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Abstract: Generally, these days people live longer but often with increased impairment and disabili-
ties; therefore, they can benefit from assistive technologies. In this paper, we focus on the completion
of activities of daily living (ADLs) by such patients, using so-called Smart Homes and Sensor Tech-
nology to collect data, and provide a suitable analysis to support the management of these conditions.
The activities here are cast as states of a Markov-type process, while changes of state are indicated
by sensor activations. This facilitates the extraction of key performance indicators (KPIs) in Smart
Homes, e.g., the duration of an important activity, as well as the identification of anomalies in such
transitions and durations. The use of semi-Markov models for such a scenario is described, where the
state durations are represented by mixed gamma models. This approach is illustrated and evaluated
using a publicly available Smart Home dataset comprising an event log of sensor activations, together
with an annotated record of the actual activities. Results indicate that the methodology is well-suited
to such scenarios.

Keywords: Markov-type model; process mining; Smart Homes; convolution of gamma mixture models

MSC: 60K15

1. Introduction

Worldwide, people are living longer, with increasing numbers of older people forming
a larger proportion of the population [1]. It is predicted that, by 2050, the proportion of the
world population over 60 years of age will have grown to over 20%. However, the downside
of this prediction is that it comes with increased impairment and disability in older people,
including cognitive decline, depressive illnesses, and dementia. At the same time, however,
there have been major improvements in technology and, in particular, assistive technologies
are increasingly being used to facilitate the functioning, independence, and well-being of
older citizens.

Older people frequently experience physical and cognitive decline, typically prevent-
ing the completion of activities of daily living (ADLs) [2]. Such patients may need family or
professional care at home or might require admission to a long-term nursing facility, with a
resulting decrease in quality-of-life and an increase in costs. High-tech solutions can help
improve such situations, using so-called Smart Homes, which utilise assistive technologies
and employ sensors to collect appropriate data and provide suitable analysis to support
the diagnosis, monitoring, and treatment of these conditions.

Typically, in Smart Homes, sensors are placed on household objects, such as doors,
to monitor ADLs, or may instead utilise imaging techniques to infer (sub-)activities. The
activation of sensors can be recorded as a time-stamped log of low-level events. Such data
can be thought of as an event history, commonly used in process mining [3], where, in
the Smart Home case, the events typically characterise the start or end of an activity, or
sub-activity, of daily living. The activity can then be analysed to identify ADL behavioural
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patterns or abnormalities. This may lead to a reminder to the patient, if required, or an
alarm to alert carers or medical services that there may be an issue.

Markov models, and their extensions, offer a well-defined mathematical framework
for the movements of individuals through processes, where the individual is known to
enter and leave the system through a given state, at a given time. Such models have been
widely explored and developed to allow for different application areas and settings, as
well as for assessing the legitimacy of assumptions. More specifically, they have already
been used for Smart Homes (e.g., [4]) and Process Mining (e.g., [5]). In this paper, we
explore several possible directions that exploit the computational advantages of the Process
Mining paradigm alongside the mathematical and operational benefits of Markov-type
models. Several topics of interest are explored, namely: (i) first passage time distributions
for classes of interest, such as specific activities or groups of activities; (ii) aggregation of
states to identify levels of detail that are parsimonious and computationally efficient, while
providing appropriate inference; (iii) detection of anomalies and concept drift for such
activities of interest, which may be indicative of activities taking longer than previously or
might signal a new emergent pattern.

This paper is concerned with developing and illustrating some specific mathemat-
ical expressions and results for models of human activity. If these are appropriate then
computation should be efficient and can provide useful results, e.g., characterising and
detecting outliers in performance indicators, such as the length of time taken to perform
important (sub-)activities. Appropriate semi-Markov model assumptions can also be built
into simulation or digital twin analysis, facilitating the study of different scenarios and
their performance in various situations.

The novelty of this paper resides in the development and use of Markov-type models
to represent ADL processes and corresponding key performance indicators (KPIs) in Smart
Homes, as well as in describing and evaluating strategies to determine anomalies in such
transitions and durations. The approach is illustrated and evaluated using a publicly
available Smart Home dataset [6], comprising an event log of sensor activations, together
with an annotated record of the actual activities, which we use for model development
and validation.

