exponents
calculated using the given algorithm should give us exactly the Lya-
punov exponent of the invariant set. However, as the sets of interest
are all unstable, a trajectory started from a calculated point of the
invariant set will quickly drift away. Consequently, we augment the
algorithm and in each iteration, we ensure that the trajectory starts
from the correct point on the invariant manifold, assuming the
dynamics are given locally by (5), as described in Algorithm 2.

All the UITs found had either two unstable eigenvalues
(distinct values or repeated values, the latter suggesting a com-
plex conjugate pair) or only one unstable eigenvalue. Any solution
embedded within the chaotic attractor can have at most two unstable
eigenvalues, since this is the number of positive Lyapunov exponents
for the attractor itself, as discussed in Sec. II. Any UIT should have,
by definition, two zero eigenvalues, and in each case, we numerically

found two Lyapunov exponents with magnitude very close to zero.
The same method applied to UPOs gives just one (approximately)
zero eigenvalue and one or two positive ones. The full results are
listed in Table II.

FIG. 8. The 12 converged tori atβ = 0.01 and ε = 0.001, overlaid on the chaotic
attractor (rendered as a cloud). The UITs lie within and capture the fractal structure
of the attractor. Projection as per Fig. 2.
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Algorithm 2. Computation of the leading Lyapunov exponents of an invariant torus.

Compare with Algorithm 1.

IV. ESTIMATING DYNAMICAL AVERAGES

Let 0(u) be some real scalar measurable quantity for which we
wish to know the long-time average for system (2), for example, the

energy
∫ L

0
1
2
u2 dx. For a trajectory confined to the ith UIT u(x, ρ, σ)

we may write, via Fourier transforms,

0(u(·, ρ, σ)) =

∞
∑

k1=−∞

∞
∑

k2=−∞

0(k1 ,k2) ei(k1ρ+k2σ) + c.c.

and, thus, for a trajectory starting at u(x, 0, 0), so that ρ = Rt and
σ = St, the long-time average of 0(u) is given by

0i ≡ lim
t→∞

1

t

∫ t

0

0(u) dt

= lim
t→∞

1

t

∫ t

0

∞
∑

k1=−∞

∞
∑

k2=−∞

0(k1 ,k2) ei(k1R+k2S)t dt + c.c.

= 0(0,0) =
1

4π 2

∫ 2π

0

dρ

∫ 2π

0

dσ0(u(·, ρ, σ)),

so long as the torus is quasiperiodic, i.e., R and S are incommensu-
rate, so that k1R + k2S = 0 only if k1 = k2 = 0. In other words, the
average value of a quantity 0(u) over a trajectory on a quasiperi-
odic invariant torus is the average 0i over the torus surface itself,
calculated in the obvious way.

We then wish to calculate weights wi so that the average value
for the full chaotic attractor can be approximated as

0̂ =

∑

i wi0i
∑

i wi

, (8)

where crucially the wi are independent of the particular quantity of
interest 0.

Weights for sums of UPOs can be rigorously derived6 if the
sum is taken over the full infinite set of periodic orbits. Such derived
weights have been applied to finite sums over UPOs, as an approx-
imation to the full sum.9 When UITs are considered, it is not clear

TABLE II. For each of the 12 tori at L= 22, ε = 0.001, and β = 0.01, we list the energy production, the first two Lyapunov exponents, and the absolute value of the first three

Fourier coefficients. The Lyapunov exponents are used to calculate a weight for each torus, and these are then used to compute predictions for the quantities for the chaotic

attractor. The values measured and standard deviations from a long time series on the chaotic attractor are also given, and these are used to calculate the relative error, normalized

by the standard deviation, where available.

Torus Ti P = D χ 1 χ 2 |u(1)| |u(2)| |u(3)| wi/
∑

j wj

T1 20.995 0.053 0 4.350 13.428 10.099 0.118
T2 19.218 0.032 0.032 4.255 14.771 8.909 0.098
T3 21.749 0.096 0 4.694 12.492 11.109 0.065
T4 20.235 0.062 0 4.455 13.319 9.551 0.102
T5 20.319 0.044 0 4.353 13.813 9.626 0.143
T6 21.401 0.032 0.029 4.082 12.928 10.046 0.104
T7 17.443 0.112 0 5.196 11.394 8.416 0.056
T8 24.216 0.056 0.050 3.825 11.176 11.463 0.059
T9 19.695 0.076 0 4.556 12.727 9.388 0.083
T10 23.632 0.325 0 6.844 7.178 14.553 0.019
T11 15.737 0.083 0.029 4.740 11.854 7.244 0.056
T12 20.047 0.062 0.002 4.469 13.376 9.362 0.098
Prediction 20.287 0.064 0.011 4.461 12.973 9.702
Chaotic attractor 19.938 0.047 0.003 4.265 12.861 9.236
Standard deviation 7.801 2.405 3.886 6.300
Normalized error 0.045 0.081 0.029 0.074
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TABLE III. As for Table II but at ε = 0.002. Only 8 of the 12 UITs found at ε = 0.001 were successfully continued here.