2. Literature Review

Processes frequently occur in many different contexts, such as business, telecommu-
nications, and healthcare. Previously, there have been substantial efforts to model and
analyse such processes, with the aim of improving understanding and efficiency as well as
predicting future outcomes. Also, with recent developments in IT, there exist more sophis-
ticated computer systems to collect, store, process, and exchange data. This has led to the
emergence of Process Mining, as a bridge between data mining and process modelling [3],
which has already been applied to diverse areas, such as manufacturing (Lorenz et al. [7]),
telecommunications (Mahendrawathi et al. [8]), and healthcare (Rojas et al. [9]).

In general, such processes are defined as consisting of a number of activities each
with start and end times and corresponding durations. A process instance executes these
activities in a sequence, following the logic and rules at work in real-world scenarios.
Consequently, Process Mining may involve discovering the activities and trajectories that
comprise the process, predicting trajectories, or identifying outliers. Such analysis may use
standard data mining approaches such as classification, clustering, association rules, or
deep learning. However, in addition, model-based approaches can provide possibilities for
incorporating structural process knowledge into the analysis, thereby facilitating improved
insight and enhanced forecasting.

A mathematical model can be used to provide a simplified version of a process,
where analytic solutions or simulation models can imitate process behaviour without
necessarily engaging with real-world scenarios [10]. Such models have frequently been
used to address complex problems such as determining correctness, conformance, or
performance. Performance analysis typically focuses on the dynamic behaviour of the



Mathematics 2023, 11, 5001 3 of 16

process, based on key performance indicators (KPIs) such as response time, uptime, or
reliability. More specifically, the main KPIs for Markov-type models have been identified
by [11] as (i) state occupancy probabilities, i.e., number of visits to a state during an
arbitrary time interval; (ii) first passage time probabilities; and (iii) state occupancy duration
probabilities [12]. Also, Markov models are widely used probabilistic process models where
it is assumed that the Markov property holds, i.e., the current state only depends on the
immediately previous state. This assumption facilitates both the prediction of individual
transitions [13] and population forecasting [14]. Higher-order Markov models [15] may
alternatively be employed if the Markov assumption is not appropriate [16,17]. Also,
non-homogeneous Markov models can be used if the model parameters are changing
with time [13].

Another type of Markov model is the hierarchical Markov model, where states may
be ordered in levels belonging to a hierarchy, where a group of lower-level states may
constitute a single state at a higher level ([4,18]). In addition, hierarchical Markov models
may only be partially observable, with unobserved states at the lower levels; such situa-
tions can be considered as hierarchical hidden Markov models [19]. On the other hand,
depending on the level of interest, the lower levels of the hierarchy may be aggregated to
combine states, remove kth order effects, and reduce computational complexity [20]. Also,
as well as the basic time-stamped events (change of state) data, we may have additional
covariates (features) which can be incorporated into the Markov models. In the literature,
this has been accomplished by using partitioning approaches [10], conditional Bayesian
networks [21], or making the transition parameters functions of the covariates [22].

As a result of such breadth and diversity, Markov-type models are highly appli-
cable to a variety of application areas. A few such examples are manpower planning,
e.g., Papadopoulou and Vassiliou [23], Verbeken and Guerry [24], and McClean et al. [25];
hospital planning, e.g., Marshall and McClean [21], Shaw et al. [26]; business process
modelling, e.g., Yang et al. [5], Chen et al. [27]. In addition, there have been a num-
ber of papers using Markov-like models for Smart Homes, which are our current focus,
e.g., Youngblood and Cook [18], Wang et al. [4]. We have also co-authored an introductory
paper on this topic which focuses on the use of semi-Markov models for state durations
in Smart Homes (Yang et al. [28]). As we will discuss further, this application area is very
well suited to a number of the approaches we have mentioned. As such, we believe that
Process Mining and Markov-type models can make a very useful contribution to utilising
data from Smart Homes, to great advantage.

3. First Passage Time from a Specified Class of States to the Complement of that Class
3.1. The General Case

In what follows, we will consider a notional Smart Home in which we represent human
activities of daily living by way of a semi-Markov process, where the states represent
changes of (sub-)activity and are typically detected by time-stamped sensor activations,
although other mechanisms are possible, e.g., image-processing of a video feed.

We define Class C as a subset of the states of the semi-Markov system and C′ its
complement in S, the full set of states. Here, S is notionally a set of human activities of
daily living carried out in the home and C is a subset of (sub-)activities that are performed
to achieve a goal, e.g., making breakfast. Here, S might be the full set of activities of
interest in the home, such as “make breakfast”, “eat breakfast”, “wash dishes”, “make
dinner”, “take shower”, and so on, while C is a subset of S, for example, we might have
C = “Manage breakfast” = “cook breakfast”, “eat breakfast”, “wash dishes”. On the other
hand, C̃ is an aggregate of all activities in S that are not in C. Initially, we are interested in
the distributions of durations in the states of C before the first transition to C̃.

Then, the sub-transition matrix for class C is A = {aij}, where k is the number of
states and i, j = 1, · · · , k. Here, we consider C̃ as an aggregate of all states in C′ and b is the
k-dimensional column vector of transition probabilities from states of C to the aggregated
states of C̃. Then, H(t) = {hi(t)} is the k× k matrix with columns the probability density
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function’s (pdf’s) of holding times in each state of C, respectively, and f (t) = { fi(t)} is the
column vector of first passage times from each state of C to C̃, respectively. Then,

f ∗(s) = (A�H(s)) f ∗(s) + b�h∗(s), (1)

where � is the Hadamard product and f ∗(s) is the moment generating function of f (t),
while h∗(s) is the moment generating function of h(t). This is a special case of the result
in [29]. Regrouping gives

f ∗(s) = (I − A�H∗(s))−1b�h∗(s). (2)

We note that, in the relation in reference (2), the inverse of the matrix always exists
(see [30], P710). We consider an example for k = 2, which has been explored previously.
Here, states 1 and 2 form the class of interest and we assume that the holding times are
exponentially distributed with parameters as in the diagram (Figure 1).

Figure 1. An example where k = 2.

In this case, h(t) = (h1(t), h2(t))
′
= ((α + β)e−(α+β)t, (γ + δ)e−(γ+δ)t).

A =

0
β

α + β
γ

γ + δ
0

, b =


α

α + β

δ

γ + δ

, (3)

H(t) =

(
(α + β)e−(α+β)t (α + β)e−(α+β)t

(γ + δ)e−(γ+δ)t (γ + δ)e−(γ+δ)t

)
, h(t) =

(
(α + β)e−(α+β)t

(γ + δ)e−(γ+δ)t

)
, (4)

and

H∗(s) =

(
(α + β)/(α + β + s) (α + β)/(α + β + s)

(γ + δ)/(γ + δ + s) (γ + δ)/(γ + δ + s)

)
. (5)

So,

f ∗(s) =
(

1 −β/(α + β + s)
−γ/(γ + δ + s) 1

)−1
(

α/(α + β + s)

δ/(γ + δ + s)

)

=

(
1− βγ

(α + β + s)(γ + δ + s)

)−1
(

1 β/(α + β + s)

γ/(γ + δ + s) 1

)(
α/(α + β + s)

δ/(γ + δ + s)

)

=

(
1− βγ

(α + β + s)(γ + δ + s)

)−1


α

α + β + s
+

βδ

(α + β + s)(γ + δ + s)
δ

γ + δ + s
+

βγ

(α + β + s)(γ + δ + s)

.

(6)



Mathematics 2023, 11, 5001 5 of 16

Putting γ = 0 to give a Coxian phase type model with two phases, we get:

f ∗(s) =


β

α + β + s
+

βδ

(α + β + s)(δ + s)
δ

δ + s

, (7)

f (t) =

 βδ

α + β− δ
e−δt +

(α + β)(α− δ)

α + β− δ
e−(α+β)t

δe−δt

. (8)

We note that this equation was previously obtained in McClean [31].