Torus Ti P = D χ 1 χ 2 |u(1)| |u(2)| |u(3)| wi/
∑

j wj

T2 19.229 0.032 0.032 4.258 14.770 8.920 0.151
T5 20.536 0.040 0 4.377 13.715 9.800 0.239
T6 21.453 0.033 0.028 4.062 12.884 10.064 0.157
T7 17.661 0.114 0 5.139 11.325 8.518 0.084
T8 24.382 0.054 0.050 3.814 11.118 11.567 0.092
T10 23.622 0.325 0 6.846 7.177 14.549 0.030
T11 15.784 0.080 0.035 4.773 11.862 7.296 0.083
T12 20.121 0.056 0.002 4.484 13.336 9.423 0.164
Prediction 20.222 0.060 0.017 4.445 12.893 9.633
Chaotic attractor 20.036 0.045 0.004 4.233 12.950 9.260
Standard deviation 7.773 2.327 3.864 6.290
Normalized error 0.024 0.091 0.015 0.059

whether it is possible to derive an expression for weights analyti-
cally, though in our case, it would be possible to use the weights
for the corresponding RPOs in the unforced ε = 0 system, from
the extension of periodic orbit theory for systems with continu-
ous symmetries.7,8 When relatively small numbers of periodic orbits
are known, ad-hoc choices of weights13,47,48 have been found to
give comparably good or even better results than these derivable
weights.9 One simple choice of weights that can be adapted to UITs
is that of Zoldi and Greenside,47 which is to assign the ith solution a
weight,

wi =
1

∑

k:χ
(i)
k

>0
χ

(i)
k

, (9)

based on its positive Lyapunov exponents. In the full periodic orbit
theory, equilibria are excluded and only periodic orbits consid-
ered. An intuitive interpretation of this is that the UPOs have a
greater “presence” in state space. Extending this, we exclude the
UPOs we have found from our calculations and consider only UITs.
Since all our UITs have either one or two unstable directions, (9)
reduces to

wi =
1

χ
(i)
1 + χ

(i)
2

,

where χ
(i)
2 may be either zero or positive.

Tables II and III list the UITs that were successfully con-
verged at ε = 0 and continued to ε = 0.001 and ε = 0.002, respec-
tively. The calculated Lyapunov exponents χ1 and χ2 for each of
them are used to compute weights, and these weights are used to
give predictions for the long-time averages of the energy produc-
tion/dissipation and the first three Fourier coefficients in the chaotic
attractor. The formal periodic orbit theory suggests that it is possible
to calculate the Lyapunov exponents for the attractor by summing
over UPOs,5 and, thus, we have also attempted this here using UITs.

The predicted values are compared against those computed
from a long (t = 2 × 107) timeseries. For the instantaneous quan-
tities, we also compute the standard deviation from this timeseries
and normalize the error of the predicted value by the standard devi-
ation. For an observable 0(u), the mean and standard deviation are

calculated in the normal way,

µ0 :=
1

t

∫ t

0

0(u) dt′,

σ0 :=

√

1

t

∫ t

0

(0(u) − µ0)2 dt′,

and the normalized error is then given by

(0̂ − µ0)/σ0 .

For the dissipation, we observe a normalized error below 5%, and
the Fourier coefficients, this error remains below 10%.

For the Lyapunov exponents, which are properties of a full
trajectory rather than instantaneous quantities, the standard devi-
ation is not well-defined and so we do not give a normalized error.
Nevertheless, from the values in the table, we immediately see that
the predicted values are rather poor estimates of the true Lyapunov
exponents, when compared against the difference between the true
values.

V. DISCUSSION

We have demonstrated that, for this contrived system at care-
fully chosen parameter values, UITs are common and readily found.
Based on the projection shown in Fig. 8, all identified UITs are
located within the attractor and collectively give a convincing visual
representation of it. This suggests that the UITs may indeed be
spanning a significant part of the attractor.

For these particular collections of UITs, we have predicted
the energy production/dissipation to within less than 5% of one
standard deviation, despite the measured values associated with
individual tori varying by much more than the standard deviation.
We interpret this observation as evidence that our particular collec-
tions of tori, which were generated from random chaotic timeseries,
represent a reasonably unbiased sample of the dynamics.

The predicted values of the Lyapunov exponents of the chaotic
attractor are significantly poorer, which is to be expected as these are
notoriously difficult to calculate and sensitive to which parts of the
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attractor are accounted for. Whether the predicted values become
more precise as more UITs are included—or whether instead there
is some systematic reason that our predictions of the Lyapunov
exponents are poor—remains an open question.

By definition, if UITs exist within an attractor, chaotic trajec-
tories must pass arbitrarily close to them. We might well expect,
therefore, that given a number of diverse UITs that cover much of
the attractor we should be able to average quantities over the tori to
approximate averages over the attractor itself. This system was delib-
erately chosen to give a method to find large numbers of UITs, and
so it is no great surprise that our method is successful here.