3.2. The Coxian Model

For the general Smart Home case, we consider a Coxian transition matrix structure
where transitions to transient states are sequential (Figure 2) and we envisage a phase-type
model where there are a number of transient states and exit to a single, or possibly a
group of, absorbing state(s). Exit to the absorbing state can occur from any transient case,
otherwise, departure from a transient state is to the next transient state in the sequence. A
classical phase-type distribution describes a non-negative random variable (usually the
duration) generated by a Markov process having a number of transient states (or phases)
and a single absorbing state. The duration in each state is therefore exponential. However,
in the current case, we envisage a semi-Markov Coxian phase-type model, in particular, a
model with mixed gamma durations in each state.

Figure 2. The Coxian phase-type model.

Here, the transient class of states could be all the activities in a visit to the kitchen.
Entry to the class is flagged by a door sensor and the class comprises all possible states
in the kitchen. For example, a state could be accessing the kettle, which may be accessed
for making a cup of coffee (short duration) or for filling a cooking pot (long duration). We
therefore assume that the inhabitant enters the kitchen, and then carries out one or more
activities in the kitchen class, where an activity duration is described by a mixed gamma
duration. In our notional example, these mixture components typically represent latent
sub-states, e.g, the short and long kettle durations.

For this semi-Markov Coxian phase-type model, we let ai be the transition probability
from phase Si to Si+1, for i = 1, · · · , k− 1, and let bi be the probability of transition from Si
to Sk+1, for i = 1, · · · , k where Sk+1 is the absorbing state. Then, fi(t) is the pdf of duration
in phase Si, with corresponding generating function f ∗i (s) for i = 1, · · · , k.

In this case:

A =



0 b1 0 · · 0

0 0 b2 0 · 0

· · · · · ·
· · · · · ·
· · · · · ·
0 0 0 · · bk−1

0 0 0 · · 0


, b =



a1

a2

·
·
·

ak−1

ak


, (9)
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H(t) =



h1(t) · · · · h1(t)

h2(t) · · · · h2(t)

· · · · · ·
· · · · · ·
· · · · · ·

hk−1(t) · · · · hk−1(t)

hk(t) · · · · hk(t)


, and h(t) =



h1(t)

h2(t)

·
·
·

hk−1(t)

hk(t)


. (10)

Then, we have:

f ∗(s) =



1 −b1h∗1(s) 0 · · 0
0 1 −b2 f ∗2 (s) 0 · 0
· · · · · ·
· · · · · ·
· · · · · ·
0 0 0 · · −bk−1 f ∗k−1(s)
0 0 0 · · 1



−1


a1h1(t)

a2h2(t)

·
·
·

ak−1hk−1(t)

akhk(t)



=



1 b1h∗1(s) b1b2h∗1(s)h
∗
2(s) · · b1b2 · · · bk−1h∗1(s) · · · h∗k−1(s)

0 1 b2h∗2(s) 0 · 0
· · · · · ·
· · · · · ·
· · · · · ·
0 0 0 · · bk−1h∗k−1(s)
0 0 0 · · 1





a1h1(t)

a2h2(t)

·
·
·

ak−1hk−1(t)

akhk(t)


.

(11)

So,

f ∗i (s) =
k

∑
j=i

αjhj ∗ (s)
k−1

∏
r=j

brh∗r (s), i = 1, · · · , k. (12)

For k = 2 and

H∗(s) =

(
(α + β)/(α + β + s) (α + β)/(α + β + s)

(γ + δ)/(γ + δ + s) (γ + δ)/(γ + δ + s)

)
. (13)

We therefore obtain the previous result for a Coxian Markov phase-type model. If
the initial state entered in C is unknown we use a probability vector π = {πi}, where πi
is the probability of admission to state Si, i = 1, · · · , k. In this case, the transform of the
unconditional pdf of duration in C is:

g∗(s) = π f ∗(s). (14)

For mixed gamma holding times and a semi-Markov Coxian phase-type model
we have:

hi(t) =
Ri

∑
r=1

πir
1

Γ(αir)β
αir
ir

tαir−1e−
t

βir , t ≥ 0, (15)

and

h∗i (s) =
Ri

∑
r=1

πir(1 + βirs)−αir , i = 1, · · · , k. (16)

So, we need to compute f ∗i (s), which is a mixture of terms with coefficients
αj ∏k−1

r=j br of the convolution of exponentials. Thus, the time to exit from class C is
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prob(exit from 1) × (mixed gamma 1) + prob(exit from 2) × (mixed gamma 1
⊕

mixed
gamma 2) + · · · . We can think of this as a mixture of terms relating to exits from successive
states, where the corresponding duration is a convolution of times in all the states involved
in this transition. We regard such terms as durations of time to exit from C, following entry
to the hidden semi-Markov model, where the gamma mixture components are hidden
states. Here,

⊕
denotes convolution (sum of two independent random variables). We write

f ∗i (s) =
k

∑
j=i

aj(
k−1

∏
r=j

brh∗j (s)h
∗
r (s)), i = 1, · · · , k. (17)

For example, when k = 2:

f ∗1 (s) = a1h∗1(s) + a2b1h∗1(s)h
∗
2(s), (18)

f ∗2 (s) = a2h∗2(s). (19)

So, for entrance to state 1 and exit from state 1, we have a mixture of durations with an
exit from state 1 directly, with probability a1 and from state 1 to state 2, and then state 2 to
exit, with probability a2b1. Inverting the transforms, the corresponding durations have pdfs
h1(t) and the convolution of h1(t) and h2(t), respectively. Here, a1 + b1 = 1 and a2 = 1. For
entrance to state 2, exit can only occur directly from state 2, and the duration has pdf h2(t).

In general, of course, different sequences may be formed from the same activities
executed in different orders. Here, we have developed the theory for commonly occurring
sequences and those potentially of particular interest, e.g., some sequences might indicate
that the patient is not managing their activities successfully. In further work, we plan to
further consider these aspects, particularly focusing on the aggregation of states, as an aid
to understanding, and improved computational efficiency [20].

3.3. Gamma Convolutions

The sum of a number of independently and identically distributed random variables
is called their convolution. The exact expressions for the convolutions of n gamma pdfs
and cumulative distribution functions (cdfs) are complex and difficult to compute, but are
of considerable practical interest [32]. In particular, some authors have proposed that a
simple gamma distribution can give a good approximation, especially for convolutions
with n > 2, (Stewart et al. [33], Covo and Elalouf [34]). On the other hand, approximations
and high-performance algorithms have also been developed and are implemented in coga
(r-project-org) [35]. In particular, exact solutions have been implemented for n = 2 [36]
or n > 2 [37], while efficient approximate solutions have originated from Barnabani [38].

In our current context, some interesting work has been carried out by Guenther et al. [20]
(and in other papers), who describe the modelling and computation of passage-time distribu-
tions between groups and aggregates of states.

4. Experiments on Artificially Generated Smart Home Data

In this Section, we generate mixed gamma data representing typical behaviours
of each of two activities, in each case consisting of two possible sub-activities, where
each sub-activity has two or three possible mixed gamma components. The chosen ac-
tivities are Toileting and Breakfast, respectively. In each case, we simulate an activity
instance by generating two mixed gamma sub-activity instance durations, where we as-
sume these two sub-activities are followed sequentially. For each activity, we then simulate
10,000 representative activity instance durations as the sum of the corresponding mixed
gamma sub-activity instance durations.

Using these simulated data, we carry out a series of experiments that, for each of the
two activities, compare the empirical activity duration distribution with the convolution
model, computed as the convolution of the two sub-activity durations, and the mixed
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gamma model fitted to the actual (simulated) data for the activity duration. As discussed
in the previous section, the latter has previously been shown to give a good approximation
to such data [5].

4.1. Datasets

Toileting To generate data that simulates a scenario in which the inhabitant first
performs ‘use toilet’ and then ‘wash hands’, we suppose the inhabitant has three patterns
when using the toilet, requiring 1, 5, and 10 min on average and two duration patterns
for washing hands, taking on average 20 and 40 s each. Such patterns are created by
gamma distributions with parameters presented in Table 1. The sequential execution of the
two activities is referred to as ‘Toileting’.