What remains an open question is whether UITs exist in large
numbers in realistic systems for which it has been difficult to detect
UPOs, such as wall-bounded turbulence. If they do, they could cap-
ture physical processes that are currently poorly understood.18 Even
if such UITs exist in general high-dimensional, dissipative, chaotic
systems, their detection and convergence remains a computational
challenge. In this work, we have specifically constructed a system in
which we can exploit the breaking of a continuous symmetry to find
UITs; this method will not be applicable in more generic systems.
The detection of UITs directly from a chaotic timeseries is an open
problem and will certainly require more sophisticated data analysis
methodologies than the traditional recurrent flow analysis used to
find UPOs.
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determination of invariant tori,” Phys. Rev. E 74, 046206 (2006).
26J. Sánchez and M. Net, “A parallel algorithm for the computation of invariant
tori in large-scale dissipative systems,” Physica D 252, 22–33 (2013).
27D. Ruelle and F. Takens, “On the nature of turbulence,” Commun. Math. Phys.
20, 167–192 (1971).
28R. S. Mackay and C. Tresser, “Transition to topological chaos for circle maps,”
Physica D 19, 206–237 (1986).
29V. Afraimovich and L. P. Shilnikov, “Invariant two-dimensional tori, their
breakdown and stochasticity,” Am. Math. Soc. Transl.: Ser. 2 149, 201–212 (1991).

Chaos 33, 083111 (2023); doi: 10.1063/5.0143689 33, 083111-10

© Author(s) 2023

 06 D
ecem

ber 2023 10:40:13

https://pubs.aip.org/aip/cha
https://doi.org/10.2307/2373414
https://doi.org/10.1134/S0012266112130010
https://doi.org/10.1063/1.165898
https://doi.org/10.1103/PhysRevLett.61.2729
https://doi.org/10.1007/BF01316970
https://doi.org/10.1016/j.cnsns.2009.04.022
https://doi.org/10.1063/1.4923742
https://doi.org/10.1017/jfm.2013.122
https://doi.org/10.1017/jfm.2017.699
https://doi.org/10.1103/PhysRevE.98.023105
https://doi.org/10.1017/jfm.2022.299
http://arxiv.org/abs/arXiv:2212.11886
https://doi.org/10.1073/pnas.2120665119
https://doi.org/10.1098/rsta.2022.0137
https://doi.org/10.1063/5.0119642
https://doi.org/10.1103/PhysRevE.100.013112
https://doi.org/10.1017/jfm.2022.686
https://doi.org/10.1016/0167-2789(87)90105-9
https://doi.org/10.1137/0732066
https://doi.org/10.1137/S0036142994262883
https://doi.org/10.1137/040611240
https://doi.org/10.1016/j.jde.2005.10.005
https://doi.org/10.1137/080724563
https://doi.org/10.1103/PhysRevE.74.046206
https://doi.org/10.1016/j.physd.2013.02.008
https://doi.org/10.1007/bf01646553
https://doi.org/10.1016/0167-2789(86)90020-5
https://doi.org/10.1090/trans2/149


Chaos ARTICLE pubs.aip.org/aip/cha

30N. A. Kudryashov, “Exact solutions of the generalized Kuramoto-Sivashinsky
equation,” Phys. Lett. A 147, 287–291 (1990).
31A. H. Khater and R. S. Temsah, “Numerical solutions of the generalized
Kuramoto–Sivashinsky equation by Chebyshev spectral collocation methods,”
Comput. Math. Appl. 56, 1465–1472 (2008).
32H. Lai and C. Ma, “Lattice Boltzmann method for the generalized
Kuramoto–Sivashinsky equation,” Physica A 388, 1405–1412 (2009).
33M. Lakestani and M. Dehghan, “Numerical solutions of the generalized
Kuramoto–Sivashinsky equation using B-spline functions,” Appl. Math. Modell.
36, 605–617 (2012).
34R. E. LaQuey, S. Mahajan, P. Rutherford, and W. Tang, “Nonlinear saturation
of the trapped-ion mode,” Phys. Rev. Lett. 34, 391 (1975).
35G. I. Sivashinsky, “Nonlinear analysis of hydrodynamic instability in lami-
nar flames—I. Derivation of basic equations,” Acta Astronaut. 4, 1177–1206
(1977).
36H. Chang, “Wave evolution on a falling film,” Annu. Rev. Fluid Mech. 26,
103–136 (1994).
37A.-K. Kassam and L. N. Trefethen, “Fourth-order time-stepping for stiff PDEs,”
SIAM J. Sci. Comput. 26, 1214–1233 (2005).
38M. Innes, “Don’t unroll adjoint: Differentiating SSA-form programs,”
arXiv:1810.07951 (2018).
39G. Benettin, L. Galgani, A. Giorgilli, and J.-M. Strelcyn, “Lyapunov character-
istic exponents for smooth dynamical systems and for Hamiltonian systems; A

method for computing all of them. Part 2: Numerical application,” Meccanica 15,
21–30 (1980).
40J. P. Eckmann and D. Ruelle, “Ergodic theory of chaos and strange attractors,”
Rev. Mod. Phys. 57, 617–656 (1985).
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