Table 1. Toileting: real gamma distribution parameters and the parameters fitted by the model-
based method.

Real Parameters Estimated Parameters

Activity Shape Scale Mean Mixing Shape Scale Mean

Toileting
Use toilet

3 20 60 0.795 3.076 19.168 58.961
50 6 300 0.165 43.040 6.946 298.963
200 3 600 0.040 201.440 2.970 598.284

Wash hands 20 1 20 0.701 21.257 0.939 19.951
40 1 40 0.299 46.666 0.861 40.170

Breakfast To simulate a ‘Breakfast’ scenario including two consecutive activities, ‘eat
food’ (three patterns taking 10, 20, and 40 min on average) and ‘wash dishes’ (two patterns,
requiring 5 and 10 min), gamma distributions are employed with the parameters shown
in Table 2.

Table 2. Breakfast: real gamma distribution parameters and the parameters fitted by the model-
based method.

Real Parameters Mathematical Model

Activity Shape Scale Mean Mixing Shape Scale Mean

Breakfast
Eat food

60.00 10.00 600.00 0.69 57.12 10.54 601.86
60.00 20.00 1200.00 0.24 66.77 18.07 1206.47
120.00 20.00 2400.00 0.07 121.83 19.69 2398.62

Wash dishes 10.00 30.00 300.00 0.74 13.35 20.94 279.58
30.00 20.00 600.00 0.26 29.78 19.08 568.22

4.2. Goodness of Fit of the Model-Based Method for ‘Toileting’

Regarding ‘Toileting’, Table 1 displays real gamma parameters for generating the
activities ‘use toilet’ and ‘wash hands’, alongside the model-based method estimated
from gamma mixture models. Additionally, Table 3 shows the gamma mixture model
parameters obtained from the data-driven-based method. Such mixture models are fitted
by maximizing the likelihood using the Nelder–Mead simplex algorithm [5].

Table 3. Toileting: parameters fitted by the data-driven-based method.

Mixing Shape Scale Mean

Toileting
0.796 6.086 13.402 81.561
0.164 51.745 6.529 337.822
0.040 189.917 3.376 641.162
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Figure 3 demonstrates the model-based method for estimating the duration distribu-
tion of the ‘toileting’ activity (red line). This is achieved by the convolution of estimated
gamma mixture models for ‘use toilet’ (black line) and ‘wash hands’ (orange line) in
Figure 4. The green line represents the distribution that is estimated by the data-driven
method. In other words, instead of fitting ‘toileting’ data directly (the data-driven method),
the model-based approach first separately fits the duration distributions of the two sub-
activities and then combines them to estimate the ‘toileting’ duration distribution. The
model-based method is therefore suitable for scenarios in which the distribution of sub-
activities is known, without the need for additional computational resources.

Figure 3. Toileting: pdf of the model- and data-driven-based methods.

Figure 4. Toileting: pdf of activities ‘use toilet’ and ‘wash hands’.

The KS test [39] is then employed to assess the goodness of fit of the model-based method,
with the results presented in Table 4 and Figure 5. We note that the Anderson–Darling test
could have been used here as a more powerful alternative to the Kolmogorov–Smirnov test.
In summary, both the model-based and data-driven methods effectively represent the original
data distribution, as indicated by p-values of 0.219 (model-based) and 0.181 (data-driven),
which exceed the predetermined significance level of 0.05. Furthermore, the estimated dura-
tion distributions by the two methods is extremely similarly with a p-value of 0.610; the same
result can be seen in Figure 5.

Table 4. Toileting: the goodness of data fitting by using the KS test.

Sample 1 Sample 2 Statistic p-Value

Model-based Real data 0.047 0.219
Data-driven-based Real data 0.049 0.181

Model-based Data-driven-based 0.034 0.610
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Figure 5. Toileting: cdf of the model- and data-driven-based methods.

4.3. Goodness of Fit of the Model-Based Method for ‘Breakfast’

Similarly, parameters to generate the data of ‘eating food’ and ‘washing dishes’ and
parameters fitted by the model-based method are presented in Table 2. Table 5 displays the
data-driven method estimated gamma mixture model parameters. The fitted pdf curves
are shown in Figure 6.

Table 5. Breakfast: parameters fitted by the data-driven-based method.

Mixing Shape Scale Mean

Breakfast
0.698 51.105 17.714 905.274
0.233 59.564 27.811 1656.523
0.069 145.588 20.580 2996.230

Figure 6. Breakfast: the pdf of model- and data-driven-based methods.

The pdf of activities ‘eat food’ and ‘wash dishes’ is given in Figure 7. The KS test
results are given in Table 6 and Figure 8. The data-driven method fits the data the best with
the highest p-value of 0.523 compared to 0.276 of the model-based method. We highlight
that, although the performance of the data-driven method in data fitting outperforms the
model-based method, they show less distribution difference with a p-value of 0.821.

Table 6. Breakfast: the goodness of data fitting by using the KS test.

Sample 1 Sample 2 Statistic p-Value

Model-based Real data 0.180 0.276
Data-driven-based Real data 0.147 0.523

Model-based Data-driven-based 0.114 0.821
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Figure 7. Toileting: pdf of activities ‘eat food’ and ‘wash dishes’.

Figure 8. Breakfast: activites of the model- and data-driven-based methods.

5. Example Using Artificially Generated Data for Toileting to Assess Deterioration

Using the artificially generated data described in Section 4.2, we will illustrate the
model described in Equations (17) to (19) and discussed in Section 3.3, for gamma convolu-
tion. We therefore consider a toileting model as described in the real data part of Table 1.
However, we now use a mixed gamma with the given parameters for the two activities ‘use
toilet’ and ‘wash hands’ but, unlike in Section 4, we assume that ‘wash hands’ is omitted
with probability b. This might be of interest, for example, when assessing deteriorating
cognitive or kidney function in an elderly patient.

In this case, the pdf for time spent on the toileting activity becomes a mixture of the
pdf of time spent using the toilet, with probability b, and the convolution of time spent
on ‘use toilet’ and ‘wash hands’, with probability 1 − b. In Figure 9, we see the pdf of this
distribution plotted as a function of b, which shows that, with the increase of b (higher
probability to omit washing hands), the length of duration to complete activity ‘toileting’ is
decreasing. Here, b may be regarded as a proxy for impairment, and we can therefore use
a statistical test, such as likelihood ratio, to test for drift in b, signalling possible decline.
Similarly, Figure 10 demonstrates the pdf that ‘wash dishes’ is omitted with probability b.

Figure 9. Toileting: pdf of the model-based method given that “wash hands” is omitted with
probability b.
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Figure 10. Breakfast: pdf of the model-based method given that “wash dishes” is omitted with
probability b.

6. Experiments on Real-World Smart Home Data
Datasets

This section utilizes data pertaining to the daily activities of a 26-year-old individual
living in a three-room apartment, as gathered by van Kasteren [6]. The data comprise
14 binary state-change sensors, representing the seven activities shown in Table 7 with
the Markov transition probabilities shown in Table 8. These sensors were strategically
positioned in various areas such as cupboards, refrigerators, and doors, and were left
unattended for a duration of 28 days. Additional insights into the apartment’s layout and
sensor placement can be found in [6,40].

Table 7. Events in the activity, sensor, and location level [28].

Level Events #Events

Activity ‘Get Drink’, ‘Go to Bed’, ‘Leave House’, ‘Prepare
Breakfast’, ‘Prepare Dinner’, ‘Take Shower’, ‘Use Toilet’ 7

Sensor

‘Microwave’, ‘Hall Toilet Door’, ‘Hall Bathroom Door’,
‘Cups Cupboard’, ‘Fridge’,‘Plates Cupboard’, ‘Front
Door’, ‘Dish Washer’, ‘Toilet Flush’, ‘Freezer’, ‘Pans

Cupboard’, ‘Washing Machine’, ‘Groceries Cupboard’,
‘Hall Bedroom Door’

14

Location ‘Outdoor’, ‘Bedroom’, ‘Kitchen’, ‘Washroom’ 4

Table 8. Transition probabilities between activities [28].

GD GTB LH PB PD TS UT

Get Drink (GD) 0.15 0 0 0.05 0 0 0.8
Go to Bed (GTB) 0 0 0 0.042 0 0 0.958
Leave House (LH) 0.091 0.03 0.03 0 0.091 0.061 0.697
Prepare Breakfast (PB) 0.05 0 0 0 0 0.55 0.4
Prepare Dinner (PD) 0.6 0 0.1 0 0 0 0.3
Take Shower (TS) 0 0 0.913 0 0.043 0 0.043
Use Toilet (UT) 0.061 0.193 0.096 0.158 0.053 0.088 0.351

Since all seven activities have a high transition probability to activity ‘use toilet’, these
transitions are of interest, with 16, 23, 23, 8, 3, 1, and 40 samples, respectively, starting from
‘get drink’, ‘use toilet’, ‘go to bed’, ‘leave house’, ‘prepare breakfast’, ‘prepare dinner’, ‘take
shower’ and ‘use toilet’. Due to the limited sample size and the lack of a representative,
several transitions are ignored and, finally, data from ‘go to bed’ to ‘use toilet’ and ‘use
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toilet’ to ‘use toilet’ are used as a case study. Their density distributions are shown in
Figures 11 and 12. Figures 13 and 14 demonstrate their active curves with the KS test results
in Tables 9 and 10.

Figure 11. From ‘go to bed’ to ‘use toilet’: the pdf of model- and data-driven-based methods.

Figure 12. From ‘use toilet’ to ‘use toilet’: the pdf of model- and data-driven-based methods.

Figure 13. From ‘go to bed’ to ‘use toilet’: cdf of the model- and data-driven-based methods.
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Figure 14. From ‘use toilet’ to ’use toilet’: cdf of the model- and data-driven-based methods.

Table 9. From ‘go to bed’ to ‘use toilet’: the goodness of data fitting by using the KS test.

Sample 1 Sample 2 Statistic p-Value

Model-based Real data 0.215 0.685
Data-driven-based Real data 0.205 0.705

Model-based Data-driven-based 0.248 0.532

Table 10. From ‘use toilet’ to ’use toilet’: the goodness of data fitting by using the KS test.

Sample 1 Sample 2 Statistic p-Value

Model-based Real data 0.582 0.217
Data-driven-based Real data 0.481 0.384

Model-based Data-driven-based 0.388 0.632

7. Conclusions and Further Work

Smart Homes and sensorized environments are becoming increasingly prevalent
and can provide a useful source of support for disabled inhabitants. In this paper, we
have developed suitable equations for semi-Markov models with mixed gamma duration
distribution; these have been implemented and evaluated using simulated and real data
and have been shown to produce promising results. Such durations can be interpreted
as KPIs (Key Performance Indicators) and can be used to assess changes represented by
anomalies/outliers or concept drift (changes in duration distribution).

In further work, we plan to extend the research to different Markov-type models,
such as: (i) nth order models, where the Markov property no longer hold in all cases,
and there may be situations when the next (sub-)activity depends on previous states;
(ii) non-homogeneous Markov models [17], where the model parameters vary with time,
e.g., day-time and night-time, or week-days and weekends, might have different activity
patterns that are reflected in model parameters; and (iii) the aggregation of semi-Markov
models with a view to providing key information at a suitable level of detail and to improve
computational efficiency.

In general, such models can be used in healthcare situations in several important ways.
Firstly, they can provide assistance for the patient, by reminding and prompting when
a (sub-)activity has been ongoing for too long or omitted. By providing such services in
the home, there are potentially huge financial benefits, in terms of reduced hospital and
nursing home admissions, as well as improved quality-of-life for the patient and their
carers. Secondly, by providing information to the medical professionals and identifying
possible deterioration in the patient’s condition, there can be improved monitoring, with the
potential for more timely and effective treatment and reductions in hospital (re)admissions.
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Finally, by having a suitable deployment of such Smart Home technologies, the care of
relevant patients can be better managed, resourced, and planned. However, although there
has been a considerable amount of research and some deployment of such solutions, there
is still a lot of work that needs to be undertaken before the approach is fully fit-for-purpose
and widely adopted ([41,42]).
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